-
Maxence Naud authoredMaxence Naud authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
Test_ReduceMeanImpl.cpp 13.35 KiB
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include <algorithm> // std::fill
#include <cstddef> // std::size_t
#include <cstdint> // std::int32_t, std::uint16_t
#include <memory>
#include <random> // std::random_device, std::mt19937
// std::uniform_int_distribution, std::uniform_real_distribution
#include <vector>
#include <catch2/catch_test_macros.hpp>
#include <fmt/core.h>
#include "aidge/backend/cpu/data/TensorImpl.hpp"
#include "aidge/backend/cpu/operator/ReduceMeanImpl.hpp"
#include "aidge/data/DataType.hpp"
#include "aidge/data/Tensor.hpp"
#include "aidge/operator/ReduceMean.hpp"
#include "aidge/operator/OperatorTensor.hpp"
#include "aidge/utils/TensorUtils.hpp"
using namespace Aidge;
TEST_CASE("[cpu/operator] ReduceMean(forward)", "[ReduceMean][CPU]") {
SECTION("ForwardDims")
{
constexpr std::uint16_t NBTRIALS = 10;
// Create a random number generator
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_real_distribution<float> valueDist(0.1f, 1.1f); // Random float distribution between 0 and 1
std::uniform_int_distribution<std::size_t> dimSizeDist(std::size_t(2), std::size_t(10));
std::uniform_int_distribution<std::size_t> nbDimsDist(std::size_t(1), std::size_t(5));
std::uniform_int_distribution<int> boolDist(0,1);
SECTION("KeepDims") {
for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) {
DimSize_t nbDims = nbDimsDist(gen);
std::vector<DimSize_t> dims(nbDims);
std::vector<DimSize_t> expectedOutDims(nbDims);
std::vector<std::int32_t> axes;
for (std::size_t i = 0; i < nbDims; i++) {
dims[i] = dimSizeDist(gen);
expectedOutDims[i] = dims[i];
if(boolDist(gen)) {
axes.push_back(i);
expectedOutDims[i] = 1;
}
}
if (axes.empty()) { // Default behaviour if no axes are provided is to reduce all dimensions
std::fill(expectedOutDims.begin(), expectedOutDims.end(), 1);
}
std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(dims);
myInput->setBackend("cpu");
myInput->setDataType(DataType::Float32);
myInput->zeros();
std::shared_ptr<Node> myReduceMean = ReduceMean(axes, true);
auto op = std::static_pointer_cast<OperatorTensor>(myReduceMean -> getOperator());
op->associateInput(0,myInput);
op->setDataType(DataType::Float32);
op->setBackend("cpu");
op->forwardDims();
const auto outputDims = op->getOutput(0)->dims();
REQUIRE(outputDims == expectedOutDims);
}
}
SECTION("Not KeepDims") {
for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) {
DimSize_t nbDims = nbDimsDist(gen);
std::vector<DimSize_t> dims(nbDims);
std::vector<DimSize_t> expectedOutDims;
std::vector<std::int32_t> axes;
for (std::size_t i = 0; i < nbDims; i++) {
dims[i] = dimSizeDist(gen);
if(boolDist(gen)) {
axes.push_back(i);
}
else {
expectedOutDims.push_back(dims[i]);
}
}
if (axes.empty() || expectedOutDims.empty()) { // Default behaviour if no axes are provided is to reduce all dimensions
expectedOutDims = std::vector<DimSize_t>{1};
}
std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(dims);
myInput->setBackend("cpu");
myInput->setDataType(DataType::Float32);
std::shared_ptr<Node> myReduceMean = ReduceMean(axes, false);
auto op = std::static_pointer_cast<OperatorTensor>(myReduceMean -> getOperator());
op->associateInput(0,myInput);
op->setDataType(DataType::Float32);
op->setBackend("cpu");
op->forwardDims();
const auto outputDims = op->getOutput(0)->dims();
REQUIRE(outputDims == expectedOutDims);
}
}
SECTION("NoopWithEmptyAxes") {
for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) {
DimSize_t nbDims = nbDimsDist(gen);
std::vector<DimSize_t> dims(nbDims);
for (std::size_t i = 0; i < nbDims; i++) {
dims[i] = dimSizeDist(gen);
}
std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(dims);
myInput->setBackend("cpu");
myInput->setDataType(DataType::Float32);
std::shared_ptr<Node> myReduceMean = ReduceMean(std::vector<int32_t>{}, false, true);
auto op = std::static_pointer_cast<OperatorTensor>(myReduceMean -> getOperator());
op->associateInput(0,myInput);
op->setDataType(DataType::Float32);
op->setBackend("cpu");
op->forwardDims();
const auto outputDims = op->getOutput(0)->dims();
REQUIRE(outputDims == dims);
}
}
SECTION("Not NoopWithEmptyAxes") {
for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) {
DimSize_t nbDims = nbDimsDist(gen);
std::vector<DimSize_t> dims(nbDims);
for (std::size_t i = 0; i < nbDims; i++) {
dims[i] = dimSizeDist(gen);
}
std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(dims);
myInput->setBackend("cpu");
myInput->setDataType(DataType::Float32);
std::shared_ptr<Node> myReduceMean = ReduceMean({}, false, false);
auto op = std::static_pointer_cast<OperatorTensor>(myReduceMean -> getOperator());
op->associateInput(0,myInput);
op->setDataType(DataType::Float32);
op->setBackend("cpu");
op->forwardDims();
REQUIRE(op->getOutput(0)->nbDims() == 1);
REQUIRE(op->getOutput(0)->size() == 1);
}
}
}
SECTION("KeepDims") {
SECTION("test 1") {
std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(Array3D<float,3,2,2> {
{
{
{ 5.0, 1.0 },
{ 20.0, 2.0 }
},
{
{ 30.0, 1.0 },
{ 40.0, 2.0 }
},
{
{ 55.0, 1.0 },
{ 60.0, 2.0 }
}
}
});
Tensor myOutput = Tensor(Array3D<float,3,1,2> {
{
{{ 12.5, 1.5 }},
{{ 35.0, 1.5 }},
{{ 57.5, 1.5 }}
}
});
std::shared_ptr<Node> myReduceMean = ReduceMean({1}, 1);
auto op = std::static_pointer_cast<OperatorTensor>(myReduceMean -> getOperator());
op->associateInput(0,myInput);
op->setDataType(DataType::Float32);
op->setBackend("cpu");
myReduceMean->forward();
op->getOutput(0)->print();
REQUIRE(*(op->getOutput(0)) == myOutput);
}
SECTION("test 2") {
std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(Array3D<float,3,3,2> {
{
{
{ 0.0, 0.0 },
{ 1.0, 1.0 },
{ 2.0, 2.0 }
},
{
{ 3.0, 3.0 },
{ 4.0, 4.0 },
{ 5.0, 5.0 }
},
{
{ 6.0, 6.0 },
{ 7.0, 7.0 },
{ 8.0, 8.0 }
}
}
});
Tensor myOutput = Tensor(Array3D<float,3,1,1> {
{
{{ 1.0 }},
{{ 4.0 }},
{{ 7.0 }}
}
});
std::shared_ptr<Node> myReduceMean = ReduceMean({1, 2}, 1);
auto op = std::static_pointer_cast<OperatorTensor>(myReduceMean -> getOperator());
op->associateInput(0,myInput);
op->setDataType(DataType::Float32);
op->setBackend("cpu");
myReduceMean->forward();
myOutput.print();
op->getOutput(0)->print();
REQUIRE(*(op->getOutput(0)) == myOutput);
}
}
SECTION("not_KeepDims") {
std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(Array3D<float,3,2,2> {
{
{
{ 5.0, 1.0 },
{ 20.0, 2.0 }
},
{
{ 30.0, 1.0 },
{ 40.0, 2.0 }
},
{
{ 55.0, 1.0 },
{ 60.0, 2.0 }
}
}
});
std::shared_ptr<Tensor> myOutput = std::make_shared<Tensor>(Array2D<float,3,2> {
{
{ 12.5, 1.5 },
{ 35.0, 1.5 },
{ 57.5, 1.5 }
}
});
std::shared_ptr<Node> myReduceMean = ReduceMean({1}, 0);
auto op = std::static_pointer_cast<OperatorTensor>(myReduceMean -> getOperator());
op->associateInput(0,myInput);
op->setDataType(DataType::Float32);
op->setBackend("cpu");
myReduceMean->forward();
op->getOutput(0)->print();
REQUIRE(*(op->getOutput(0)) == *myOutput);
}
SECTION("all_axes") {
SECTION("1") {
std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(Array3D<float,3,2,2> {
{
{
{ 5.0, 1.0 },
{ 20.0, 2.0 }
},
{
{ 30.0, 1.0 },
{ 40.0, 2.0 }
},
{
{ 55.0, 1.0 },
{ 60.0, 2.0 }
}
}
});
std::shared_ptr<Tensor> myOutput = std::make_shared<Tensor>(Array1D<float,1> {
{18.25}
});
std::shared_ptr<Node> myReduceMean = ReduceMean({}, 0);
auto op = std::static_pointer_cast<OperatorTensor>(myReduceMean -> getOperator());
op->associateInput(0,myInput);
op->setDataType(DataType::Float32);
op->setBackend("cpu");
myReduceMean->forward();
op->getOutput(0)->print();
REQUIRE(*(op->getOutput(0)) == *myOutput);
}
SECTION("2") {
std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(Array2D<float,5,4> {
{{ 0.004232f, 0.105120f, 0.045124f, 0.009205f},
{ 0.000766f, 0.272162f, 0.503560f, 0.044163f},
{ 0.049755f, 0.000305f, 0.143634f, 0.013253f},
{ 0.096258f, 0.311231f, 0.358143f, 0.000452f},
{ 0.468617f, 0.015693f, 0.145316f, 0.000105f}}
});
std::shared_ptr<Tensor> myOutput = std::make_shared<Tensor>(Array1D<float,1> {
{0.1293547f}
});
std::shared_ptr<Node> myReduceMean = ReduceMean({}, 0);
auto op = std::static_pointer_cast<OperatorTensor>(myReduceMean -> getOperator());
op->associateInput(0,myInput);
op->setDataType(DataType::Float32);
op->setBackend("cpu");
myReduceMean->forward();
REQUIRE(approxEq<float>(*(op->getOutput(0)), *myOutput));
}
SECTION("noop_with_empty_axes") {
std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(Array3D<float,3,2,2> {
{
{
{ 5.0, 1.0 },
{ 20.0, 2.0 }
},
{
{ 30.0, 1.0 },
{ 40.0, 2.0 }
},
{
{ 55.0, 1.0 },
{ 60.0, 2.0 }
}
}
});
std::shared_ptr<Node> myReduceMean = ReduceMean({}, 0, 1);
auto op = std::static_pointer_cast<OperatorTensor>(myReduceMean -> getOperator());
op->associateInput(0,myInput);
op->setDataType(DataType::Float32);
op->setBackend("cpu");
myReduceMean->forward();
op->getOutput(0)->print();
REQUIRE(*(op->getOutput(0)) == *myInput);
}
}
}