Skip to content
Snippets Groups Projects
Forked from Eclipse Projects / aidge / aidge_core
2352 commits behind the upstream repository.
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
ConvDepthWise.hpp 10.09 KiB
/********************************************************************************
 * Copyright (c) 2023 CEA-List
 *
 * This program and the accompanying materials are made available under the
 * terms of the Eclipse Public License 2.0 which is available at
 * http://www.eclipse.org/legal/epl-2.0.
 *
 * SPDX-License-Identifier: EPL-2.0
 *
 ********************************************************************************/

#ifndef AIDGE_CORE_OPERATOR_CONVDEPTHWISE_H_
#define AIDGE_CORE_OPERATOR_CONVDEPTHWISE_H_

#include <array>
#include <cmath>
#include <numeric>
#include <vector>

#include "aidge/data/Tensor.hpp"
#include "aidge/graph/Node.hpp"
#include "aidge/operator/Operator.hpp"
#include "aidge/operator/Producer.hpp"
#include "aidge/utils/StaticAttributes.hpp"
#include "aidge/utils/Registrar.hpp"
#include "aidge/utils/Types.h"

namespace Aidge {
enum class ConvDepthWiseAttr { StrideDims, DilationDims, Channels, KernelDims, PaddingDims };

template <DimIdx_t DIM>
class ConvDepthWise_Op : public Operator,
                public Registrable<ConvDepthWise_Op<DIM>, std::string, std::unique_ptr<OperatorImpl>(const ConvDepthWise_Op<DIM> &)>,
                public StaticAttributes<ConvDepthWiseAttr,
                                       std::array<DimSize_t, DIM>,
                                       std::array<DimSize_t, DIM>,
                                       DimSize_t,
                                       std::array<DimSize_t, DIM>,
                                       std::array<DimSize_t, (DIM<<1) >> {
   public:
    // FIXME: change accessibility
    std::array<std::shared_ptr<Tensor>, 3> mInputs = {std::make_shared<Tensor>(), std::make_shared<Tensor>(),
                                                      std::make_shared<Tensor>()};
    const std::shared_ptr<Tensor> mOutput = std::make_shared<Tensor>();

   public:
    static constexpr const char *Type = "ConvDepthWise";

    ConvDepthWise_Op() = delete;

    using Attributes_ = StaticAttributes<ConvDepthWiseAttr,
                                             std::array<DimSize_t, DIM>,
                                             std::array<DimSize_t, DIM>,
                                             DimSize_t,
                                             std::array<DimSize_t, DIM>,
                                             std::array<DimSize_t, (DIM<<1) >>;
    template <ConvDepthWiseAttr e>
    using attr = typename Attributes_::template attr<e>;

    constexpr ConvDepthWise_Op(const std::array<DimSize_t, DIM> &kernel_dims,
                               const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1),
                               const std::array<DimSize_t, (DIM<<1)> &padding_dims = create_array<DimSize_t,(DIM<<1)>(0),
                               const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1))
        : Operator(Type),
          Attributes_(attr<ConvDepthWiseAttr::StrideDims>(stride_dims),
                           attr<ConvDepthWiseAttr::DilationDims>(dilation_dims),
                           attr<ConvDepthWiseAttr::Channels>(0),
                           attr<ConvDepthWiseAttr::KernelDims>(kernel_dims),
                           attr<ConvDepthWiseAttr::PaddingDims>(padding_dims)) {
        setDatatype(DataType::Float32);
    }

    /**
     * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated).
     * @param op Operator to copy.
     */
    ConvDepthWise_Op(const ConvDepthWise_Op<DIM>& op)
        : Operator(Type),
          Attributes_(op),
          mOutput(std::make_shared<Tensor>(*op.mOutput))
    {
        // cpy-ctor
        setDatatype(op.mOutput->dataType());
        mImpl = op.mImpl ? Registrar<ConvDepthWise_Op<DIM>>::create(mOutput->getImpl()->backend())(*this) : nullptr;
    }

    /**
     * @brief Clone the operator using its copy-constructor.
     * @see Operator::ConvDepthWise_Op
     */
    std::shared_ptr<Operator> clone() const override {
        return std::make_shared<ConvDepthWise_Op<DIM>>(*this);
    }

    constexpr void associateInput(const IOIndex_t inputIdx, std::shared_ptr<Data> data) override final {
        assert(inputIdx < 3 && "operators supports only 3 inputs");
        assert(strcmp(data->type(), Tensor::Type) == 0 && "input data must be of Tensor type");

        mInputs[inputIdx] = std::dynamic_pointer_cast<Tensor>(data);
    }

    constexpr void computeOutputDims() override final {
        if (!mInputs[0]->empty()) {
            std::array<DimSize_t, DIM + 2> outputDims = {};

            for (std::size_t dim = 0; dim < this->template getAttr<ConvDepthWiseAttr::KernelDims>().size() ; ++dim) {
                const DimSize_t kernelExtent = this->template getAttr<ConvDepthWiseAttr::DilationDims>()[dim] *
                                                       (this->template getAttr<ConvDepthWiseAttr::KernelDims>()[dim] - 1) +
                                               1;

                outputDims[dim+2] = 1 + static_cast<DimSize_t>(
                        floor(static_cast<float>(mInputs[0]->dims()[dim+2] - kernelExtent +
                                                 this->template getAttr<ConvDepthWiseAttr::PaddingDims>()[dim] +
                                                 this->template getAttr<ConvDepthWiseAttr::PaddingDims>()[dim+DIM]) /
                              static_cast<float>(this->template getAttr<ConvDepthWiseAttr::StrideDims>()[dim])));
            }
            this->template getAttr<ConvDepthWiseAttr::Channels>() = mInputs[0]->dims()[1];
            // std::array<DimSize_t, DIM+2> weightDims = append(mInputs[0]->dims()[1],append(1, this->template getAttr<ConvDepthWiseAttr::KernelDims>()));
            // if (mInputs[1]->empty()) {
            //     mInputs[1]->resize(weightDims);
            // }
            // if (mInputs[2]->empty()) {
            //     mInputs[2]->resize({mInputs[0]->dims()[1]});
            // }
            outputDims[1] = mInputs[0]->dims()[1];
            outputDims[0] = mInputs[0]->dims()[0];
            mOutput->resize(outputDims);
        }
    }

    bool outputDimsForwarded() const override final { return !(mOutput->empty()); }


    inline Tensor& input(const IOIndex_t inputIdx) const override final {
        assert(inputIdx < 3 && "operators supports only 3 inputs");
        return *(mInputs[inputIdx].get());
    }
    inline Tensor& output(const IOIndex_t /*outputIdx*/) const override final { return *(mOutput.get()); }

    inline std::shared_ptr<Tensor> getInput(const IOIndex_t inputIdx) const override final {
        assert(inputIdx < 3 && "ConvDepthWise Operators supports only 3 inputs");
        return mInputs[inputIdx];
    }
    inline std::shared_ptr<Tensor> getOutput(const IOIndex_t outputIdx) const override final {
        assert((outputIdx == 0) && "ConvDepthWise Operator has only 1 output");
        (void) outputIdx; // avoid unused warning
        return mOutput;
    }


    std::shared_ptr<Data> getRawInput(const IOIndex_t inputIdx) const override final {
        assert(inputIdx < 3 && "operators supports only 3 inputs");
        return std::static_pointer_cast<Data>(mInputs[inputIdx]);
    }
    std::shared_ptr<Data> getRawOutput(const IOIndex_t outputIdx) const override final {
        assert(outputIdx == 0 && "operator supports only 1 output");
        (void) outputIdx; // avoid unused warning
        return std::static_pointer_cast<Data>(mOutput);
    }



    void setBackend(const std::string &name) {
        mImpl = Registrar<ConvDepthWise_Op<DIM>>::create(name)(*this);
        mOutput->setBackend(name);

        // FIXME: temporary workaround
        mInputs[1]->setBackend(name);
        mInputs[2]->setBackend(name);
    }

    void setDatatype(const DataType &datatype) {
        mOutput->setDatatype(datatype);

        // FIXME: temporary workaround
        mInputs[0]->setDatatype(datatype);
        mInputs[1]->setDatatype(datatype);
        mInputs[2]->setDatatype(datatype);
    }

    inline IOIndex_t nbInputs() const noexcept override final { return 3; }
    inline IOIndex_t nbDataInputs() const noexcept override final { return 1; }
    inline IOIndex_t nbOutputs() const noexcept override final { return 1; }
};

template <std::array<DimSize_t, 1>::size_type DIM>
inline std::shared_ptr<Node> ConvDepthWise(const std::array<DimSize_t, DIM> &kernel_dims,
                                           const std::string& name = "",
                                           const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1),
                                           const std::array<DimSize_t, (DIM<<1)> &padding_dims = create_array<DimSize_t,(DIM<<1)>(0),
                                           const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1)) {
    // FIXME: properly handle default w&b initialization in every cases
    static_assert(DIM<=MaxDim,"Too many kernel dimensions required by ConvDepthWise, not supported");
    auto convDW = std::make_shared<Node>(std::make_shared<ConvDepthWise_Op<static_cast<DimIdx_t>(DIM)>>(kernel_dims, stride_dims, padding_dims, dilation_dims), name);
    addProducer(convDW, 1, std::array<DimSize_t,0>({}), "w");
    addProducer(convDW, 2, std::array<DimSize_t,0>({}), "b");
    return convDW;
}

template <DimSize_t DIM>
inline std::shared_ptr<Node> ConvDepthWise(
    DimSize_t const (&kernel_dims)[DIM],
    const std::string& name = "",
    const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1),
    const std::array<DimSize_t, (DIM<<1)> &padding_dims = create_array<DimSize_t,(DIM<<1)>(0),
    const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1)) {
    static_assert(DIM<=MaxDim,"Too many kernel dimensions required by ConvDepthWise, not supported");
    return ConvDepthWise(to_array(kernel_dims), name, stride_dims, padding_dims, dilation_dims);
}
}  // namespace Aidge

namespace {
template <>
const char *const EnumStrings<Aidge::ConvDepthWiseAttr>::data[] = {"StrideDims", "DilationDims", "Channels",
                                                          "KernelDims", "PaddingDims"};
}

#endif /* AIDGE_CORE_OPERATOR_CONVDEPTHWISE_H_ */