Newer
Older
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include "aidge/operator/Slice.hpp"
#include <cassert>
#include <cstddef>
#include <string>
#include <utility>
#include <vector>
#include "aidge/backend/OperatorImpl.hpp"
#include "aidge/data/Data.hpp"
#include "aidge/data/Tensor.hpp"
#include "aidge/utils/ErrorHandling.hpp"
#include "aidge/utils/Types.h"
void Aidge::Slice_OpImpl::forward() {
const Slice_Op& op = dynamic_cast<const Slice_Op&>(mOp);
if (!op.getInput(0)) {
AIDGE_THROW_OR_ABORT(std::runtime_error, "{}: input #0 should be associated with a Tensor", op.Type);
AIDGE_ASSERT((op.template getAttr<SliceAttr::Starts>().size() == op.template getAttr<SliceAttr::Ends>().size()) &&
(op.template getAttr<SliceAttr::Starts>().size() == op.template getAttr<SliceAttr::Axes>().size()),
"start, end and axes arguments should be the same size.");
const std::size_t nbDims = op.getInput(0)->nbDims();
const std::vector<std::size_t>& inputDims = op.getInput(0)->dims();
auto outputDims = op.getInput(0)->dims();
// compute index of the output's first element
// compute output dimension at the same time (may change between two forward calls)
const std::size_t nbAxes = op.template getAttr<SliceAttr::Axes>().size();
for (std::size_t i = 0; i < nbAxes; ++i) {
// For each slice operation get the params and cast them to size_t
DimIdx_t axis = op.template getAttr<SliceAttr::Axes>()[i] >= 0 ?
static_cast<DimIdx_t>(op.template getAttr<SliceAttr::Axes>()[i]) :
static_cast<DimIdx_t>(op.template getAttr<SliceAttr::Axes>()[i] + static_cast<DimIdx_t>(inputDims.size()));
DimSize_t start = op.template getAttr<SliceAttr::Starts>()[i] >= 0 ?
static_cast<DimSize_t>(op.template getAttr<SliceAttr::Starts>()[i]) :
static_cast<DimSize_t>(op.template getAttr<SliceAttr::Starts>()[i] + static_cast<DimSize_t>(inputDims[axis]));
DimSize_t end = op.template getAttr<SliceAttr::Ends>()[i] >= 0 ?
static_cast<DimSize_t>(op.template getAttr<SliceAttr::Ends>()[i]) :
static_cast<DimSize_t>(op.template getAttr<SliceAttr::Ends>()[i] + static_cast<DimSize_t>(inputDims[axis]));
const std::size_t stridePostAxis = std::accumulate(inputDims.cbegin()+axis+1, inputDims.cend(), std::size_t(1), std::multiplies<std::size_t>());
beginning += start * stridePostAxis;
const std::size_t sliceLength = end - start;
outputDims[axis] = sliceLength;
op.getOutput(0)->resize(outputDims);
// for inputDims = {4,5,5,3} & outputDims = {3,2,2,1}: substractDims = {1,5,5,3}
std::vector<std::size_t> substractedDims = std::vector<std::size_t>(nbDims);
for (std::size_t i = 0; i < nbDims; ++i) {
substractedDims[i] = inputDims[i] - outputDims[i];
// for outputDims = {3,2,2,1}: prodOutputDims = {12,4,2,1}
std::vector<std::size_t> prodOutputDims = std::vector<std::size_t>(nbDims);
std::vector<std::size_t> prodInputDims = std::vector<std::size_t>(nbDims + 1);
prodOutputDims[nbDims - 1] = outputDims[nbDims - 1];
prodInputDims[nbDims - 1] = inputDims[nbDims - 1];
prodInputDims[nbDims] = 1;
for (std::size_t i = 2; i <= nbDims; ++i) {
prodOutputDims[nbDims - i] = prodOutputDims[nbDims - i + 1] * outputDims[nbDims - i];
prodInputDims[nbDims - i] = prodInputDims[nbDims - i + 1] * inputDims[nbDims - i];
}
std::size_t size = 0; // number of elements to copy
for (std::size_t j = 0; j < prodOutputDims[0];) {
for (std::size_t idx = nbDims - 1; idx > 0; --idx) {
if (j % prodOutputDims[idx] == 0) {
i += substractedDims[idx] * prodInputDims[idx + 1];
newChunk = true;
}
if (newChunk) {
op.getOutput(0)->getImpl()->copy(op.getInput(0)->getImpl()->rawPtr(beginning), size, offset);
beginning = i;
offset += size;
size = 0;
}
}
if (size > 0) {
op.getOutput(0)->getImpl()->copy(op.getInput(0)->getImpl()->rawPtr(beginning), size, offset);
const std::string Aidge::Slice_Op::Type = "Slice";
bool Aidge::Slice_Op::dimsForwarded() const {
if ((getInput(1) && !getInput(1)->empty())
|| (getInput(2) && !getInput(2)->empty())
|| (getInput(3) && !getInput(3)->empty()))
{
// output dims are data dependent
return false;
}
return OperatorTensor::dimsForwarded();
}
bool Aidge::Slice_Op::forwardDims(bool allowDataDependency) {
if (!getInput(0)) {
AIDGE_THROW_OR_ABORT(std::runtime_error, "{}: input #0 should be associated with a Tensor", type());
std::shared_ptr<Tensor> fallback;
if (getInput(1) && !getInput(1)->empty()) {
if (!this->template getAttr<SliceAttr::Starts>().empty()) {
Log::notice("Slice_Op: ignoring non-empty Starts attribute because input#1 takes precedence");
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
if (!allowDataDependency) {
Log::warn("Slice_Op: unable to forwardDims() because output dims are data dependent on input#1");
return false;
}
this->template getAttr<SliceAttr::Starts>().clear(); // If both are provided input would override attrs
this->template getAttr<SliceAttr::Starts>().reserve(getInput(1)->size());
const auto& starts = getInput(1)->refCastFrom(fallback, NativeType<int64_t>::type, "cpu");
std::copy_n(static_cast<int64_t*>(starts.getImpl()->hostPtr()),
starts.size(),
std::back_inserter(this->template getAttr<SliceAttr::Starts>()));
}
AIDGE_ASSERT(!this->template getAttr<SliceAttr::Starts>().empty(), "Missing input#1 or Starts attribute");
if (getInput(2) && !getInput(2)->empty()) {
if (!this->template getAttr<SliceAttr::Ends>().empty()) {
Log::notice("Slice_Op: ignoring non-empty Ends attribute because input#2 takes precedence");
}
if (!allowDataDependency) {
Log::warn("Slice_Op: unable to forwardDims() because output dims are data dependent on input#2");
return false;
}
this->template getAttr<SliceAttr::Ends>().clear(); // If both are provided input would override attrs
this->template getAttr<SliceAttr::Ends>().reserve(getInput(2)->size());
const auto& ends = getInput(2)->refCastFrom(fallback, NativeType<int64_t>::type, "cpu");
std::copy_n(static_cast<int64_t*>(ends.getImpl()->hostPtr()),
ends.size(),
std::back_inserter(this->template getAttr<SliceAttr::Ends>()));
}
AIDGE_ASSERT(!this->template getAttr<SliceAttr::Ends>().empty(), "Missing input#2 or Ends attribute");
if (getInput(3) && !getInput(3)->empty()) {
if (!this->template getAttr<SliceAttr::Axes>().empty()) {
Log::notice("Slice_Op: ignoring non-empty Axes attribute because input#3 takes precedence");
}
if (!allowDataDependency) {
Log::warn("Slice_Op: unable to forwardDims() because output dims are data dependent on input#3");
return false;
}
this->template getAttr<SliceAttr::Axes>().clear(); // If both are provided input would override attrs
this->template getAttr<SliceAttr::Axes>().reserve(getInput(3)->size());
const auto& axes = getInput(3)->refCastFrom(fallback, NativeType<int8_t>::type, "cpu");
std::copy_n(static_cast<int8_t*>(axes.getImpl()->hostPtr()),
axes.size(),
std::back_inserter(this->template getAttr<SliceAttr::Axes>()));
}
AIDGE_ASSERT(!this->template getAttr<SliceAttr::Axes>().empty(), "Missing input#3 or Axes attribute");
DimSize_t nbAxes = this->template getAttr<SliceAttr::Axes>().size();
std::vector<DimSize_t> outDims = getInput(0)->dims();
for (std::size_t i = 0; i < nbAxes; ++i) {
DimIdx_t axis = this->template getAttr<SliceAttr::Axes>()[i] >= 0 ?
static_cast<DimIdx_t>(this->template getAttr<SliceAttr::Axes>()[i]) :
static_cast<DimIdx_t>(this->template getAttr<SliceAttr::Axes>()[i] + static_cast<DimIdx_t>(getInput(0)->nbDims()));
DimSize_t start = this->template getAttr<SliceAttr::Starts>()[i] >= 0 ?
static_cast<DimSize_t>(this->template getAttr<SliceAttr::Starts>()[i]) :
static_cast<DimSize_t>(this->template getAttr<SliceAttr::Starts>()[i] + static_cast<DimSize_t>(getInput(0)->dims()[axis]));
DimSize_t end = this->template getAttr<SliceAttr::Ends>()[i] >= 0 ?
static_cast<DimSize_t>(this->template getAttr<SliceAttr::Ends>()[i]) :
static_cast<DimSize_t>(this->template getAttr<SliceAttr::Ends>()[i] + static_cast<DimSize_t>(getInput(0)->dims()[axis]));
const std::size_t sliceLength = end - start;
// Check if slice length is valid
if (sliceLength > getInput(0)->dims()[axis])
{
AIDGE_THROW_OR_ABORT(std::runtime_error, "ROI of Slice operator out of bounds");
void Aidge::Slice_Op::setBackend(const std::string& name, Aidge::DeviceIdx_t device) {
if (Registrar<Slice_Op>::exists({name})){
SET_IMPL_MACRO(Slice_Op, *this, name);
}
else {
mImpl = std::make_shared<Slice_OpImpl>(*this);