Skip to content
Snippets Groups Projects
Test_FuseBatchNorm.cpp 4.44 KiB
Newer Older
/********************************************************************************
 * Copyright (c) 2023 CEA-List
 *
 * This program and the accompanying materials are made available under the
 * terms of the Eclipse Public License 2.0 which is available at
 * http://www.eclipse.org/legal/epl-2.0.
 *
 * SPDX-License-Identifier: EPL-2.0
 *
 ********************************************************************************/

#include <catch2/catch_test_macros.hpp>
#include <memory>
#include <cmath>

#include "aidge/graph/GraphView.hpp"
#include "aidge/graph/OpArgs.hpp"
#include "aidge/operator/Conv.hpp"
#include "aidge/operator/BatchNorm.hpp"
#include "aidge/operator/Producer.hpp"
Olivier BICHLER's avatar
Olivier BICHLER committed
#include "aidge/recipes/Recipes.hpp"
Olivier BICHLER's avatar
Olivier BICHLER committed
#include "aidge/scheduler/SequentialScheduler.hpp"

#include "aidge/data/Tensor.hpp"

namespace Aidge {

Olivier BICHLER's avatar
Olivier BICHLER committed
TEST_CASE("[core/recipes] FuseBatchNorm", "[recipes][FuseBatchNorm]") {
    auto myProd = Producer({2, 3, 3, 3}, "dataProvider");
    auto myConv = Conv(3, 3, {1, 1}, "conv1");
    auto myBN = BatchNorm<2>(32, 1.0e-5F, 0.1F, "batchnorm1");

    auto myProdOp = std::static_pointer_cast<Producer_Op>(myProd->getOperator());
    auto myConvOp = std::static_pointer_cast<Conv_Op<2>>(myConv->getOperator());
    auto myBNOp = std::static_pointer_cast<BatchNorm_Op<2>>(myBN->getOperator());

    myProdOp->setOutput(0, std::make_shared<Tensor>(Array4D<float,2,3,3,3> { //NCHW
        {
                {
                    {{8.28257084e-01, 7.99335480e-01, 7.36702740e-01},
                     {2.36729562e-01, 8.61912668e-01, 9.93067741e-01},
                     {1.63514376e-01, 8.95773172e-02, 2.96533108e-01}},
                    {{2.20776618e-01, 5.89067876e-01, 2.03930080e-01},
                     {1.31294072e-01, 7.10182846e-01, 1.08420849e-04},
                     {7.21750259e-01, 4.38212037e-01, 5.08823872e-01}},
                    {{4.30953979e-01, 1.51903450e-01, 3.76343548e-01},
                     {8.07861805e-01, 7.79679358e-01, 5.01209974e-01},
                     {9.31280375e-01, 9.94207084e-01, 1.74868107e-03}}
                },
                {
                    {{6.22058094e-01, 2.32256651e-02, 6.18222237e-01},
                     {9.58304763e-01, 2.11395025e-02, 4.95614648e-01},
                     {2.50825584e-01, 4.50860739e-01, 3.80362332e-01}},
                    {{9.91703272e-02, 5.06073236e-01, 4.88969564e-01},
                     {1.12059772e-01, 7.64178872e-01, 7.60362148e-01},
                     {2.84135342e-02, 4.29610193e-01, 1.27862811e-01}},
                    {{9.57209170e-01, 8.22797656e-01, 1.91352129e-01},
                     {9.52722490e-01, 6.35501027e-01, 5.67592978e-02},
                     {2.00799644e-01, 4.00822222e-01, 9.14380193e-01}}
                }
            }
    }));
    myConvOp -> setInput(1, std::make_shared<Tensor>(Array4D<float,3,3,1,1> { //NCHW
        {
            {
                {{8.28257084e-01}},
                {{7.99335480e-01}},
                {{7.36702740e-01}}
            },
            {
                {{2.36729562e-01}},
                {{8.61912668e-01}},
                {{9.93067741e-01}}
            },
            {
                {{1.63514376e-01}},
                {{8.95773172e-02}},
                {{2.96533108e-01}}
            }
        }
    }));
    myConvOp -> setInput(2, std::make_shared<Tensor>(Array1D<float,3> {{0.4470, 0.3064, 0.7061}}));
    myBNOp -> setInput(1, std::make_shared<Tensor>(Array1D<float,3> {{0.9044, 0.3028, 0.0218}}));
    myBNOp -> setInput(2, std::make_shared<Tensor>(Array1D<float,3> {{0.1332, 0.7503, 0.0878}}));
    myBNOp -> setInput(3, std::make_shared<Tensor>(Array1D<float,3> {{0.9931, 0.8421, 0.9936}}));
    myBNOp -> setInput(4, std::make_shared<Tensor>(Array1D<float,3> {{0.4470, 0.3064, 0.7061}}));

    auto g1 = Sequential({
        myConv,
        myBN
    });
    g1 -> setName("fuseBNGraph");
    g1 -> compile("cpu", DataType::Float32);

    auto s = SequentialScheduler(g1);
    s.forward();
    std::shared_ptr<Tensor> res1 = std::make_shared<Tensor>(*(myBNOp -> getOutput(0)));

    fuseBatchNorm(g1);

    s.resetScheduling();
    s.forward();
    std::shared_ptr<Tensor> res2 = std::make_shared<Tensor>(*(myConvOp -> getOutput(0)));

    REQUIRE(g1 -> outputNodes().size() == 1);
    REQUIRE(g1 -> inputNodes().size() == 0);
    bool eq = true;
    for (std::size_t i = 0; i < res1->size(); ++i) {
         eq &= std::abs(res1->get<float>(i) - res2->get<float>(i)) < 1.0e-06;
    }
    REQUIRE(eq);

}
} // namespace Aidge