Skip to content
Snippets Groups Projects
Commit 0c0e59ec authored by Noam Zerah's avatar Noam Zerah
Browse files

Ajout du Backend CPU pour l'opérateur BitShift (Ainsi que les tests unitaire de bitshift)

parent d1114932
No related branches found
No related tags found
1 merge request!88Added Bitshift Operator
Pipeline #54505 failed
...@@ -16,6 +16,7 @@ ...@@ -16,6 +16,7 @@
#include "aidge/backend/cpu/operator/AvgPoolingImpl.hpp" #include "aidge/backend/cpu/operator/AvgPoolingImpl.hpp"
#include "aidge/backend/cpu/operator/MaxPoolingImpl.hpp" #include "aidge/backend/cpu/operator/MaxPoolingImpl.hpp"
#include "aidge/backend/cpu/operator/BatchNormImpl.hpp" #include "aidge/backend/cpu/operator/BatchNormImpl.hpp"
#include "aidge/backend/cpu/operator/BitShiftImpl.hpp"
#include "aidge/backend/cpu/operator/ConvDepthWiseImpl.hpp" #include "aidge/backend/cpu/operator/ConvDepthWiseImpl.hpp"
#include "aidge/backend/cpu/operator/ConvImpl.hpp" #include "aidge/backend/cpu/operator/ConvImpl.hpp"
#include "aidge/backend/cpu/operator/DivImpl.hpp" #include "aidge/backend/cpu/operator/DivImpl.hpp"
......
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#ifndef AIDGE_CPU_OPERATOR_BITSHIFTIMPL_H_
#define AIDGE_CPU_OPERATOR_BITSHIFTIMPL_H_
#include "aidge/backend/OperatorImpl.hpp"
#include "aidge/operator/BitShift.hpp"
#include "aidge/utils/Registrar.hpp"
#include "aidge/utils/Types.h"
#include "aidge/backend/cpu/data/GetCPUPtr.h"
#include <memory>
#include <vector>
namespace Aidge {
// class BitShift_Op;
// compute kernel registry for forward and backward
class BitShiftImplForward_cpu
: public Registrable<BitShiftImplForward_cpu, std::tuple<DataType, DataType, DataType>, void(const Direction,const std::vector<std::size_t>&, const std::vector<std::size_t>&, const std::vector<std::size_t>&, const void*, const void*,void*)> {
};
class BitShiftImplBackward_cpu
: public Registrable<BitShiftImplBackward_cpu, std::tuple<DataType, DataType, DataType>, void(const Direction,const std::vector<std::size_t>&, const std::vector<std::size_t>&, const std::vector<std::size_t>&, const void*, const void*, void*)> {
};
class BitShiftImpl_cpu : public OperatorImpl {
public:
BitShiftImpl_cpu(const BitShift_Op& op) : OperatorImpl(op, "cpu") {}
static std::unique_ptr<BitShiftImpl_cpu> create(const BitShift_Op& op) {
return std::make_unique<BitShiftImpl_cpu>(op);
}
Elts_t getNbRequiredProtected(const IOIndex_t inputIdx) const override final;
void forward() override;
};
namespace {
static Registrar<BitShift_Op> registrarBitShiftImpl_cpu("cpu", Aidge::BitShiftImpl_cpu::create);
}
} // namespace Aidge
#endif /* AIDGE_CPU_OPERATOR_BITSHIFTIMPL_H_ */
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#ifndef AIDGE_CPU_OPERATOR_BITSHIFTIMPL_FORWARD_KERNEL_H_
#define AIDGE_CPU_OPERATOR_BITSHIFTIMPL_FORWARD_KERNEL_H_
#include "aidge/utils/Registrar.hpp"
#include <cstdint> // std::int32_t, std::int64_t
#include "aidge/operator/BitShift.hpp"
#include "aidge/backend/cpu/data/Broadcasting.hpp"
#include "aidge/backend/cpu/operator/BitShiftImpl.hpp"
namespace Aidge {
template <class I1, class I2, class O>
void BitShiftImpl_cpu_forward_kernel(
const Direction direction,
const std::vector<std::size_t>& input1Dims,
const std::vector<std::size_t>& input2Dims,
const std::vector<std::size_t>& outputDims,
const void* input1_,
const void* input2_,
void* output_
) {
//Cast des entrées en classes I / O
