Skip to content
Snippets Groups Projects
Commit bd435fe0 authored by Maxence Naud's avatar Maxence Naud
Browse files

Merge branch 'better_inputs_to_attr' into 'dev'

Replace swich case with refCastFrom()

See merge request eclipse/aidge/aidge_core!123
parents 95481066 697c8533
No related branches found
No related tags found
No related merge requests found
......@@ -125,9 +125,9 @@ static Registrar<Tensor> registrarTensorImpl_cpu_Float32(
static Registrar<Tensor> registrarTensorImpl_cpu_Float16(
{"cpu", DataType::Float16}, Aidge::TensorImpl_cpu<half_float::half>::create);
static Registrar<Tensor> registrarTensorImpl_cpu_Int64(
{"cpu", DataType::Int64}, Aidge::TensorImpl_cpu<long>::create);
{"cpu", DataType::Int64}, Aidge::TensorImpl_cpu<int64_t>::create);
static Registrar<Tensor> registrarTensorImpl_cpu_Int32(
{"cpu", DataType::Int32}, Aidge::TensorImpl_cpu<int>::create);
{"cpu", DataType::Int32}, Aidge::TensorImpl_cpu<int32_t>::create);
static Registrar<Tensor> registrarTensorImpl_cpu_Int16(
{"cpu", DataType::Int16}, Aidge::TensorImpl_cpu<int16_t>::create);
static Registrar<Tensor> registrarTensorImpl_cpu_UInt16(
......
......@@ -79,6 +79,7 @@ public:
return std::make_shared<Gather_Op>(*this);
}
bool dimsForwarded() const override final;
bool forwardDims(bool allowDataDependency = false) override final;
void setBackend(const std::string& name, DeviceIdx_t device = 0) override;
......
......@@ -75,6 +75,7 @@ public:
return std::make_shared<Reshape_Op>(*this);
}
bool dimsForwarded() const override final;
bool forwardDims(bool allowDataDependency = false) override final;
void setBackend(const std::string& name, DeviceIdx_t device = 0) override final;
......
......@@ -78,6 +78,7 @@ public:
*/
std::shared_ptr<Operator> clone() const override { return std::make_shared<Slice_Op>(*this); }
bool dimsForwarded() const override final;
bool forwardDims(bool allowDataDependency = false) override final;
void setBackend(const std::string &name, DeviceIdx_t device = 0) override;
......
......@@ -51,64 +51,61 @@ void Aidge::Gather_OpImpl::forward() {
const std::string Aidge::Gather_Op::Type = "Gather";
bool Aidge::Gather_Op::forwardDims(bool /*allowDataDependency*/) {
bool Aidge::Gather_Op::dimsForwarded() const {
if (getInput(1) && !getInput(1)->empty()) {
// output dims are data dependent
return false;
}
return OperatorTensor::dimsForwarded();
}
bool Aidge::Gather_Op::forwardDims(bool allowDataDependency) {
// check data input has been associated
if (!getInput(0)) {
AIDGE_THROW_OR_ABORT(std::runtime_error, "{}: input #0 should be associated with a Tensor", type());
}
if (!getInput(0)->empty()) {
if (this->template getAttr<GatherAttr::Indices>().empty())
{
if(getInput(1)->empty()) {
AIDGE_THROW_OR_ABORT(std::runtime_error, "{}: Either indices input or attribute must be provided", type());
}
this->template getAttr<GatherAttr::GatheredShape>() = getInput(1)->dims();
this->template getAttr<GatherAttr::Indices>().clear(); // If both are provided input would override attrs
this->template getAttr<GatherAttr::Indices>().reserve(getInput(1)->size());
switch (mInputs[1]->dataType()) {
case DataType::Float64:
std::copy_n(static_cast<double*>(mInputs[1]->getImpl()->rawPtr()),
getInput(1)->size(),
std::back_inserter(this->template getAttr<GatherAttr::Indices>()));
break;
