Forked from
Eclipse Projects / aidge / aidge_core
1807 commits behind the upstream repository.
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
ReduceMean.hpp 5.29 KiB
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#ifndef AIDGE_CORE_OPERATOR_REDUCEMEAN_H_
#define AIDGE_CORE_OPERATOR_REDUCEMEAN_H_
#include <algorithm> // std::for_each
#include <array>
#include <cmath>
#include <cstdint> // std::int32_t
#include <numeric>
#include <vector>
#include "aidge/data/Tensor.hpp"
#include "aidge/graph/Node.hpp"
#include "aidge/operator/OperatorTensor.hpp"
#include "aidge/operator/Producer.hpp"
#include "aidge/utils/StaticAttributes.hpp"
#include "aidge/utils/Registrar.hpp"
#include "aidge/utils/Types.h"
namespace Aidge {
enum class ReduceMeanAttr { Axes, KeepDims };
template <DimIdx_t DIM>
class ReduceMean_Op : public OperatorTensor,
public Registrable<ReduceMean_Op<DIM>, std::string, std::unique_ptr<OperatorImpl>(const ReduceMean_Op<DIM> &)>,
public StaticAttributes<ReduceMeanAttr, std::array<std::int32_t, DIM>, DimSize_t> {
public:
static const std::string Type;
ReduceMean_Op() = delete;
using Attributes_ = StaticAttributes<ReduceMeanAttr, std::array<std::int32_t, DIM>, DimSize_t>;
template <ReduceMeanAttr e>
using attr = typename Attributes_::template attr<e>;
constexpr ReduceMean_Op(const std::array<std::int32_t, DIM> &axes, DimSize_t keep_dims)
: OperatorTensor(Type, 1, 0, 1),
Attributes_(attr<ReduceMeanAttr::Axes>(axes),
attr<ReduceMeanAttr::KeepDims>(keep_dims)) {}
/**
* @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated).
* @param op Operator to copy.
*/
ReduceMean_Op(const ReduceMean_Op<DIM>& op)
: OperatorTensor(op),
Attributes_(op)
{
mImpl = op.mImpl ? Registrar<ReduceMean_Op<DIM>>::create(mOutputs[0]->getImpl()->backend())(*this) : nullptr;
}
/**
* @brief Clone the operator using its copy-constructor.
* @see Operator::ReduceMean_Op
*/
std::shared_ptr<Operator> clone() const override {
return std::make_shared<ReduceMean_Op<DIM>>(*this);
}
void computeOutputDims() override final {
if (!getInput(0)) {
AIDGE_THROW_OR_ABORT(std::runtime_error, "Every input should be associated with a Tensor");
}
if (!getInput(0)->empty()) {
// make Axes attribute positive
std::array<std::int32_t, DIM>& axes = this->template getAttr<ReduceMeanAttr::Axes>();
std::for_each(axes.begin(), axes.end(), [&] (std::int32_t& val) {
if (val < 0)
val+=static_cast<std::int32_t>(getInput(0)->nbDims());
});
std::sort(axes.begin(), axes.end());
// build output dimensions
std::vector<DimSize_t> outDims = getInput(0)->dims();
if (this->template getAttr<ReduceMeanAttr::KeepDims>()) {
std::for_each(axes.begin(), axes.end(), [&outDims] (const std::int32_t& val) { outDims[val] = 1; });
}
else {
for (auto it = axes.crbegin(); it != axes.crend(); ++it)
outDims.erase(outDims.begin() + static_cast<std::size_t>(*it));
}
if(outDims.size()>0)
mOutputs[0]->resize(outDims);
else
mOutputs[0]->resize({1});
}
}
void setBackend(const std::string &name, DeviceIdx_t device = 0) override {
mImpl = Registrar<ReduceMean_Op<DIM>>::create(name)(*this);
mOutputs[0]->setBackend(name, device);
}
static const std::vector<std::string> getInputsName(){
return {"data_input"};
}
static const std::vector<std::string> getOutputsName(){
return {"data_output"};
}
};
template <std::array<DimSize_t, 1>::size_type DIM>
inline std::shared_ptr<Node> ReduceMean(const std::array<std::int32_t, DIM> &axes,
DimSize_t keep_dims=1,
const std::string& name = "") {
// FIXME: properly handle default w&b initialization in every cases
static_assert(DIM<=MaxDim,"Too many kernel dimensions required by ReduceMean, not supported");
return std::make_shared<Node>(std::make_shared<ReduceMean_Op<static_cast<DimIdx_t>(DIM)>>(axes, keep_dims), name);
}
// helper with C-style array instead of std::array for kernel_dims to allow automatic template DIM deduction
template <DimSize_t DIM>
inline std::shared_ptr<Node> ReduceMean(
std::int32_t const (&axes)[DIM],
DimSize_t keep_dims = 1,
const std::string& name = "") {
static_assert(DIM<=MaxDim,"Too many kernel dimensions required by ReduceMean, not supported");
return ReduceMean(to_array(axes), keep_dims, name);
}
template <DimIdx_t DIM>
const std::string ReduceMean_Op<DIM>::Type = "ReduceMean";
} // namespace Aidge
namespace {
template <>
const char *const EnumStrings<Aidge::ReduceMeanAttr>::data[] = {"Axes", "KeepDims"};
}
#endif /* AIDGE_CORE_OPERATOR_REDUCEMEAN_H_ */