const I1* input_1 = static_cast<const I1*>(input1_);
const I2* input_2 = static_cast<const I2*>(input2_);
O* output = static_cast<O*>(output_);
size_t totalElements = 1;
for (size_t dimSize : outputDims) {
totalElements *= dimSize;
}
for (std::size_t oIndex = 0; oIndex < totalElements; ++oIndex)
{
std::vector<size_t> indexes = getMultiDimIndices(outputDims, oIndex);
std::size_t idx1 = getFlattenedIndex(input1Dims, indexes);
std::size_t idx2 = getFlattenedIndex(input2Dims, indexes);
if(direction == Direction::right)
{
//BitShift ne fonctionne pas sur les types à virgule flottante
output[oIndex]= input_1[idx1] >> input_2[idx2];
}
else if(direction == Direction::left)
{
output[oIndex] = input_1[idx1] << input_2[idx2];
}
}
}
namespace {
static Registrar<BitShiftImplForward_cpu> registrarBitShiftImplForward_cpu_Int32(
{DataType::Int32, DataType::Int32, DataType::Int32},
Aidge::BitShiftImpl_cpu_forward_kernel<std::int32_t, std::int32_t, std::int32_t>);
static Registrar<BitShiftImplForward_cpu> registrarBitShiftImplForward_cpu_Int64(
{DataType::Int64, DataType::Int64, DataType::Int64},
Aidge::BitShiftImpl_cpu_forward_kernel<std::int64_t, std::int64_t, std::int64_t>);
} // namespace
} // namespace Aidge
#endif /* AIDGE_CPU_OPERATOR_BitShiftIMPL_FORWARD_KERNEL_H_ */
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include <cassert>
#include <chrono> // std::chrono::milliseconds
#include <numeric>
#include <thread> // std::this_thread::sleep_for
#include <vector>
#include "aidge/utils/Types.h"
#include "aidge/backend/cpu/data/Broadcasting.hpp"
#include "aidge/backend/cpu/data/GetCPUPtr.h"
#include "aidge/backend/cpu/operator/BitShiftImpl.hpp"
#include "aidge/backend/cpu/operator/BitShiftImpl_forward_kernels.hpp"
Aidge::Elts_t Aidge::BitShiftImpl_cpu::getNbRequiredProtected(const Aidge::IOIndex_t /*inputIdx*/) const {
// this implementation can be in-place
return Elts_t::DataElts(0);
}
void Aidge::BitShiftImpl_cpu::forward() {
const auto& op_ = dynamic_cast<const BitShift_Op&>(mOp);
auto kernelFunc = Registrar<BitShiftImplForward_cpu>::create({
std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(),
std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->dataType(),
std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()});
const std::vector<std::size_t> inputDims0 = getBroadcastedDims(std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dims(),
std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims());
const std::vector<std::size_t> inputDims1 = getBroadcastedDims(std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dims(),
std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->dims());
Direction direction = op_.direction();
// Call kernel
kernelFunc(
direction,
inputDims0,
inputDims1,
std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dims(),
getCPUPtr(mOp.getRawInput(0)),
getCPUPtr(mOp.getRawInput(1)),
getCPUPtr(mOp.getRawOutput(0)));
}
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include <catch2/catch_test_macros.hpp>
#include <cstddef> // std::size_t
#include <cstdint> // std::uint16_t
#include <chrono>
#include <iostream>
#include <memory>
#include <numeric>
#include <random> // std::random_device, std::mt19937, std::uniform_real_distribution
#include <iomanip>
#include "aidge/data/Tensor.hpp"
#include "aidge/operator/BitShift.hpp"
#include "aidge/utils/TensorUtils.hpp"
namespace Aidge {
TEST_CASE("[cpu/operator] BitShift_TEST", "[BitShift][CPU]") {
constexpr std::uint16_t NBTRIALS = 15;
// Create a random number generator
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<int> valueDist(-15, 15); // Random int distribution between -15 and 15
std::uniform_int_distribution<std::size_t> dimSizeDist(std::size_t(2), std::size_t(5));
std::uniform_int_distribution<std::size_t> nbDimsDist(std::size_t(1), std::size_t(3));
std::uniform_int_distribution<int> boolDist(0,1);
Direction direction = Direction::left;
if(valueDist(gen) % 2 == 0)
{
direction = Direction::right;
}
// Create BitShift Operator
std::shared_ptr<Node> myBitShift = BitShift(direction); // Left opérator to start
auto op = std::static_pointer_cast<OperatorTensor>(myBitShift-> getOperator());
op->setDataType(DataType::Int32);
op->setBackend("cpu");
// Create 2 input Tensors
std::shared_ptr<Tensor> T0 = std::make_shared<Tensor>();
op->associateInput(0,T0);
T0->setDataType(DataType::Int32);
T0->setBackend("cpu");
std::shared_ptr<Tensor> T1 = std::make_shared<Tensor>();
op -> associateInput(1,T1);
T1->setDataType(DataType::Int32);
T1->setBackend("cpu");
// Create results Tensor
std::shared_ptr<Tensor> Tres = std::make_shared<Tensor>();
Tres->setDataType(DataType::Int32);
Tres->setBackend("cpu");
// To measure execution time of 'BitShift_Op::forward()' member function call
std::chrono::time_point<std::chrono::system_clock> start;
std::chrono::time_point<std::chrono::system_clock> end;
std::chrono::duration<double, std::micro> duration{};
SECTION("BitShiftImpl_cpu::forward()") {
SECTION("+1-D Tensor / +1-D Tensor - same dimensions") {
std::size_t number_of_operation = 0;
for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) {
// generate 2 random Tensors
const std::size_t nbDims = nbDimsDist(gen);
std::vector<std::size_t> dims;
for (std::size_t i = 0; i < nbDims; ++i) {
dims.push_back(dimSizeDist(gen));
}
const std::size_t nb_elements = std::accumulate(dims.cbegin(), dims.cend(), std::size_t(1), std::multiplies<std::size_t>());
number_of_operation += nb_elements;
// without broadcasting
int* array0 = new int[nb_elements];
int* array1 = new int[nb_elements];
int* result = new int[nb_elements];
for (std::size_t i = 0; i < nb_elements; ++i) {
array0[i] = valueDist(gen);
array1[i] = std::abs(valueDist(gen)); // bitshift is impossible with negative value
if(direction == Direction::left)
{
result[i] = array0[i] << array1[i];
}
else
{
result[i] = array0[i] >> array1[i];
}
}
// input0
T0->resize(dims);
T0 -> getImpl() -> setRawPtr(array0, nb_elements);
// input1
T1->resize(dims);
T1 -> getImpl() -> setRawPtr(array1, nb_elements);
// results
Tres->resize(dims);
Tres -> getImpl() -> setRawPtr(result, nb_elements);
op->forwardDims();
start = std::chrono::system_clock::now();
myBitShift->forward();
end = std::chrono::system_clock::now();
duration += std::chrono::duration_cast<std::chrono::microseconds>(end - start);
bool is_eq = approxEq<int>(*(op->getOutput(0)), *Tres);
auto Output = *(op->getOutput(0));
auto prt = Output.getImpl()->rawPtr();
REQUIRE(is_eq);
delete[] array0;
delete[] array1;
delete[] result;
}
std::cout << "number of elements over time spent: " << (number_of_operation / duration.count())<< std::endl;
std::cout << "total time: " << duration.count() << "μs" << std::endl;
}
SECTION("+1-D Tensor / +1-D Tensor - broadcasting") {
