Forked from
Eclipse Projects / aidge / aidge_core
1380 commits behind the upstream repository.
-
Olivier BICHLER authoredOlivier BICHLER authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
GraphView.cpp 54.58 KiB
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include "aidge/graph/GraphView.hpp"
#include <algorithm> // std::find, std::set_intersection, std::transform
#include <cassert>
#include <stdexcept> // std::runtime_error
#include <cstddef> // std::size_t
#include <cstdio> // std::fclose, std::fopen
#include <fmt/format.h>
#include <iterator> // std::back_inserter, std::distance, std::inserter,
// std::next
#include <map>
#include <memory> // std::dynamic_pointer_cast, std::static_pointer_cast
#include <set>
#include <string> // std::to_string
#include <utility> // std::make_pair, std::pair
#include <vector>
#include "aidge/data/Tensor.hpp"
#include "aidge/operator/GenericOperator.hpp"
#include "aidge/operator/MetaOperator.hpp"
#include "aidge/operator/OperatorTensor.hpp"
#include "aidge/operator/Producer.hpp"
#include "aidge/utils/Directories.hpp"
#include "aidge/utils/ErrorHandling.hpp"
#include "aidge/utils/Types.h"
const std::shared_ptr<Aidge::Node> Aidge::GraphView::operator[](const std::string& nodeName) const {
return (mNodeRegistry.find(nodeName) != mNodeRegistry.cend()) ? mNodeRegistry.at(nodeName) : nullptr;
}
///////////////////////////////////////////////////////
// FUNCTIONAL DESCRIPTION
///////////////////////////////////////////////////////
Aidge::Connector Aidge::GraphView::operator()(
const std::vector<Aidge::Connector> ctors) {
// TODO: allow for multiple inputNodes?
assert((inputNodes().size() == 1U) && "Too many input Nodes for the GraphView, undefined behaviour");
std::shared_ptr<Node> inNode = *inputNodes().begin();
assert((ctors.size() == static_cast<std::size_t>(inNode->nbData())) && "Wrong number of arguments.\n");
for (std::pair<std::shared_ptr<Node>, IOIndex_t> &input : inNode->inputs()) {
assert((gk_IODefaultIndex == input.second) && "At least one input connection is not free.\n");
(void)input; // avoid unused warning
}
IOIndex_t inID = 0;
for (const Connector &ctor : ctors) {
assert((ctor.node() != nullptr) &&
"Input Connector must be associated with a node");
ctor.node()->addChild(shared_from_this(), static_cast<std::size_t>(ctor.index()),
{inNode, inID++});
}
return Connector(*(outputNodes().begin()));
}
///////////////////////////////////////////////////////
// INNER
///////////////////////////////////////////////////////
bool Aidge::GraphView::inView(const std::shared_ptr<Aidge::Node>& nodePtr) const {
return mNodes.find(nodePtr) != mNodes.cend();
}
void Aidge::GraphView::save(const std::string& path, bool verbose, bool showProducers) const {
auto fp = std::unique_ptr<FILE, decltype(&std::fclose)>(std::fopen((path + ".mmd").c_str(), "w"), &std::fclose);
if (!fp) {
AIDGE_THROW_OR_ABORT(std::runtime_error,
"Could not create graph view log file: {}", path + ".mmd");
}
fmt::print(fp.get(),
"%%{{init: {{'flowchart': {{ 'curve': 'monotoneY'}}, "
"'fontFamily': 'Verdana' }} }}%%\nflowchart TB\n\n");
// Start by creating every node
const auto namePtrTable = getRankedNodesName("{3}");
for (const std::shared_ptr<Node> &node_ptr : mNodes) {
std::string givenName =
(node_ptr->name().empty())
? "<em>" + node_ptr->type() + "#" + namePtrTable.at(node_ptr) + "</em>"
: "\"" + node_ptr->name() + "\\n<sub><em>(" + node_ptr->type() + "#" + namePtrTable.at(node_ptr) + ")</em></sub>\"";
std::string nodeCls = "";
if (node_ptr->type() == "Producer") {
nodeCls = ":::producerCls";
}
else if (std::dynamic_pointer_cast<GenericOperator_Op>(node_ptr->getOperator())) {
nodeCls = ":::genericCls";
}
else if (const auto metaOp = std::dynamic_pointer_cast<MetaOperator_Op>(node_ptr->getOperator())) {
nodeCls = ":::metaCls";
if (verbose) {
metaOp->getMicroGraph()->save(path + "_" + node_ptr->type() + "#" + namePtrTable.at(node_ptr), verbose, showProducers);
}
}
if (node_ptr == mRootNode) {
if (nodeCls.empty()) {
nodeCls = ":::rootCls";
}
else {
nodeCls += "_rootCls";
}
}
if (node_ptr == mRootNode || node_ptr->type() != "Producer" || showProducers) {
fmt::print(fp.get(), "{}_{}({}){}\n", node_ptr->type(), namePtrTable.at(node_ptr),
givenName, nodeCls);
}
}
// Write every link
for (const std::shared_ptr<Node> &node_ptr : mNodes) {
if ((node_ptr -> type() == "Producer") && !showProducers) {
continue;
}
IOIndex_t outputIdx = 0;
for (const auto& childs : node_ptr->getOrderedChildren()) {
for (const auto& child : childs) {
if (child != nullptr) {
IOIndex_t inputIdx = 0;
for (auto parent : child->inputs()) {
if (parent.first == node_ptr && parent.second == outputIdx) {
// Add-on to display the operator's output dimensions
std::string dims = "";
const auto op = std::dynamic_pointer_cast<OperatorTensor>(node_ptr->getOperator());
if (op && !op->getOutput(outputIdx)->dims().empty()) {
dims += " " + fmt::format("{}", op->getOutput(outputIdx)->dims());
}
if (mNodes.find(child) != mNodes.end()) {
fmt::print(fp.get(), "{}_{}-->|\"{}{}→{}\"|{}_{}\n", node_ptr->type(), namePtrTable.at(node_ptr),
outputIdx, dims, inputIdx, child->type(), namePtrTable.at(child));
}
else if (verbose) {
fmt::print(fp.get(), "{}_{}-->|\"{}{}→{}\"|{}:::externalCls\n", node_ptr->type(), namePtrTable.at(node_ptr),
outputIdx, dims, inputIdx, static_cast<void*>(child.get()));
}
break;
}
++inputIdx;
}
}
}
++outputIdx;
}
}
size_t inputIdx = 0;
for (auto input : mInputNodes) {
if (input.first != nullptr) {
fmt::print(fp.get(), "input{}((in#{})):::inputCls--->|\"→{}\"|{}_{}\n", inputIdx, inputIdx,
input.second, input.first->type(), namePtrTable.at(input.first));
}
else {
fmt::print(fp.get(), "input{}((in#{})):::inputCls\n", inputIdx, inputIdx);
}
++inputIdx;
}
size_t outputIdx = 0;
for (auto output : mOutputNodes) {