case DataType::Float32:
std::copy_n(static_cast<float*>(mInputs[1]->getImpl()->rawPtr()),
getInput(1)->size(),
std::back_inserter(this->template getAttr<GatherAttr::Indices>()));
break;
case DataType::Int64:
std::copy_n(static_cast<std::int64_t*>(mInputs[1]->getImpl()->rawPtr()),
getInput(1)->size(),
std::back_inserter(this->template getAttr<GatherAttr::Indices>()));
break;
case DataType::Int32:
std::copy_n(static_cast<std::int32_t*>(mInputs[1]->getImpl()->rawPtr()),
getInput(1)->size(),
std::back_inserter(this->template getAttr<GatherAttr::Indices>()));
break;
default:
AIDGE_THROW_OR_ABORT(std::runtime_error, "{}: Indices input DataType is not supported.", type());
break;
}
if (getInput(0)->empty()) {
return false;
}
if (getInput(1) && !getInput(1)->empty()) {
if (!this->template getAttr<GatherAttr::Indices>().empty()) {
Log::notice("Gather_Op: ignoring non-empty Indices attribute because input#1 takes precedence");
}
std::vector<DimSize_t> outDims = getInput(0)->dims();
std::int8_t axisIdx = this->template getAttr<GatherAttr::Axis>()>=0?
this->template getAttr<GatherAttr::Axis>():
this->template getAttr<GatherAttr::Axis>()+outDims.size();
outDims.erase(outDims.begin() + static_cast<std::size_t>(axisIdx));
if( !this->template getAttr<GatherAttr::GatheredShape>().empty())
{
outDims.insert(outDims.begin() + static_cast<std::size_t>(axisIdx),
this->template getAttr<GatherAttr::GatheredShape>().begin(),
this->template getAttr<GatherAttr::GatheredShape>().end());
if (!allowDataDependency) {
Log::warn("Gather_Op: unable to forwardDims() because output dims are data dependent on input#1");
return false;
}
mOutputs[0]->resize(outDims);
return true;
std::shared_ptr<Tensor> fallback;
this->template getAttr<GatherAttr::GatheredShape>() = getInput(1)->dims();
this->template getAttr<GatherAttr::Indices>().clear(); // If both are provided input would override attrs
this->template getAttr<GatherAttr::Indices>().reserve(getInput(1)->size());
const auto& indices = mInputs[1]->refCastFrom(fallback, NativeType<int64_t>::type, "cpu");
std::copy_n(static_cast<int64_t*>(indices.getImpl()->hostPtr()),
indices.size(),
std::back_inserter(this->template getAttr<GatherAttr::Indices>()));
}
return false;
AIDGE_ASSERT(!this->template getAttr<GatherAttr::Indices>().empty(), "Missing input#1 or Indices attribute");
std::vector<DimSize_t> outDims = getInput(0)->dims();
std::int8_t axisIdx = this->template getAttr<GatherAttr::Axis>()>=0?
this->template getAttr<GatherAttr::Axis>():
this->template getAttr<GatherAttr::Axis>()+outDims.size();
outDims.erase(outDims.begin() + static_cast<std::size_t>(axisIdx));
if( !this->template getAttr<GatherAttr::GatheredShape>().empty())
{
outDims.insert(outDims.begin() + static_cast<std::size_t>(axisIdx),
this->template getAttr<GatherAttr::GatheredShape>().begin(),
this->template getAttr<GatherAttr::GatheredShape>().end());
}
mOutputs[0]->resize(outDims);
return true;
}
void Aidge::Gather_Op::setBackend(const std::string& name, Aidge::DeviceIdx_t device) {
......
......@@ -182,7 +182,8 @@ void Aidge::OperatorTensor::setDataType(const DataType& dataType) const {
void Aidge::OperatorTensor::forward() {
if (!dimsForwarded()) {
forwardDims();
// Allow data dependent forwardDims at this point (data is available)
forwardDims(true);
}
Operator::forward();
......
