Forked from
Eclipse Projects / aidge / aidge_core
2352 commits behind the upstream repository.
-
vincent lorrain authoredvincent lorrain authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
ConvDepthWise.hpp 10.09 KiB
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#ifndef AIDGE_CORE_OPERATOR_CONVDEPTHWISE_H_
#define AIDGE_CORE_OPERATOR_CONVDEPTHWISE_H_
#include <array>
#include <cmath>
#include <numeric>
#include <vector>
#include "aidge/data/Tensor.hpp"
#include "aidge/graph/Node.hpp"
#include "aidge/operator/Operator.hpp"
#include "aidge/operator/Producer.hpp"
#include "aidge/utils/StaticAttributes.hpp"
#include "aidge/utils/Registrar.hpp"
#include "aidge/utils/Types.h"
namespace Aidge {
enum class ConvDepthWiseAttr { StrideDims, DilationDims, Channels, KernelDims, PaddingDims };
template <DimIdx_t DIM>
class ConvDepthWise_Op : public Operator,
public Registrable<ConvDepthWise_Op<DIM>, std::string, std::unique_ptr<OperatorImpl>(const ConvDepthWise_Op<DIM> &)>,
public StaticAttributes<ConvDepthWiseAttr,
std::array<DimSize_t, DIM>,
std::array<DimSize_t, DIM>,
DimSize_t,
std::array<DimSize_t, DIM>,
std::array<DimSize_t, (DIM<<1) >> {
public:
// FIXME: change accessibility
std::array<std::shared_ptr<Tensor>, 3> mInputs = {std::make_shared<Tensor>(), std::make_shared<Tensor>(),
std::make_shared<Tensor>()};
const std::shared_ptr<Tensor> mOutput = std::make_shared<Tensor>();
public:
static constexpr const char *Type = "ConvDepthWise";
ConvDepthWise_Op() = delete;
using Attributes_ = StaticAttributes<ConvDepthWiseAttr,
std::array<DimSize_t, DIM>,
std::array<DimSize_t, DIM>,
DimSize_t,
std::array<DimSize_t, DIM>,
std::array<DimSize_t, (DIM<<1) >>;
template <ConvDepthWiseAttr e>
using attr = typename Attributes_::template attr<e>;
constexpr ConvDepthWise_Op(const std::array<DimSize_t, DIM> &kernel_dims,
const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1),
const std::array<DimSize_t, (DIM<<1)> &padding_dims = create_array<DimSize_t,(DIM<<1)>(0),
const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1))
: Operator(Type),
Attributes_(attr<ConvDepthWiseAttr::StrideDims>(stride_dims),
attr<ConvDepthWiseAttr::DilationDims>(dilation_dims),
attr<ConvDepthWiseAttr::Channels>(0),
attr<ConvDepthWiseAttr::KernelDims>(kernel_dims),
attr<ConvDepthWiseAttr::PaddingDims>(padding_dims)) {
setDatatype(DataType::Float32);
}
/**
* @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated).
* @param op Operator to copy.
*/
ConvDepthWise_Op(const ConvDepthWise_Op<DIM>& op)
: Operator(Type),
Attributes_(op),
mOutput(std::make_shared<Tensor>(*op.mOutput))
{
// cpy-ctor
setDatatype(op.mOutput->dataType());
mImpl = op.mImpl ? Registrar<ConvDepthWise_Op<DIM>>::create(mOutput->getImpl()->backend())(*this) : nullptr;
}
/**
* @brief Clone the operator using its copy-constructor.
* @see Operator::ConvDepthWise_Op
*/
std::shared_ptr<Operator> clone() const override {
return std::make_shared<ConvDepthWise_Op<DIM>>(*this);
}
constexpr void associateInput(const IOIndex_t inputIdx, std::shared_ptr<Data> data) override final {
assert(inputIdx < 3 && "operators supports only 3 inputs");
assert(strcmp(data->type(), Tensor::Type) == 0 && "input data must be of Tensor type");
mInputs[inputIdx] = std::dynamic_pointer_cast<Tensor>(data);
}
constexpr void computeOutputDims() override final {
if (!mInputs[0]->empty()) {
std::array<DimSize_t, DIM + 2> outputDims = {};
for (std::size_t dim = 0; dim < this->template getAttr<ConvDepthWiseAttr::KernelDims>().size() ; ++dim) {
const DimSize_t kernelExtent = this->template getAttr<ConvDepthWiseAttr::DilationDims>()[dim] *
(this->template getAttr<ConvDepthWiseAttr::KernelDims>()[dim] - 1) +
1;
outputDims[dim+2] = 1 + static_cast<DimSize_t>(
floor(static_cast<float>(mInputs[0]->dims()[dim+2] - kernelExtent +
this->template getAttr<ConvDepthWiseAttr::PaddingDims>()[dim] +
this->template getAttr<ConvDepthWiseAttr::PaddingDims>()[dim+DIM]) /
static_cast<float>(this->template getAttr<ConvDepthWiseAttr::StrideDims>()[dim])));
}
this->template getAttr<ConvDepthWiseAttr::Channels>() = mInputs[0]->dims()[1];
// std::array<DimSize_t, DIM+2> weightDims = append(mInputs[0]->dims()[1],append(1, this->template getAttr<ConvDepthWiseAttr::KernelDims>()));
// if (mInputs[1]->empty()) {
// mInputs[1]->resize(weightDims);
// }
// if (mInputs[2]->empty()) {
// mInputs[2]->resize({mInputs[0]->dims()[1]});
// }
outputDims[1] = mInputs[0]->dims()[1];
outputDims[0] = mInputs[0]->dims()[0];
mOutput->resize(outputDims);
}
}
bool outputDimsForwarded() const override final { return !(mOutput->empty()); }
inline Tensor& input(const IOIndex_t inputIdx) const override final {
assert(inputIdx < 3 && "operators supports only 3 inputs");
return *(mInputs[inputIdx].get());
}
inline Tensor& output(const IOIndex_t /*outputIdx*/) const override final { return *(mOutput.get()); }
inline std::shared_ptr<Tensor> getInput(const IOIndex_t inputIdx) const override final {
assert(inputIdx < 3 && "ConvDepthWise Operators supports only 3 inputs");
return mInputs[inputIdx];
}
inline std::shared_ptr<Tensor> getOutput(const IOIndex_t outputIdx) const override final {
assert((outputIdx == 0) && "ConvDepthWise Operator has only 1 output");
(void) outputIdx; // avoid unused warning
return mOutput;
}
std::shared_ptr<Data> getRawInput(const IOIndex_t inputIdx) const override final {
assert(inputIdx < 3 && "operators supports only 3 inputs");
return std::static_pointer_cast<Data>(mInputs[inputIdx]);
}
std::shared_ptr<Data> getRawOutput(const IOIndex_t outputIdx) const override final {
assert(outputIdx == 0 && "operator supports only 1 output");
(void) outputIdx; // avoid unused warning
return std::static_pointer_cast<Data>(mOutput);
}
void setBackend(const std::string &name) {
mImpl = Registrar<ConvDepthWise_Op<DIM>>::create(name)(*this);
mOutput->setBackend(name);
// FIXME: temporary workaround
mInputs[1]->setBackend(name);
mInputs[2]->setBackend(name);
}
void setDatatype(const DataType &datatype) {
mOutput->setDatatype(datatype);
// FIXME: temporary workaround
mInputs[0]->setDatatype(datatype);
mInputs[1]->setDatatype(datatype);
mInputs[2]->setDatatype(datatype);
}
inline IOIndex_t nbInputs() const noexcept override final { return 3; }
inline IOIndex_t nbDataInputs() const noexcept override final { return 1; }
inline IOIndex_t nbOutputs() const noexcept override final { return 1; }
};
template <std::array<DimSize_t, 1>::size_type DIM>
inline std::shared_ptr<Node> ConvDepthWise(const std::array<DimSize_t, DIM> &kernel_dims,
const std::string& name = "",
const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1),
const std::array<DimSize_t, (DIM<<1)> &padding_dims = create_array<DimSize_t,(DIM<<1)>(0),
const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1)) {
// FIXME: properly handle default w&b initialization in every cases
static_assert(DIM<=MaxDim,"Too many kernel dimensions required by ConvDepthWise, not supported");
auto convDW = std::make_shared<Node>(std::make_shared<ConvDepthWise_Op<static_cast<DimIdx_t>(DIM)>>(kernel_dims, stride_dims, padding_dims, dilation_dims), name);
addProducer(convDW, 1, std::array<DimSize_t,0>({}), "w");
addProducer(convDW, 2, std::array<DimSize_t,0>({}), "b");
return convDW;
}
template <DimSize_t DIM>
inline std::shared_ptr<Node> ConvDepthWise(
DimSize_t const (&kernel_dims)[DIM],
const std::string& name = "",
const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1),
const std::array<DimSize_t, (DIM<<1)> &padding_dims = create_array<DimSize_t,(DIM<<1)>(0),
const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1)) {
static_assert(DIM<=MaxDim,"Too many kernel dimensions required by ConvDepthWise, not supported");
return ConvDepthWise(to_array(kernel_dims), name, stride_dims, padding_dims, dilation_dims);
}
} // namespace Aidge
namespace {
template <>
const char *const EnumStrings<Aidge::ConvDepthWiseAttr>::data[] = {"StrideDims", "DilationDims", "Channels",
"KernelDims", "PaddingDims"};
}
#endif /* AIDGE_CORE_OPERATOR_CONVDEPTHWISE_H_ */