if (output.first != nullptr) {
// Add-on to display the operator's output dimensions
std::string dims = "";
const auto op = std::dynamic_pointer_cast<OperatorTensor>(output.first->getOperator());
if (op && op->getOutput(output.second) && !op->getOutput(output.second)->dims().empty()) {
dims += " " + fmt::format("{}", op->getOutput(output.second)->dims());
}
fmt::print(fp.get(), "{}_{}--->|\"{}{}→\"|output{}((out#{})):::outputCls\n",
output.first->type(), namePtrTable.at(output.first), output.second,
dims, outputIdx, outputIdx);
}
else {
fmt::print(fp.get(), "output{}((out#{})):::outputCls\n", outputIdx, outputIdx);
}
++outputIdx;
}
fmt::print(fp.get(), "classDef inputCls fill:#afa\n");
fmt::print(fp.get(), "classDef outputCls fill:#ffa\n");
fmt::print(fp.get(), "classDef externalCls fill:#ccc\n");
fmt::print(fp.get(), "classDef producerCls fill:#ccf\n");
fmt::print(fp.get(), "classDef genericCls fill:#f9f9ff,stroke-width:1px,stroke-dasharray: 5 5\n");
fmt::print(fp.get(), "classDef metaCls stroke-width:5px\n");
fmt::print(fp.get(), "classDef rootCls stroke:#f00\n");
fmt::print(fp.get(), "classDef producerCls_rootCls stroke:#f00,fill:#ccf\n");
fmt::print(fp.get(), "classDef genericCls_rootCls stroke:#f00,fill:#f9f9ff,stroke-width:1px,stroke-dasharray: 5 5\n");
fmt::print(fp.get(), "classDef metaCls_rootCls stroke:#f00,stroke-width:5px\n");
fmt::print(fp.get(), "\n");
}
void Aidge::GraphView::logOutputs(const std::string& dirName) const {
if (!Aidge::createDirectories(dirName)){
AIDGE_THROW_OR_ABORT(std::runtime_error, "Failed to create directory: {}.", dirName);
}
for (std::shared_ptr<Node> nodePtr : getNodes()) {
const std::string& nodePath = dirName + "/" + Aidge::filePath(nodePtr->name()) +"/";
if (!Aidge::createDirectories(nodePath)){
AIDGE_THROW_OR_ABORT(std::runtime_error, "Failed to create directory: {}.", nodePath);
}
for (IOIndex_t outIdx = 0; outIdx < nodePtr->nbOutputs(); ++outIdx) {
const std::string& inputPath = nodePath +"output_" + std::to_string(outIdx) + ".log";
auto fp = std::unique_ptr<FILE, decltype(&std::fclose)>(std::fopen(inputPath.c_str(), "w"), &std::fclose);
if (!fp) {
AIDGE_THROW_OR_ABORT(std::runtime_error,
"Could not create graph view log file: {}", inputPath);
}
fmt::print(fp.get(), "{}\n", nodePtr->getOperator()->getRawOutput(outIdx)->toString().c_str());
}
}
}
void Aidge::GraphView::setRootNode(NodePtr node) {
AIDGE_ASSERT(mNodes.find(node) != mNodes.end(), "Root node is not in the GraphView!");
mRootNode = node;
}
///////////////////////////////////////////////////////
// TENSOR MANAGEMENT
///////////////////////////////////////////////////////
std::set<std::shared_ptr<Aidge::Node>> Aidge::GraphView::inputNodes() const {
std::set<std::shared_ptr<Aidge::Node>> nodes;
for (const auto& node : mInputNodes) {
nodes.insert(node.first);
}
return nodes;
}
std::set<std::shared_ptr<Aidge::Node>> Aidge::GraphView::outputNodes() const {
std::set<std::shared_ptr<Aidge::Node>> nodes;
for (const auto& node : mOutputNodes) {
nodes.insert(node.first);
}
return nodes;
}
bool Aidge::GraphView::isInputNode(const std::shared_ptr<Aidge::Node>& nodePtr) const {
const auto nodes = inputNodes();
return (nodes.find(nodePtr) != nodes.cend());
}
bool Aidge::GraphView::isOutputNode(const std::shared_ptr<Aidge::Node>& nodePtr) const {
const auto nodes = outputNodes();
return (nodes.find(nodePtr) != nodes.cend());
}
void Aidge::GraphView::setOrderedInputs(const std::vector<std::pair<NodePtr, IOIndex_t>>& inputs) {
size_t nbInputs = 0;
std::vector<std::pair<NodePtr, IOIndex_t>> ignoredInputs(mInputNodes);
for (auto input : inputs) {
// Allow to specify dummy inputs (nullptr), but this will only be reflected
// in mInputNodes. All other functions (nbInputs(), inputs()) will not take
// it into account.
if (input.first != nullptr) {
auto it = std::find(ignoredInputs.begin(), ignoredInputs.end(), input);
AIDGE_ASSERT(it != ignoredInputs.end(), "unknown or duplicate input");
ignoredInputs.erase(it);
++nbInputs;
}
}
AIDGE_ASSERT(nbInputs <= mInputNodes.size(), "too many specified number of inputs");
mInputNodes = inputs;
mInputNodes.insert(mInputNodes.end(), ignoredInputs.begin(), ignoredInputs.end());
}
void Aidge::GraphView::setOrderedOutputs(const std::vector<std::pair<NodePtr, IOIndex_t>>& outputs) {
size_t nbOutputs = 0;
std::vector<std::pair<NodePtr, IOIndex_t>> ignoredOutputs(mOutputNodes);
for (auto output : outputs) {
// Allow to specify dummy outputs (nullptr), but this will only be reflected
// in mOutputNodes. All other functions (nbOutputs(), outputs()) will not take
// it into account.
if (output.first != nullptr) {
auto it = std::find(ignoredOutputs.begin(), ignoredOutputs.end(), output);
AIDGE_ASSERT(it != ignoredOutputs.end(), "unknown or duplicate output");
ignoredOutputs.erase(it);
++nbOutputs;
}
}
AIDGE_ASSERT(nbOutputs <= mOutputNodes.size(), "too many specified number of outputs");
mOutputNodes = outputs;
mOutputNodes.insert(mOutputNodes.end(), ignoredOutputs.begin(), ignoredOutputs.end());
}
Aidge::IOIndex_t Aidge::GraphView::getNbDataInputs() const {
IOIndex_t nbDataInput = 0;
for (const std::shared_ptr<Node> &inNode : inputNodes()) {
// We cannot simply add inNode->nbDataInputs(), as input nodes may already
// have some inputs connected within the GraphView, which would therefore not
// constitue inputs (from outside) for the GraphView!
const std::vector<std::pair<std::shared_ptr<Node>, IOIndex_t>> inputNodeinputs =
inNode->dataInputs();
for (const auto& input : inputNodeinputs) {
if (input.first == nullptr || mNodes.find(input.first) == mNodes.end()) {
++nbDataInput;
}
}
}
return nbDataInput;
}
Aidge::IOIndex_t Aidge::GraphView::getNbFreeDataInputs() const {
IOIndex_t nbIn = 0;
// Free inputs within the GraphView are logically also free inputs from outside
// the GraphView.
for (const std::shared_ptr<Node>& inputNode : inputNodes()) {
nbIn += inputNode->getNbFreeDataInputs();
}
return nbIn;
}
std::vector<std::pair<std::shared_ptr<Aidge::Node>, Aidge::IOIndex_t>>
Aidge::GraphView::dataInputs() const {
std::vector<std::pair<std::shared_ptr<Node>, IOIndex_t>> res;
for (const std::shared_ptr<Node>& inputNode : inputNodes()) {
const std::vector<std::pair<std::shared_ptr<Node>, IOIndex_t>> inputNodeinputs =
inputNode->dataInputs();
for (const auto& input : inputNodeinputs) {
if (input.first == nullptr || mNodes.find(input.first) == mNodes.end()) {
res.push_back(input);
}
}
}
return res;
}
std::vector<std::pair<std::shared_ptr<Aidge::Node>, Aidge::IOIndex_t>>
Aidge::GraphView::inputs() const {
std::vector<std::pair<std::shared_ptr<Node>, IOIndex_t>> res;
for (const std::shared_ptr<Node>& inputNode : inputNodes()) {
const std::vector<std::pair<std::shared_ptr<Node>, IOIndex_t>> inputNodeinputs =
inputNode->inputs();
for (const auto& input : inputNodeinputs) {
if (input.first == nullptr || mNodes.find(input.first) == mNodes.end()) {
res.push_back(input);
}
}
}
return res;
}
std::vector<std::pair<std::shared_ptr<Aidge::Node>, Aidge::IOIndex_t>>
Aidge::GraphView::inputs(const std::string& name) const {
return mNodeRegistry.at(name)->inputs();
}
void Aidge::GraphView::compile(const std::string& backend, const Aidge::DataType datatype, DeviceIdx_t device, const std::vector<std::vector<DimSize_t>> dims) {
// Backend
// TODO: add Backend attribute to Operator
setBackend(backend, device);
// Data type
// TODO: manage Datatype attribute in OperatorImpl
setDataType(datatype);
// Data Format
// TODO: check actual parent output data format and the needed one. Add a Transpose Operator if necessary
// Forward dimensions
forwardDims(dims);
}
bool Aidge::GraphView::forwardDims(const std::vector<std::vector<Aidge::DimSize_t>> dims, bool allowDataDependency) {
// setInputs
// Link every tensor to the right pointer
// following parent - children informations
if (!dims.empty()){
AIDGE_ASSERT(dims.size() == mInputNodes.size(), "GraphView forwardDims error - Inconsistent number of given dimensions ({}) and graph inputs ({})", dims.size(), mInputNodes.size());
for (std::size_t i = 0; i < dims.size(); ++i){
auto tensor = std::make_shared<Tensor>(dims[i]);
mInputNodes[i].first->getOperator()->setInput(mInputNodes[i].second, tensor);
}
}
// Ensure every node in the graph is correctly connected
for (std::shared_ptr<Node> nodePtr : getNodes()) {
for (IOIndex_t i = 0; i < nodePtr->nbInputs(); ++i) {
std::pair<std::shared_ptr<Node>, IOIndex_t> inputI = nodePtr->input(i);
if (inputI.first) {
// Check that tensors are properly connected...
AIDGE_ASSERT(nodePtr->getOperator()->getRawInput(i) == inputI.first->getOperator()->getRawOutput(inputI.second),
"Input#{} for node {} ({}) is not properly connected to output#{} of node {} ({}): Data or Tensor mismatch!",
i, nodePtr->name(), nodePtr->type(), inputI.second, inputI.first->name(), inputI.first->type());
} else {
// Input is missing
AIDGE_ASSERT(nodePtr->getOperator()->getRawInput(i)
&& !std::static_pointer_cast<Tensor>(nodePtr->getOperator()->getRawInput(i))->empty(),
"Missing input#{} for node {} ({})", i, nodePtr->name(), nodePtr->type());
}
}
}
// Compute dimensions of every node
std::set<std::shared_ptr<Node>> listNodes = getNodes();
do {
std::set<std::shared_ptr<Node>> nextList;
for (std::shared_ptr<Node> nodePtr : listNodes) {
if (nodePtr->getOperator()->operatorType() == OperatorType::Tensor) {
const auto op = std::static_pointer_cast<OperatorTensor>(nodePtr->getOperator());
// Recompute everytime, even if it was already computed in a
// previous call of forwardDims(), as the graph may have changed!
op->forwardDims(allowDataDependency);
if (!op->dimsForwarded()) {
nextList.insert(nodePtr);
}
}
}
// Internal check to make sure we won't enter in an infinite loop!
if (nextList == listNodes) {
// We are stuck!
std::vector<std::string> nodesName;
std::transform(nextList.begin(), nextList.end(),
std::back_inserter(nodesName),
[](auto val){ return val->name() + " (" + val->type() + ")"; });
Log::warn("Unable to forward dimensions (circular dependency and/or wrong dimensions and/or data dependent dimension?). Unable to compute output dims for nodes {}.", nodesName);
return false;
}
listNodes.swap(nextList);
}
while (!listNodes.empty());
return listNodes.empty();
}
void Aidge::GraphView::setBackend(const std::string &backend, const DeviceIdx_t device) const {
for (const auto& node : getNodes()) {
node->getOperator()->setBackend(backend, device);
}
}
void Aidge::GraphView::setDataType(const Aidge::DataType &datatype) const {
for (const auto& node : getNodes()) {
node->getOperator()->setDataType(datatype);
}
}
std::vector<
std::vector<std::pair<std::shared_ptr<Aidge::Node>, Aidge::IOIndex_t>>>
Aidge::GraphView::outputs() const {
std::vector<std::vector<std::pair<std::shared_ptr<Node>, Aidge::IOIndex_t>>>
outsideOutputs;
for (const std::shared_ptr<Node>& outputNode : outputNodes()) {
const std::vector<std::vector<std::pair<std::shared_ptr<Node>, Aidge::IOIndex_t>>>
outputNodeOutputs = outputNode->outputs();
for (const auto& outputPos : outputNodeOutputs) {
// Keep only the nodes connected at this output position that are outside the GraphView
std::vector<std::pair<std::shared_ptr<Node>, Aidge::IOIndex_t>> outsideOutputPos;
for (const auto& output : outputPos) {
if (output.first == nullptr || mNodes.find(output.first) == mNodes.end()) {
outsideOutputPos.push_back(output);
}
}
if (outputPos.empty() || !outsideOutputPos.empty()) {
outsideOutputs.push_back(outsideOutputPos);
}
}
}
return outsideOutputs;
}
std::vector<
std::vector<std::pair<std::shared_ptr<Aidge::Node>, Aidge::IOIndex_t>>>
Aidge::GraphView::outputs(const std::string& nodeName) const {
return mNodeRegistry.at(nodeName)->outputs();
}
void Aidge::GraphView::setInputId(Aidge::IOIndex_t /*inID*/,
Aidge::IOIndex_t /*newNodeOutID*/) {
AIDGE_THROW_OR_ABORT(std::runtime_error, "Not implemented yet.");
}
void Aidge::GraphView::add(std::shared_ptr<Node> node, bool includeLearnableParam) {
AIDGE_ASSERT(node != nullptr, "Trying to add non-existant node!");
// first node to be added to the graph is the root node by default
if (mRootNode == nullptr) {
mRootNode = node;
}
// add to the GraphView nodes
node->addView(shared_from_this());
mNodes.insert(node);
if (!(node->name()).empty())
mNodeRegistry.insert(std::make_pair(node->name(), node));
// check if the node is an input/output node
updateInputsOutputsNew(node);
// add learnable parameters to the graph
if (includeLearnableParam) {
for (IOIndex_t i = node->nbData(); i < node->nbInputs(); ++i) {
std::shared_ptr<Node> parentNode = node->getParent(static_cast<IOIndex_t>(i));
if (parentNode) {
parentNode->addView(shared_from_this());
mNodes.insert(parentNode);
if (!(parentNode->name()).empty())
mNodeRegistry.insert(std::make_pair(parentNode->name(), parentNode));
// check if the parentNode is an input/output node
updateInputsOutputsNew(parentNode);
}
}
}
}
std::pair<std::vector<Aidge::NodePtr>, size_t> Aidge::GraphView::getRankedNodes() const {
std::set<NodePtr> nodesToRank(mNodes);
nodesToRank.erase(mRootNode);
std::vector<NodePtr> rankedNodes;
rankedNodes.push_back(mRootNode);
for (size_t curNodeIdx = 0; curNodeIdx < rankedNodes.size(); ++curNodeIdx) {
NodePtr curNode = rankedNodes[curNodeIdx];
for (auto childs : curNode->getOrderedChildren()) {
for (auto child : childs) {
if (child != nullptr && nodesToRank.find(child) != nodesToRank.end()) {
rankedNodes.push_back(child);
nodesToRank.erase(child);
}
}
}
for (auto parent : curNode->getParents()) {
if (parent != nullptr && nodesToRank.find(parent) != nodesToRank.end()) {
rankedNodes.push_back(parent);
nodesToRank.erase(parent);
}
}
}
const size_t orderUnicityLimit = rankedNodes.size();
if (!nodesToRank.empty()) {
rankedNodes.insert(rankedNodes.end(), nodesToRank.begin(), nodesToRank.end());
}
return std::make_pair(rankedNodes, orderUnicityLimit);
}
std::map<Aidge::NodePtr, std::string> Aidge::GraphView::getRankedNodesName(const std::string& format, bool markNonUnicity) const {
const auto rankedNodes = getRankedNodes();
std::map<NodePtr, std::string> rankedNodesName;
size_t rank = 0;
std::map<std::string, size_t> typeRank;
for (const auto& rankedNode : rankedNodes.first) {
std::map<std::string, size_t>::iterator it;
std::tie(it, std::ignore) = typeRank.insert(std::make_pair(rankedNode->type(), 0));
const auto name = (markNonUnicity && rank < rankedNodes.second)
? fmt::format(format, rankedNode->name(), rankedNode->type(), rank, it->second)
: fmt::format(format, rankedNode->name(), rankedNode->type(), fmt::format("?{}", rank), fmt::format("?{}", it->second));
rankedNodesName.insert(std::make_pair(rankedNode, name));
++it->second;
++rank;
}
return rankedNodesName;
}
bool Aidge::GraphView::add(std::set<std::shared_ptr<Node>> otherNodes, bool includeLearnableParam) {
if (otherNodes.empty()) {
return true;
}
bool orderUnicity = true;
// List only the nodes that are not already present in current graph
std::set<NodePtr> nodesToAdd;
std::set_difference(otherNodes.begin(), otherNodes.end(), mNodes.begin(), mNodes.end(), std::inserter(nodesToAdd, nodesToAdd.begin()));
// List the nodes to rank, initially all the nodes in the GraphView
std::set<NodePtr> nodesToRank(mNodes);
nodesToRank.insert(nodesToAdd.begin(), nodesToAdd.end());
std::vector<NodePtr> rankedNodesToAdd;
if (mRootNode == nullptr) {
std::set<NodePtr> noParentNodes;
// If no root node is defined, check nodes without parents
for (auto node : nodesToRank) {
bool noParent = true;
for (auto parent : node->getParents()) {
if (parent != nullptr && nodesToRank.find(parent) != nodesToRank.end()) {
noParent = false;
break;
}
}
if (noParent) {
noParentNodes.insert(node);
}
}
// Take the first one found (this is an arbitrary choice)
mRootNode = *noParentNodes.begin();
if (noParentNodes.size() > 1) {
// If there is more than one, order unicity cannot be garanteed!
orderUnicity = false;
}
rankedNodesToAdd.push_back(mRootNode);
}
nodesToRank.erase(mRootNode);
std::vector<NodePtr> rankedNodes;
rankedNodes.push_back(mRootNode);
for (size_t curNodeIdx = 0; curNodeIdx < rankedNodes.size(); ++curNodeIdx) {
NodePtr curNode = rankedNodes[curNodeIdx];
for (auto childs : curNode->getOrderedChildren()) {
for (auto child : childs) {
if (child != nullptr && nodesToRank.find(child) != nodesToRank.end()) {
rankedNodes.push_back(child);
nodesToRank.erase(child);
if (nodesToAdd.find(child) != nodesToAdd.end()) {
rankedNodesToAdd.push_back(child);
nodesToAdd.erase(child);
}
}
}
}
for (auto parent : curNode->getParents()) {
if (parent != nullptr && nodesToRank.find(parent) != nodesToRank.end()) {
rankedNodes.push_back(parent);
nodesToRank.erase(parent);
if (nodesToAdd.find(parent) != nodesToAdd.end()) {
rankedNodesToAdd.push_back(parent);
nodesToAdd.erase(parent);
}
}
}
}
if (!nodesToAdd.empty()) {
// There are remaining nodes without path to the root node
orderUnicity = false;
while (!nodesToAdd.empty()) {
const auto it = nodesToAdd.begin();
rankedNodesToAdd.push_back(*it);
nodesToAdd.erase(it);
}
}
for (auto node_ptr : rankedNodesToAdd) {
add(node_ptr, includeLearnableParam);
}
return orderUnicity;
}
bool Aidge::GraphView::add(std::pair<NodePtr, std::set<NodePtr>> nodes, bool includeLearnableParam) {
if (nodes.first != nullptr) {
mRootNode = nodes.first;
add(nodes.first, includeLearnableParam);
}
return add(nodes.second, includeLearnableParam);
}
bool Aidge::GraphView::add(std::shared_ptr<GraphView> graph) {
// set the rootNode to the other graphView rootNode if no rootNode yet
mRootNode = mRootNode ? mRootNode : graph->rootNode();
return add(graph->getNodes(), false);
}
void Aidge::GraphView::addChild(std::shared_ptr<Node> toOtherNode,
std::shared_ptr<Node> fromOutNode,
const Aidge::IOIndex_t fromTensor,
Aidge::IOIndex_t toTensor) {
if (fromOutNode)
assert(inView(fromOutNode) && "Output Node not found in the GraphView.");
else {
assert((outputNodes().size() == 1U) &&
"Must specify an outputNode or have only one.");
fromOutNode = *(outputNodes().begin());
}
fromOutNode->addChild(toOtherNode, fromTensor, toTensor);
add(toOtherNode);
}
void Aidge::GraphView::addChild(
std::shared_ptr<GraphView> toOtherView,
std::pair<std::shared_ptr<Node>, Aidge::IOIndex_t> fromOutNode,
std::pair<std::shared_ptr<Node>, Aidge::IOIndex_t> toNode) {
// assert output node is valid
if (!fromOutNode.first) {
assert(outputNodes().size() == 1U &&
"If no output node is provided, the graph should have only one to "
"make the choice explicit.");
fromOutNode.first = *(outputNodes().begin());
} else
assert(inView(fromOutNode.first));
// assert input node is valid
if (!toNode.first) {
assert(toOtherView->inputNodes().size() == 1U &&
"If no intput node is provided, the other graph should have only "
"one to make the choice explicit.");
toNode.first = *(toOtherView->inputNodes().begin());
} else {
assert(toOtherView->inView(toNode.first));
}
// Tensor assertions are performed in the Node adChild method
fromOutNode.first->addChild(toNode.first, fromOutNode.second, toNode.second);
// once linking performed, add other graph to current graph
add(toOtherView);
}
std::set<std::shared_ptr<Aidge::Node>> Aidge::GraphView::getParents() const {
// TODO: choose if we return a set or a vector
std::set<std::shared_ptr<Node>> parents;
for (const std::shared_ptr<Node>& inputNode : inputNodes()) {
parents.insert(inputNode->getParents().begin(),
inputNode->getParents().end());
}
return parents;
}
std::vector<std::shared_ptr<Aidge::Node>> Aidge::GraphView::getParents(const std::string nodeName) const {
std::map<std::string, std::shared_ptr<Node>>::const_iterator it = mNodeRegistry.find(nodeName);
AIDGE_ASSERT(it != mNodeRegistry.end(), "No node named {} in graph {}.", nodeName, name());
return (it->second)->getParents();
}
std::vector<std::vector<std::shared_ptr<Aidge::Node>>>
Aidge::GraphView::getOrderedParents() const {
std::vector<std::vector<std::shared_ptr<Node>>> parents;
for (const std::shared_ptr<Node>& inputNode : inputNodes()) {
parents.push_back(inputNode->getParents());
}
return parents;
}
std::set<std::shared_ptr<Aidge::Node>> Aidge::GraphView::getChildren() const {
std::set<std::shared_ptr<Node>> children;
for (const std::shared_ptr<Node>& outputNode : outputNodes()) {
children.insert((outputNode->getChildren()).begin(),
(outputNode->getChildren()).end());
}
return children;
}
std::vector<std::vector<std::shared_ptr<Aidge::Node>>>
Aidge::GraphView::getChildren(const std::string nodeName) const {
std::map<std::string, std::shared_ptr<Node>>::const_iterator it =
mNodeRegistry.find(nodeName);
AIDGE_ASSERT(it != mNodeRegistry.end(), "No node named {} in graph {}.", nodeName, name());
return (it->second)->getOrderedChildren();
}
std::set<std::shared_ptr<Aidge::Node>>
Aidge::GraphView::getChildren(const std::shared_ptr<Node> otherNode) const {
std::set<std::shared_ptr<Node>>::const_iterator it = mNodes.find(otherNode);
AIDGE_ASSERT(it != mNodes.end(), "The node {} (of type {}) is not in graph {}.",
(otherNode) ? otherNode->name() : "#nullptr", (otherNode) ? otherNode->type() : "", name());
return (*it)->getChildren();
}
std::shared_ptr<Aidge::Node>
Aidge::GraphView::getNode(const std::string& nodeName) const {
std::map<std::string, std::shared_ptr<Node>>::const_iterator it =
mNodeRegistry.find(nodeName);
if (it != mNodeRegistry.cend()) {
return it->second;
} else {
Log::warn("No Node named {} in the current GraphView {}.", nodeName, name());
return nullptr;
}
}
void Aidge::GraphView::remove(std::shared_ptr<Node> nodePtr, bool includeLearnableParam) {
// remove learnable params
if (includeLearnableParam) {
for (IOIndex_t i = nodePtr->nbData(); i < nodePtr->nbInputs(); ++i) {
auto inputI = nodePtr->input(i);
if (inputI.first != nullptr) {
bool removeNode = true;
for (const auto& parentOutput : inputI.first->outputs()) {
for (const auto& childOfParentOutput : parentOutput) {
// only remove the learnable parameter if not related to any other Node in the GraphView
if (childOfParentOutput.first != nodePtr) {
removeNode = false;
break;
}
}
}
if (removeNode) {
// assert Learnable Parameter in the GraphView scope
if (mNodes.find(inputI.first) != mNodes.end()) {
mNodes.erase(inputI.first);
inputI.first->removeView(shared_from_this());
}
if (!inputI.first->name().empty()) { mNodeRegistry.erase(inputI.first->name()); }
// check if the node was an input/output node
updateInputsOutputsDelete(inputI.first);
}
}
}
}
if (mNodes.find(nodePtr) != mNodes.end()) {
mNodes.erase(nodePtr);
nodePtr->removeView(shared_from_this());
// check if the nodePtr was an input/output node
updateInputsOutputsDelete(nodePtr);
}
if (!nodePtr->name().empty()) { mNodeRegistry.erase(nodePtr->name()); }
}
bool Aidge::GraphView::swap(Node & /*node*/, Node & /*otherNode*/) {
fmt::print("Swap() not implementated yet. Return false.\n");
return false;
}
void Aidge::GraphView::link(const std::string& /*name1_inID*/,
const std::string& /*name2_outID*/) {
fmt::print("Not implemented yet.\n");
}
void Aidge::GraphView::insertParent(NodePtr childNode,
NodePtr newParentNode,
IOIndex_t childInputTensorIdx,
IOIndex_t newParentInputTensorIdx,
IOIndex_t newParentOutputTensorIdx){
NodePtr currentParentNode = childNode->getParent(childInputTensorIdx);
const IOIndex_t currentParentOutputTensorIdx = childNode->input(childInputTensorIdx).second;
// Remove child from current parent & current Parent from child
currentParentNode->removeChild(childNode, currentParentOutputTensorIdx);
// Add child
currentParentNode->addChild(newParentNode,currentParentOutputTensorIdx, newParentInputTensorIdx);
newParentNode->addChild(childNode, newParentOutputTensorIdx, childInputTensorIdx);
add(newParentNode);
}
bool Aidge::GraphView::replace(const std::set<Aidge::NodePtr>& oldNodes, const std::set<Aidge::NodePtr>& newNodes) {
// (1) create GraphViews from both sets of Nodes
auto oldG = std::make_shared<GraphView>("oldG");
oldG->add(oldNodes, false);
auto newG = std::make_shared<GraphView>("newG");
newG->add(newNodes, false);
return GraphView::replace(oldG, newG);
}
bool Aidge::GraphView::replace(const std::shared_ptr<GraphView>& oldGraph, const std::shared_ptr<GraphView>& newGraph) {
// TODO: handle case where an oldNodes parameter does not come from a Producer but another Node (not included in oldNodes)
// How to distinguish it from data input?
// TODO: Parameter Tensors could be identified with their dimensions
// TODO: Take GraphView as input parameters since new Nodes should be connected whatever.
// It also avoids specifying each producer since they are automatically included
const std::set<NodePtr>& oldNodes = oldGraph->getNodes();
const std::set<NodePtr>& newNodes = newGraph->getNodes();
const std::vector<std::pair<NodePtr, IOIndex_t>> oldOIn =
oldGraph->getOrderedInputs();
const std::vector<std::pair<NodePtr, IOIndex_t>> oldOOut =
oldGraph->getOrderedOutputs();
const std::vector<std::pair<NodePtr, IOIndex_t>> newOIn =
newGraph->getOrderedInputs();
const std::vector<std::pair<NodePtr, IOIndex_t>> newOOut =
newGraph->getOrderedOutputs();
auto inputParents = std::vector<std::pair<std::shared_ptr<Node>, IOIndex_t>>(oldOIn.size());
auto outputChildren = std::vector<std::pair<std::shared_ptr<Node>, IOIndex_t>>(oldOOut.size());
// keep in memory every node related to the node to replace :
// Parent
for (std::size_t i = 0; i < oldOIn.size(); ++i) {
std::pair<NodePtr, IOIndex_t> inputParent =
oldOIn[i].first -> input(oldOIn[i].second);
inputParents[i]= inputParent;
// inputParent.first -> addChild(newOI[i].first, inputParent.second, newOI[i].second);
}
// Children
for (std::size_t i = 0; i < oldOOut.size();) {
std::vector<std::pair<std::shared_ptr<Aidge::Node>, Aidge::IOIndex_t>> outputChild =
oldOOut[i].first -> output(oldOOut[i].second);
if (outputChild.empty()) {
outputChildren[i] = std::pair<std::shared_ptr<Node>, IOIndex_t>({nullptr, gk_IODefaultIndex});
++i;
}
else {
for (const auto& child : outputChild) {
if (oldNodes.find(child.first) == oldNodes.cend()) {
outputChildren[i] = child;
++i;
}
}
}
}
// only keep common views to each node for the new set
// set of common GraphView for oldNodes' Nodes
std::set<std::shared_ptr<GraphView>> commonGraphViews = (*oldNodes.begin())->views();
for (const auto& nodePtr : oldNodes) {
const std::set<std::shared_ptr<GraphView>> nodeView = nodePtr->views();
std::set<std::shared_ptr<GraphView>> intersection;
std::set_intersection(commonGraphViews.begin(), commonGraphViews.end(),
nodeView.begin(), nodeView.end(),
std::inserter(intersection, intersection.begin()));
commonGraphViews = intersection;
}
commonGraphViews.erase(oldGraph);
commonGraphViews.erase(newGraph);
if ((newNodes.size() > 0) && (oldOIn.size() != newOIn.size()) && (oldOOut.size() != newOOut.size())) {
for (const auto& nodePtr : oldNodes) {
nodePtr->removeView(oldGraph);
}
for (const auto& nodePtr : newNodes) {
nodePtr->removeView(newGraph);
}
return false;
}
if ((oldOIn.size() == newOIn.size()) &&
(oldOOut.size() == newOOut.size())) {
// Case 1
for (std::size_t i = 0; i < oldOIn.size(); ++i) {
if (inputParents[i].first) {
inputParents[i].first -> addChild(newOIn[i].first, inputParents[i].second, newOIn[i].second);
}
}
for (std::size_t o = 0; o < oldOOut.size(); ++o) {
if (outputChildren[o].first) {
newOOut[o].first -> addChild(outputChildren[o].first, newOOut[o].second, outputChildren[o].second);
}
}
}
else {
// get the number of Parents for oldG->inputNodes()
// get the number of Children for oldg->outputNodes()
if (newNodes.size() == 0) {
// Case 3
if (oldOIn.size() == oldOOut.size()) {
for (std::size_t i = 0; i < oldOIn.size(); ++i) {
if (inputParents[i].first) {
inputParents[i].first -> addChild(outputChildren[i].first, inputParents[i].second, outputChildren[i].second);
}
}
}
else if ((oldOIn.size() == 1) && (inputParents[0].first)) {
for (std::size_t i = 0; i < oldOIn.size(); ++i) {
inputParents[0].first -> addChild(outputChildren[i].first, inputParents[0].second, outputChildren[i].second);
}
}
}
else if ( // for tiling-like cases. The number of inputNodes changes but not outputNodes
((oldOIn.size() == 1) || (newOIn.size() == 1)) && // (oldOIn.size() == newOI.size()) already handled in Case 1
((oldOOut.size() == newOOut.size()))
) {
// Case 2
if ((oldOIn.size() == 1) && (inputParents[0].first)) {
for (std::size_t i = 0; i < newOIn.size(); ++i) {
inputParents[0].first -> addChild(newOIn[i].first, inputParents[0].second, newOIn[i].second);
}
} else {
for (std::size_t i = 0; i < oldOIn.size(); ++i) {
if (inputParents[i].first) {
inputParents[i].first -> addChild(newOIn[0].first, inputParents[i].second, newOIn[0].second);
}
}
}
for (std::size_t o = 0; o < oldOOut.size(); ++o) {
if (outputChildren[o].first) {
newOOut[o].first -> addChild(outputChildren[o].first, newOOut[o].second, outputChildren[o].second);
}
}
}
else {
for (const auto& nodePtr : oldNodes) {
nodePtr->removeView(oldGraph);
}
for (const auto& nodePtr : newNodes) {
nodePtr->removeView(newGraph);
}
return false;
}
}
auto oldGOutputs = oldGraph->outputNodes();
for (const auto& nodePtr : oldNodes) {
bool removeFromGraphs = true;
if (std::find(oldGOutputs.cbegin(), oldGOutputs.cend(), nodePtr) == oldGOutputs.cend()) {
for (const auto& chPtr : nodePtr->getChildren()) {
if (oldNodes.find(chPtr) == oldNodes.cend()) {
removeFromGraphs = false;
}
}
}
if (removeFromGraphs) {
for (const auto& g : commonGraphViews) {
g -> remove(nodePtr, false);
g -> updateInputsOutputsDelete(nodePtr);
}
nodePtr -> resetConnections(true);
}
}
for (const auto& nodePtr : newNodes) {
for (const auto& g : commonGraphViews) {
g -> add(nodePtr);
}
}
for (const auto& nodePtr : oldNodes) {
nodePtr -> removeView(oldGraph);
}
for (const auto& nodePtr : newNodes) {
nodePtr -> removeView(newGraph);
}
return true;
}
void Aidge::GraphView::updateInputsOutputsNew(std::shared_ptr<Node> newNode) {
// Can be called several times with the same node, e.g. when addChild() is
// called on a node already part of the GraphView. In this case, inputs/outputs
// need to be updated!
std::vector<std::pair<NodePtr, IOIndex_t>>::const_iterator newInputsInsertionPoint = mInputNodes.cend();
// Remove inputs that are not input anymore because connected to newNode
for (auto orderedChilds : newNode->getOrderedChildren()) {
for (auto ch_ptr : orderedChilds) {
// Check that newNode child is in current GraphView
if (mNodes.find(ch_ptr) != mNodes.cend()) {
IOIndex_t inputIdx = 0;
for (const std::shared_ptr<Node>& pa_ptr : ch_ptr->getParents()) {
// If newNode is connected to it
if (pa_ptr == newNode) {
const auto val = std::make_pair(ch_ptr, inputIdx);
const auto iter = std::find(mInputNodes.cbegin(), mInputNodes.cend(), val);
// Check that it was not already the case (if node UPDATE)
if (iter != mInputNodes.cend()) { // newNode is linked to an actual inputNode to an input connection
// The first old (removed) input becomes the insertion point for newNode GraphView inputs
if (std::distance(newInputsInsertionPoint, iter) <= 0) {
newInputsInsertionPoint = mInputNodes.erase(iter);
}
else {
mInputNodes.erase(iter);
}
}
}
++inputIdx;
}
}
}
}
// Manage newNode parents
// Check if any input connection is an input for the GraphView
IOIndex_t inputIdx = 0U;
for (const std::shared_ptr<Node>& pa_ptr : newNode->getParents()) {
const auto val = std::make_pair(newNode, inputIdx);
const auto it = std::find(mInputNodes.cbegin(), mInputNodes.cend(), val);
if ((pa_ptr == nullptr) ||
(mNodes.find(pa_ptr) == mNodes.cend())) {
// Parent doesn't exist || Parent not in the graph
if (it == mInputNodes.cend()) {
// If node's inputs are inputs for the GraphView: add them to the input list
// Addition rule:
// - Inputs addition order follows node inputs order
// - Inputs are inserted at the position of the first input removed
newInputsInsertionPoint = mInputNodes.insert(newInputsInsertionPoint, val);
newInputsInsertionPoint = std::next(newInputsInsertionPoint);
}
} else if (it != mInputNodes.cend()) {
// Parent already in the graph SO edge is not an input anymore for the graph
mInputNodes.erase(it);
}
++inputIdx;
}
std::vector<std::pair<NodePtr, IOIndex_t>>::const_iterator newOutputsInsertionPoint = mOutputNodes.cend();
// Remove outputs that are not output anymore because connected to newNode
for (const std::shared_ptr<Node>& parent : newNode->getParents()) {
// Check that newNode parent is in current GraphView
if (mNodes.find(parent) != mNodes.cend()) {
IOIndex_t outputIdx = 0;
for (auto orderedChilds : parent->getOrderedChildren()) {
for (auto ch_ptr : orderedChilds) {
// If newNode is connected to it
if (ch_ptr == newNode) {
const auto val = std::make_pair(parent, outputIdx);
const auto iter = std::find(mOutputNodes.cbegin(), mOutputNodes.cend(), val);
if (iter != mOutputNodes.cend()) {
// The first old (removed) output becomes the insertion point for newNode GraphView outputs
if (std::distance(newOutputsInsertionPoint, iter) <= 0) {
newOutputsInsertionPoint = mOutputNodes.erase(iter);
}
else {
mOutputNodes.erase(iter);
}
}
}
}
++outputIdx;
}
}
}
// Check if node outputs are outputs for the GraphView and add them to the output list if so
IOIndex_t outputIdx = 0;
for (const auto& orderedChilds : newNode->getOrderedChildren()) {
bool noInsideConnection = true;
for (const auto& ch_ptr : orderedChilds) {
if (mNodes.find(ch_ptr) != mNodes.cend()) {
noInsideConnection = false;
break;
}
}
if (noInsideConnection) {
const auto val = std::make_pair(newNode, outputIdx);
// Output may be already be present (see addChild() with a node already in GraphView)
if (std::find(mOutputNodes.cbegin(), mOutputNodes.cend(), val) == mOutputNodes.cend()) {
newOutputsInsertionPoint = mOutputNodes.insert(newOutputsInsertionPoint, val);
newOutputsInsertionPoint = std::next(newOutputsInsertionPoint);
}
}
++outputIdx;
}
}
void Aidge::GraphView::updateInputsOutputsDelete(std::shared_ptr<Node> deletedNode) {
std::vector<std::pair<NodePtr, IOIndex_t>>::const_iterator newInputsInsertionPoint = mInputNodes.cend();
// Check if node inputs were inputs for the GraphView and remove them from the list if so
for (IOIndex_t inputIdx = 0; inputIdx < deletedNode->getParents().size(); ++inputIdx) {
const auto val = std::make_pair(deletedNode, inputIdx);
const auto iter = std::find(mInputNodes.cbegin(), mInputNodes.cend(), val);
if (iter != mInputNodes.cend()) {
// The first old (removed) input becomes the insertion point for new GraphView inputs
if (std::distance(newInputsInsertionPoint, iter) <= 0) {
newInputsInsertionPoint = mInputNodes.erase(iter);
}
else {
mInputNodes.erase(iter);
}
}
}
// Add child node inputs that become GraphView input following the removal of the node
// Inputs addition order follows deletedNode outputs order
for (auto orderedChilds : deletedNode->getOrderedChildren()) {
for (auto ch_ptr : orderedChilds) {
// Check that deletedNode child is in current GraphView
if (mNodes.find(ch_ptr) != mNodes.cend()) {
IOIndex_t inputIdx = 0;
for (const std::shared_ptr<Node>& pa_ptr : ch_ptr->getParents()) {
// If newNode was connected to it
if (pa_ptr == deletedNode) {
const auto val = std::make_pair(ch_ptr, inputIdx);
if (std::find(mInputNodes.cbegin(), mInputNodes.cend(), val) == mInputNodes.cend()) {
newInputsInsertionPoint = mInputNodes.insert(newInputsInsertionPoint, val);
newInputsInsertionPoint = std::next(newInputsInsertionPoint);
}
}
++inputIdx;
}
}
}
}
std::vector<std::pair<NodePtr, IOIndex_t>>::const_iterator newOutputsInsertionPoint = mOutputNodes.cend();
// Check if node outputs were outputs for the GraphView and remove them from the list if so
for (IOIndex_t outputIdx = 0; outputIdx < deletedNode->getOrderedChildren().size(); ++outputIdx) {
const auto val = std::make_pair(deletedNode, outputIdx);
const auto iter = std::find(mOutputNodes.cbegin(), mOutputNodes.cend(), val);
if (iter != mOutputNodes.cend()) {
// The first old (removed) output becomes the insertion point for newNode GraphView outputs
if (std::distance(newOutputsInsertionPoint, iter) <= 0) {
newOutputsInsertionPoint = mOutputNodes.erase(iter);
}
else {
mOutputNodes.erase(iter);
}
}
}
// Add parent node outputs that become GraphView output following the removal of the node
// Outputs addition order follows deletedNode inputs order
for (const std::shared_ptr<Node>& parent : deletedNode->getParents()) {
if (mNodes.find(parent) != mNodes.end()) {
IOIndex_t outputIdx = 0;
for (auto orderedChilds : parent->getOrderedChildren()) {
bool noInsideConnection = true;
for (auto ch_ptr : orderedChilds) {
if (mNodes.find(ch_ptr) != mNodes.end()) {
noInsideConnection = false;
break;
}
}
if (noInsideConnection) {
const auto val = std::make_pair(parent, outputIdx);
if (std::find(mOutputNodes.cbegin(), mOutputNodes.cend(), val) == mOutputNodes.cend()) {
newOutputsInsertionPoint = mOutputNodes.insert(newOutputsInsertionPoint, val);
newOutputsInsertionPoint = std::next(newOutputsInsertionPoint);
}
}
++outputIdx;
}
}
}
if (deletedNode == mRootNode) {
const std::pair<std::vector<NodePtr>, size_t> ranked_nodes = getRankedNodes();
if(ranked_nodes.second== 0 || ranked_nodes.first.size() <= 1)
{
mRootNode = nullptr;
} else {
// The new root node will be the second node in the order of ranked nodes
setRootNode(*std::next(ranked_nodes.first.cbegin(),1));
}
}
}
std::shared_ptr<Aidge::GraphView> Aidge::GraphView::cloneCallback(NodePtr(*cloneNode)(NodePtr)) const {
std::shared_ptr<GraphView> newGraph = std::make_shared<GraphView>(mName);
// Map for old node -> new node correspondance
std::map<NodePtr, NodePtr> oldToNewNodes;
for (const std::shared_ptr<Node> &node_ptr : mNodes) {
auto clonedNode = cloneNode(node_ptr);
if (clonedNode == nullptr) {
AIDGE_ASSERT(node_ptr->getChildren().size() <= 1, "deleted nodes in GraphView::clone() cannot have multiple children");
AIDGE_ASSERT(node_ptr->nbData() <= 1, "deleted nodes in GraphView::clone() cannot have multiple data input parents");
}
oldToNewNodes[node_ptr] = clonedNode;
}
// For each node, convert old node -> new node connections
for (auto &oldToNewNode : oldToNewNodes) {
if (oldToNewNode.second == nullptr) {
continue; // deleted node
}
// Connect parent nodes. Nodes that were removed with cloneNode() are set to nullptr
size_t parentId = 0;
for (auto parent : oldToNewNode.first->inputs()) {
if (parent.first != nullptr) {
while (oldToNewNodes[parent.first] == nullptr) {
// Find next valid parent in line, going backward in the graph
AIDGE_INTERNAL_ASSERT(parent.first->getChildren().size() == 1);
AIDGE_INTERNAL_ASSERT(parent.first->nbData() <= 1);
const auto& parents = parent.first->dataInputs();
if (!parents.empty() && parents[0].first != nullptr // a valid parent exists
&& oldToNewNodes.find(parents[0].first) != oldToNewNodes.end()) // parent is in the GraphView
{
parent = parents[0];
}
else {
break;
}
}
if (oldToNewNodes[parent.first]) {
AIDGE_INTERNAL_ASSERT(oldToNewNodes[parent.first]->nbOutputs() == parent.first->nbOutputs());
oldToNewNodes[parent.first]->addChild(oldToNewNode.second, parent.second, parentId);
}
}
++parentId;
}
}
// Once connected, add each new nodes to new GraphView
// This has to be done in a second step to ensure that new GraphView inputs/outputs
// are properly set (otherwise, some node's inputs/outputs may be wrongly registered as
// GraphView inputs/outputs because not yet connected to other nodes)
if (oldToNewNodes[mRootNode] != nullptr) {
// Add root node first if is still exists!
newGraph->add(oldToNewNodes[mRootNode], false);
}
for (auto &oldToNewNode : oldToNewNodes) {
if (oldToNewNode.second == nullptr)
continue; // deleted node
newGraph->add(oldToNewNode.second, false);
}
// Update cloned graph inputs/outputs order to match initial graph order
auto newInputNodes = mInputNodes;
for (auto it = newInputNodes.begin(); it != newInputNodes.end(); ) {
// If input node was removed, find next valid input
while (oldToNewNodes[it->first] == nullptr) {
// Removed node should have only one connected output, otherwise cloning is invalid
AIDGE_INTERNAL_ASSERT(it->first->getChildren().size() <= 1);
bool found = false;
if (it->first->getChildren().size() == 1) {
auto child = *it->first->getChildren().begin();
std::size_t inputIdx = 0;
for (auto parent : child->getParents()) {
if (parent == it->first) {
it->first = child;
it->second = inputIdx;
found = true;
break;
}
++inputIdx;
}
}
if (!found) {
break;
}
}
if (oldToNewNodes[it->first] == nullptr) {
it = newInputNodes.erase(it);
}
else {
it->first = oldToNewNodes[it->first];
++it;
}
}
newGraph->setOrderedInputs(newInputNodes);
auto newOutputNodes = mOutputNodes;
for (auto it = newOutputNodes.begin(); it != newOutputNodes.end(); ) {
// If output node was removed, find previous valid output
while (oldToNewNodes[it->first] == nullptr) {
// Removed node should have only one connected data input, otherwise cloning is invalid
AIDGE_INTERNAL_ASSERT(it->first->nbData() <= 1);
auto parents = it->first->dataInputs();
if (!parents.empty() && parents[0].first != nullptr // a valid parent exists
&& oldToNewNodes.find(parents[0].first) != oldToNewNodes.end()) // parent is in the GraphView
{
*it = parents[0];
}
else {
break;
}
}
if (oldToNewNodes[it->first] == nullptr) {
it = newOutputNodes.erase(it);
}
else {
it->first = oldToNewNodes[it->first];
++it;
}
}
newGraph->setOrderedOutputs(newOutputNodes);
return newGraph;
}
std::shared_ptr<Aidge::GraphView> Aidge::getConnectedGraphView(std::shared_ptr<Node> node) {
std::vector<NodePtr> foundNodes;
foundNodes.push_back(node);
for (size_t curNodeIdx = 0; curNodeIdx < foundNodes.size(); ++curNodeIdx) {
NodePtr curNode = foundNodes[curNodeIdx];
for (auto childs : curNode->getOrderedChildren()) {
for (auto child : childs) {
if (child != nullptr && std::find(foundNodes.begin(), foundNodes.end(), child) == foundNodes.end()) {
foundNodes.push_back(child);
}
}
}
for (auto parent : curNode->getParents()) {
if (parent != nullptr && std::find(foundNodes.begin(), foundNodes.end(), parent) == foundNodes.end()) {
foundNodes.push_back(parent);
}
}
}
auto graph = std::make_shared<GraphView>();
graph->add(node);
graph->add({foundNodes.cbegin(), foundNodes.cend()});
return graph;
}