std::size_t number_of_operation = 0;
for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) {
// generate 2 random Tensors
// handle dimensions, replace some dimensions with '1' to get broadcasting
constexpr std::size_t nbDims = 4;
std::vector<std::size_t> dims;
for (std::size_t i = 0; i < nbDims; ++i) {
dims.push_back(dimSizeDist(gen));
}
std::vector<std::size_t> dims0 = dims;
std::vector<std::size_t> dims1 = dims;
std::vector<std::size_t> dimsOut = dims;
for (std::size_t i = 0; i < nbDims; ++i) {
if (boolDist(gen)) {
dims0[i] = 1;
}
if (boolDist(gen)) {
dims1[i] = 1;
}
dimsOut[i] = (dims0[i] == 1) ? dims1[i] : dims0[i];
}
// create arrays and fill them with random values
int* array0 = new int[dims0[0]*dims0[1]*dims0[2]*dims0[3]];
int* array1 = new int[dims1[0]*dims1[1]*dims1[2]*dims1[3]];
int* result = new int[dimsOut[0]*dimsOut[1]*dimsOut[2]*dimsOut[3]];
for (std::size_t i = 0; i < dims0[0]*dims0[1]*dims0[2]*dims0[3]; ++i) {
array0[i] = valueDist(gen);
}
for (std::size_t i = 0; i < dims1[0]*dims1[1]*dims1[2]*dims1[3]; ++i) {
array1[i] = std::abs(valueDist(gen));
}
//True result with broadcast
const std::size_t strides0[nbDims] = {dims0[1]*dims0[2]*dims0[3], dims0[2]*dims0[3], dims0[3], 1};
const std::size_t strides1[nbDims] = {dims1[1]*dims1[2]*dims1[3], dims1[2]*dims1[3], dims1[3], 1};
for (std::size_t a = 0; a < dimsOut[0]; ++a) {
for (std::size_t b = 0; b < dimsOut[1]; ++b) {
const std::size_t idx0_0 = strides0[0] * ((dims0[0] > 1) ? a : 0)
+ strides0[1] * ((dims0[1] > 1) ? b : 0);
const std::size_t idx1_0 = strides1[0] * ((dims1[0] > 1) ? a : 0)
+ strides1[1] * ((dims1[1] > 1) ? b : 0);
for (std::size_t c = 0; c < dimsOut[2]; ++c) {
const std::size_t idx_out = dimsOut[3] * (c + dimsOut[2] * (b + dimsOut[1] * a));
for (std::size_t d = 0; d < dimsOut[3]; ++d) {
std::size_t idx0 = idx0_0
+ strides0[2] * ((dims0[2] > 1) ? c : 0)
+ ((dims0[3] > 1) ? d : 0);
std::size_t idx1 = idx1_0
+ strides1[2] * ((dims1[2] > 1) ? c : 0)
+ ((dims1[3] > 1) ? d : 0);
if(direction == Direction::left)
{
result[idx_out + d] = array0[idx0] << array1[idx1];
}
else
{
result[idx_out + d] = array0[idx0] >> array1[idx1];
}
}
}
}
}
// conversion to Aidge::Tensors
// input0
T0->resize(dims0);
T0 -> getImpl() -> setRawPtr(array0, dims0[0]*dims0[1]*dims0[2]*dims0[3]);
// input1
T1->resize(dims1);
T1 -> getImpl() -> setRawPtr(array1, dims1[0]*dims1[1]*dims1[2]*dims1[3]);
// results
Tres->resize(dimsOut);
Tres -> getImpl() -> setRawPtr(result, dimsOut[0]*dimsOut[1]*dimsOut[2]*dimsOut[3]);
// compute result
op->forwardDims();
start = std::chrono::system_clock::now();
myBitShift->forward();
end = std::chrono::system_clock::now();
duration += std::chrono::duration_cast<std::chrono::microseconds>(end - start);
// comparison between truth and computed result
bool equiv = (approxEq<int>(*(op->getOutput(0)), *Tres));
if(equiv == false)
{
std::cout << "Problem\n";
}
REQUIRE(equiv);
delete[] array0;
delete[] array1;
delete[] result;
const std::size_t nb_elements = std::accumulate(dimsOut.cbegin(), dimsOut.cend(), std::size_t(1), std::multiplies<std::size_t>());
number_of_operation += nb_elements;
}
std::cout << "number of elements over time spent: " << (number_of_operation / duration.count())<< std::endl;
std::cout << "total time: " << duration.count() << "μs" << std::endl;
}
}
} // namespace Aidge
}
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment