Skip to content
Snippets Groups Projects
Commit e2f9f441 authored by Houssem ROUIS's avatar Houssem ROUIS
Browse files

minor code cleanings

parent 71223519
No related branches found
No related tags found
No related merge requests found
......@@ -64,7 +64,7 @@ public:
}
void associateInput(const IOIndex_t inputIdx, std::shared_ptr<Data> data) override final {
assert(inputIdx == 0 && "operator supports only 1 input");
assert(inputIdx == 0 && "Erf operator supports only 1 input");
(void) inputIdx; // avoid unused warning
assert(strcmp(data->type(), Tensor::Type)==0 && "input data must be of Tensor type");
mInput = std::dynamic_pointer_cast<Tensor>(data);
......@@ -85,24 +85,24 @@ public:
inline std::shared_ptr<Tensor> getInput(const IOIndex_t inputIdx) const override final {
assert((inputIdx == 0) && "Erf Operator has only 1 input");
assert((inputIdx == 0) && "Erf operator has only 1 input");
(void) inputIdx; // avoid unused warning
return mInput;
}
inline std::shared_ptr<Tensor> getOutput(const IOIndex_t outputIdx) const override final {
assert((outputIdx == 0) && "Erf Operator has only 1 output");
assert((outputIdx == 0) && "Erf operator has only 1 output");
(void) outputIdx; // avoid unused warning
return mOutput;
}
std::shared_ptr<Data> getRawInput(const IOIndex_t inputIdx) const override final {
assert(inputIdx == 0 && "operator supports only 1 input");
assert(inputIdx == 0 && "Erf operator supports only 1 input");
(void) inputIdx; // avoid unused warning
return std::static_pointer_cast<Data>(mInput);
}
std::shared_ptr<Data> getRawOutput(const IOIndex_t outputIdx) const override final {
assert(outputIdx == 0 && "operator supports only 1 output");
assert(outputIdx == 0 && "Erf operator supports only 1 output");
(void) outputIdx; // avoid unused warning
return std::static_pointer_cast<Data>(mOutput);
}
......
......@@ -79,7 +79,7 @@ public:
}
void associateInput(const IOIndex_t inputIdx, std::shared_ptr<Data> data) override final {
assert(inputIdx < 2 && "Gather supports only 2 inputs");
assert(inputIdx < 2 && "Gather operator supports only 2 inputs");
assert(strcmp(data->type(), Tensor::Type)==0 && "input data must be of Tensor type");
mInputs[inputIdx] = std::dynamic_pointer_cast<Tensor>(data);
}
......
......@@ -115,24 +115,24 @@ class ReduceMean_Op : public Operator,
inline std::shared_ptr<Tensor> getInput(const IOIndex_t inputIdx) const override final {
assert(inputIdx == 0 && "ReduceMean Operators supports only 1 input");
assert(inputIdx == 0 && "ReduceMean operators supports only 1 input");
(void) inputIdx; // avoid unused warning
return mInput;
}
inline std::shared_ptr<Tensor> getOutput(const IOIndex_t outputIdx) const override final {
assert((outputIdx == 0) && "ReduceMean Operator has only 1 output");
assert((outputIdx == 0) && "ReduceMean operator has only 1 output");
(void) outputIdx; // avoid unused warning
return mOutput;
}
std::shared_ptr<Data> getRawInput(const IOIndex_t inputIdx) const override final {
assert(inputIdx == 0 && "ReduceMean Operators supports only 1 input");
assert(inputIdx == 0 && "ReduceMean operators supports only 1 input");
(void) inputIdx; // avoid unused warning
return std::static_pointer_cast<Data>(mInput);
}
std::shared_ptr<Data> getRawOutput(const IOIndex_t outputIdx) const override final {
assert(outputIdx == 0 && "ReduceMean Operator supports only 1 output");
assert(outputIdx == 0 && "ReduceMean operator supports only 1 output");
(void) outputIdx; // avoid unused warning
return std::static_pointer_cast<Data>(mOutput);
}
......
......@@ -64,7 +64,7 @@ public:
}
void associateInput(const IOIndex_t inputIdx, std::shared_ptr<Data> data) override final {
assert(inputIdx < 2 && "Reshape Operator supports only 2 inputs");
assert(inputIdx < 2 && "Reshape operator supports only 2 inputs");
assert(strcmp(data->type(), Tensor::Type)==0 && "input data must be of Tensor type");
mInputs[inputIdx] = std::dynamic_pointer_cast<Tensor>(data);
}
......@@ -74,7 +74,7 @@ public:
{
std::vector<DimSize_t> outDims;
int* shapeElem = static_cast<int*>(mInputs[1]->getImpl()->rawPtr());
for(std::size_t i=0; i<mInputs[1]->nbDims(); ++i)
for(std::size_t i=0; i<mInputs[1]->size(); ++i)
{
outDims.push_back(shapeElem[i]);
}
......@@ -95,24 +95,24 @@ public:
inline std::shared_ptr<Tensor> getInput(const IOIndex_t inputIdx) const override final {
assert((inputIdx < 2) && "Reshape Operator has 2 inputs");
assert((inputIdx < 2) && "Reshape operator has 2 inputs");
(void) inputIdx; // avoid unused warning
return mInputs[inputIdx];
}
inline std::shared_ptr<Tensor> getOutput(const IOIndex_t outputIdx) const override final {
assert((outputIdx == 0) && "Reshape Operator has only 1 output");
assert((outputIdx == 0) && "Reshape operator has only 1 output");
(void) outputIdx; // avoid unused warning
return mOutput;
}
std::shared_ptr<Data> getRawInput(const IOIndex_t inputIdx) const override final {
assert(inputIdx < 2 && "Reshape Operator supports only 2 inputs");
assert(inputIdx < 2 && "Reshape operator supports only 2 inputs");
(void) inputIdx; // avoid unused warning
return std::static_pointer_cast<Data>(mInputs[inputIdx]);
}
std::shared_ptr<Data> getRawOutput(const IOIndex_t outputIdx) const override final {
assert(outputIdx == 0 && "Reshape Operator supports only 1 output");
assert(outputIdx == 0 && "Reshape operator supports only 1 output");
(void) outputIdx; // avoid unused warning
return std::static_pointer_cast<Data>(mOutput);
}
......
......@@ -11,7 +11,6 @@
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <iostream>
#include <string>
#include <vector>
#include <array>
......@@ -27,9 +26,6 @@ namespace Aidge {
template <DimIdx_t DIM> void declare_ReduceMeanOp(py::module &m) {
py::class_<ReduceMean_Op<DIM>, std::shared_ptr<ReduceMean_Op<DIM>>, Operator, Attributes>(
m, ("ReduceMeanOp" + std::to_string(DIM) + "D").c_str(), py::multiple_inheritance())
// .def(py::init<const std::array<DimSize_t, DIM> &, DimSize_t>(),
// py::arg("axes"),
// py::arg("keep_dims"))
.def("get_inputs_name", &ReduceMean_Op<DIM>::getInputsName)
.def("get_outputs_name", &ReduceMean_Op<DIM>::getOutputsName)
;
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment