Skip to content
Snippets Groups Projects
Test_GlobalAveragePoolingImpl.cpp 20.2 KiB
Newer Older
/********************************************************************************
 * Copyright (c) 2023 CEA-List
 *
 * This program and the accompanying materials are made available under the
 * terms of the Eclipse Public License 2.0 which is available at
 * http://www.eclipse.org/legal/epl-2.0.
 *
 * SPDX-License-Identifier: EPL-2.0
 *
 ********************************************************************************/

#include <aidge/utils/Types.h>
#include <catch2/catch_test_macros.hpp>
#include <chrono>
#include <cmath>
#include <cstddef> // std::size_t
#include <cstdint> // std::uint16_t
#include <iostream>
#include <memory>
#include <numeric> // std::accumulate
#include <ostream>
#include <random> // std::random_device, std::mt19937, std::uniform_real_distribution

#include "aidge/data/Tensor.hpp"
#include "aidge/operator/GlobalAveragePooling.hpp"
#include "aidge/utils/TensorUtils.hpp"

// debug print function
void print_tensor(Aidge::Tensor &T) {
  // Print tensors
  std::cout << "Tensor : size =  [";
  for (auto &dim : T.dims()) {
    std::cout << dim << " , ";
  }
  std::cout << "]" << std::endl;
  T.print();
}

namespace Aidge {
TEST_CASE("[cpu/operator] GlobalAveragePooling",
          "[GlobalAveragePooling][CPU]") {
  constexpr std::uint16_t NBTRIALS = 10;
  // Create a random number generator
  std::random_device rd;
  std::mt19937 gen(rd());
  std::uniform_real_distribution<float> valueDist(
      0.1f, 1.1f); // Random float distribution between 0 and 1
  std::uniform_int_distribution<std::size_t> dimSizeDist(std::size_t(2),
                                                         std::size_t(10));

  std::uniform_int_distribution<std::size_t> nbLowDimsDist(std::size_t(1),
                                                           std::size_t(2));
  std::uniform_int_distribution<std::size_t> nbHighDimsDist(std::size_t(3),
                                                            std::size_t(7));

  // Create MatGlobalAveragePooling Operator
  std::shared_ptr<Node> globAvgPool = GlobalAveragePooling();
  auto op =
      std::static_pointer_cast<OperatorTensor>(globAvgPool->getOperator());
  op->setDataType(DataType::Float32);
  op->setBackend("cpu");

  // Create the input Tensor
  std::shared_ptr<Tensor> T0 = std::make_shared<Tensor>();
  op->associateInput(0, T0);
  T0->setDataType(DataType::Float32);
  T0->setBackend("cpu");

  // Create results Tensor
  std::shared_ptr<Tensor> Tres = std::make_shared<Tensor>();
  Tres->setDataType(DataType::Float32);
  Tres->setBackend("cpu");

  // To measure execution time of 'MatGlobalAveragePooling_Op::forward()' member
  // function call
  std::chrono::time_point<std::chrono::system_clock> start;
  std::chrono::time_point<std::chrono::system_clock> end;
  std::chrono::duration<double, std::micro> duration{};
  int number_of_operation{0};

  SECTION("GlobalAveragePoolingImpl_cpu::forward()") {
    SECTION(
        "1-2Dim > not enough dimensions leads to function throwing an error") {
      // generate a random tensors
      const std::size_t nbDims = nbLowDimsDist(gen);
      std::vector<std::size_t> dims;
      for (std::size_t i = 0; i < nbDims; ++i) {
        dims.push_back(dimSizeDist(gen));
      }
      const std::size_t nb_elements =
          std::accumulate(dims.cbegin(), dims.cend(), std::size_t(1),
                          std::multiplies<std::size_t>());

      float *array0 = new float[nb_elements];
      for (std::size_t i = 0; i < nb_elements; ++i) {
        array0[i] = valueDist(gen);
      }
      // input0
      T0->resize(dims);
      T0->getImpl()->setRawPtr(array0, nb_elements);

    }

    SECTION("3+Dim") {
      SECTION("Fill a tensor with all values set as N will result with every "
              "output being N") {
        // generate the tensor
        const std::size_t nbDims = nbHighDimsDist(gen);
        std::vector<std::size_t> dims_in;
        for (std::size_t i = 0; i < nbDims; ++i) {
          dims_in.push_back(dimSizeDist(gen));
        }
        // create in nb_elems
        const std::size_t in_nb_elems =
            std::accumulate(dims_in.cbegin(), dims_in.cend(), std::size_t(1),
                            std::multiplies<std::size_t>());
        const DimSize_t in_batch_nb_elems = in_nb_elems / dims_in[0];
        const DimSize_t in_channel_nb_elems = in_batch_nb_elems / dims_in[1];

        number_of_operation +=
            in_nb_elems +
            dims_in[1]; //  averaging per channel : 1 addition per element in
                        //  the channel + 1 division this for every batch
        // create out nb_elems
        std::vector<std::size_t> dims_out{dims_in[0], dims_in[1]};
        const std::size_t out_nb_elems =
            std::accumulate(dims_out.cbegin(), dims_out.cend(), std::size_t(1),
                            std::multiplies<std::size_t>());
        const DimSize_t out_batch_nb_elems = out_nb_elems / dims_out[0];

        // iterate over each batch/channel
        float *array0 = new float[in_nb_elems];
        float *result = new float[out_nb_elems];
        float val = valueDist(gen);
        for (std::size_t batch = 0; batch < dims_in[0]; ++batch) {
          for (std::size_t channel = 0; channel < dims_in[1]; ++channel) {
            for (std::size_t i = 0; i < in_channel_nb_elems; ++i)

            {
              array0[batch * in_batch_nb_elems + channel * in_channel_nb_elems +
                     i] = val;
            }
            result[batch * out_batch_nb_elems + channel] = val;
          }
        }

        // input0
        T0->resize(dims_in);
        T0->getImpl()->setRawPtr(array0, in_nb_elems);

        // results
        Tres->resize(dims_out);
        Tres->getImpl()->setRawPtr(result, out_nb_elems);

        op->computeOutputDims();
        start = std::chrono::system_clock::now();
        REQUIRE_NOTHROW(globAvgPool->forward());
        end = std::chrono::system_clock::now();
        duration +=
            std::chrono::duration_cast<std::chrono::microseconds>(end - start);

        CHECK(Tres->nbDims() == op->getOutput(0)->nbDims());
        for (DimSize_t i = 0; i < op->getOutput(0)->nbDims(); ++i) {
          CHECK(Tres->dims().at(i) == op->getOutput(0)->dims().at(i));
        }

        CHECK(approxEq<float>(*(op->getOutput(0)), *Tres));

        delete[] array0;
        delete[] result;
      }
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561

      SECTION("random testing") {
        for (int trial = 0; trial < NBTRIALS; ++trial) {
          // generate the tensor
          const std::size_t nbDims = nbHighDimsDist(gen);
          std::vector<std::size_t> dims_in;
          for (std::size_t i = 0; i < nbDims; ++i) {
            dims_in.push_back(dimSizeDist(gen));
          }
          // create in nb_elems
          const std::size_t in_nb_elems =
              std::accumulate(dims_in.cbegin(), dims_in.cend(), std::size_t(1),
                              std::multiplies<std::size_t>());
          const DimSize_t in_batch_nb_elems = in_nb_elems / dims_in[0];
          const DimSize_t in_channel_nb_elems = in_batch_nb_elems / dims_in[1];
          number_of_operation +=
              in_nb_elems +
              dims_in[1]; //  averaging per channel : 1 addition per element in
                          //  the channel + 1 division this for every batch

          // create out nb_elems
          std::vector<std::size_t> dims_out{dims_in[0], dims_in[1]};
          const std::size_t out_nb_elems =
              std::accumulate(dims_out.cbegin(), dims_out.cend(),
                              std::size_t(1), std::multiplies<std::size_t>());
          const DimSize_t out_batch_nb_elems = out_nb_elems / dims_out[0];

          // iterate over each batch/channel
          float *array0 = new float[in_nb_elems];
          float *result = new float[out_nb_elems];
          for (std::size_t batch = 0; batch < dims_in[0]; ++batch) {
            for (std::size_t channel = 0; channel < dims_in[1]; ++channel) {
              float channel_sum = 0;
              for (std::size_t i = 0; i < in_channel_nb_elems; ++i)

              {
                float val = valueDist(gen);
                array0[batch * in_batch_nb_elems +
                       channel * in_channel_nb_elems + i] = val;
                channel_sum += val;
              }
              result[batch * out_batch_nb_elems + channel] =
                  channel_sum / in_channel_nb_elems;
            }
          }

          // input0
          T0->resize(dims_in);
          T0->getImpl()->setRawPtr(array0, in_nb_elems);

          // results
          Tres->resize(dims_out);
          Tres->getImpl()->setRawPtr(result, out_nb_elems);

          op->computeOutputDims();
          start = std::chrono::system_clock::now();
          REQUIRE_NOTHROW(globAvgPool->forward());
          end = std::chrono::system_clock::now();
          duration += std::chrono::duration_cast<std::chrono::microseconds>(
              end - start);

          CHECK(Tres->nbDims() == op->getOutput(0)->nbDims());
          for (DimSize_t i = 0; i < op->getOutput(0)->nbDims(); ++i) {
            CHECK(Tres->dims().at(i) == op->getOutput(0)->dims().at(i));
          }

          CHECK(approxEq<float>(*(op->getOutput(0)), *Tres));

          delete[] array0;
          delete[] result;
        }
      }
      SECTION("Using result from a pytorch function as groundtruth") {
        DimSize_t batch_size = 2;
        DimSize_t channels = 3;
        DimSize_t height = 4;
        DimSize_t width = 3;
        DimSize_t depth = 2;

        SECTION("2D_img") {
          const std::vector<DimSize_t> in_dims{batch_size, channels, height,
                                               width};
          const std::vector<DimSize_t> out_dims{batch_size, channels};
          DimSize_t in_nb_elems = batch_size * channels * height * width;
          DimSize_t out_nb_elems = batch_size * channels;
          number_of_operation +=
              in_nb_elems +
              channels; //  averaging per channel : 1 addition per element in
                        //  the channel + 1 division this for every batch
          auto input = new float[in_nb_elems];
          auto result = new float[out_nb_elems];
          input[0] = 0.1807716;
          input[1] = -0.0699881;
          input[2] = -0.3596235;
          input[3] = -0.9152045;
          input[4] = 0.6257653;
          input[5] = 0.0255099;
          input[6] = 0.9545137;
          input[7] = 0.0643485;
          input[8] = 0.3611506;
          input[9] = 1.1678782;
          input[10] = -1.3498932;
          input[11] = -0.5101767;
          input[12] = 0.2359577;
          input[13] = -0.2397784;
          input[14] = -0.9211147;
          input[15] = 1.5432971;
          input[16] = 1.3488258;
          input[17] = -0.1396417;
          input[18] = 0.2857972;
          input[19] = 0.9651205;
          input[20] = -2.0371499;
          input[21] = 0.4931363;
          input[22] = 1.4869986;
          input[23] = 0.5910330;
          input[24] = 0.1260297;
          input[25] = -1.5626874;
          input[26] = -1.1601028;
          input[27] = -0.3348408;
          input[28] = 0.4477722;
          input[29] = -0.8016447;
          input[30] = 1.5236114;
          input[31] = 2.5085869;
          input[32] = -0.6630959;
          input[33] = -0.2512752;
          input[34] = 1.0101448;
          input[35] = 0.1215468;
          input[36] = 0.1583993;
          input[37] = 1.1340188;
          input[38] = -1.1538976;
          input[39] = -0.2983968;
          input[40] = -0.5075365;
          input[41] = -0.9239212;
          input[42] = 0.5467061;
          input[43] = -1.4947776;
          input[44] = -1.2057148;
          input[45] = 0.5718198;
          input[46] = -0.5973545;
          input[47] = -0.6936757;
          input[48] = 1.6455388;
          input[49] = -0.8029931;
          input[50] = 1.3514109;
          input[51] = -0.2759193;
          input[52] = -1.5108346;
          input[53] = 2.1047730;
          input[54] = 2.7629590;
          input[55] = -1.7465292;
          input[56] = 0.8353187;
          input[57] = -1.9560477;
          input[58] = -0.8002653;
          input[59] = -0.5044988;
          input[60] = -0.0711742;
          input[61] = -0.5130699;
          input[62] = -1.0307810;
          input[63] = 0.9154347;
          input[64] = -0.2282317;
          input[65] = -0.6884708;
          input[66] = 0.1832259;
          input[67] = 0.6003584;
          input[68] = -1.5429375;
          input[69] = -0.3465560;
          input[70] = -0.1476223;
          input[71] = 0.6469797;

          result[0] = 0.0145876;
          result[1] = 0.3010401;
          result[2] = 0.0803371;

          result[3] = -0.3720275;
          result[4] = 0.0919094;
          result[5] = -0.1852371;

          // input0
          T0->resize(in_dims);
          T0->getImpl()->setRawPtr(input, in_nb_elems);

          // results
          Tres->resize(out_dims);
          Tres->getImpl()->setRawPtr(result, out_nb_elems);
          op->computeOutputDims();
          start = std::chrono::system_clock::now();
          REQUIRE_NOTHROW(globAvgPool->forward());
          end = std::chrono::system_clock::now();
          duration += std::chrono::duration_cast<std::chrono::microseconds>(
              end - start);

          CHECK(Tres->nbDims() == op->getOutput(0)->nbDims());
          for (DimSize_t i = 0; i < op->getOutput(0)->nbDims(); ++i) {
            CHECK(Tres->dims().at(i) == op->getOutput(0)->dims().at(i));
          }
          CHECK(approxEq<float>(*(op->getOutput(0)), *Tres));
          delete[] input;
          delete[] result;
        }
        SECTION("3D_img") {
          const std::vector<DimSize_t> in_dims{batch_size, channels, height,
                                               width, depth};
          const std::vector<DimSize_t> out_dims{batch_size, channels};
          DimSize_t in_nb_elems =
              batch_size * channels * height * width * depth;
          number_of_operation +=
              in_nb_elems +
              channels; //  averaging per channel : 1 addition per element in
                        //  the channel + 1 division this for every batch
          DimSize_t out_nb_elems = batch_size * channels;
          auto input = new float[in_nb_elems];
          auto result = new float[out_nb_elems];
          input[0] = 0.0061403;
          input[1] = -0.9665052;
          input[2] = 0.3582928;
          input[3] = 0.1072854;
          input[4] = 1.2463317;
          input[5] = 1.2460036;
          input[6] = 0.3534451;
          input[7] = 0.9425349;
          input[8] = -0.2103887;
          input[9] = -0.7959853;
          input[10] = 0.1297970;
          input[11] = -1.9445597;
          input[12] = 0.0609514;
          input[13] = -0.2379328;
          input[14] = 1.9020044;
          input[15] = -1.1762751;
          input[16] = 0.3404147;
          input[17] = 1.1685153;
          input[18] = -0.6526139;
          input[19] = 0.3767620;
          input[20] = 0.1887376;
          input[21] = 0.5154487;
          input[22] = 0.6371427;
          input[23] = -0.3948864;
          input[24] = -1.1571540;
          input[25] = 0.2896117;
          input[26] = 0.6163548;
          input[27] = -0.4370409;
          input[28] = 0.6589766;
          input[29] = 0.6587803;
          input[30] = -1.3702172;
          input[31] = -1.6210355;
          input[32] = 0.5872851;
          input[33] = 0.2860694;
          input[34] = 0.0082870;
          input[35] = -0.2523253;
          input[36] = -1.3247224;
          input[37] = 0.1891782;
          input[38] = 0.0211001;
          input[39] = 0.9404197;
          input[40] = -0.5576900;
          input[41] = -0.6939272;
          input[42] = -0.3252473;
          input[43] = 1.2439330;
          input[44] = -1.1671864;
          input[45] = -0.4091243;
          input[46] = 1.2600617;
          input[47] = -1.5630058;
          input[48] = 1.1346143;
          input[49] = -0.0823837;
          input[50] = 0.2893163;
          input[51] = 0.8357732;
          input[52] = -0.2449911;
          input[53] = 0.2712233;
          input[54] = 0.0936364;
          input[55] = -0.8834321;
          input[56] = -0.3274170;
          input[57] = 0.0783938;
          input[58] = -0.3807656;
          input[59] = 0.3775077;
          input[60] = 0.1119123;
          input[61] = 2.3142793;
          input[62] = -0.7989057;
          input[63] = -0.5643027;
          input[64] = -1.1346605;
          input[65] = 0.1705271;
          input[66] = 0.9946650;
          input[67] = 1.2625724;
          input[68] = 1.6218156;
          input[69] = 1.0774711;
          input[70] = 0.5947813;
          input[71] = -1.5290873;
          input[72] = 2.0437069;
          input[73] = -0.1656267;
          input[74] = 0.0870704;
          input[75] = -0.5276564;
          input[76] = -0.1002882;
          input[77] = 1.0539219;
          input[78] = -0.6230739;
          input[79] = -1.5905718;
          input[80] = -0.9741858;
          input[81] = -0.1869211;
          input[82] = 0.5816050;
          input[83] = -2.6339815;
          input[84] = -1.0764544;
          input[85] = 2.5903966;
          input[86] = 0.4940658;
          input[87] = 0.4671729;
          input[88] = 0.6588292;
          input[89] = -0.7257792;
          input[90] = 1.4280071;
          input[91] = -1.2187740;
          input[92] = 0.7380729;
          input[93] = -1.1599953;
          input[94] = -1.4355115;
          input[95] = -1.5304037;
          input[96] = 0.8474578;
          input[97] = 0.0774260;
          input[98] = 0.5433396;
          input[99] = -0.8438400;
          input[100] = -0.1089903;
          input[101] = -0.6354192;
          input[102] = 0.8772392;
          input[103] = 0.2844733;
          input[104] = 0.0975270;
          input[105] = -0.9785872;
          input[106] = -0.4320499;
          input[107] = -1.4937501;
          input[108] = -2.0644901;
          input[109] = 0.0851217;
          input[110] = 0.6644159;
          input[111] = 0.4168026;
          input[112] = 0.0958830;
          input[113] = -1.5699565;
          input[114] = 0.3739572;
          input[115] = -0.1420672;
          input[116] = -0.7864021;
          input[117] = 0.2443752;
          input[118] = -0.9811850;
          input[119] = -0.0698569;
          input[120] = 0.1463890;
          input[121] = 0.2536245;
          input[122] = 0.2136150;
          input[123] = 0.3113698;
          input[124] = 1.8353856;
          input[125] = 1.4473228;
          input[126] = -0.7373698;
          input[127] = 0.2485314;
          input[128] = -0.4789796;
          input[129] = -0.3396149;
          input[130] = 0.6438198;
          input[131] = 0.7287521;
          input[132] = -1.5119252;
          input[133] = -0.1006494;
          input[134] = 1.8955028;
          input[135] = 1.0871323;
          input[136] = 0.3620502;
          input[137] = -0.8826663;
          input[138] = 1.2220223;
          input[139] = -1.2817260;
          input[140] = 1.4153577;
          input[141] = 0.4148015;
          input[142] = 1.3458617;
          input[143] = 1.9718349;

          result[0] = 0.1333608;
          result[1] = -0.1716091;
          result[2] = 0.2201060;
          result[3] = -0.1585989;
          result[4] = -0.2291074;
          result[5] = 0.4254351;

          // input0
          T0->resize(in_dims);
          T0->getImpl()->setRawPtr(input, in_nb_elems);

          // results
          Tres->resize(out_dims);
          Tres->getImpl()->setRawPtr(result, out_nb_elems);
          op->computeOutputDims();
          start = std::chrono::system_clock::now();
          REQUIRE_NOTHROW(globAvgPool->forward());
          end = std::chrono::system_clock::now();
          duration += std::chrono::duration_cast<std::chrono::microseconds>(
              end - start);

          CHECK(Tres->nbDims() == op->getOutput(0)->nbDims());
          for (DimSize_t i = 0; i < op->getOutput(0)->nbDims(); ++i) {
            CHECK(Tres->dims().at(i) == op->getOutput(0)->dims().at(i));
          }
          CHECK(approxEq<float>(*(op->getOutput(0)), *Tres));
          delete[] input;
          delete[] result;
        }
      }
      std::cout << "GlobalAveragePooling total execution time : "
                << duration.count() << "µs" << std::endl;
      std::cout << "Number of operations : " << number_of_operation
                << std::endl;
      std::cout << "Operation / µs = " << number_of_operation / duration.count()
                << std::endl;