Forked from
Eclipse Projects / aidge / aidge_core
1245 commits behind the upstream repository.
-
Olivier BICHLER authoredOlivier BICHLER authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
Slice.cpp 9.66 KiB
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include "aidge/operator/Slice.hpp"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <string>
#include <utility>
#include <vector>
#include <fmt/format.h>
#include "aidge/backend/OperatorImpl.hpp"
#include "aidge/data/Data.hpp"
#include "aidge/data/Tensor.hpp"
#include "aidge/utils/ErrorHandling.hpp"
#include "aidge/utils/Types.h"
void Aidge::Slice_OpImpl::forward() {
const Slice_Op& op = dynamic_cast<const Slice_Op&>(mOp);
if (!op.getInput(0)) {
AIDGE_THROW_OR_ABORT(std::runtime_error, "{}: input #0 should be associated with a Tensor", op.Type);
}
AIDGE_ASSERT((op.template getAttr<SliceAttr::Starts>().size() == op.template getAttr<SliceAttr::Ends>().size()) &&
(op.template getAttr<SliceAttr::Starts>().size() == op.template getAttr<SliceAttr::Axes>().size()),
"start, end and axes arguments should be the same size.");
const auto nbDims = op.getInput(0)->nbDims();
const auto& inputDims = op.getInput(0)->dims();
const auto& outputDims = op.getOutput(0)->dims();
// compute index of the output's first element
std::size_t beginning = 0;
const std::size_t nbAxes = op.template getAttr<SliceAttr::Axes>().size();
for (std::size_t i = 0; i < nbAxes; ++i) {
// For each slice operation get the params and cast them to size_t
const DimIdx_t axis = op.template getAttr<SliceAttr::Axes>()[i] >= 0 ?
static_cast<DimIdx_t>(op.template getAttr<SliceAttr::Axes>()[i]) :
static_cast<DimIdx_t>(op.template getAttr<SliceAttr::Axes>()[i] + static_cast<DimIdx_t>(inputDims.size()));
const DimSize_t start = op.template getAttr<SliceAttr::Starts>()[i] >= 0 ?
static_cast<DimSize_t>(op.template getAttr<SliceAttr::Starts>()[i]) :
static_cast<DimSize_t>(op.template getAttr<SliceAttr::Starts>()[i] + static_cast<DimSize_t>(inputDims[axis]));
const std::size_t stridePostAxis = std::accumulate(inputDims.cbegin()+axis+1, inputDims.cend(), std::size_t(1), std::multiplies<std::size_t>());
beginning += start * stridePostAxis;
}
// for inputDims = {4,5,5,3} & outputDims = {3,2,2,1}: substractDims = {1,5,5,3}
std::vector<std::size_t> substractedDims = std::vector<std::size_t>(nbDims);
for (std::size_t i = 0; i < nbDims; ++i) {
substractedDims[i] = inputDims[i] - outputDims[i];
}
// for outputDims = {3,2,2,1}: prodOutputDims = {12,4,2,1}
std::vector<std::size_t> prodOutputDims = std::vector<std::size_t>(nbDims);
std::vector<std::size_t> prodInputDims = std::vector<std::size_t>(nbDims + 1);
prodOutputDims[nbDims - 1] = outputDims[nbDims - 1];
prodInputDims[nbDims - 1] = inputDims[nbDims - 1];
prodInputDims[nbDims] = 1;
for (std::size_t i = 2; i <= nbDims; ++i) {
prodOutputDims[nbDims - i] = prodOutputDims[nbDims - i + 1] * outputDims[nbDims - i];
prodInputDims[nbDims - i] = prodInputDims[nbDims - i + 1] * inputDims[nbDims - i];
}
std::size_t i = beginning;
std::size_t size = 0; // number of elements to copy
std::size_t offset = 0;
for (std::size_t j = 0; j < prodOutputDims[0];) {
++size;
++i;
++j;
bool newChunk = false;
for (std::size_t idx = nbDims - 1; idx > 0; --idx) {
if (j % prodOutputDims[idx] == 0) {
i += substractedDims[idx] * prodInputDims[idx + 1];
newChunk = true;
}
}
if (newChunk) {
op.getOutput(0)->getImpl()->copy(op.getInput(0)->getImpl()->rawPtr(beginning), size, offset);
beginning = i;
offset += size;
size = 0;
}
}
if (size > 0) {
op.getOutput(0)->getImpl()->copy(op.getInput(0)->getImpl()->rawPtr(beginning), size, offset);
}
}
const std::string Aidge::Slice_Op::Type = "Slice";
bool Aidge::Slice_Op::dimsForwarded() const {
if ((getInput(1) && !getInput(1)->empty())
|| (getInput(2) && !getInput(2)->empty())
|| (getInput(3) && !getInput(3)->empty()))
{
// output dims are data dependent
return false;
}
return OperatorTensor::dimsForwarded();
}
bool Aidge::Slice_Op::forwardDims(bool allowDataDependency) {
// check inputs have been associated
if (!getInput(0)) {
AIDGE_THROW_OR_ABORT(std::runtime_error, "{}: input #0 should be associated with a Tensor", type());
}
if (getInput(0)->empty()) {
return false;
}
std::shared_ptr<Tensor> fallback;
if (getInput(1) && !getInput(1)->empty()) {
if (!this->template getAttr<SliceAttr::Starts>().empty()) {
Log::notice("Slice_Op: ignoring non-empty Starts attribute because input#1 takes precedence");
}
if (!allowDataDependency) {
Log::warn("Slice_Op: unable to forwardDims() because output dims are data dependent on input#1");
return false;
}
this->template getAttr<SliceAttr::Starts>().clear(); // If both are provided input would override attrs
this->template getAttr<SliceAttr::Starts>().reserve(getInput(1)->size());
const auto& starts = getInput(1)->refCastFrom(fallback, NativeType<int64_t>::type, "cpu");
std::copy_n(static_cast<int64_t*>(starts.getImpl()->hostPtr()),
starts.size(),
std::back_inserter(this->template getAttr<SliceAttr::Starts>()));
}
AIDGE_ASSERT(!this->template getAttr<SliceAttr::Starts>().empty(), "Missing input#1 or Starts attribute");
if (getInput(2) && !getInput(2)->empty()) {
if (!this->template getAttr<SliceAttr::Ends>().empty()) {
Log::notice("Slice_Op: ignoring non-empty Ends attribute because input#2 takes precedence");
}
if (!allowDataDependency) {
Log::warn("Slice_Op: unable to forwardDims() because output dims are data dependent on input#2");
return false;
}
this->template getAttr<SliceAttr::Ends>().clear(); // If both are provided input would override attrs
this->template getAttr<SliceAttr::Ends>().reserve(getInput(2)->size());
const auto& ends = getInput(2)->refCastFrom(fallback, NativeType<int64_t>::type, "cpu");
std::copy_n(static_cast<int64_t*>(ends.getImpl()->hostPtr()),
ends.size(),
std::back_inserter(this->template getAttr<SliceAttr::Ends>()));
}
AIDGE_ASSERT(!this->template getAttr<SliceAttr::Ends>().empty(), "Missing input#2 or Ends attribute");
if (getInput(3) && !getInput(3)->empty()) {
if (!this->template getAttr<SliceAttr::Axes>().empty()) {
Log::notice("Slice_Op: ignoring non-empty Axes attribute because input#3 takes precedence");
}
if (!allowDataDependency) {
Log::warn("Slice_Op: unable to forwardDims() because output dims are data dependent on input#3");
return false;
}
this->template getAttr<SliceAttr::Axes>().clear(); // If both are provided input would override attrs
this->template getAttr<SliceAttr::Axes>().reserve(getInput(3)->size());
const auto& axes = getInput(3)->refCastFrom(fallback, NativeType<int8_t>::type, "cpu");
std::copy_n(static_cast<int8_t*>(axes.getImpl()->hostPtr()),
axes.size(),
std::back_inserter(this->template getAttr<SliceAttr::Axes>()));
}
AIDGE_ASSERT(!this->template getAttr<SliceAttr::Axes>().empty(), "Missing input#3 or Axes attribute");
const DimSize_t nbAxes = this->template getAttr<SliceAttr::Axes>().size();
std::vector<DimSize_t> outDims = getInput(0)->dims();
for (std::size_t i = 0; i < nbAxes; ++i) {
const DimIdx_t axis = this->template getAttr<SliceAttr::Axes>()[i] >= 0 ?
static_cast<DimIdx_t>(this->template getAttr<SliceAttr::Axes>()[i]) :
static_cast<DimIdx_t>(this->template getAttr<SliceAttr::Axes>()[i] + static_cast<DimIdx_t>(getInput(0)->nbDims()));
const DimSize_t start = this->template getAttr<SliceAttr::Starts>()[i] >= 0 ?
static_cast<DimSize_t>(this->template getAttr<SliceAttr::Starts>()[i]) :
static_cast<DimSize_t>(this->template getAttr<SliceAttr::Starts>()[i] + static_cast<DimSize_t>(getInput(0)->dims()[axis]));
const DimSize_t end = this->template getAttr<SliceAttr::Ends>()[i] >= 0 ?
static_cast<DimSize_t>(this->template getAttr<SliceAttr::Ends>()[i]) :
static_cast<DimSize_t>(this->template getAttr<SliceAttr::Ends>()[i] + static_cast<DimSize_t>(getInput(0)->dims()[axis]));
const std::size_t sliceLength = end - start;
// Check if slice length is valid
if (sliceLength > getInput(0)->dims()[axis])
{
AIDGE_THROW_OR_ABORT(std::runtime_error, "ROI of Slice operator out of bounds");
}
outDims[axis] = sliceLength;
}
mOutputs[0]->resize(outDims);
return true;
}
void Aidge::Slice_Op::setBackend(const std::string& name, Aidge::DeviceIdx_t device) {
if (Registrar<Slice_Op>::exists({name})){
SET_IMPL_MACRO(Slice_Op, *this, name);
}
else {
mImpl = std::make_shared<Slice_OpImpl>(*this);
}
mOutputs[0]->setBackend(name, device);
}