......@@ -30,85 +30,77 @@ void Aidge::Reshape_OpImpl::forward() {
const std::string Aidge::Reshape_Op::Type = "Reshape";
bool Aidge::Reshape_Op::forwardDims(bool /*allowDataDependency*/) {
bool Aidge::Reshape_Op::dimsForwarded() const {
if (getInput(1) && !getInput(1)->empty()) {
// output dims are data dependent
return false;
}
return OperatorTensor::dimsForwarded();
}
bool Aidge::Reshape_Op::forwardDims(bool allowDataDependency) {
// check input has been associated
if (!getInput(0)) {
AIDGE_THROW_OR_ABORT(std::runtime_error, "{}: input #0 should be associated with a Tensor", type());
}
if (!getInput(0)->empty()) {
std::vector<DimSize_t> outDims;
// variables to handle a negative dimension
bool foundNegativeDimension = false;
std::size_t outSize = 1;
DimIdx_t negativeIndex = 0;
// Fill shape attr if empty
if (this->template getAttr<ReshapeAttr::Shape>().empty()) {
if (!getInput(1)) {
AIDGE_THROW_OR_ABORT(std::runtime_error, "{}: input #1 should be associated with a Tensor", type());
}
if(!getInput(1)->empty()) {
this->template getAttr<ReshapeAttr::Shape>().clear(); // If both are provided input would override attrs
this->template getAttr<ReshapeAttr::Shape>().reserve(getInput(1)->size());
switch (mInputs[1]->dataType()) {
case DataType::Float64:
std::copy_n(static_cast<double*>(mInputs[1]->getImpl()->rawPtr()),
getInput(1)->size(),
std::back_inserter(this->template getAttr<ReshapeAttr::Shape>()));
break;
case DataType::Float32:
std::copy_n(static_cast<float*>(mInputs[1]->getImpl()->rawPtr()),
getInput(1)->size(),
std::back_inserter(this->template getAttr<ReshapeAttr::Shape>()));
break;
case DataType::Int64:
std::copy_n(static_cast<std::int64_t*>(mInputs[1]->getImpl()->rawPtr()),
getInput(1)->size(),
std::back_inserter(this->template getAttr<ReshapeAttr::Shape>()));
break;
case DataType::Int32:
std::copy_n(static_cast<std::int32_t*>(mInputs[1]->getImpl()->rawPtr()),
getInput(1)->size(),
std::back_inserter(this->template getAttr<ReshapeAttr::Shape>()));
break;
default:
AIDGE_THROW_OR_ABORT(std::runtime_error, "Shape input DataType is not supported.");
break;
}
}
else {
AIDGE_THROW_OR_ABORT(std::runtime_error, "Shape attribute or Input is needed");
}
if (getInput(0)->empty()) {
return false;
}
if (getInput(1) && !getInput(1)->empty()) {
if (!this->template getAttr<ReshapeAttr::Shape>().empty()) {
Log::notice("Reshape_Op: ignoring non-empty Shape attribute because input#1 takes precedence");
}
for(std::size_t i = 0; i < this->template getAttr<ReshapeAttr::Shape>().size(); ++i)
{
std::int64_t dimSize = this->template getAttr<ReshapeAttr::Shape>()[i];
if (dimSize < 0) {
if (foundNegativeDimension) {
AIDGE_THROW_OR_ABORT(std::runtime_error, "Found more than one negative dimension in Reshape Operator.");
}
foundNegativeDimension = true;
dimSize = 1;
negativeIndex = static_cast<DimIdx_t>(i);
}
else if (dimSize == 0)
{
dimSize = getInput(0) -> dims()[i];
}
outDims.push_back(static_cast<DimSize_t>(dimSize));
outSize *= static_cast<DimSize_t>(dimSize);
if (!allowDataDependency) {
Log::warn("Reshape_Op: unable to forwardDims() because output dims are data dependent on input#1");
return false;
}
if (foundNegativeDimension) {
outDims[negativeIndex] = (getInput(0) -> size()) / outSize;
std::shared_ptr<Tensor> fallback;
this->template getAttr<ReshapeAttr::Shape>().clear(); // If both are provided input would override attrs
this->template getAttr<ReshapeAttr::Shape>().reserve(getInput(1)->size());
const auto& shape = mInputs[1]->refCastFrom(fallback, NativeType<int64_t>::type, "cpu");
std::copy_n(static_cast<int64_t*>(shape.getImpl()->hostPtr()),
shape.size(),
std::back_inserter(this->template getAttr<ReshapeAttr::Shape>()));
}
AIDGE_ASSERT(!this->template getAttr<ReshapeAttr::Shape>().empty(), "Missing input#1 or Shape attribute");
std::vector<DimSize_t> outDims;
// variables to handle a negative dimension
bool foundNegativeDimension = false;
std::size_t outSize = 1;
DimIdx_t negativeIndex = 0;
for(std::size_t i = 0; i < this->template getAttr<ReshapeAttr::Shape>().size(); ++i)
{
int64_t dimSize = this->template getAttr<ReshapeAttr::Shape>()[i];
if (dimSize < 0) {
if (foundNegativeDimension) {
AIDGE_THROW_OR_ABORT(std::runtime_error, "Found more than one negative dimension in Reshape Operator.");
}
foundNegativeDimension = true;
dimSize = 1;
negativeIndex = static_cast<DimIdx_t>(i);
}
else if (dimSize == 0)
{
dimSize = getInput(0) -> dims()[i];
}
outDims.push_back(static_cast<DimSize_t>(dimSize));
outSize *= static_cast<DimSize_t>(dimSize);
}
mOutputs[0]->resize(outDims);
return true;
if (foundNegativeDimension) {
outDims[negativeIndex] = (getInput(0) -> size()) / outSize;
}
return false;
mOutputs[0]->resize(outDims);
return true;
}
void Aidge::Reshape_Op::setBackend(const std::string& name, Aidge::DeviceIdx_t device) {
......
......@@ -36,33 +36,24 @@ void Aidge::Slice_OpImpl::forward() {
(op.template getAttr<SliceAttr::Starts>().size() == op.template getAttr<SliceAttr::Axes>().size()),
"start, end and axes arguments should be the same size.");
const std::size_t nbDims = op.getInput(0)->nbDims();
const std::vector<std::size_t>& inputDims = op.getInput(0)->dims();
auto outputDims = op.getInput(0)->dims();
const auto nbDims = op.getInput(0)->nbDims();
const auto& inputDims = op.getInput(0)->dims();
const auto& outputDims = op.getOutput(0)->dims();
// compute index of the output's first element
// compute output dimension at the same time (may change between two forward calls)
std::size_t beginning = 0;
const std::size_t nbAxes = op.template getAttr<SliceAttr::Axes>().size();
for (std::size_t i = 0; i < nbAxes; ++i) {
// For each slice operation get the params and cast them to size_t
DimIdx_t axis = op.template getAttr<SliceAttr::Axes>()[i] >= 0 ?
const DimIdx_t axis = op.template getAttr<SliceAttr::Axes>()[i] >= 0 ?
static_cast<DimIdx_t>(op.template getAttr<SliceAttr::Axes>()[i]) :
static_cast<DimIdx_t>(op.template getAttr<SliceAttr::Axes>()[i] + static_cast<DimIdx_t>(inputDims.size()));
DimSize_t start = op.template getAttr<SliceAttr::Starts>()[i] >= 0 ?
const DimSize_t start = op.template getAttr<SliceAttr::Starts>()[i] >= 0 ?
static_cast<DimSize_t>(op.template getAttr<SliceAttr::Starts>()[i]) :
static_cast<DimSize_t>(op.template getAttr<SliceAttr::Starts>()[i] + static_cast<DimSize_t>(inputDims[axis]));
DimSize_t end = op.template getAttr<SliceAttr::Ends>()[i] >= 0 ?
static_cast<DimSize_t>(op.template getAttr<SliceAttr::Ends>()[i]) :
static_cast<DimSize_t>(op.template getAttr<SliceAttr::Ends>()[i] + static_cast<DimSize_t>(inputDims[axis]));
const std::size_t stridePostAxis = std::accumulate(inputDims.cbegin()+axis+1, inputDims.cend(), std::size_t(1), std::multiplies<std::size_t>());
beginning += start * stridePostAxis;
const std::size_t sliceLength = end - start;
outputDims[axis] = sliceLength;
}
op.getOutput(0)->resize(outputDims);
// for inputDims = {4,5,5,3} & outputDims = {3,2,2,1}: substractDims = {1,5,5,3}
std::vector<std::size_t> substractedDims = std::vector<std::size_t>(nbDims);
......@@ -111,104 +102,113 @@ void Aidge::Slice_OpImpl::forward() {
const std::string Aidge::Slice_Op::Type = "Slice";
bool Aidge::Slice_Op::forwardDims(bool /*allowDataDependency*/) {
bool Aidge::Slice_Op::dimsForwarded() const {
if ((getInput(1) && !getInput(1)->empty())
|| (getInput(2) && !getInput(2)->empty())
|| (getInput(3) && !getInput(3)->empty()))
{
// output dims are data dependent
return false;
}
return OperatorTensor::dimsForwarded();
}
bool Aidge::Slice_Op::forwardDims(bool allowDataDependency) {
// check inputs have been associated
if (!getInput(0)) {
AIDGE_THROW_OR_ABORT(std::runtime_error, "{}: input #0 should be associated with a Tensor", type());
}
if(!getInput(0)->empty())
{
if(this->template getAttr<SliceAttr::Starts>().empty() || this->template getAttr<SliceAttr::Ends>().empty() || this->template getAttr<SliceAttr::Axes>().empty())
{
if(getInput(1)->empty() || getInput(2)->empty() || getInput(3)->empty()) {
AIDGE_THROW_OR_ABORT(std::runtime_error, "{}: Starts, Ends and Axes must be provided either as input or attributes", type());
}
if (getInput(0)->empty()) {
return false;
}
AIDGE_ASSERT((mInputs[1]->dataType() == mInputs[2]->dataType()) && (mInputs[1]->dataType() == mInputs[3]->dataType()), "Slice inputs must have the same dataType.");
this->template getAttr<SliceAttr::Starts>().clear(); // If both are provided input would override attrs
this->template getAttr<SliceAttr::Starts>().reserve(getInput(1)->size());
this->template getAttr<SliceAttr::Ends>().clear();
this->template getAttr<SliceAttr::Ends>().reserve(getInput(1)->size());
this->template getAttr<SliceAttr::Axes>().clear();
this->template getAttr<SliceAttr::Axes>().reserve(getInput(1)->size());
switch (mInputs[1]->dataType()) {
case DataType::Float64:
std::copy_n(static_cast<double*>(mInputs[1]->getImpl()->rawPtr()),
getInput(1)->size(),
std::back_inserter(this->template getAttr<SliceAttr::Starts>()));
std::copy_n(static_cast<double*>(mInputs[2]->getImpl()->rawPtr()),
getInput(2)->size(),
std::back_inserter(this->template getAttr<SliceAttr::Ends>()));
std::copy_n(static_cast<double*>(mInputs[3]->getImpl()->rawPtr()),
getInput(3)->size(),
std::back_inserter(this->template getAttr<SliceAttr::Axes>()));
break;
case DataType::Float32:
std::copy_n(static_cast<float*>(mInputs[1]->getImpl()->rawPtr()),
getInput(1)->size(),
std::back_inserter(this->template getAttr<SliceAttr::Starts>()));
std::copy_n(static_cast<float*>(mInputs[2]->getImpl()->rawPtr()),
getInput(2)->size(),
std::back_inserter(this->template getAttr<SliceAttr::Ends>()));
std::copy_n(static_cast<float*>(mInputs[3]->getImpl()->rawPtr()),
getInput(3)->size(),
std::back_inserter(this->template getAttr<SliceAttr::Axes>()));
break;
case DataType::Int64:
std::copy_n(static_cast<std::int64_t*>(mInputs[1]->getImpl()->rawPtr()),
getInput(1)->size(),
std::back_inserter(this->template getAttr<SliceAttr::Starts>()));
std::copy_n(static_cast<std::int64_t*>(mInputs[2]->getImpl()->rawPtr()),
getInput(2)->size(),
std::back_inserter(this->template getAttr<SliceAttr::Ends>()));
std::copy_n(static_cast<std::int64_t*>(mInputs[3]->getImpl()->rawPtr()),
getInput(3)->size(),
std::back_inserter(this->template getAttr<SliceAttr::Axes>()));
break;
case DataType::Int32:
std::copy_n(static_cast<std::int32_t*>(mInputs[1]->getImpl()->rawPtr()),
getInput(1)->size(),
std::back_inserter(this->template getAttr<SliceAttr::Starts>()));
std::copy_n(static_cast<std::int32_t*>(mInputs[2]->getImpl()->rawPtr()),
getInput(2)->size(),
std::back_inserter(this->template getAttr<SliceAttr::Ends>()));
std::copy_n(static_cast<std::int32_t*>(mInputs[3]->getImpl()->rawPtr()),
getInput(3)->size(),
std::back_inserter(this->template getAttr<SliceAttr::Axes>()));
break;
default:
AIDGE_THROW_OR_ABORT(std::runtime_error, "{}: Indices input DataType is not supported.", type());
break;
}
std::shared_ptr<Tensor> fallback;
if (getInput(1) && !getInput(1)->empty()) {
if (!this->template getAttr<SliceAttr::Starts>().empty()) {
Log::notice("Slice_Op: ignoring non-empty Starts attribute because input#1 takes precedence");
}
DimSize_t nbAxes = this->template getAttr<SliceAttr::Axes>().size();
std::vector<DimSize_t> outDims = getInput(0)->dims();
for (std::size_t i = 0; i < nbAxes; ++i) {
DimIdx_t axis = this->template getAttr<SliceAttr::Axes>()[i] >= 0 ?
static_cast<DimIdx_t>(this->template getAttr<SliceAttr::Axes>()[i]) :
static_cast<DimIdx_t>(this->template getAttr<SliceAttr::Axes>()[i] + static_cast<DimIdx_t>(getInput(0)->nbDims()));
DimSize_t start = this->template getAttr<SliceAttr::Starts>()[i] >= 0 ?
static_cast<DimSize_t>(this->template getAttr<SliceAttr::Starts>()[i]) :
static_cast<DimSize_t>(this->template getAttr<SliceAttr::Starts>()[i] + static_cast<DimSize_t>(getInput(0)->dims()[axis]));
DimSize_t end = this->template getAttr<SliceAttr::Ends>()[i] >= 0 ?
static_cast<DimSize_t>(this->template getAttr<SliceAttr::Ends>()[i]) :
static_cast<DimSize_t>(this->template getAttr<SliceAttr::Ends>()[i] + static_cast<DimSize_t>(getInput(0)->dims()[axis]));
const std::size_t sliceLength = end - start;
// Check if slice length is valid
if (sliceLength > getInput(0)->dims()[axis])
{
AIDGE_THROW_OR_ABORT(std::runtime_error, "ROI of Slice operator out of bounds");
}
outDims[axis] = sliceLength;
if (!allowDataDependency) {
Log::warn("Slice_Op: unable to forwardDims() because output dims are data dependent on input#1");
return false;
}
this->template getAttr<SliceAttr::Starts>().clear(); // If both are provided input would override attrs
this->template getAttr<SliceAttr::Starts>().reserve(getInput(1)->size());
const auto& starts = getInput(1)->refCastFrom(fallback, NativeType<int64_t>::type, "cpu");
std::copy_n(static_cast<int64_t*>(starts.getImpl()->hostPtr()),
starts.size(),
std::back_inserter(this->template getAttr<SliceAttr::Starts>()));
}
AIDGE_ASSERT(!this->template getAttr<SliceAttr::Starts>().empty(), "Missing input#1 or Starts attribute");
if (getInput(2) && !getInput(2)->empty()) {
if (!this->template getAttr<SliceAttr::Ends>().empty()) {
Log::notice("Slice_Op: ignoring non-empty Ends attribute because input#2 takes precedence");
}
if (!allowDataDependency) {
Log::warn("Slice_Op: unable to forwardDims() because output dims are data dependent on input#2");
return false;
}
this->template getAttr<SliceAttr::Ends>().clear(); // If both are provided input would override attrs
this->template getAttr<SliceAttr::Ends>().reserve(getInput(2)->size());
const auto& ends = getInput(2)->refCastFrom(fallback, NativeType<int64_t>::type, "cpu");
std::copy_n(static_cast<int64_t*>(ends.getImpl()->hostPtr()),
ends.size(),
std::back_inserter(this->template getAttr<SliceAttr::Ends>()));
}
AIDGE_ASSERT(!this->template getAttr<SliceAttr::Ends>().empty(), "Missing input#2 or Ends attribute");
if (getInput(3) && !getInput(3)->empty()) {
if (!this->template getAttr<SliceAttr::Axes>().empty()) {
Log::notice("Slice_Op: ignoring non-empty Axes attribute because input#3 takes precedence");
}
if (!allowDataDependency) {
Log::warn("Slice_Op: unable to forwardDims() because output dims are data dependent on input#3");
return false;
}
this->template getAttr<SliceAttr::Axes>().clear(); // If both are provided input would override attrs
this->template getAttr<SliceAttr::Axes>().reserve(getInput(3)->size());
const auto& axes = getInput(3)->refCastFrom(fallback, NativeType<int8_t>::type, "cpu");
std::copy_n(static_cast<int8_t*>(axes.getImpl()->hostPtr()),
axes.size(),
std::back_inserter(this->template getAttr<SliceAttr::Axes>()));
}
AIDGE_ASSERT(!this->template getAttr<SliceAttr::Axes>().empty(), "Missing input#3 or Axes attribute");
const DimSize_t nbAxes = this->template getAttr<SliceAttr::Axes>().size();
std::vector<DimSize_t> outDims = getInput(0)->dims();
for (std::size_t i = 0; i < nbAxes; ++i) {
const DimIdx_t axis = this->template getAttr<SliceAttr::Axes>()[i] >= 0 ?
static_cast<DimIdx_t>(this->template getAttr<SliceAttr::Axes>()[i]) :
static_cast<DimIdx_t>(this->template getAttr<SliceAttr::Axes>()[i] + static_cast<DimIdx_t>(getInput(0)->nbDims()));
const DimSize_t start = this->template getAttr<SliceAttr::Starts>()[i] >= 0 ?
static_cast<DimSize_t>(this->template getAttr<SliceAttr::Starts>()[i]) :
static_cast<DimSize_t>(this->template getAttr<SliceAttr::Starts>()[i] + static_cast<DimSize_t>(getInput(0)->dims()[axis]));
const DimSize_t end = this->template getAttr<SliceAttr::Ends>()[i] >= 0 ?
static_cast<DimSize_t>(this->template getAttr<SliceAttr::Ends>()[i]) :
static_cast<DimSize_t>(this->template getAttr<SliceAttr::Ends>()[i] + static_cast<DimSize_t>(getInput(0)->dims()[axis]));
const std::size_t sliceLength = end - start;
// Check if slice length is valid
if (sliceLength > getInput(0)->dims()[axis])
{
AIDGE_THROW_OR_ABORT(std::runtime_error, "ROI of Slice operator out of bounds");
}
mOutputs[0]->resize(outDims);
return true;
outDims[axis] = sliceLength;
}
return false;
mOutputs[0]->resize(outDims);
return true;
}
void Aidge::Slice_Op::setBackend(const std::string& name, Aidge::DeviceIdx_t device) {
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment