Skip to content
Snippets Groups Projects
half.hpp 143 KiB
Newer Older
// half - IEEE 754-based half-precision floating point library.
//
// Copyright (c) 2012-2017 Christian Rau <rauy@users.sourceforge.net>
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

// Version 1.12.0

/// \file
/// Main header file for half precision functionality.

#ifndef HALF_HALF_HPP
#define HALF_HALF_HPP

/// Combined gcc version number.
#define HALF_GNUC_VERSION (__GNUC__*100+__GNUC_MINOR__)

//check C++11 language features
#if defined(__clang__)										//clang
	#if __has_feature(cxx_static_assert) && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)
		#define HALF_ENABLE_CPP11_STATIC_ASSERT 1
	#endif
	#if __has_feature(cxx_constexpr) && !defined(HALF_ENABLE_CPP11_CONSTEXPR)
		#define HALF_ENABLE_CPP11_CONSTEXPR 1
	#endif
	#if __has_feature(cxx_noexcept) && !defined(HALF_ENABLE_CPP11_NOEXCEPT)
		#define HALF_ENABLE_CPP11_NOEXCEPT 1
	#endif
	#if __has_feature(cxx_user_literals) && !defined(HALF_ENABLE_CPP11_USER_LITERALS)
		#define HALF_ENABLE_CPP11_USER_LITERALS 1
	#endif
	#if (defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103L) && !defined(HALF_ENABLE_CPP11_LONG_LONG)
		#define HALF_ENABLE_CPP11_LONG_LONG 1
	#endif
/*#elif defined(__INTEL_COMPILER)								//Intel C++
	#if __INTEL_COMPILER >= 1100 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)		????????
		#define HALF_ENABLE_CPP11_STATIC_ASSERT 1
	#endif
	#if __INTEL_COMPILER >= 1300 && !defined(HALF_ENABLE_CPP11_CONSTEXPR)			????????
		#define HALF_ENABLE_CPP11_CONSTEXPR 1
	#endif
	#if __INTEL_COMPILER >= 1300 && !defined(HALF_ENABLE_CPP11_NOEXCEPT)			????????
		#define HALF_ENABLE_CPP11_NOEXCEPT 1
	#endif
	#if __INTEL_COMPILER >= 1100 && !defined(HALF_ENABLE_CPP11_LONG_LONG)			????????
		#define HALF_ENABLE_CPP11_LONG_LONG 1
	#endif*/
#elif defined(__GNUC__)										//gcc
	#if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103L
		#if HALF_GNUC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)
			#define HALF_ENABLE_CPP11_STATIC_ASSERT 1
		#endif
		#if HALF_GNUC_VERSION >= 406 && !defined(HALF_ENABLE_CPP11_CONSTEXPR)
			#define HALF_ENABLE_CPP11_CONSTEXPR 1
		#endif
		#if HALF_GNUC_VERSION >= 406 && !defined(HALF_ENABLE_CPP11_NOEXCEPT)
			#define HALF_ENABLE_CPP11_NOEXCEPT 1
		#endif
		#if HALF_GNUC_VERSION >= 407 && !defined(HALF_ENABLE_CPP11_USER_LITERALS)
			#define HALF_ENABLE_CPP11_USER_LITERALS 1
		#endif
		#if !defined(HALF_ENABLE_CPP11_LONG_LONG)
			#define HALF_ENABLE_CPP11_LONG_LONG 1
		#endif
	#endif
#elif defined(_MSC_VER)										//Visual C++
	#if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_CONSTEXPR)
		#define HALF_ENABLE_CPP11_CONSTEXPR 1
	#endif
	#if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_NOEXCEPT)
		#define HALF_ENABLE_CPP11_NOEXCEPT 1
	#endif
	#if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_USER_LITERALS)
		#define HALF_ENABLE_CPP11_USER_LITERALS 1
	#endif
	#if _MSC_VER >= 1600 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)
		#define HALF_ENABLE_CPP11_STATIC_ASSERT 1
	#endif
	#if _MSC_VER >= 1310 && !defined(HALF_ENABLE_CPP11_LONG_LONG)
		#define HALF_ENABLE_CPP11_LONG_LONG 1
	#endif
	#define HALF_POP_WARNINGS 1
	#pragma warning(push)
	#pragma warning(disable : 4099 4127 4146)	//struct vs class, constant in if, negative unsigned
#endif

//check C++11 library features
#include <utility>
#if defined(_LIBCPP_VERSION)								//libc++
	#if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103
		#ifndef HALF_ENABLE_CPP11_TYPE_TRAITS
			#define HALF_ENABLE_CPP11_TYPE_TRAITS 1
		#endif
		#ifndef HALF_ENABLE_CPP11_CSTDINT
			#define HALF_ENABLE_CPP11_CSTDINT 1
		#endif
		#ifndef HALF_ENABLE_CPP11_CMATH
			#define HALF_ENABLE_CPP11_CMATH 1
		#endif
		#ifndef HALF_ENABLE_CPP11_HASH
			#define HALF_ENABLE_CPP11_HASH 1
		#endif
	#endif
#elif defined(__GLIBCXX__)									//libstdc++
	#if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103
		#ifdef __clang__
			#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_TYPE_TRAITS)
				#define HALF_ENABLE_CPP11_TYPE_TRAITS 1
			#endif
			#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CSTDINT)
				#define HALF_ENABLE_CPP11_CSTDINT 1
			#endif
			#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CMATH)
				#define HALF_ENABLE_CPP11_CMATH 1
			#endif
			#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_HASH)
				#define HALF_ENABLE_CPP11_HASH 1
			#endif
		#else
			#if HALF_GNUC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CSTDINT)
				#define HALF_ENABLE_CPP11_CSTDINT 1
			#endif
			#if HALF_GNUC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CMATH)
				#define HALF_ENABLE_CPP11_CMATH 1
			#endif
			#if HALF_GNUC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_HASH)
				#define HALF_ENABLE_CPP11_HASH 1
			#endif
		#endif
	#endif
#elif defined(_CPPLIB_VER)									//Dinkumware/Visual C++
	#if _CPPLIB_VER >= 520
		#ifndef HALF_ENABLE_CPP11_TYPE_TRAITS
			#define HALF_ENABLE_CPP11_TYPE_TRAITS 1
		#endif
		#ifndef HALF_ENABLE_CPP11_CSTDINT
			#define HALF_ENABLE_CPP11_CSTDINT 1
		#endif
		#ifndef HALF_ENABLE_CPP11_HASH
			#define HALF_ENABLE_CPP11_HASH 1
		#endif
	#endif
	#if _CPPLIB_VER >= 610
		#ifndef HALF_ENABLE_CPP11_CMATH
			#define HALF_ENABLE_CPP11_CMATH 1
		#endif
	#endif
#endif
#undef HALF_GNUC_VERSION

//support constexpr
#if HALF_ENABLE_CPP11_CONSTEXPR
	#define HALF_CONSTEXPR			constexpr
	#define HALF_CONSTEXPR_CONST	constexpr
#else
	#define HALF_CONSTEXPR
	#define HALF_CONSTEXPR_CONST	const
#endif

//support noexcept
#if HALF_ENABLE_CPP11_NOEXCEPT
	#define HALF_NOEXCEPT	noexcept
	#define HALF_NOTHROW	noexcept
#else
	#define HALF_NOEXCEPT
	#define HALF_NOTHROW	throw()
#endif

#include <algorithm>
#include <iostream>
#include <limits>
#include <climits>
#include <cmath>
#include <cstring>
#if HALF_ENABLE_CPP11_TYPE_TRAITS
	#include <type_traits>
#endif
#if HALF_ENABLE_CPP11_CSTDINT
	#include <cstdint>
#endif
#if HALF_ENABLE_CPP11_HASH
	#include <functional>
#endif


/// Default rounding mode.
/// This specifies the rounding mode used for all conversions between [half](\ref half_float::half)s and `float`s as well as
/// for the half_cast() if not specifying a rounding mode explicitly. It can be redefined (before including half.hpp) to one
/// of the standard rounding modes using their respective constants or the equivalent values of `std::float_round_style`:
///
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
/// `std::float_round_style`         | value | rounding
/// ---------------------------------|-------|-------------------------
/// `std::round_indeterminate`       | -1    | fastest (default)
/// `std::round_toward_zero`         | 0     | toward zero
/// `std::round_to_nearest`          | 1     | to nearest
/// `std::round_toward_infinity`     | 2     | toward positive infinity
/// `std::round_toward_neg_infinity` | 3     | toward negative infinity
///
/// By default this is set to `-1` (`std::round_indeterminate`), which uses truncation (round toward zero, but with overflows
/// set to infinity) and is the fastest rounding mode possible. It can even be set to `std::numeric_limits<float>::round_style`
/// to synchronize the rounding mode with that of the underlying single-precision implementation.
#ifndef HALF_ROUND_STYLE
	#define HALF_ROUND_STYLE	-1			// = std::round_indeterminate
#endif

/// Tie-breaking behaviour for round to nearest.
/// This specifies if ties in round to nearest should be resolved by rounding to the nearest even value. By default this is
/// defined to `0` resulting in the faster but slightly more biased behaviour of rounding away from zero in half-way cases (and
/// thus equal to the round() function), but can be redefined to `1` (before including half.hpp) if more IEEE-conformant
/// behaviour is needed.
#ifndef HALF_ROUND_TIES_TO_EVEN
	#define HALF_ROUND_TIES_TO_EVEN	0		// ties away from zero
#endif

/// Value signaling overflow.
/// In correspondence with `HUGE_VAL[F|L]` from `<cmath>` this symbol expands to a positive value signaling the overflow of an
/// operation, in particular it just evaluates to positive infinity.
#define HUGE_VALH	std::numeric_limits<half_float::half>::infinity()

/// Fast half-precision fma function.
/// This symbol is only defined if the fma() function generally executes as fast as, or faster than, a separate
/// half-precision multiplication followed by an addition. Due to the internal single-precision implementation of all
/// arithmetic operations, this is in fact always the case.
#define FP_FAST_FMAH	1

#ifndef FP_ILOGB0
	#define FP_ILOGB0		INT_MIN
#endif
#ifndef FP_ILOGBNAN
	#define FP_ILOGBNAN		INT_MAX
#endif
#ifndef FP_SUBNORMAL
	#define FP_SUBNORMAL	0
#endif
#ifndef FP_ZERO
	#define FP_ZERO			1
#endif
#ifndef FP_NAN
	#define FP_NAN			2
#endif
#ifndef FP_INFINITE
	#define FP_INFINITE		3
#endif
#ifndef FP_NORMAL
	#define FP_NORMAL		4
#endif


/// Main namespace for half precision functionality.
/// This namespace contains all the functionality provided by the library.
namespace half_float
{
	class half;

#if HALF_ENABLE_CPP11_USER_LITERALS
	/// Library-defined half-precision literals.
	/// Import this namespace to enable half-precision floating point literals:
	/// ~~~~{.cpp}
	/// using namespace half_float::literal;
	/// half_float::half = 4.2_h;
	/// ~~~~
	namespace literal
	{
		half operator"" _h(long double);
	}
#endif

	/// \internal
	/// \brief Implementation details.
	namespace detail
	{
	#if HALF_ENABLE_CPP11_TYPE_TRAITS
		/// Conditional type.
		template<bool B,typename T,typename F> struct conditional : std::conditional<B,T,F> {};

		/// Helper for tag dispatching.
		template<bool B> struct bool_type : std::integral_constant<bool,B> {};
		using std::true_type;
		using std::false_type;

		/// Type traits for floating point types.
		template<typename T> struct is_float : std::is_floating_point<T> {};
	#else
		/// Conditional type.
		template<bool,typename T,typename> struct conditional { typedef T type; };
		template<typename T,typename F> struct conditional<false,T,F> { typedef F type; };

		/// Helper for tag dispatching.
		template<bool> struct bool_type {};
		typedef bool_type<true> true_type;
		typedef bool_type<false> false_type;

		/// Type traits for floating point types.
		template<typename> struct is_float : false_type {};
		template<typename T> struct is_float<const T> : is_float<T> {};
		template<typename T> struct is_float<volatile T> : is_float<T> {};
		template<typename T> struct is_float<const volatile T> : is_float<T> {};
		template<> struct is_float<float> : true_type {};
		template<> struct is_float<double> : true_type {};
		template<> struct is_float<long double> : true_type {};
	#endif

		/// Type traits for floating point bits.
		template<typename T> struct bits { typedef unsigned char type; };
		template<typename T> struct bits<const T> : bits<T> {};
		template<typename T> struct bits<volatile T> : bits<T> {};
		template<typename T> struct bits<const volatile T> : bits<T> {};

	#if HALF_ENABLE_CPP11_CSTDINT
		/// Unsigned integer of (at least) 16 bits width.
		typedef std::uint_least16_t uint16;

		/// Unsigned integer of (at least) 32 bits width.
		template<> struct bits<float> { typedef std::uint_least32_t type; };

		/// Unsigned integer of (at least) 64 bits width.
		template<> struct bits<double> { typedef std::uint_least64_t type; };
	#else
		/// Unsigned integer of (at least) 16 bits width.
		typedef unsigned short uint16;

		/// Unsigned integer of (at least) 32 bits width.
		template<> struct bits<float> : conditional<std::numeric_limits<unsigned int>::digits>=32,unsigned int,unsigned long> {};

		#if HALF_ENABLE_CPP11_LONG_LONG
			/// Unsigned integer of (at least) 64 bits width.
			template<> struct bits<double> : conditional<std::numeric_limits<unsigned long>::digits>=64,unsigned long,unsigned long long> {};
		#else
			/// Unsigned integer of (at least) 64 bits width.
			template<> struct bits<double> { typedef unsigned long type; };
		#endif
	#endif

		/// Tag type for binary construction.
		struct binary_t {};

		/// Tag for binary construction.
		HALF_CONSTEXPR_CONST binary_t binary = binary_t();

		/// Temporary half-precision expression.
		/// This class represents a half-precision expression which just stores a single-precision value internally.
		struct expr
		{
			/// Conversion constructor.
			/// \param f single-precision value to convert
			explicit HALF_CONSTEXPR expr(float f) HALF_NOEXCEPT : value_(f) {}

			/// Conversion to single-precision.
			/// \return single precision value representing expression value
			HALF_CONSTEXPR operator float() const HALF_NOEXCEPT { return value_; }

		private:
			/// Internal expression value stored in single-precision.
			float value_;
		};

		/// SFINAE helper for generic half-precision functions.
		/// This class template has to be specialized for each valid combination of argument types to provide a corresponding
		/// `type` member equivalent to \a T.
		/// \tparam T type to return
		template<typename T,typename,typename=void,typename=void> struct enable {};
		template<typename T> struct enable<T,half,void,void> { typedef T type; };
		template<typename T> struct enable<T,expr,void,void> { typedef T type; };
		template<typename T> struct enable<T,half,half,void> { typedef T type; };
		template<typename T> struct enable<T,half,expr,void> { typedef T type; };
		template<typename T> struct enable<T,expr,half,void> { typedef T type; };
		template<typename T> struct enable<T,expr,expr,void> { typedef T type; };
		template<typename T> struct enable<T,half,half,half> { typedef T type; };
		template<typename T> struct enable<T,half,half,expr> { typedef T type; };
		template<typename T> struct enable<T,half,expr,half> { typedef T type; };
		template<typename T> struct enable<T,half,expr,expr> { typedef T type; };
		template<typename T> struct enable<T,expr,half,half> { typedef T type; };
		template<typename T> struct enable<T,expr,half,expr> { typedef T type; };
		template<typename T> struct enable<T,expr,expr,half> { typedef T type; };
		template<typename T> struct enable<T,expr,expr,expr> { typedef T type; };

		/// Return type for specialized generic 2-argument half-precision functions.
		/// This class template has to be specialized for each valid combination of argument types to provide a corresponding
		/// `type` member denoting the appropriate return type.
		/// \tparam T first argument type
		/// \tparam U first argument type
		template<typename T,typename U> struct result : enable<expr,T,U> {};
		template<> struct result<half,half> { typedef half type; };

		/// \name Classification helpers
		/// \{

		/// Check for infinity.
		/// \tparam T argument type (builtin floating point type)
		/// \param arg value to query
		/// \retval true if infinity
		/// \retval false else
		template<typename T> bool builtin_isinf(T arg)
		{
		#if HALF_ENABLE_CPP11_CMATH
			return std::isinf(arg);
		#elif defined(_MSC_VER)
			return !::_finite(static_cast<double>(arg)) && !::_isnan(static_cast<double>(arg));
		#else
			return arg == std::numeric_limits<T>::infinity() || arg == -std::numeric_limits<T>::infinity();
		#endif
		}

		/// Check for NaN.
		/// \tparam T argument type (builtin floating point type)
		/// \param arg value to query
		/// \retval true if not a number
		/// \retval false else
		template<typename T> bool builtin_isnan(T arg)
		{
		#if HALF_ENABLE_CPP11_CMATH
			return std::isnan(arg);
		#elif defined(_MSC_VER)
			return ::_isnan(static_cast<double>(arg)) != 0;
		#else
			return arg != arg;
		#endif
		}

		/// Check sign.
		/// \tparam T argument type (builtin floating point type)
		/// \param arg value to query
		/// \retval true if signbit set
		/// \retval false else
		template<typename T> bool builtin_signbit(T arg)
		{
		#if HALF_ENABLE_CPP11_CMATH
			return std::signbit(arg);
		#else
			return arg < T() || (arg == T() && T(1)/arg < T());
		#endif
		}

		/// \}
		/// \name Conversion
		/// \{

		/// Convert IEEE single-precision to half-precision.
		/// Credit for this goes to [Jeroen van der Zijp](ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf).
		/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding
		/// \param value single-precision value
		/// \return binary representation of half-precision value
		template<std::float_round_style R> uint16 float2half_impl(float value, true_type)
		{
			typedef bits<float>::type uint32;
			uint32 bits;// = *reinterpret_cast<uint32*>(&value);		//violating strict aliasing!
			std::memcpy(&bits, &value, sizeof(float));
/*			uint16 hbits = (bits>>16) & 0x8000;
			bits &= 0x7FFFFFFF;
			int exp = bits >> 23;
			if(exp == 255)
				return hbits | 0x7C00 | (0x3FF&-static_cast<unsigned>((bits&0x7FFFFF)!=0));
			if(exp > 142)
			{
				if(R == std::round_toward_infinity)
					return hbits | 0x7C00 - (hbits>>15);
				if(R == std::round_toward_neg_infinity)
					return hbits | 0x7BFF + (hbits>>15);
				return hbits | 0x7BFF + (R!=std::round_toward_zero);
			}
			int g, s;
			if(exp > 112)
			{
				g = (bits>>12) & 1;
				s = (bits&0xFFF) != 0;
				hbits |= ((exp-112)<<10) | ((bits>>13)&0x3FF);
			}
			else if(exp > 101)
			{
				int i = 125 - exp;
				bits = (bits&0x7FFFFF) | 0x800000;
				g = (bits>>i) & 1;
				s = (bits&((1L<<i)-1)) != 0;
				hbits |= bits >> (i+1);
			}
			else
			{
				g = 0;
				s = bits != 0;
			}
			if(R == std::round_to_nearest)
				#if HALF_ROUND_TIES_TO_EVEN
					hbits += g & (s|hbits);
				#else
					hbits += g;
				#endif
			else if(R == std::round_toward_infinity)
				hbits += ~(hbits>>15) & (s|g);
			else if(R == std::round_toward_neg_infinity)
				hbits += (hbits>>15) & (g|s);
*/			static const uint16 base_table[512] = {
				0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
				0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
				0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
				0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
				0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
				0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
				0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100,
				0x0200, 0x0400, 0x0800, 0x0C00, 0x1000, 0x1400, 0x1800, 0x1C00, 0x2000, 0x2400, 0x2800, 0x2C00, 0x3000, 0x3400, 0x3800, 0x3C00,
				0x4000, 0x4400, 0x4800, 0x4C00, 0x5000, 0x5400, 0x5800, 0x5C00, 0x6000, 0x6400, 0x6800, 0x6C00, 0x7000, 0x7400, 0x7800, 0x7C00,
				0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
				0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
				0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
				0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
				0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
				0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
				0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
				0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
				0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
				0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
				0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
				0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
				0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
				0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8001, 0x8002, 0x8004, 0x8008, 0x8010, 0x8020, 0x8040, 0x8080, 0x8100,
				0x8200, 0x8400, 0x8800, 0x8C00, 0x9000, 0x9400, 0x9800, 0x9C00, 0xA000, 0xA400, 0xA800, 0xAC00, 0xB000, 0xB400, 0xB800, 0xBC00,
				0xC000, 0xC400, 0xC800, 0xCC00, 0xD000, 0xD400, 0xD800, 0xDC00, 0xE000, 0xE400, 0xE800, 0xEC00, 0xF000, 0xF400, 0xF800, 0xFC00,
				0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
				0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
				0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
				0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
				0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
				0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
				0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00 };
			static const unsigned char shift_table[512] = {
				24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
				24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
				24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
				24, 24, 24, 24, 24, 24, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
				13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
				24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
				24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
				24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 13,
				24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
				24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
				24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
				24, 24, 24, 24, 24, 24, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
				13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
				24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
				24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
				24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 13 };
			uint16 hbits = base_table[bits>>23] + static_cast<uint16>((bits&0x7FFFFF)>>shift_table[bits>>23]);
			if(R == std::round_to_nearest)
				hbits += (((bits&0x7FFFFF)>>(shift_table[bits>>23]-1))|(((bits>>23)&0xFF)==102)) & ((hbits&0x7C00)!=0x7C00)
				#if HALF_ROUND_TIES_TO_EVEN
					& (((((static_cast<uint32>(1)<<(shift_table[bits>>23]-1))-1)&bits)!=0)|hbits)
				#endif
				;
			else if(R == std::round_toward_zero)
				hbits -= ((hbits&0x7FFF)==0x7C00) & ~shift_table[bits>>23];
			else if(R == std::round_toward_infinity)
				hbits += ((((bits&0x7FFFFF&((static_cast<uint32>(1)<<(shift_table[bits>>23]))-1))!=0)|(((bits>>23)<=102)&
					((bits>>23)!=0)))&(hbits<0x7C00)) - ((hbits==0xFC00)&((bits>>23)!=511));
			else if(R == std::round_toward_neg_infinity)
				hbits += ((((bits&0x7FFFFF&((static_cast<uint32>(1)<<(shift_table[bits>>23]))-1))!=0)|(((bits>>23)<=358)&
					((bits>>23)!=256)))&(hbits<0xFC00)&(hbits>>15)) - ((hbits==0x7C00)&((bits>>23)!=255));
			return hbits;
		}

		/// Convert IEEE double-precision to half-precision.
		/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding
		/// \param value double-precision value
		/// \return binary representation of half-precision value
		template<std::float_round_style R> uint16 float2half_impl(double value, true_type)
		{
			typedef bits<float>::type uint32;
			typedef bits<double>::type uint64;
			uint64 bits;// = *reinterpret_cast<uint64*>(&value);		//violating strict aliasing!
			std::memcpy(&bits, &value, sizeof(double));
			uint32 hi = bits >> 32, lo = bits & 0xFFFFFFFF;
			uint16 hbits = (hi>>16) & 0x8000;
			hi &= 0x7FFFFFFF;
			int exp = hi >> 20;
			if(exp == 2047)
				return hbits | 0x7C00 | (0x3FF&-static_cast<unsigned>((bits&0xFFFFFFFFFFFFF)!=0));
			if(exp > 1038)
			{
				if(R == std::round_toward_infinity)
					return hbits | (0x7C00 - (hbits>>15));
				if(R == std::round_toward_neg_infinity)
					return hbits | (0x7BFF + (hbits>>15));
				return hbits | (0x7BFF + (R!=std::round_toward_zero));
			}
			int g, s = lo != 0;
			if(exp > 1008)
			{
				g = (hi>>9) & 1;
				s |= (hi&0x1FF) != 0;
				hbits |= ((exp-1008)<<10) | ((hi>>10)&0x3FF);
			}
			else if(exp > 997)
			{
				int i = 1018 - exp;
				hi = (hi&0xFFFFF) | 0x100000;
				g = (hi>>i) & 1;
				s |= (hi&((1L<<i)-1)) != 0;
				hbits |= hi >> (i+1);
			}
			else
			{
				g = 0;
				s |= hi != 0;
			}
			if(R == std::round_to_nearest)
				#if HALF_ROUND_TIES_TO_EVEN
					hbits += g & (s|hbits);
				#else
					hbits += g;
				#endif
			else if(R == std::round_toward_infinity)
				hbits += ~(hbits>>15) & (s|g);
			else if(R == std::round_toward_neg_infinity)
				hbits += (hbits>>15) & (g|s);
			return hbits;
		}

		/// Convert non-IEEE floating point to half-precision.
		/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding
		/// \tparam T source type (builtin floating point type)
		/// \param value floating point value
		/// \return binary representation of half-precision value
		template<std::float_round_style R,typename T> uint16 float2half_impl(T value, ...)
		{
			uint16 hbits = static_cast<unsigned>(builtin_signbit(value)) << 15;
			if(value == T())
				return hbits;
			if(builtin_isnan(value))
				return hbits | 0x7FFF;
			if(builtin_isinf(value))
				return hbits | 0x7C00;
			int exp;
			std::frexp(value, &exp);
			if(exp > 16)
			{
				if(R == std::round_toward_infinity)
					return hbits | (0x7C00 - (hbits>>15));
				else if(R == std::round_toward_neg_infinity)
					return hbits | (0x7BFF + (hbits>>15));
				return hbits | (0x7BFF + (R!=std::round_toward_zero));
			}
			if(exp < -13)
				value = std::ldexp(value, 24);
			else
			{
				value = std::ldexp(value, 11-exp);
				hbits |= ((exp+13)<<10);
			}
			T ival, frac = std::modf(value, &ival);
			hbits += static_cast<uint16>(std::abs(static_cast<int>(ival)));
			if(R == std::round_to_nearest)
			{
				frac = std::abs(frac);
				#if HALF_ROUND_TIES_TO_EVEN
					hbits += (frac>T(0.5)) | ((frac==T(0.5))&hbits);
				#else
					hbits += frac >= T(0.5);
				#endif
			}
			else if(R == std::round_toward_infinity)
				hbits += frac > T();
			else if(R == std::round_toward_neg_infinity)
				hbits += frac < T();
			return hbits;
		}

		/// Convert floating point to half-precision.
		/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding
		/// \tparam T source type (builtin floating point type)
		/// \param value floating point value
		/// \return binary representation of half-precision value
		template<std::float_round_style R,typename T> uint16 float2half(T value)
		{
			return float2half_impl<R>(value, bool_type<std::numeric_limits<T>::is_iec559&&sizeof(typename bits<T>::type)==sizeof(T)>());
		}

		/// Convert integer to half-precision floating point.
		/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding
		/// \tparam S `true` if value negative, `false` else
		/// \tparam T type to convert (builtin integer type)
		/// \param value non-negative integral value
		/// \return binary representation of half-precision value
		template<std::float_round_style R,bool S,typename T> uint16 int2half_impl(T value)
		{
		#if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS
			static_assert(std::is_integral<T>::value, "int to half conversion only supports builtin integer types");
		#endif
			if(S)
				value = -value;
			uint16 bits = S << 15;
			if(value > 0xFFFF)
			{
				if(R == std::round_toward_infinity)
					bits |= 0x7C00 - S;
				else if(R == std::round_toward_neg_infinity)
					bits |= 0x7BFF + S;
				else
					bits |= 0x7BFF + (R!=std::round_toward_zero);
			}
			else if(value)
			{
				unsigned int m = value, exp = 24;
				for(; m<0x400; m<<=1,--exp) ;
				for(; m>0x7FF; m>>=1,++exp) ;
				bits |= (exp<<10) + m;
				if(exp > 24)
				{
					if(R == std::round_to_nearest)
						bits += (value>>(exp-25)) & 1
						#if HALF_ROUND_TIES_TO_EVEN
							& (((((1<<(exp-25))-1)&value)!=0)|bits)
						#endif
						;
					else if(R == std::round_toward_infinity)
						bits += ((value&((1<<(exp-24))-1))!=0) & !S;
					else if(R == std::round_toward_neg_infinity)
						bits += ((value&((1<<(exp-24))-1))!=0) & S;
				}
			}
			return bits;
		}

		/// Convert integer to half-precision floating point.
		/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding
		/// \tparam T type to convert (builtin integer type)
		/// \param value integral value
		/// \return binary representation of half-precision value
		template<std::float_round_style R,typename T> uint16 int2half(T value)
		{
			return (value<0) ? int2half_impl<R,true>(value) : int2half_impl<R,false>(value);
		}

		/// Convert half-precision to IEEE single-precision.
		/// Credit for this goes to [Jeroen van der Zijp](ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf).
		/// \param value binary representation of half-precision value
		/// \return single-precision value
		inline float half2float_impl(uint16 value, float, true_type)
		{
			typedef bits<float>::type uint32;
/*			uint32 bits = static_cast<uint32>(value&0x8000) << 16;
			int abs = value & 0x7FFF;
			if(abs)
			{
				bits |= 0x38000000 << static_cast<unsigned>(abs>=0x7C00);
				for(; abs<0x400; abs<<=1,bits-=0x800000) ;
				bits += static_cast<uint32>(abs) << 13;
			}
*/			static const uint32 mantissa_table[2048] = {
				0x00000000, 0x33800000, 0x34000000, 0x34400000, 0x34800000, 0x34A00000, 0x34C00000, 0x34E00000, 0x35000000, 0x35100000, 0x35200000, 0x35300000, 0x35400000, 0x35500000, 0x35600000, 0x35700000,
				0x35800000, 0x35880000, 0x35900000, 0x35980000, 0x35A00000, 0x35A80000, 0x35B00000, 0x35B80000, 0x35C00000, 0x35C80000, 0x35D00000, 0x35D80000, 0x35E00000, 0x35E80000, 0x35F00000, 0x35F80000,
				0x36000000, 0x36040000, 0x36080000, 0x360C0000, 0x36100000, 0x36140000, 0x36180000, 0x361C0000, 0x36200000, 0x36240000, 0x36280000, 0x362C0000, 0x36300000, 0x36340000, 0x36380000, 0x363C0000,
				0x36400000, 0x36440000, 0x36480000, 0x364C0000, 0x36500000, 0x36540000, 0x36580000, 0x365C0000, 0x36600000, 0x36640000, 0x36680000, 0x366C0000, 0x36700000, 0x36740000, 0x36780000, 0x367C0000,
				0x36800000, 0x36820000, 0x36840000, 0x36860000, 0x36880000, 0x368A0000, 0x368C0000, 0x368E0000, 0x36900000, 0x36920000, 0x36940000, 0x36960000, 0x36980000, 0x369A0000, 0x369C0000, 0x369E0000,
				0x36A00000, 0x36A20000, 0x36A40000, 0x36A60000, 0x36A80000, 0x36AA0000, 0x36AC0000, 0x36AE0000, 0x36B00000, 0x36B20000, 0x36B40000, 0x36B60000, 0x36B80000, 0x36BA0000, 0x36BC0000, 0x36BE0000,
				0x36C00000, 0x36C20000, 0x36C40000, 0x36C60000, 0x36C80000, 0x36CA0000, 0x36CC0000, 0x36CE0000, 0x36D00000, 0x36D20000, 0x36D40000, 0x36D60000, 0x36D80000, 0x36DA0000, 0x36DC0000, 0x36DE0000,
				0x36E00000, 0x36E20000, 0x36E40000, 0x36E60000, 0x36E80000, 0x36EA0000, 0x36EC0000, 0x36EE0000, 0x36F00000, 0x36F20000, 0x36F40000, 0x36F60000, 0x36F80000, 0x36FA0000, 0x36FC0000, 0x36FE0000,
				0x37000000, 0x37010000, 0x37020000, 0x37030000, 0x37040000, 0x37050000, 0x37060000, 0x37070000, 0x37080000, 0x37090000, 0x370A0000, 0x370B0000, 0x370C0000, 0x370D0000, 0x370E0000, 0x370F0000,
				0x37100000, 0x37110000, 0x37120000, 0x37130000, 0x37140000, 0x37150000, 0x37160000, 0x37170000, 0x37180000, 0x37190000, 0x371A0000, 0x371B0000, 0x371C0000, 0x371D0000, 0x371E0000, 0x371F0000,
				0x37200000, 0x37210000, 0x37220000, 0x37230000, 0x37240000, 0x37250000, 0x37260000, 0x37270000, 0x37280000, 0x37290000, 0x372A0000, 0x372B0000, 0x372C0000, 0x372D0000, 0x372E0000, 0x372F0000,
				0x37300000, 0x37310000, 0x37320000, 0x37330000, 0x37340000, 0x37350000, 0x37360000, 0x37370000, 0x37380000, 0x37390000, 0x373A0000, 0x373B0000, 0x373C0000, 0x373D0000, 0x373E0000, 0x373F0000,
				0x37400000, 0x37410000, 0x37420000, 0x37430000, 0x37440000, 0x37450000, 0x37460000, 0x37470000, 0x37480000, 0x37490000, 0x374A0000, 0x374B0000, 0x374C0000, 0x374D0000, 0x374E0000, 0x374F0000,
				0x37500000, 0x37510000, 0x37520000, 0x37530000, 0x37540000, 0x37550000, 0x37560000, 0x37570000, 0x37580000, 0x37590000, 0x375A0000, 0x375B0000, 0x375C0000, 0x375D0000, 0x375E0000, 0x375F0000,
				0x37600000, 0x37610000, 0x37620000, 0x37630000, 0x37640000, 0x37650000, 0x37660000, 0x37670000, 0x37680000, 0x37690000, 0x376A0000, 0x376B0000, 0x376C0000, 0x376D0000, 0x376E0000, 0x376F0000,
				0x37700000, 0x37710000, 0x37720000, 0x37730000, 0x37740000, 0x37750000, 0x37760000, 0x37770000, 0x37780000, 0x37790000, 0x377A0000, 0x377B0000, 0x377C0000, 0x377D0000, 0x377E0000, 0x377F0000,
				0x37800000, 0x37808000, 0x37810000, 0x37818000, 0x37820000, 0x37828000, 0x37830000, 0x37838000, 0x37840000, 0x37848000, 0x37850000, 0x37858000, 0x37860000, 0x37868000, 0x37870000, 0x37878000,
				0x37880000, 0x37888000, 0x37890000, 0x37898000, 0x378A0000, 0x378A8000, 0x378B0000, 0x378B8000, 0x378C0000, 0x378C8000, 0x378D0000, 0x378D8000, 0x378E0000, 0x378E8000, 0x378F0000, 0x378F8000,
				0x37900000, 0x37908000, 0x37910000, 0x37918000, 0x37920000, 0x37928000, 0x37930000, 0x37938000, 0x37940000, 0x37948000, 0x37950000, 0x37958000, 0x37960000, 0x37968000, 0x37970000, 0x37978000,
				0x37980000, 0x37988000, 0x37990000, 0x37998000, 0x379A0000, 0x379A8000, 0x379B0000, 0x379B8000, 0x379C0000, 0x379C8000, 0x379D0000, 0x379D8000, 0x379E0000, 0x379E8000, 0x379F0000, 0x379F8000,
				0x37A00000, 0x37A08000, 0x37A10000, 0x37A18000, 0x37A20000, 0x37A28000, 0x37A30000, 0x37A38000, 0x37A40000, 0x37A48000, 0x37A50000, 0x37A58000, 0x37A60000, 0x37A68000, 0x37A70000, 0x37A78000,
				0x37A80000, 0x37A88000, 0x37A90000, 0x37A98000, 0x37AA0000, 0x37AA8000, 0x37AB0000, 0x37AB8000, 0x37AC0000, 0x37AC8000, 0x37AD0000, 0x37AD8000, 0x37AE0000, 0x37AE8000, 0x37AF0000, 0x37AF8000,
				0x37B00000, 0x37B08000, 0x37B10000, 0x37B18000, 0x37B20000, 0x37B28000, 0x37B30000, 0x37B38000, 0x37B40000, 0x37B48000, 0x37B50000, 0x37B58000, 0x37B60000, 0x37B68000, 0x37B70000, 0x37B78000,
				0x37B80000, 0x37B88000, 0x37B90000, 0x37B98000, 0x37BA0000, 0x37BA8000, 0x37BB0000, 0x37BB8000, 0x37BC0000, 0x37BC8000, 0x37BD0000, 0x37BD8000, 0x37BE0000, 0x37BE8000, 0x37BF0000, 0x37BF8000,
				0x37C00000, 0x37C08000, 0x37C10000, 0x37C18000, 0x37C20000, 0x37C28000, 0x37C30000, 0x37C38000, 0x37C40000, 0x37C48000, 0x37C50000, 0x37C58000, 0x37C60000, 0x37C68000, 0x37C70000, 0x37C78000,
				0x37C80000, 0x37C88000, 0x37C90000, 0x37C98000, 0x37CA0000, 0x37CA8000, 0x37CB0000, 0x37CB8000, 0x37CC0000, 0x37CC8000, 0x37CD0000, 0x37CD8000, 0x37CE0000, 0x37CE8000, 0x37CF0000, 0x37CF8000,
				0x37D00000, 0x37D08000, 0x37D10000, 0x37D18000, 0x37D20000, 0x37D28000, 0x37D30000, 0x37D38000, 0x37D40000, 0x37D48000, 0x37D50000, 0x37D58000, 0x37D60000, 0x37D68000, 0x37D70000, 0x37D78000,
				0x37D80000, 0x37D88000, 0x37D90000, 0x37D98000, 0x37DA0000, 0x37DA8000, 0x37DB0000, 0x37DB8000, 0x37DC0000, 0x37DC8000, 0x37DD0000, 0x37DD8000, 0x37DE0000, 0x37DE8000, 0x37DF0000, 0x37DF8000,
				0x37E00000, 0x37E08000, 0x37E10000, 0x37E18000, 0x37E20000, 0x37E28000, 0x37E30000, 0x37E38000, 0x37E40000, 0x37E48000, 0x37E50000, 0x37E58000, 0x37E60000, 0x37E68000, 0x37E70000, 0x37E78000,
				0x37E80000, 0x37E88000, 0x37E90000, 0x37E98000, 0x37EA0000, 0x37EA8000, 0x37EB0000, 0x37EB8000, 0x37EC0000, 0x37EC8000, 0x37ED0000, 0x37ED8000, 0x37EE0000, 0x37EE8000, 0x37EF0000, 0x37EF8000,
				0x37F00000, 0x37F08000, 0x37F10000, 0x37F18000, 0x37F20000, 0x37F28000, 0x37F30000, 0x37F38000, 0x37F40000, 0x37F48000, 0x37F50000, 0x37F58000, 0x37F60000, 0x37F68000, 0x37F70000, 0x37F78000,
				0x37F80000, 0x37F88000, 0x37F90000, 0x37F98000, 0x37FA0000, 0x37FA8000, 0x37FB0000, 0x37FB8000, 0x37FC0000, 0x37FC8000, 0x37FD0000, 0x37FD8000, 0x37FE0000, 0x37FE8000, 0x37FF0000, 0x37FF8000,
				0x38000000, 0x38004000, 0x38008000, 0x3800C000, 0x38010000, 0x38014000, 0x38018000, 0x3801C000, 0x38020000, 0x38024000, 0x38028000, 0x3802C000, 0x38030000, 0x38034000, 0x38038000, 0x3803C000,
				0x38040000, 0x38044000, 0x38048000, 0x3804C000, 0x38050000, 0x38054000, 0x38058000, 0x3805C000, 0x38060000, 0x38064000, 0x38068000, 0x3806C000, 0x38070000, 0x38074000, 0x38078000, 0x3807C000,
				0x38080000, 0x38084000, 0x38088000, 0x3808C000, 0x38090000, 0x38094000, 0x38098000, 0x3809C000, 0x380A0000, 0x380A4000, 0x380A8000, 0x380AC000, 0x380B0000, 0x380B4000, 0x380B8000, 0x380BC000,
				0x380C0000, 0x380C4000, 0x380C8000, 0x380CC000, 0x380D0000, 0x380D4000, 0x380D8000, 0x380DC000, 0x380E0000, 0x380E4000, 0x380E8000, 0x380EC000, 0x380F0000, 0x380F4000, 0x380F8000, 0x380FC000,
				0x38100000, 0x38104000, 0x38108000, 0x3810C000, 0x38110000, 0x38114000, 0x38118000, 0x3811C000, 0x38120000, 0x38124000, 0x38128000, 0x3812C000, 0x38130000, 0x38134000, 0x38138000, 0x3813C000,
				0x38140000, 0x38144000, 0x38148000, 0x3814C000, 0x38150000, 0x38154000, 0x38158000, 0x3815C000, 0x38160000, 0x38164000, 0x38168000, 0x3816C000, 0x38170000, 0x38174000, 0x38178000, 0x3817C000,
				0x38180000, 0x38184000, 0x38188000, 0x3818C000, 0x38190000, 0x38194000, 0x38198000, 0x3819C000, 0x381A0000, 0x381A4000, 0x381A8000, 0x381AC000, 0x381B0000, 0x381B4000, 0x381B8000, 0x381BC000,
				0x381C0000, 0x381C4000, 0x381C8000, 0x381CC000, 0x381D0000, 0x381D4000, 0x381D8000, 0x381DC000, 0x381E0000, 0x381E4000, 0x381E8000, 0x381EC000, 0x381F0000, 0x381F4000, 0x381F8000, 0x381FC000,
				0x38200000, 0x38204000, 0x38208000, 0x3820C000, 0x38210000, 0x38214000, 0x38218000, 0x3821C000, 0x38220000, 0x38224000, 0x38228000, 0x3822C000, 0x38230000, 0x38234000, 0x38238000, 0x3823C000,
				0x38240000, 0x38244000, 0x38248000, 0x3824C000, 0x38250000, 0x38254000, 0x38258000, 0x3825C000, 0x38260000, 0x38264000, 0x38268000, 0x3826C000, 0x38270000, 0x38274000, 0x38278000, 0x3827C000,
				0x38280000, 0x38284000, 0x38288000, 0x3828C000, 0x38290000, 0x38294000, 0x38298000, 0x3829C000, 0x382A0000, 0x382A4000, 0x382A8000, 0x382AC000, 0x382B0000, 0x382B4000, 0x382B8000, 0x382BC000,
				0x382C0000, 0x382C4000, 0x382C8000, 0x382CC000, 0x382D0000, 0x382D4000, 0x382D8000, 0x382DC000, 0x382E0000, 0x382E4000, 0x382E8000, 0x382EC000, 0x382F0000, 0x382F4000, 0x382F8000, 0x382FC000,
				0x38300000, 0x38304000, 0x38308000, 0x3830C000, 0x38310000, 0x38314000, 0x38318000, 0x3831C000, 0x38320000, 0x38324000, 0x38328000, 0x3832C000, 0x38330000, 0x38334000, 0x38338000, 0x3833C000,
				0x38340000, 0x38344000, 0x38348000, 0x3834C000, 0x38350000, 0x38354000, 0x38358000, 0x3835C000, 0x38360000, 0x38364000, 0x38368000, 0x3836C000, 0x38370000, 0x38374000, 0x38378000, 0x3837C000,
				0x38380000, 0x38384000, 0x38388000, 0x3838C000, 0x38390000, 0x38394000, 0x38398000, 0x3839C000, 0x383A0000, 0x383A4000, 0x383A8000, 0x383AC000, 0x383B0000, 0x383B4000, 0x383B8000, 0x383BC000,
				0x383C0000, 0x383C4000, 0x383C8000, 0x383CC000, 0x383D0000, 0x383D4000, 0x383D8000, 0x383DC000, 0x383E0000, 0x383E4000, 0x383E8000, 0x383EC000, 0x383F0000, 0x383F4000, 0x383F8000, 0x383FC000,
				0x38400000, 0x38404000, 0x38408000, 0x3840C000, 0x38410000, 0x38414000, 0x38418000, 0x3841C000, 0x38420000, 0x38424000, 0x38428000, 0x3842C000, 0x38430000, 0x38434000, 0x38438000, 0x3843C000,
				0x38440000, 0x38444000, 0x38448000, 0x3844C000, 0x38450000, 0x38454000, 0x38458000, 0x3845C000, 0x38460000, 0x38464000, 0x38468000, 0x3846C000, 0x38470000, 0x38474000, 0x38478000, 0x3847C000,
				0x38480000, 0x38484000, 0x38488000, 0x3848C000, 0x38490000, 0x38494000, 0x38498000, 0x3849C000, 0x384A0000, 0x384A4000, 0x384A8000, 0x384AC000, 0x384B0000, 0x384B4000, 0x384B8000, 0x384BC000,
				0x384C0000, 0x384C4000, 0x384C8000, 0x384CC000, 0x384D0000, 0x384D4000, 0x384D8000, 0x384DC000, 0x384E0000, 0x384E4000, 0x384E8000, 0x384EC000, 0x384F0000, 0x384F4000, 0x384F8000, 0x384FC000,
				0x38500000, 0x38504000, 0x38508000, 0x3850C000, 0x38510000, 0x38514000, 0x38518000, 0x3851C000, 0x38520000, 0x38524000, 0x38528000, 0x3852C000, 0x38530000, 0x38534000, 0x38538000, 0x3853C000,
				0x38540000, 0x38544000, 0x38548000, 0x3854C000, 0x38550000, 0x38554000, 0x38558000, 0x3855C000, 0x38560000, 0x38564000, 0x38568000, 0x3856C000, 0x38570000, 0x38574000, 0x38578000, 0x3857C000,
				0x38580000, 0x38584000, 0x38588000, 0x3858C000, 0x38590000, 0x38594000, 0x38598000, 0x3859C000, 0x385A0000, 0x385A4000, 0x385A8000, 0x385AC000, 0x385B0000, 0x385B4000, 0x385B8000, 0x385BC000,
				0x385C0000, 0x385C4000, 0x385C8000, 0x385CC000, 0x385D0000, 0x385D4000, 0x385D8000, 0x385DC000, 0x385E0000, 0x385E4000, 0x385E8000, 0x385EC000, 0x385F0000, 0x385F4000, 0x385F8000, 0x385FC000,
				0x38600000, 0x38604000, 0x38608000, 0x3860C000, 0x38610000, 0x38614000, 0x38618000, 0x3861C000, 0x38620000, 0x38624000, 0x38628000, 0x3862C000, 0x38630000, 0x38634000, 0x38638000, 0x3863C000,
				0x38640000, 0x38644000, 0x38648000, 0x3864C000, 0x38650000, 0x38654000, 0x38658000, 0x3865C000, 0x38660000, 0x38664000, 0x38668000, 0x3866C000, 0x38670000, 0x38674000, 0x38678000, 0x3867C000,
				0x38680000, 0x38684000, 0x38688000, 0x3868C000, 0x38690000, 0x38694000, 0x38698000, 0x3869C000, 0x386A0000, 0x386A4000, 0x386A8000, 0x386AC000, 0x386B0000, 0x386B4000, 0x386B8000, 0x386BC000,
				0x386C0000, 0x386C4000, 0x386C8000, 0x386CC000, 0x386D0000, 0x386D4000, 0x386D8000, 0x386DC000, 0x386E0000, 0x386E4000, 0x386E8000, 0x386EC000, 0x386F0000, 0x386F4000, 0x386F8000, 0x386FC000,
				0x38700000, 0x38704000, 0x38708000, 0x3870C000, 0x38710000, 0x38714000, 0x38718000, 0x3871C000, 0x38720000, 0x38724000, 0x38728000, 0x3872C000, 0x38730000, 0x38734000, 0x38738000, 0x3873C000,
				0x38740000, 0x38744000, 0x38748000, 0x3874C000, 0x38750000, 0x38754000, 0x38758000, 0x3875C000, 0x38760000, 0x38764000, 0x38768000, 0x3876C000, 0x38770000, 0x38774000, 0x38778000, 0x3877C000,
				0x38780000, 0x38784000, 0x38788000, 0x3878C000, 0x38790000, 0x38794000, 0x38798000, 0x3879C000, 0x387A0000, 0x387A4000, 0x387A8000, 0x387AC000, 0x387B0000, 0x387B4000, 0x387B8000, 0x387BC000,
				0x387C0000, 0x387C4000, 0x387C8000, 0x387CC000, 0x387D0000, 0x387D4000, 0x387D8000, 0x387DC000, 0x387E0000, 0x387E4000, 0x387E8000, 0x387EC000, 0x387F0000, 0x387F4000, 0x387F8000, 0x387FC000,
				0x38000000, 0x38002000, 0x38004000, 0x38006000, 0x38008000, 0x3800A000, 0x3800C000, 0x3800E000, 0x38010000, 0x38012000, 0x38014000, 0x38016000, 0x38018000, 0x3801A000, 0x3801C000, 0x3801E000,
				0x38020000, 0x38022000, 0x38024000, 0x38026000, 0x38028000, 0x3802A000, 0x3802C000, 0x3802E000, 0x38030000, 0x38032000, 0x38034000, 0x38036000, 0x38038000, 0x3803A000, 0x3803C000, 0x3803E000,
				0x38040000, 0x38042000, 0x38044000, 0x38046000, 0x38048000, 0x3804A000, 0x3804C000, 0x3804E000, 0x38050000, 0x38052000, 0x38054000, 0x38056000, 0x38058000, 0x3805A000, 0x3805C000, 0x3805E000,
				0x38060000, 0x38062000, 0x38064000, 0x38066000, 0x38068000, 0x3806A000, 0x3806C000, 0x3806E000, 0x38070000, 0x38072000, 0x38074000, 0x38076000, 0x38078000, 0x3807A000, 0x3807C000, 0x3807E000,
				0x38080000, 0x38082000, 0x38084000, 0x38086000, 0x38088000, 0x3808A000, 0x3808C000, 0x3808E000, 0x38090000, 0x38092000, 0x38094000, 0x38096000, 0x38098000, 0x3809A000, 0x3809C000, 0x3809E000,
				0x380A0000, 0x380A2000, 0x380A4000, 0x380A6000, 0x380A8000, 0x380AA000, 0x380AC000, 0x380AE000, 0x380B0000, 0x380B2000, 0x380B4000, 0x380B6000, 0x380B8000, 0x380BA000, 0x380BC000, 0x380BE000,
				0x380C0000, 0x380C2000, 0x380C4000, 0x380C6000, 0x380C8000, 0x380CA000, 0x380CC000, 0x380CE000, 0x380D0000, 0x380D2000, 0x380D4000, 0x380D6000, 0x380D8000, 0x380DA000, 0x380DC000, 0x380DE000,
				0x380E0000, 0x380E2000, 0x380E4000, 0x380E6000, 0x380E8000, 0x380EA000, 0x380EC000, 0x380EE000, 0x380F0000, 0x380F2000, 0x380F4000, 0x380F6000, 0x380F8000, 0x380FA000, 0x380FC000, 0x380FE000,
				0x38100000, 0x38102000, 0x38104000, 0x38106000, 0x38108000, 0x3810A000, 0x3810C000, 0x3810E000, 0x38110000, 0x38112000, 0x38114000, 0x38116000, 0x38118000, 0x3811A000, 0x3811C000, 0x3811E000,
				0x38120000, 0x38122000, 0x38124000, 0x38126000, 0x38128000, 0x3812A000, 0x3812C000, 0x3812E000, 0x38130000, 0x38132000, 0x38134000, 0x38136000, 0x38138000, 0x3813A000, 0x3813C000, 0x3813E000,
				0x38140000, 0x38142000, 0x38144000, 0x38146000, 0x38148000, 0x3814A000, 0x3814C000, 0x3814E000, 0x38150000, 0x38152000, 0x38154000, 0x38156000, 0x38158000, 0x3815A000, 0x3815C000, 0x3815E000,
				0x38160000, 0x38162000, 0x38164000, 0x38166000, 0x38168000, 0x3816A000, 0x3816C000, 0x3816E000, 0x38170000, 0x38172000, 0x38174000, 0x38176000, 0x38178000, 0x3817A000, 0x3817C000, 0x3817E000,
				0x38180000, 0x38182000, 0x38184000, 0x38186000, 0x38188000, 0x3818A000, 0x3818C000, 0x3818E000, 0x38190000, 0x38192000, 0x38194000, 0x38196000, 0x38198000, 0x3819A000, 0x3819C000, 0x3819E000,
				0x381A0000, 0x381A2000, 0x381A4000, 0x381A6000, 0x381A8000, 0x381AA000, 0x381AC000, 0x381AE000, 0x381B0000, 0x381B2000, 0x381B4000, 0x381B6000, 0x381B8000, 0x381BA000, 0x381BC000, 0x381BE000,
				0x381C0000, 0x381C2000, 0x381C4000, 0x381C6000, 0x381C8000, 0x381CA000, 0x381CC000, 0x381CE000, 0x381D0000, 0x381D2000, 0x381D4000, 0x381D6000, 0x381D8000, 0x381DA000, 0x381DC000, 0x381DE000,
				0x381E0000, 0x381E2000, 0x381E4000, 0x381E6000, 0x381E8000, 0x381EA000, 0x381EC000, 0x381EE000, 0x381F0000, 0x381F2000, 0x381F4000, 0x381F6000, 0x381F8000, 0x381FA000, 0x381FC000, 0x381FE000,
				0x38200000, 0x38202000, 0x38204000, 0x38206000, 0x38208000, 0x3820A000, 0x3820C000, 0x3820E000, 0x38210000, 0x38212000, 0x38214000, 0x38216000, 0x38218000, 0x3821A000, 0x3821C000, 0x3821E000,
				0x38220000, 0x38222000, 0x38224000, 0x38226000, 0x38228000, 0x3822A000, 0x3822C000, 0x3822E000, 0x38230000, 0x38232000, 0x38234000, 0x38236000, 0x38238000, 0x3823A000, 0x3823C000, 0x3823E000,
				0x38240000, 0x38242000, 0x38244000, 0x38246000, 0x38248000, 0x3824A000, 0x3824C000, 0x3824E000, 0x38250000, 0x38252000, 0x38254000, 0x38256000, 0x38258000, 0x3825A000, 0x3825C000, 0x3825E000,
				0x38260000, 0x38262000, 0x38264000, 0x38266000, 0x38268000, 0x3826A000, 0x3826C000, 0x3826E000, 0x38270000, 0x38272000, 0x38274000, 0x38276000, 0x38278000, 0x3827A000, 0x3827C000, 0x3827E000,
				0x38280000, 0x38282000, 0x38284000, 0x38286000, 0x38288000, 0x3828A000, 0x3828C000, 0x3828E000, 0x38290000, 0x38292000, 0x38294000, 0x38296000, 0x38298000, 0x3829A000, 0x3829C000, 0x3829E000,
				0x382A0000, 0x382A2000, 0x382A4000, 0x382A6000, 0x382A8000, 0x382AA000, 0x382AC000, 0x382AE000, 0x382B0000, 0x382B2000, 0x382B4000, 0x382B6000, 0x382B8000, 0x382BA000, 0x382BC000, 0x382BE000,
				0x382C0000, 0x382C2000, 0x382C4000, 0x382C6000, 0x382C8000, 0x382CA000, 0x382CC000, 0x382CE000, 0x382D0000, 0x382D2000, 0x382D4000, 0x382D6000, 0x382D8000, 0x382DA000, 0x382DC000, 0x382DE000,
				0x382E0000, 0x382E2000, 0x382E4000, 0x382E6000, 0x382E8000, 0x382EA000, 0x382EC000, 0x382EE000, 0x382F0000, 0x382F2000, 0x382F4000, 0x382F6000, 0x382F8000, 0x382FA000, 0x382FC000, 0x382FE000,
				0x38300000, 0x38302000, 0x38304000, 0x38306000, 0x38308000, 0x3830A000, 0x3830C000, 0x3830E000, 0x38310000, 0x38312000, 0x38314000, 0x38316000, 0x38318000, 0x3831A000, 0x3831C000, 0x3831E000,
				0x38320000, 0x38322000, 0x38324000, 0x38326000, 0x38328000, 0x3832A000, 0x3832C000, 0x3832E000, 0x38330000, 0x38332000, 0x38334000, 0x38336000, 0x38338000, 0x3833A000, 0x3833C000, 0x3833E000,
				0x38340000, 0x38342000, 0x38344000, 0x38346000, 0x38348000, 0x3834A000, 0x3834C000, 0x3834E000, 0x38350000, 0x38352000, 0x38354000, 0x38356000, 0x38358000, 0x3835A000, 0x3835C000, 0x3835E000,
				0x38360000, 0x38362000, 0x38364000, 0x38366000, 0x38368000, 0x3836A000, 0x3836C000, 0x3836E000, 0x38370000, 0x38372000, 0x38374000, 0x38376000, 0x38378000, 0x3837A000, 0x3837C000, 0x3837E000,
				0x38380000, 0x38382000, 0x38384000, 0x38386000, 0x38388000, 0x3838A000, 0x3838C000, 0x3838E000, 0x38390000, 0x38392000, 0x38394000, 0x38396000, 0x38398000, 0x3839A000, 0x3839C000, 0x3839E000,
				0x383A0000, 0x383A2000, 0x383A4000, 0x383A6000, 0x383A8000, 0x383AA000, 0x383AC000, 0x383AE000, 0x383B0000, 0x383B2000, 0x383B4000, 0x383B6000, 0x383B8000, 0x383BA000, 0x383BC000, 0x383BE000,
				0x383C0000, 0x383C2000, 0x383C4000, 0x383C6000, 0x383C8000, 0x383CA000, 0x383CC000, 0x383CE000, 0x383D0000, 0x383D2000, 0x383D4000, 0x383D6000, 0x383D8000, 0x383DA000, 0x383DC000, 0x383DE000,
				0x383E0000, 0x383E2000, 0x383E4000, 0x383E6000, 0x383E8000, 0x383EA000, 0x383EC000, 0x383EE000, 0x383F0000, 0x383F2000, 0x383F4000, 0x383F6000, 0x383F8000, 0x383FA000, 0x383FC000, 0x383FE000,
				0x38400000, 0x38402000, 0x38404000, 0x38406000, 0x38408000, 0x3840A000, 0x3840C000, 0x3840E000, 0x38410000, 0x38412000, 0x38414000, 0x38416000, 0x38418000, 0x3841A000, 0x3841C000, 0x3841E000,
				0x38420000, 0x38422000, 0x38424000, 0x38426000, 0x38428000, 0x3842A000, 0x3842C000, 0x3842E000, 0x38430000, 0x38432000, 0x38434000, 0x38436000, 0x38438000, 0x3843A000, 0x3843C000, 0x3843E000,
				0x38440000, 0x38442000, 0x38444000, 0x38446000, 0x38448000, 0x3844A000, 0x3844C000, 0x3844E000, 0x38450000, 0x38452000, 0x38454000, 0x38456000, 0x38458000, 0x3845A000, 0x3845C000, 0x3845E000,
				0x38460000, 0x38462000, 0x38464000, 0x38466000, 0x38468000, 0x3846A000, 0x3846C000, 0x3846E000, 0x38470000, 0x38472000, 0x38474000, 0x38476000, 0x38478000, 0x3847A000, 0x3847C000, 0x3847E000,
				0x38480000, 0x38482000, 0x38484000, 0x38486000, 0x38488000, 0x3848A000, 0x3848C000, 0x3848E000, 0x38490000, 0x38492000, 0x38494000, 0x38496000, 0x38498000, 0x3849A000, 0x3849C000, 0x3849E000,
				0x384A0000, 0x384A2000, 0x384A4000, 0x384A6000, 0x384A8000, 0x384AA000, 0x384AC000, 0x384AE000, 0x384B0000, 0x384B2000, 0x384B4000, 0x384B6000, 0x384B8000, 0x384BA000, 0x384BC000, 0x384BE000,
				0x384C0000, 0x384C2000, 0x384C4000, 0x384C6000, 0x384C8000, 0x384CA000, 0x384CC000, 0x384CE000, 0x384D0000, 0x384D2000, 0x384D4000, 0x384D6000, 0x384D8000, 0x384DA000, 0x384DC000, 0x384DE000,
				0x384E0000, 0x384E2000, 0x384E4000, 0x384E6000, 0x384E8000, 0x384EA000, 0x384EC000, 0x384EE000, 0x384F0000, 0x384F2000, 0x384F4000, 0x384F6000, 0x384F8000, 0x384FA000, 0x384FC000, 0x384FE000,
				0x38500000, 0x38502000, 0x38504000, 0x38506000, 0x38508000, 0x3850A000, 0x3850C000, 0x3850E000, 0x38510000, 0x38512000, 0x38514000, 0x38516000, 0x38518000, 0x3851A000, 0x3851C000, 0x3851E000,
				0x38520000, 0x38522000, 0x38524000, 0x38526000, 0x38528000, 0x3852A000, 0x3852C000, 0x3852E000, 0x38530000, 0x38532000, 0x38534000, 0x38536000, 0x38538000, 0x3853A000, 0x3853C000, 0x3853E000,
				0x38540000, 0x38542000, 0x38544000, 0x38546000, 0x38548000, 0x3854A000, 0x3854C000, 0x3854E000, 0x38550000, 0x38552000, 0x38554000, 0x38556000, 0x38558000, 0x3855A000, 0x3855C000, 0x3855E000,
				0x38560000, 0x38562000, 0x38564000, 0x38566000, 0x38568000, 0x3856A000, 0x3856C000, 0x3856E000, 0x38570000, 0x38572000, 0x38574000, 0x38576000, 0x38578000, 0x3857A000, 0x3857C000, 0x3857E000,
				0x38580000, 0x38582000, 0x38584000, 0x38586000, 0x38588000, 0x3858A000, 0x3858C000, 0x3858E000, 0x38590000, 0x38592000, 0x38594000, 0x38596000, 0x38598000, 0x3859A000, 0x3859C000, 0x3859E000,
				0x385A0000, 0x385A2000, 0x385A4000, 0x385A6000, 0x385A8000, 0x385AA000, 0x385AC000, 0x385AE000, 0x385B0000, 0x385B2000, 0x385B4000, 0x385B6000, 0x385B8000, 0x385BA000, 0x385BC000, 0x385BE000,
				0x385C0000, 0x385C2000, 0x385C4000, 0x385C6000, 0x385C8000, 0x385CA000, 0x385CC000, 0x385CE000, 0x385D0000, 0x385D2000, 0x385D4000, 0x385D6000, 0x385D8000, 0x385DA000, 0x385DC000, 0x385DE000,
				0x385E0000, 0x385E2000, 0x385E4000, 0x385E6000, 0x385E8000, 0x385EA000, 0x385EC000, 0x385EE000, 0x385F0000, 0x385F2000, 0x385F4000, 0x385F6000, 0x385F8000, 0x385FA000, 0x385FC000, 0x385FE000,
				0x38600000, 0x38602000, 0x38604000, 0x38606000, 0x38608000, 0x3860A000, 0x3860C000, 0x3860E000, 0x38610000, 0x38612000, 0x38614000, 0x38616000, 0x38618000, 0x3861A000, 0x3861C000, 0x3861E000,
				0x38620000, 0x38622000, 0x38624000, 0x38626000, 0x38628000, 0x3862A000, 0x3862C000, 0x3862E000, 0x38630000, 0x38632000, 0x38634000, 0x38636000, 0x38638000, 0x3863A000, 0x3863C000, 0x3863E000,
				0x38640000, 0x38642000, 0x38644000, 0x38646000, 0x38648000, 0x3864A000, 0x3864C000, 0x3864E000, 0x38650000, 0x38652000, 0x38654000, 0x38656000, 0x38658000, 0x3865A000, 0x3865C000, 0x3865E000,
				0x38660000, 0x38662000, 0x38664000, 0x38666000, 0x38668000, 0x3866A000, 0x3866C000, 0x3866E000, 0x38670000, 0x38672000, 0x38674000, 0x38676000, 0x38678000, 0x3867A000, 0x3867C000, 0x3867E000,
				0x38680000, 0x38682000, 0x38684000, 0x38686000, 0x38688000, 0x3868A000, 0x3868C000, 0x3868E000, 0x38690000, 0x38692000, 0x38694000, 0x38696000, 0x38698000, 0x3869A000, 0x3869C000, 0x3869E000,
				0x386A0000, 0x386A2000, 0x386A4000, 0x386A6000, 0x386A8000, 0x386AA000, 0x386AC000, 0x386AE000, 0x386B0000, 0x386B2000, 0x386B4000, 0x386B6000, 0x386B8000, 0x386BA000, 0x386BC000, 0x386BE000,
				0x386C0000, 0x386C2000, 0x386C4000, 0x386C6000, 0x386C8000, 0x386CA000, 0x386CC000, 0x386CE000, 0x386D0000, 0x386D2000, 0x386D4000, 0x386D6000, 0x386D8000, 0x386DA000, 0x386DC000, 0x386DE000,
				0x386E0000, 0x386E2000, 0x386E4000, 0x386E6000, 0x386E8000, 0x386EA000, 0x386EC000, 0x386EE000, 0x386F0000, 0x386F2000, 0x386F4000, 0x386F6000, 0x386F8000, 0x386FA000, 0x386FC000, 0x386FE000,
				0x38700000, 0x38702000, 0x38704000, 0x38706000, 0x38708000, 0x3870A000, 0x3870C000, 0x3870E000, 0x38710000, 0x38712000, 0x38714000, 0x38716000, 0x38718000, 0x3871A000, 0x3871C000, 0x3871E000,
				0x38720000, 0x38722000, 0x38724000, 0x38726000, 0x38728000, 0x3872A000, 0x3872C000, 0x3872E000, 0x38730000, 0x38732000, 0x38734000, 0x38736000, 0x38738000, 0x3873A000, 0x3873C000, 0x3873E000,
				0x38740000, 0x38742000, 0x38744000, 0x38746000, 0x38748000, 0x3874A000, 0x3874C000, 0x3874E000, 0x38750000, 0x38752000, 0x38754000, 0x38756000, 0x38758000, 0x3875A000, 0x3875C000, 0x3875E000,
				0x38760000, 0x38762000, 0x38764000, 0x38766000, 0x38768000, 0x3876A000, 0x3876C000, 0x3876E000, 0x38770000, 0x38772000, 0x38774000, 0x38776000, 0x38778000, 0x3877A000, 0x3877C000, 0x3877E000,
				0x38780000, 0x38782000, 0x38784000, 0x38786000, 0x38788000, 0x3878A000, 0x3878C000, 0x3878E000, 0x38790000, 0x38792000, 0x38794000, 0x38796000, 0x38798000, 0x3879A000, 0x3879C000, 0x3879E000,
				0x387A0000, 0x387A2000, 0x387A4000, 0x387A6000, 0x387A8000, 0x387AA000, 0x387AC000, 0x387AE000, 0x387B0000, 0x387B2000, 0x387B4000, 0x387B6000, 0x387B8000, 0x387BA000, 0x387BC000, 0x387BE000,
				0x387C0000, 0x387C2000, 0x387C4000, 0x387C6000, 0x387C8000, 0x387CA000, 0x387CC000, 0x387CE000, 0x387D0000, 0x387D2000, 0x387D4000, 0x387D6000, 0x387D8000, 0x387DA000, 0x387DC000, 0x387DE000,
				0x387E0000, 0x387E2000, 0x387E4000, 0x387E6000, 0x387E8000, 0x387EA000, 0x387EC000, 0x387EE000, 0x387F0000, 0x387F2000, 0x387F4000, 0x387F6000, 0x387F8000, 0x387FA000, 0x387FC000, 0x387FE000 };
			static const uint32 exponent_table[64] = {
				0x00000000, 0x00800000, 0x01000000, 0x01800000, 0x02000000, 0x02800000, 0x03000000, 0x03800000, 0x04000000, 0x04800000, 0x05000000, 0x05800000, 0x06000000, 0x06800000, 0x07000000, 0x07800000,
				0x08000000, 0x08800000, 0x09000000, 0x09800000, 0x0A000000, 0x0A800000, 0x0B000000, 0x0B800000, 0x0C000000, 0x0C800000, 0x0D000000, 0x0D800000, 0x0E000000, 0x0E800000, 0x0F000000, 0x47800000,
				0x80000000, 0x80800000, 0x81000000, 0x81800000, 0x82000000, 0x82800000, 0x83000000, 0x83800000, 0x84000000, 0x84800000, 0x85000000, 0x85800000, 0x86000000, 0x86800000, 0x87000000, 0x87800000,
				0x88000000, 0x88800000, 0x89000000, 0x89800000, 0x8A000000, 0x8A800000, 0x8B000000, 0x8B800000, 0x8C000000, 0x8C800000, 0x8D000000, 0x8D800000, 0x8E000000, 0x8E800000, 0x8F000000, 0xC7800000 };
			static const unsigned short offset_table[64] = {
				   0, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024,
				   0, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024 };
			uint32 bits = mantissa_table[offset_table[value>>10]+(value&0x3FF)] + exponent_table[value>>10];
//			return *reinterpret_cast<float*>(&bits);			//violating strict aliasing!
			float out;
			std::memcpy(&out, &bits, sizeof(float));
			return out;
		}

		/// Convert half-precision to IEEE double-precision.
		/// \param value binary representation of half-precision value
		/// \return double-precision value
		inline double half2float_impl(uint16 value, double, true_type)
		{
			typedef bits<float>::type uint32;
			typedef bits<double>::type uint64;
			uint32 hi = static_cast<uint32>(value&0x8000) << 16;
			int abs = value & 0x7FFF;
			if(abs)
			{
				hi |= 0x3F000000 << static_cast<unsigned>(abs>=0x7C00);
				for(; abs<0x400; abs<<=1,hi-=0x100000) ;
				hi += static_cast<uint32>(abs) << 10;
			}
			uint64 bits = static_cast<uint64>(hi) << 32;
//			return *reinterpret_cast<double*>(&bits);			//violating strict aliasing!
			double out;
			std::memcpy(&out, &bits, sizeof(double));
			return out;
		}

		/// Convert half-precision to non-IEEE floating point.
		/// \tparam T type to convert to (builtin integer type)
		/// \param value binary representation of half-precision value
		/// \return floating point value
		template<typename T> T half2float_impl(uint16 value, T, ...)
		{
			T out;
			int abs = value & 0x7FFF;
			if(abs > 0x7C00)
				out = std::numeric_limits<T>::has_quiet_NaN ? std::numeric_limits<T>::quiet_NaN() : T();
			else if(abs == 0x7C00)
				out = std::numeric_limits<T>::has_infinity ? std::numeric_limits<T>::infinity() : std::numeric_limits<T>::max();
			else if(abs > 0x3FF)
				out = std::ldexp(static_cast<T>((abs&0x3FF)|0x400), (abs>>10)-25);
			else
				out = std::ldexp(static_cast<T>(abs), -24);
			return (value&0x8000) ? -out : out;
		}

		/// Convert half-precision to floating point.
		/// \tparam T type to convert to (builtin integer type)
		/// \param value binary representation of half-precision value
		/// \return floating point value
		template<typename T> T half2float(uint16 value)
		{
			return half2float_impl(value, T(), bool_type<std::numeric_limits<T>::is_iec559&&sizeof(typename bits<T>::type)==sizeof(T)>());
		}

		/// Convert half-precision floating point to integer.
		/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding
		/// \tparam E `true` for round to even, `false` for round away from zero
		/// \tparam T type to convert to (buitlin integer type with at least 16 bits precision, excluding any implicit sign bits)
		/// \param value binary representation of half-precision value
		/// \return integral value
		template<std::float_round_style R,bool E,typename T> T half2int_impl(uint16 value)
		{
		#if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS
			static_assert(std::is_integral<T>::value, "half to int conversion only supports builtin integer types");
		#endif
			unsigned int e = value & 0x7FFF;
			if(e >= 0x7C00)
				return (value&0x8000) ? std::numeric_limits<T>::min() : std::numeric_limits<T>::max();
			if(e < 0x3800)
			{
				if(R == std::round_toward_infinity)
					return T(~(value>>15)&(e!=0));
				else if(R == std::round_toward_neg_infinity)
					return -T(value>0x8000);
				return T();
			}
			unsigned int m = (value&0x3FF) | 0x400;
			e >>= 10;
			if(e < 25)
			{
				if(R == std::round_to_nearest)
					m += (1<<(24-e)) - (~(m>>(25-e))&E);
				else if(R == std::round_toward_infinity)
					m += ((value>>15)-1) & ((1<<(25-e))-1U);
				else if(R == std::round_toward_neg_infinity)
					m += -(value>>15) & ((1<<(25-e))-1U);
				m >>= 25 - e;
			}
			else
				m <<= e - 25;
			return (value&0x8000) ? -static_cast<T>(m) : static_cast<T>(m);
		}

		/// Convert half-precision floating point to integer.
		/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding
		/// \tparam T type to convert to (buitlin integer type with at least 16 bits precision, excluding any implicit sign bits)
		/// \param value binary representation of half-precision value
		/// \return integral value
		template<std::float_round_style R,typename T> T half2int(uint16 value) { return half2int_impl<R,HALF_ROUND_TIES_TO_EVEN,T>(value); }

		/// Convert half-precision floating point to integer using round-to-nearest-away-from-zero.
		/// \tparam T type to convert to (buitlin integer type with at least 16 bits precision, excluding any implicit sign bits)
		/// \param value binary representation of half-precision value
		/// \return integral value
		template<typename T> T half2int_up(uint16 value) { return half2int_impl<std::round_to_nearest,0,T>(value); }

		/// Round half-precision number to nearest integer value.
		/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding
		/// \tparam E `true` for round to even, `false` for round away from zero
		/// \param value binary representation of half-precision value
		/// \return half-precision bits for nearest integral value
		template<std::float_round_style R,bool E> uint16 round_half_impl(uint16 value)
		{
			unsigned int e = value & 0x7FFF;
			uint16 result = value;
			if(e < 0x3C00)
			{
				result &= 0x8000;
				if(R == std::round_to_nearest)
					result |= 0x3C00U & -(e>=(0x3800+E));
				else if(R == std::round_toward_infinity)
					result |= 0x3C00U & -(~(value>>15)&(e!=0));
				else if(R == std::round_toward_neg_infinity)
					result |= 0x3C00U & -(value>0x8000);
			}
			else if(e < 0x6400)
			{
				e = 25 - (e>>10);
				unsigned int mask = (1<<e) - 1;
				if(R == std::round_to_nearest)
					result += (1<<(e-1)) - (~(result>>e)&E);
				else if(R == std::round_toward_infinity)
					result += mask & ((value>>15)-1);
				else if(R == std::round_toward_neg_infinity)
					result += mask & -(value>>15);
				result &= ~mask;
			}
			return result;
		}

		/// Round half-precision number to nearest integer value.
		/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding
		/// \param value binary representation of half-precision value
		/// \return half-precision bits for nearest integral value
		template<std::float_round_style R> uint16 round_half(uint16 value) { return round_half_impl<R,HALF_ROUND_TIES_TO_EVEN>(value); }

		/// Round half-precision number to nearest integer value using round-to-nearest-away-from-zero.
		/// \param value binary representation of half-precision value
		/// \return half-precision bits for nearest integral value
		inline uint16 round_half_up(uint16 value) { return round_half_impl<std::round_to_nearest,0>(value); }
		/// \}

		struct functions;
		template<typename> struct unary_specialized;
		template<typename,typename> struct binary_specialized;
		template<typename,typename,std::float_round_style> struct half_caster;
	}

	/// Half-precision floating point type.
	/// This class implements an IEEE-conformant half-precision floating point type with the usual arithmetic operators and
	/// conversions. It is implicitly convertible to single-precision floating point, which makes artihmetic expressions and
	/// functions with mixed-type operands to be of the most precise operand type. Additionally all arithmetic operations
	/// (and many mathematical functions) are carried out in single-precision internally. All conversions from single- to
	/// half-precision are done using the library's default rounding mode, but temporary results inside chained arithmetic
	/// expressions are kept in single-precision as long as possible (while of course still maintaining a strong half-precision type).
	///
	/// According to the C++98/03 definition, the half type is not a POD type. But according to C++11's less strict and
	/// extended definitions it is both a standard layout type and a trivially copyable type (even if not a POD type), which
	/// means it can be standard-conformantly copied using raw binary copies. But in this context some more words about the
	/// actual size of the type. Although the half is representing an IEEE 16-bit type, it does not neccessarily have to be of
	/// exactly 16-bits size. But on any reasonable implementation the actual binary representation of this type will most
	/// probably not ivolve any additional "magic" or padding beyond the simple binary representation of the underlying 16-bit
	/// IEEE number, even if not strictly guaranteed by the standard. But even then it only has an actual size of 16 bits if
	/// your C++ implementation supports an unsigned integer type of exactly 16 bits width. But this should be the case on
	/// nearly any reasonable platform.
	///
	/// So if your C++ implementation is not totally exotic or imposes special alignment requirements, it is a reasonable
	/// assumption that the data of a half is just comprised of the 2 bytes of the underlying IEEE representation.
	class half
	{
		friend struct detail::functions;
		friend struct detail::unary_specialized<half>;
		friend struct detail::binary_specialized<half,half>;
		template<typename,typename,std::float_round_style> friend struct detail::half_caster;
		friend class std::numeric_limits<half>;
	#if HALF_ENABLE_CPP11_HASH
		friend struct std::hash<half>;
	#endif
	#if HALF_ENABLE_CPP11_USER_LITERALS
		friend half literal::operator"" _h(long double);
	#endif

	public:
		/// Default constructor.
		/// This initializes the half to 0. Although this does not match the builtin types' default-initialization semantics
		/// and may be less efficient than no initialization, it is needed to provide proper value-initialization semantics.
		HALF_CONSTEXPR half() HALF_NOEXCEPT : data_() {}

		/// Copy constructor.
		/// \tparam T type of concrete half expression
		/// \param rhs half expression to copy from
		half(detail::expr rhs) : data_(detail::float2half<round_style>(static_cast<float>(rhs))) {}

		/// Conversion constructor.
		/// \param rhs float to convert
		explicit half(float rhs) : data_(detail::float2half<round_style>(rhs)) {}

		/// Conversion to single-precision.
		/// \return single precision value representing expression value
		operator float() const { return detail::half2float<float>(data_); }

		/// Assignment operator.
		/// \tparam T type of concrete half expression
		/// \param rhs half expression to copy from
		/// \return reference to this half
		half& operator=(detail::expr rhs) { return *this = static_cast<float>(rhs); }

		/// Arithmetic assignment.
		/// \tparam T type of concrete half expression
		/// \param rhs half expression to add
		/// \return reference to this half
		template<typename T> typename detail::enable<half&,T>::type operator+=(T rhs) { return *this += static_cast<float>(rhs); }

		/// Arithmetic assignment.
		/// \tparam T type of concrete half expression
		/// \param rhs half expression to subtract
		/// \return reference to this half
		template<typename T> typename detail::enable<half&,T>::type operator-=(T rhs) { return *this -= static_cast<float>(rhs); }

		/// Arithmetic assignment.
		/// \tparam T type of concrete half expression
		/// \param rhs half expression to multiply with
		/// \return reference to this half
		template<typename T> typename detail::enable<half&,T>::type operator*=(T rhs) { return *this *= static_cast<float>(rhs); }

		/// Arithmetic assignment.
		/// \tparam T type of concrete half expression
		/// \param rhs half expression to divide by
		/// \return reference to this half
		template<typename T> typename detail::enable<half&,T>::type operator/=(T rhs) { return *this /= static_cast<float>(rhs); }

		/// Assignment operator.
		/// \param rhs single-precision value to copy from
		/// \return reference to this half
		half& operator=(float rhs) { data_ = detail::float2half<round_style>(rhs); return *this; }

		/// Arithmetic assignment.
		/// \param rhs single-precision value to add
		/// \return reference to this half
		half& operator+=(float rhs) { data_ = detail::float2half<round_style>(detail::half2float<float>(data_)+rhs); return *this; }

		/// Arithmetic assignment.
		/// \param rhs single-precision value to subtract
		/// \return reference to this half
		half& operator-=(float rhs) { data_ = detail::float2half<round_style>(detail::half2float<float>(data_)-rhs); return *this; }

		/// Arithmetic assignment.
		/// \param rhs single-precision value to multiply with
		/// \return reference to this half
		half& operator*=(float rhs) { data_ = detail::float2half<round_style>(detail::half2float<float>(data_)*rhs); return *this; }

		/// Arithmetic assignment.
		/// \param rhs single-precision value to divide by
		/// \return reference to this half
		half& operator/=(float rhs) { data_ = detail::float2half<round_style>(detail::half2float<float>(data_)/rhs); return *this; }

		/// Prefix increment.
		/// \return incremented half value
		half& operator++() { return *this += 1.0f; }

		/// Prefix decrement.
		/// \return decremented half value
		half& operator--() { return *this -= 1.0f; }

		/// Postfix increment.
		/// \return non-incremented half value
		half operator++(int) { half out(*this); ++*this; return out; }

		/// Postfix decrement.
		/// \return non-decremented half value
		half operator--(int) { half out(*this); --*this; return out; }

	private:
		/// Rounding mode to use
		static const std::float_round_style round_style = static_cast<std::float_round_style>(HALF_ROUND_STYLE);

		/// Constructor.
		/// \param bits binary representation to set half to
		HALF_CONSTEXPR half(detail::binary_t, detail::uint16 bits) HALF_NOEXCEPT : data_(bits) {}

		/// Internal binary representation
		detail::uint16 data_;
	};

#if HALF_ENABLE_CPP11_USER_LITERALS
	namespace literal
	{
		/// Half literal.
		/// While this returns an actual half-precision value, half literals can unfortunately not be constant expressions due
		/// to rather involved conversions.
		/// \param value literal value
		/// \return half with given value (if representable)
		inline half operator"" _h(long double value) { return half(detail::binary, detail::float2half<half::round_style>(value)); }
	}
#endif

	namespace detail
	{
		/// Wrapper implementing unspecialized half-precision functions.
		struct functions
		{
			/// Addition implementation.
			/// \param x first operand
			/// \param y second operand
			/// \return Half-precision sum stored in single-precision
			static expr plus(float x, float y) { return expr(x+y); }

			/// Subtraction implementation.
			/// \param x first operand
			/// \param y second operand
			/// \return Half-precision difference stored in single-precision
			static expr minus(float x, float y) { return expr(x-y); }

			/// Multiplication implementation.
			/// \param x first operand
			/// \param y second operand
			/// \return Half-precision product stored in single-precision
			static expr multiplies(float x, float y) { return expr(x*y); }

			/// Division implementation.
			/// \param x first operand
			/// \param y second operand
			/// \return Half-precision quotient stored in single-precision
			static expr divides(float x, float y) { return expr(x/y); }

			/// Output implementation.
			/// \param out stream to write to
			/// \param arg value to write
			/// \return reference to stream
			template<typename charT,typename traits> static std::basic_ostream<charT,traits>& write(std::basic_ostream<charT,traits> &out, float arg) { return out << arg; }

			/// Input implementation.
			/// \param in stream to read from
			/// \param arg half to read into
			/// \return reference to stream
			template<typename charT,typename traits> static std::basic_istream<charT,traits>& read(std::basic_istream<charT,traits> &in, half &arg)
			{
				float f;
				if(in >> f)
					arg = f;
				return in;
			}

			/// Modulo implementation.
			/// \param x first operand
			/// \param y second operand
			/// \return Half-precision division remainder stored in single-precision
			static expr fmod(float x, float y) { return expr(std::fmod(x, y)); }

			/// Remainder implementation.
			/// \param x first operand
			/// \param y second operand
			/// \return Half-precision division remainder stored in single-precision
			static expr remainder(float x, float y)
			{
			#if HALF_ENABLE_CPP11_CMATH
				return expr(std::remainder(x, y));
			#else
				if(builtin_isnan(x) || builtin_isnan(y))
					return expr(std::numeric_limits<float>::quiet_NaN());
				float ax = std::fabs(x), ay = std::fabs(y);
				if(ax >= 65536.0f || ay < std::ldexp(1.0f, -24))
					return expr(std::numeric_limits<float>::quiet_NaN());
				if(ay >= 65536.0f)
					return expr(x);
				if(ax == ay)
					return expr(builtin_signbit(x) ? -0.0f : 0.0f);
				ax = std::fmod(ax, ay+ay);
				float y2 = 0.5f * ay;
				if(ax > y2)
				{
					ax -= ay;
					if(ax >= y2)
						ax -= ay;
				}
				return expr(builtin_signbit(x) ? -ax : ax);
			#endif
			}

			/// Remainder implementation.
			/// \param x first operand
			/// \param y second operand
			/// \param quo address to store quotient bits at
			/// \return Half-precision division remainder stored in single-precision
			static expr remquo(float x, float y, int *quo)
			{
			#if HALF_ENABLE_CPP11_CMATH
				return expr(std::remquo(x, y, quo));
			#else
				if(builtin_isnan(x) || builtin_isnan(y))
					return expr(std::numeric_limits<float>::quiet_NaN());
				bool sign = builtin_signbit(x), qsign = static_cast<bool>(sign^builtin_signbit(y));
				float ax = std::fabs(x), ay = std::fabs(y);
				if(ax >= 65536.0f || ay < std::ldexp(1.0f, -24))
					return expr(std::numeric_limits<float>::quiet_NaN());
				if(ay >= 65536.0f)
					return expr(x);
				if(ax == ay)
					return *quo = qsign ? -1 : 1, expr(sign ? -0.0f : 0.0f);
				ax = std::fmod(ax, 8.0f*ay);
				int cquo = 0;
				if(ax >= 4.0f * ay)
				{
					ax -= 4.0f * ay;
					cquo += 4;
				}
				if(ax >= 2.0f * ay)
				{
					ax -= 2.0f * ay;
					cquo += 2;
				}
				float y2 = 0.5f * ay;
				if(ax > y2)
				{
					ax -= ay;
					++cquo;
					if(ax >= y2)
					{
						ax -= ay;
						++cquo;
					}
				}
				return *quo = qsign ? -cquo : cquo, expr(sign ? -ax : ax);
			#endif
			}

			/// Positive difference implementation.
			/// \param x first operand
			/// \param y second operand
			/// \return Positive difference stored in single-precision
			static expr fdim(float x, float y)
			{
			#if HALF_ENABLE_CPP11_CMATH
				return expr(std::fdim(x, y));
			#else
				return expr((x<=y) ? 0.0f : (x-y));
			#endif
			}

			/// Fused multiply-add implementation.
			/// \param x first operand
			/// \param y second operand
			/// \param z third operand
			/// \return \a x * \a y + \a z stored in single-precision
			static expr fma(float x, float y, float z)
			{
			#if HALF_ENABLE_CPP11_CMATH && defined(FP_FAST_FMAF)
				return expr(std::fma(x, y, z));
			#else
				return expr(x*y+z);
			#endif
			}

			/// Get NaN.
			/// \return Half-precision quiet NaN
			static half nanh() { return half(binary, 0x7FFF); }

			/// Exponential implementation.
			/// \param arg function argument
			/// \return function value stored in single-preicision
			static expr exp(float arg) { return expr(std::exp(arg)); }

			/// Exponential implementation.
			/// \param arg function argument
			/// \return function value stored in single-preicision
			static expr expm1(float arg)
			{
			#if HALF_ENABLE_CPP11_CMATH
				return expr(std::expm1(arg));
			#else
				return expr(static_cast<float>(std::exp(static_cast<double>(arg))-1.0));
			#endif
			}

			/// Binary exponential implementation.
			/// \param arg function argument
			/// \return function value stored in single-preicision
			static expr exp2(float arg)
			{
			#if HALF_ENABLE_CPP11_CMATH
				return expr(std::exp2(arg));
			#else
				return expr(static_cast<float>(std::exp(arg*0.69314718055994530941723212145818)));
			#endif
			}

			/// Logarithm implementation.
			/// \param arg function argument
			/// \return function value stored in single-preicision
			static expr log(float arg) { return expr(std::log(arg)); }

			/// Common logarithm implementation.
			/// \param arg function argument
			/// \return function value stored in single-preicision
			static expr log10(float arg) { return expr(std::log10(arg)); }

			/// Logarithm implementation.
			/// \param arg function argument
			/// \return function value stored in single-preicision
			static expr log1p(float arg)
			{
			#if HALF_ENABLE_CPP11_CMATH
				return expr(std::log1p(arg));
			#else
				return expr(static_cast<float>(std::log(1.0+arg)));
			#endif
			}

			/// Binary logarithm implementation.
			/// \param arg function argument
			/// \return function value stored in single-preicision
			static expr log2(float arg)
			{
			#if HALF_ENABLE_CPP11_CMATH
				return expr(std::log2(arg));
			#else
				return expr(static_cast<float>(std::log(static_cast<double>(arg))*1.4426950408889634073599246810019));
			#endif
			}

			/// Square root implementation.
			/// \param arg function argument
			/// \return function value stored in single-preicision
			static expr sqrt(float arg) { return expr(std::sqrt(arg)); }

			/// Cubic root implementation.
			/// \param arg function argument
			/// \return function value stored in single-preicision
			static expr cbrt(float arg)
			{
			#if HALF_ENABLE_CPP11_CMATH
				return expr(std::cbrt(arg));
			#else
				if(builtin_isnan(arg) || builtin_isinf(arg))
					return expr(arg);
				return expr(builtin_signbit(arg) ? -static_cast<float>(std::pow(-static_cast<double>(arg), 1.0/3.0)) :
					static_cast<float>(std::pow(static_cast<double>(arg), 1.0/3.0)));
			#endif
			}

			/// Hypotenuse implementation.
			/// \param x first argument
			/// \param y second argument
			/// \return function value stored in single-preicision
			static expr hypot(float x, float y)
			{
			#if HALF_ENABLE_CPP11_CMATH
				return expr(std::hypot(x, y));
			#else
				return expr((builtin_isinf(x) || builtin_isinf(y)) ? std::numeric_limits<float>::infinity() :
					static_cast<float>(std::sqrt(static_cast<double>(x)*x+static_cast<double>(y)*y)));
			#endif
			}

			/// Power implementation.
			/// \param base value to exponentiate
			/// \param exp power to expontiate to
			/// \return function value stored in single-preicision
			static expr pow(float base, float exp) { return expr(std::pow(base, exp)); }

			/// Sine implementation.
			/// \param arg function argument
			/// \return function value stored in single-preicision
			static expr sin(float arg) { return expr(std::sin(arg)); }

			/// Cosine implementation.
			/// \param arg function argument
			/// \return function value stored in single-preicision
			static expr cos(float arg) { return expr(std::cos(arg)); }

			/// Tan implementation.
			/// \param arg function argument
			/// \return function value stored in single-preicision
			static expr tan(float arg) { return expr(std::tan(arg)); }

			/// Arc sine implementation.
			/// \param arg function argument
			/// \return function value stored in single-preicision
			static expr asin(float arg) { return expr(std::asin(arg)); }

			/// Arc cosine implementation.
			/// \param arg function argument
			/// \return function value stored in single-preicision
			static expr acos(float arg) { return expr(std::acos(arg)); }

			/// Arc tangent implementation.
			/// \param arg function argument
			/// \return function value stored in single-preicision
			static expr atan(float arg) { return expr(std::atan(arg)); }

			/// Arc tangent implementation.
			/// \param x first argument
			/// \param y second argument
			/// \return function value stored in single-preicision
			static expr atan2(float x, float y) { return expr(std::atan2(x, y)); }

			/// Hyperbolic sine implementation.
			/// \param arg function argument
			/// \return function value stored in single-preicision
			static expr sinh(float arg) { return expr(std::sinh(arg)); }

			/// Hyperbolic cosine implementation.
			/// \param arg function argument
			/// \return function value stored in single-preicision
			static expr cosh(float arg) { return expr(std::cosh(arg)); }

			/// Hyperbolic tangent implementation.
			/// \param arg function argument
			/// \return function value stored in single-preicision
			static expr tanh(float arg) { return expr(std::tanh(arg)); }

			/// Hyperbolic area sine implementation.
			/// \param arg function argument
			/// \return function value stored in single-preicision
			static expr asinh(float arg)
			{
			#if HALF_ENABLE_CPP11_CMATH
				return expr(std::asinh(arg));
			#else
				return expr((arg==-std::numeric_limits<float>::infinity()) ? arg : static_cast<float>(std::log(arg+std::sqrt(arg*arg+1.0))));
			#endif
			}

			/// Hyperbolic area cosine implementation.
			/// \param arg function argument
			/// \return function value stored in single-preicision
			static expr acosh(float arg)
			{
			#if HALF_ENABLE_CPP11_CMATH
				return expr(std::acosh(arg));
			#else
				return expr((arg<-1.0f) ? std::numeric_limits<float>::quiet_NaN() : static_cast<float>(std::log(arg+std::sqrt(arg*arg-1.0))));
			#endif
			}

			/// Hyperbolic area tangent implementation.
			/// \param arg function argument
			/// \return function value stored in single-preicision
			static expr atanh(float arg)
			{
			#if HALF_ENABLE_CPP11_CMATH
				return expr(std::atanh(arg));
			#else
				return expr(static_cast<float>(0.5*std::log((1.0+arg)/(1.0-arg))));
			#endif
			}

			/// Error function implementation.
			/// \param arg function argument
			/// \return function value stored in single-preicision
			static expr erf(float arg)
			{
			#if HALF_ENABLE_CPP11_CMATH
				return expr(std::erf(arg));
			#else
				return expr(static_cast<float>(erf(static_cast<double>(arg))));
			#endif
			}

			/// Complementary implementation.
			/// \param arg function argument
			/// \return function value stored in single-preicision
			static expr erfc(float arg)
			{
			#if HALF_ENABLE_CPP11_CMATH
				return expr(std::erfc(arg));
			#else
				return expr(static_cast<float>(1.0-erf(static_cast<double>(arg))));
			#endif
			}

			/// Gamma logarithm implementation.
			/// \param arg function argument
			/// \return function value stored in single-preicision
			static expr lgamma(float arg)
			{
			#if HALF_ENABLE_CPP11_CMATH
				return expr(std::lgamma(arg));
			#else
				if(builtin_isinf(arg))
					return expr(std::numeric_limits<float>::infinity());
				if(arg < 0.0f)
				{
					float i, f = std::modf(-arg, &i);
					if(f == 0.0f)
						return expr(std::numeric_limits<float>::infinity());
					return expr(static_cast<float>(1.1447298858494001741434273513531-
						std::log(std::abs(std::sin(3.1415926535897932384626433832795*f)))-lgamma(1.0-arg)));
				}
				return expr(static_cast<float>(lgamma(static_cast<double>(arg))));
			#endif
			}

			/// Gamma implementation.
			/// \param arg function argument
			/// \return function value stored in single-preicision
			static expr tgamma(float arg)
			{
			#if HALF_ENABLE_CPP11_CMATH
				return expr(std::tgamma(arg));
			#else
				if(arg == 0.0f)
					return builtin_signbit(arg) ? expr(-std::numeric_limits<float>::infinity()) : expr(std::numeric_limits<float>::infinity());
				if(arg < 0.0f)
				{
					float i, f = std::modf(-arg, &i);
					if(f == 0.0f)
						return expr(std::numeric_limits<float>::quiet_NaN());
					double value = 3.1415926535897932384626433832795 / (std::sin(3.1415926535897932384626433832795*f)*std::exp(lgamma(1.0-arg)));
					return expr(static_cast<float>((std::fmod(i, 2.0f)==0.0f) ? -value : value));
				}
				if(builtin_isinf(arg))
					return expr(arg);
				return expr(static_cast<float>(std::exp(lgamma(static_cast<double>(arg)))));
			#endif
			}

			/// Floor implementation.
			/// \param arg value to round
			/// \return rounded value
			static half floor(half arg) { return half(binary, round_half<std::round_toward_neg_infinity>(arg.data_)); }

			/// Ceiling implementation.
			/// \param arg value to round
			/// \return rounded value
			static half ceil(half arg) { return half(binary, round_half<std::round_toward_infinity>(arg.data_)); }

			/// Truncation implementation.
			/// \param arg value to round
			/// \return rounded value
			static half trunc(half arg) { return half(binary, round_half<std::round_toward_zero>(arg.data_)); }

			/// Nearest integer implementation.
			/// \param arg value to round
			/// \return rounded value
			static half round(half arg) { return half(binary, round_half_up(arg.data_)); }

			/// Nearest integer implementation.
			/// \param arg value to round
			/// \return rounded value
			static long lround(half arg) { return detail::half2int_up<long>(arg.data_); }

			/// Nearest integer implementation.
			/// \param arg value to round
			/// \return rounded value
			static half rint(half arg) { return half(binary, round_half<half::round_style>(arg.data_)); }

			/// Nearest integer implementation.
			/// \param arg value to round
			/// \return rounded value
			static long lrint(half arg) { return detail::half2int<half::round_style,long>(arg.data_); }

		#if HALF_ENABLE_CPP11_LONG_LONG
			/// Nearest integer implementation.
			/// \param arg value to round
			/// \return rounded value
			static long long llround(half arg) { return detail::half2int_up<long long>(arg.data_); }

			/// Nearest integer implementation.
			/// \param arg value to round
			/// \return rounded value
			static long long llrint(half arg) { return detail::half2int<half::round_style,long long>(arg.data_); }
		#endif

			/// Decompression implementation.
			/// \param arg number to decompress
			/// \param exp address to store exponent at
			/// \return normalized significant
			static half frexp(half arg, int *exp)
			{
				int m = arg.data_ & 0x7FFF, e = -14;
				if(m >= 0x7C00 || !m)
					return *exp = 0, arg;
				for(; m<0x400; m<<=1,--e) ;
				return *exp = e+(m>>10), half(binary, (arg.data_&0x8000)|0x3800|(m&0x3FF));
			}

			/// Decompression implementation.
			/// \param arg number to decompress
			/// \param iptr address to store integer part at
			/// \return fractional part
			static half modf(half arg, half *iptr)
			{
				unsigned int e = arg.data_ & 0x7FFF;
				if(e >= 0x6400)
					return *iptr = arg, half(binary, arg.data_&(0x8000U|-(e>0x7C00)));
				if(e < 0x3C00)
					return iptr->data_ = arg.data_ & 0x8000, arg;
				e >>= 10;
				unsigned int mask = (1<<(25-e)) - 1, m = arg.data_ & mask;
				iptr->data_ = arg.data_ & ~mask;
				if(!m)
					return half(binary, arg.data_&0x8000);
				for(; m<0x400; m<<=1,--e) ;
				return half(binary, static_cast<uint16>((arg.data_&0x8000)|(e<<10)|(m&0x3FF)));
			}

			/// Scaling implementation.
			/// \param arg number to scale
			/// \param exp power of two to scale by
			/// \return scaled number
			static half scalbln(half arg, long exp)
			{
				unsigned int m = arg.data_ & 0x7FFF;
				if(m >= 0x7C00 || !m)
					return arg;
				for(; m<0x400; m<<=1,--exp) ;
				exp += m >> 10;
				uint16 value = arg.data_ & 0x8000;
				if(exp > 30)
				{
					if(half::round_style == std::round_toward_zero)
						value |= 0x7BFF;
					else if(half::round_style == std::round_toward_infinity)
						value |= 0x7C00 - (value>>15);
					else if(half::round_style == std::round_toward_neg_infinity)
						value |= 0x7BFF + (value>>15);
					else
						value |= 0x7C00;
				}
				else if(exp > 0)
					value |= (exp<<10) | (m&0x3FF);
				else if(exp > -11)
				{
					m = (m&0x3FF) | 0x400;
					if(half::round_style == std::round_to_nearest)
					{
						m += 1 << -exp;
					#if HALF_ROUND_TIES_TO_EVEN
						m -= (m>>(1-exp)) & 1;
					#endif
					}
					else if(half::round_style == std::round_toward_infinity)
						m += ((value>>15)-1) & ((1<<(1-exp))-1U);
					else if(half::round_style == std::round_toward_neg_infinity)
						m += -(value>>15) & ((1<<(1-exp))-1U);
					value |= m >> (1-exp);
				}
				else if(half::round_style == std::round_toward_infinity)
					value -= (value>>15) - 1;
				else if(half::round_style == std::round_toward_neg_infinity)
					value += value >> 15;
				return half(binary, value);
			}

			/// Exponent implementation.
			/// \param arg number to query
			/// \return floating point exponent
			static int ilogb(half arg)
			{
				int abs = arg.data_ & 0x7FFF;
				if(!abs)
					return FP_ILOGB0;
				if(abs < 0x7C00)
				{
					int exp = (abs>>10) - 15;
					if(abs < 0x400)
						for(; abs<0x200; abs<<=1,--exp) ;
					return exp;
				}
				if(abs > 0x7C00)
					return FP_ILOGBNAN;
				return INT_MAX;
			}

			/// Exponent implementation.
			/// \param arg number to query
			/// \return floating point exponent
			static half logb(half arg)
			{
				int abs = arg.data_ & 0x7FFF;
				if(!abs)
					return half(binary, 0xFC00);
				if(abs < 0x7C00)
				{
					int exp = (abs>>10) - 15;
					if(abs < 0x400)
						for(; abs<0x200; abs<<=1,--exp) ;
					uint16 bits = (exp<0) << 15;
					if(exp)
					{
						unsigned int m = std::abs(exp) << 6, e = 18;
						for(; m<0x400; m<<=1,--e) ;
						bits |= (e<<10) + m;
					}
					return half(binary, bits);
				}
				if(abs > 0x7C00)
					return arg;
				return half(binary, 0x7C00);
			}

			/// Enumeration implementation.
			/// \param from number to increase/decrease
			/// \param to direction to enumerate into
			/// \return next representable number
			static half nextafter(half from, half to)
			{
				uint16 fabs = from.data_ & 0x7FFF, tabs = to.data_ & 0x7FFF;
				if(fabs > 0x7C00)
					return from;
				if(tabs > 0x7C00 || from.data_ == to.data_ || !(fabs|tabs))
					return to;
				if(!fabs)
					return half(binary, (to.data_&0x8000)+1);
				bool lt = ((fabs==from.data_) ? static_cast<int>(fabs) : -static_cast<int>(fabs)) <
					((tabs==to.data_) ? static_cast<int>(tabs) : -static_cast<int>(tabs));
				return half(binary, from.data_+(((from.data_>>15)^static_cast<unsigned>(lt))<<1)-1);
			}

			/// Enumeration implementation.
			/// \param from number to increase/decrease
			/// \param to direction to enumerate into
			/// \return next representable number
			static half nexttoward(half from, long double to)
			{
				if(isnan(from))
					return from;
				long double lfrom = static_cast<long double>(from);
				if(builtin_isnan(to) || lfrom == to)
					return half(static_cast<float>(to));
				if(!(from.data_&0x7FFF))
					return half(binary, (static_cast<detail::uint16>(builtin_signbit(to))<<15)+1);
				return half(binary, from.data_+(((from.data_>>15)^static_cast<unsigned>(lfrom<to))<<1)-1);
			}

			/// Sign implementation
			/// \param x first operand
			/// \param y second operand
			/// \return composed value
			static half copysign(half x, half y) { return half(binary, x.data_^((x.data_^y.data_)&0x8000)); }

			/// Classification implementation.
			/// \param arg value to classify
			/// \retval true if infinite number
			/// \retval false else
			static int fpclassify(half arg)
			{
				unsigned int abs = arg.data_ & 0x7FFF;
				return abs ? ((abs>0x3FF) ? ((abs>=0x7C00) ? ((abs>0x7C00) ? FP_NAN : FP_INFINITE) : FP_NORMAL) :FP_SUBNORMAL) : FP_ZERO;
			}

			/// Classification implementation.
			/// \param arg value to classify
			/// \retval true if finite number
			/// \retval false else
			static bool isfinite(half arg) { return (arg.data_&0x7C00) != 0x7C00; }

			/// Classification implementation.
			/// \param arg value to classify
			/// \retval true if infinite number
			/// \retval false else
			static bool isinf(half arg) { return (arg.data_&0x7FFF) == 0x7C00; }

			/// Classification implementation.
			/// \param arg value to classify
			/// \retval true if not a number
			/// \retval false else
			static bool isnan(half arg) { return (arg.data_&0x7FFF) > 0x7C00; }

			/// Classification implementation.
			/// \param arg value to classify
			/// \retval true if normal number
			/// \retval false else
			static bool isnormal(half arg) { return ((arg.data_&0x7C00)!=0) & ((arg.data_&0x7C00)!=0x7C00); }

			/// Sign bit implementation.
			/// \param arg value to check
			/// \retval true if signed
			/// \retval false if unsigned
			static bool signbit(half arg) { return (arg.data_&0x8000) != 0; }

			/// Comparison implementation.
			/// \param x first operand
			/// \param y second operand
			/// \retval true if operands equal
			/// \retval false else
			static bool isequal(half x, half y) { return (x.data_==y.data_ || !((x.data_|y.data_)&0x7FFF)) && !isnan(x); }

			/// Comparison implementation.
			/// \param x first operand
			/// \param y second operand
			/// \retval true if operands not equal
			/// \retval false else
			static bool isnotequal(half x, half y) { return (x.data_!=y.data_ && ((x.data_|y.data_)&0x7FFF)) || isnan(x); }

			/// Comparison implementation.
			/// \param x first operand
			/// \param y second operand
			/// \retval true if \a x > \a y
			/// \retval false else
			static bool isgreater(half x, half y)
			{
				int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF;
				return xabs<=0x7C00 && yabs<=0x7C00 && (((xabs==x.data_) ? xabs : -xabs) > ((yabs==y.data_) ? yabs : -yabs));
			}

			/// Comparison implementation.
			/// \param x first operand
			/// \param y second operand
			/// \retval true if \a x >= \a y
			/// \retval false else
			static bool isgreaterequal(half x, half y)
			{
				int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF;
				return xabs<=0x7C00 && yabs<=0x7C00 && (((xabs==x.data_) ? xabs : -xabs) >= ((yabs==y.data_) ? yabs : -yabs));
			}

			/// Comparison implementation.
			/// \param x first operand
			/// \param y second operand
			/// \retval true if \a x < \a y
			/// \retval false else
			static bool isless(half x, half y)
			{
				int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF;
				return xabs<=0x7C00 && yabs<=0x7C00 && (((xabs==x.data_) ? xabs : -xabs) < ((yabs==y.data_) ? yabs : -yabs));
			}

			/// Comparison implementation.
			/// \param x first operand
			/// \param y second operand
			/// \retval true if \a x <= \a y
			/// \retval false else
			static bool islessequal(half x, half y)
			{
				int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF;
				return xabs<=0x7C00 && yabs<=0x7C00 && (((xabs==x.data_) ? xabs : -xabs) <= ((yabs==y.data_) ? yabs : -yabs));
			}

			/// Comparison implementation.
			/// \param x first operand
			/// \param y second operand
			/// \retval true if either \a x > \a y nor \a x < \a y
			/// \retval false else
			static bool islessgreater(half x, half y)
			{
				int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF;
				if(xabs > 0x7C00 || yabs > 0x7C00)
					return false;
				int a = (xabs==x.data_) ? xabs : -xabs, b = (yabs==y.data_) ? yabs : -yabs;
				return a < b || a > b;
			}

			/// Comparison implementation.
			/// \param x first operand
			/// \param y second operand
			/// \retval true if operand unordered
			/// \retval false else
			static bool isunordered(half x, half y) { return isnan(x) || isnan(y); }

		private:
			static double erf(double arg)
			{
				if(builtin_isinf(arg))
					return (arg<0.0) ? -1.0 : 1.0;
				double x2 = arg * arg, ax2 = 0.147 * x2, value = std::sqrt(1.0-std::exp(-x2*(1.2732395447351626861510701069801+ax2)/(1.0+ax2)));
				return builtin_signbit(arg) ? -value : value;
			}

			static double lgamma(double arg)
			{
				double v = 1.0;
				for(; arg<8.0; ++arg) v *= arg;
				double w = 1.0 / (arg*arg);
				return (((((((-0.02955065359477124183006535947712*w+0.00641025641025641025641025641026)*w+
					-0.00191752691752691752691752691753)*w+8.4175084175084175084175084175084e-4)*w+
					-5.952380952380952380952380952381e-4)*w+7.9365079365079365079365079365079e-4)*w+
					-0.00277777777777777777777777777778)*w+0.08333333333333333333333333333333)/arg +
					0.91893853320467274178032973640562 - std::log(v) - arg + (arg-0.5) * std::log(arg);
			}
		};

		/// Wrapper for unary half-precision functions needing specialization for individual argument types.
		/// \tparam T argument type
		template<typename T> struct unary_specialized
		{
			/// Negation implementation.
			/// \param arg value to negate
			/// \return negated value
			static HALF_CONSTEXPR half negate(half arg) { return half(binary, arg.data_^0x8000); }

			/// Absolute value implementation.
			/// \param arg function argument
			/// \return absolute value
			static half fabs(half arg) { return half(binary, arg.data_&0x7FFF); }
		};
		template<> struct unary_specialized<expr>
		{
			static HALF_CONSTEXPR expr negate(float arg) { return expr(-arg); }
			static expr fabs(float arg) { return expr(std::fabs(arg)); }
		};

		/// Wrapper for binary half-precision functions needing specialization for individual argument types.
		/// \tparam T first argument type
		/// \tparam U first argument type
		template<typename T,typename U> struct binary_specialized
		{
			/// Minimum implementation.
			/// \param x first operand
			/// \param y second operand
			/// \return minimum value
			static expr fmin(float x, float y)
			{
			#if HALF_ENABLE_CPP11_CMATH
				return expr(std::fmin(x, y));
			#else
				if(builtin_isnan(x))
					return expr(y);
				if(builtin_isnan(y))
					return expr(x);
				return expr(std::min(x, y));
			#endif
			}

			/// Maximum implementation.
			/// \param x first operand
			/// \param y second operand
			/// \return maximum value
			static expr fmax(float x, float y)
			{
			#if HALF_ENABLE_CPP11_CMATH
				return expr(std::fmax(x, y));
			#else
				if(builtin_isnan(x))
					return expr(y);
				if(builtin_isnan(y))
					return expr(x);
				return expr(std::max(x, y));
			#endif
			}
		};
		template<> struct binary_specialized<half,half>
		{
			static half fmin(half x, half y)
			{
				int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF;
				if(xabs > 0x7C00)
					return y;
				if(yabs > 0x7C00)
					return x;
				return (((xabs==x.data_) ? xabs : -xabs) > ((yabs==y.data_) ? yabs : -yabs)) ? y : x;
			}
			static half fmax(half x, half y)
			{
				int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF;
				if(xabs > 0x7C00)
					return y;
				if(yabs > 0x7C00)
					return x;
				return (((xabs==x.data_) ? xabs : -xabs) < ((yabs==y.data_) ? yabs : -yabs)) ? y : x;
			}
		};

		/// Helper class for half casts.
		/// This class template has to be specialized for all valid cast argument to define an appropriate static `cast` member
		/// function and a corresponding `type` member denoting its return type.
		/// \tparam T destination type
		/// \tparam U source type
		/// \tparam R rounding mode to use
		template<typename T,typename U,std::float_round_style R=static_cast<std::float_round_style>(HALF_ROUND_STYLE)> struct half_caster {};
		template<typename U,std::float_round_style R> struct half_caster<half,U,R>
		{
		#if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS
			static_assert(std::is_arithmetic<U>::value, "half_cast from non-arithmetic type unsupported");
		#endif

			static half cast(U arg) { return cast_impl(arg, is_float<U>()); };

		private:
			static half cast_impl(U arg, true_type) { return half(binary, float2half<R>(arg)); }
			static half cast_impl(U arg, false_type) { return half(binary, int2half<R>(arg)); }
		};
		template<typename T,std::float_round_style R> struct half_caster<T,half,R>
		{
		#if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS
			static_assert(std::is_arithmetic<T>::value, "half_cast to non-arithmetic type unsupported");
		#endif

			static T cast(half arg) { return cast_impl(arg, is_float<T>()); }

		private:
			static T cast_impl(half arg, true_type) { return half2float<T>(arg.data_); }
			static T cast_impl(half arg, false_type) { return half2int<R,T>(arg.data_); }
		};
		template<typename T,std::float_round_style R> struct half_caster<T,expr,R>
		{
		#if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS
			static_assert(std::is_arithmetic<T>::value, "half_cast to non-arithmetic type unsupported");
		#endif

			static T cast(expr arg) { return cast_impl(arg, is_float<T>()); }

		private:
			static T cast_impl(float arg, true_type) { return static_cast<T>(arg); }
			static T cast_impl(half arg, false_type) { return half2int<R,T>(arg.data_); }
		};
		template<std::float_round_style R> struct half_caster<half,half,R>
		{
			static half cast(half arg) { return arg; }
		};
		template<std::float_round_style R> struct half_caster<half,expr,R> : half_caster<half,half,R> {};

		/// \name Comparison operators
		/// \{

		/// Comparison for equality.
		/// \param x first operand
		/// \param y second operand
		/// \retval true if operands equal
		/// \retval false else
		template<typename T,typename U> typename enable<bool,T,U>::type operator==(T x, U y) { return functions::isequal(x, y); }

		/// Comparison for inequality.
		/// \param x first operand
		/// \param y second operand
		/// \retval true if operands not equal
		/// \retval false else
		template<typename T,typename U> typename enable<bool,T,U>::type operator!=(T x, U y) { return functions::isnotequal(x, y); }

		/// Comparison for less than.
		/// \param x first operand
		/// \param y second operand
		/// \retval true if \a x less than \a y
		/// \retval false else
		template<typename T,typename U> typename enable<bool,T,U>::type operator<(T x, U y) { return functions::isless(x, y); }

		/// Comparison for greater than.
		/// \param x first operand
		/// \param y second operand
		/// \retval true if \a x greater than \a y
		/// \retval false else
		template<typename T,typename U> typename enable<bool,T,U>::type operator>(T x, U y) { return functions::isgreater(x, y); }

		/// Comparison for less equal.
		/// \param x first operand
		/// \param y second operand
		/// \retval true if \a x less equal \a y
		/// \retval false else
		template<typename T,typename U> typename enable<bool,T,U>::type operator<=(T x, U y) { return functions::islessequal(x, y); }

		/// Comparison for greater equal.
		/// \param x first operand
		/// \param y second operand
		/// \retval true if \a x greater equal \a y
		/// \retval false else
		template<typename T,typename U> typename enable<bool,T,U>::type operator>=(T x, U y) { return functions::isgreaterequal(x, y); }

		/// \}
		/// \name Arithmetic operators
		/// \{

		/// Add halfs.
		/// \param x left operand
		/// \param y right operand
		/// \return sum of half expressions
		template<typename T,typename U> typename enable<expr,T,U>::type operator+(T x, U y) { return functions::plus(x, y); }

		/// Subtract halfs.
		/// \param x left operand
		/// \param y right operand
		/// \return difference of half expressions
		template<typename T,typename U> typename enable<expr,T,U>::type operator-(T x, U y) { return functions::minus(x, y); }

		/// Multiply halfs.
		/// \param x left operand
		/// \param y right operand
		/// \return product of half expressions
		template<typename T,typename U> typename enable<expr,T,U>::type operator*(T x, U y) { return functions::multiplies(x, y); }

		/// Divide halfs.
		/// \param x left operand
		/// \param y right operand
		/// \return quotient of half expressions
		template<typename T,typename U> typename enable<expr,T,U>::type operator/(T x, U y) { return functions::divides(x, y); }

		/// Identity.
		/// \param arg operand
		/// \return uncahnged operand
		template<typename T> HALF_CONSTEXPR typename enable<T,T>::type operator+(T arg) { return arg; }

		/// Negation.
		/// \param arg operand
		/// \return negated operand
		template<typename T> HALF_CONSTEXPR typename enable<T,T>::type operator-(T arg) { return unary_specialized<T>::negate(arg); }

		/// \}
		/// \name Input and output
		/// \{

		/// Output operator.
		/// \param out output stream to write into
		/// \param arg half expression to write
		/// \return reference to output stream
		template<typename T,typename charT,typename traits> typename enable<std::basic_ostream<charT,traits>&,T>::type
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
			operator<<(std::basic_ostream<charT,traits> &out, T arg) { return functions::write(out, arg); }

		/// Input operator.
		/// \param in input stream to read from
		/// \param arg half to read into
		/// \return reference to input stream
		template<typename charT,typename traits> std::basic_istream<charT,traits>&
			operator>>(std::basic_istream<charT,traits> &in, half &arg) { return functions::read(in, arg); }

		/// \}
		/// \name Basic mathematical operations
		/// \{

		/// Absolute value.
		/// \param arg operand
		/// \return absolute value of \a arg
//		template<typename T> typename enable<T,T>::type abs(T arg) { return unary_specialized<T>::fabs(arg); }
		inline half abs(half arg) { return unary_specialized<half>::fabs(arg); }
		inline expr abs(expr arg) { return unary_specialized<expr>::fabs(arg); }

		/// Absolute value.
		/// \param arg operand
		/// \return absolute value of \a arg
//		template<typename T> typename enable<T,T>::type fabs(T arg) { return unary_specialized<T>::fabs(arg); }
		inline half fabs(half arg) { return unary_specialized<half>::fabs(arg); }
		inline expr fabs(expr arg) { return unary_specialized<expr>::fabs(arg); }

		/// Remainder of division.
		/// \param x first operand
		/// \param y second operand
		/// \return remainder of floating point division.
//		template<typename T,typename U> typename enable<expr,T,U>::type fmod(T x, U y) { return functions::fmod(x, y); }
		inline expr fmod(half x, half y) { return functions::fmod(x, y); }
		inline expr fmod(half x, expr y) { return functions::fmod(x, y); }
		inline expr fmod(expr x, half y) { return functions::fmod(x, y); }
		inline expr fmod(expr x, expr y) { return functions::fmod(x, y); }

		/// Remainder of division.
		/// \param x first operand
		/// \param y second operand
		/// \return remainder of floating point division.
//		template<typename T,typename U> typename enable<expr,T,U>::type remainder(T x, U y) { return functions::remainder(x, y); }
		inline expr remainder(half x, half y) { return functions::remainder(x, y); }
		inline expr remainder(half x, expr y) { return functions::remainder(x, y); }
		inline expr remainder(expr x, half y) { return functions::remainder(x, y); }
		inline expr remainder(expr x, expr y) { return functions::remainder(x, y); }

		/// Remainder of division.
		/// \param x first operand
		/// \param y second operand
		/// \param quo address to store some bits of quotient at
		/// \return remainder of floating point division.
//		template<typename T,typename U> typename enable<expr,T,U>::type remquo(T x, U y, int *quo) { return functions::remquo(x, y, quo); }
		inline expr remquo(half x, half y, int *quo) { return functions::remquo(x, y, quo); }
		inline expr remquo(half x, expr y, int *quo) { return functions::remquo(x, y, quo); }
		inline expr remquo(expr x, half y, int *quo) { return functions::remquo(x, y, quo); }
		inline expr remquo(expr x, expr y, int *quo) { return functions::remquo(x, y, quo); }

		/// Fused multiply add.
		/// \param x first operand
		/// \param y second operand
		/// \param z third operand
		/// \return ( \a x * \a y ) + \a z rounded as one operation.
//		template<typename T,typename U,typename V> typename enable<expr,T,U,V>::type fma(T x, U y, V z) { return functions::fma(x, y, z); }
		inline expr fma(half x, half y, half z) { return functions::fma(x, y, z); }
		inline expr fma(half x, half y, expr z) { return functions::fma(x, y, z); }
		inline expr fma(half x, expr y, half z) { return functions::fma(x, y, z); }
		inline expr fma(half x, expr y, expr z) { return functions::fma(x, y, z); }
		inline expr fma(expr x, half y, half z) { return functions::fma(x, y, z); }
		inline expr fma(expr x, half y, expr z) { return functions::fma(x, y, z); }
		inline expr fma(expr x, expr y, half z) { return functions::fma(x, y, z); }
		inline expr fma(expr x, expr y, expr z) { return functions::fma(x, y, z); }

		/// Maximum of half expressions.
		/// \param x first operand
		/// \param y second operand
		/// \return maximum of operands
//		template<typename T,typename U> typename result<T,U>::type fmax(T x, U y) { return binary_specialized<T,U>::fmax(x, y); }
		inline half fmax(half x, half y) { return binary_specialized<half,half>::fmax(x, y); }
		inline expr fmax(half x, expr y) { return binary_specialized<half,expr>::fmax(x, y); }
		inline expr fmax(expr x, half y) { return binary_specialized<expr,half>::fmax(x, y); }
		inline expr fmax(expr x, expr y) { return binary_specialized<expr,expr>::fmax(x, y); }

		/// Minimum of half expressions.
		/// \param x first operand
		/// \param y second operand
		/// \return minimum of operands
//		template<typename T,typename U> typename result<T,U>::type fmin(T x, U y) { return binary_specialized<T,U>::fmin(x, y); }
		inline half fmin(half x, half y) { return binary_specialized<half,half>::fmin(x, y); }
		inline expr fmin(half x, expr y) { return binary_specialized<half,expr>::fmin(x, y); }
		inline expr fmin(expr x, half y) { return binary_specialized<expr,half>::fmin(x, y); }
		inline expr fmin(expr x, expr y) { return binary_specialized<expr,expr>::fmin(x, y); }

		/// Positive difference.
		/// \param x first operand
		/// \param y second operand
		/// \return \a x - \a y or 0 if difference negative
//		template<typename T,typename U> typename enable<expr,T,U>::type fdim(T x, U y) { return functions::fdim(x, y); }
		inline expr fdim(half x, half y) { return functions::fdim(x, y); }
		inline expr fdim(half x, expr y) { return functions::fdim(x, y); }
		inline expr fdim(expr x, half y) { return functions::fdim(x, y); }
		inline expr fdim(expr x, expr y) { return functions::fdim(x, y); }

		/// Get NaN value.
		/// \return quiet NaN
		inline half nanh(const char*) { return functions::nanh(); }

		/// \}
		/// \name Exponential functions
		/// \{

		/// Exponential function.
		/// \param arg function argument
		/// \return e raised to \a arg
//		template<typename T> typename enable<expr,T>::type exp(T arg) { return functions::exp(arg); }
		inline expr exp(half arg) { return functions::exp(arg); }
		inline expr exp(expr arg) { return functions::exp(arg); }

		/// Exponential minus one.
		/// \param arg function argument
		/// \return e raised to \a arg subtracted by 1
//		template<typename T> typename enable<expr,T>::type expm1(T arg) { return functions::expm1(arg); }
		inline expr expm1(half arg) { return functions::expm1(arg); }
		inline expr expm1(expr arg) { return functions::expm1(arg); }

		/// Binary exponential.
		/// \param arg function argument
		/// \return 2 raised to \a arg
//		template<typename T> typename enable<expr,T>::type exp2(T arg) { return functions::exp2(arg); }
		inline expr exp2(half arg) { return functions::exp2(arg); }
		inline expr exp2(expr arg) { return functions::exp2(arg); }

		/// Natural logorithm.
		/// \param arg function argument
		/// \return logarithm of \a arg to base e
//		template<typename T> typename enable<expr,T>::type log(T arg) { return functions::log(arg); }
		inline expr log(half arg) { return functions::log(arg); }
		inline expr log(expr arg) { return functions::log(arg); }

		/// Common logorithm.
		/// \param arg function argument
		/// \return logarithm of \a arg to base 10
//		template<typename T> typename enable<expr,T>::type log10(T arg) { return functions::log10(arg); }
		inline expr log10(half arg) { return functions::log10(arg); }
		inline expr log10(expr arg) { return functions::log10(arg); }

		/// Natural logorithm.
		/// \param arg function argument
		/// \return logarithm of \a arg plus 1 to base e
//		template<typename T> typename enable<expr,T>::type log1p(T arg) { return functions::log1p(arg); }
		inline expr log1p(half arg) { return functions::log1p(arg); }
		inline expr log1p(expr arg) { return functions::log1p(arg); }

		/// Binary logorithm.
		/// \param arg function argument
		/// \return logarithm of \a arg to base 2
//		template<typename T> typename enable<expr,T>::type log2(T arg) { return functions::log2(arg); }
		inline expr log2(half arg) { return functions::log2(arg); }
		inline expr log2(expr arg) { return functions::log2(arg); }

		/// \}
		/// \name Power functions
		/// \{

		/// Square root.
		/// \param arg function argument
		/// \return square root of \a arg
//		template<typename T> typename enable<expr,T>::type sqrt(T arg) { return functions::sqrt(arg); }
		inline expr sqrt(half arg) { return functions::sqrt(arg); }
		inline expr sqrt(expr arg) { return functions::sqrt(arg); }

		/// Cubic root.
		/// \param arg function argument
		/// \return cubic root of \a arg
//		template<typename T> typename enable<expr,T>::type cbrt(T arg) { return functions::cbrt(arg); }
		inline expr cbrt(half arg) { return functions::cbrt(arg); }
		inline expr cbrt(expr arg) { return functions::cbrt(arg); }

		/// Hypotenuse function.
		/// \param x first argument
		/// \param y second argument
		/// \return square root of sum of squares without internal over- or underflows
//		template<typename T,typename U> typename enable<expr,T,U>::type hypot(T x, U y) { return functions::hypot(x, y); }
		inline expr hypot(half x, half y) { return functions::hypot(x, y); }
		inline expr hypot(half x, expr y) { return functions::hypot(x, y); }
		inline expr hypot(expr x, half y) { return functions::hypot(x, y); }
		inline expr hypot(expr x, expr y) { return functions::hypot(x, y); }

		/// Power function.
		/// \param base first argument
		/// \param exp second argument
		/// \return \a base raised to \a exp
//		template<typename T,typename U> typename enable<expr,T,U>::type pow(T base, U exp) { return functions::pow(base, exp); }
		inline expr pow(half base, half exp) { return functions::pow(base, exp); }
		inline expr pow(half base, expr exp) { return functions::pow(base, exp); }
		inline expr pow(expr base, half exp) { return functions::pow(base, exp); }
		inline expr pow(expr base, expr exp) { return functions::pow(base, exp); }

		/// \}
		/// \name Trigonometric functions
		/// \{

		/// Sine function.
		/// \param arg function argument
		/// \return sine value of \a arg
//		template<typename T> typename enable<expr,T>::type sin(T arg) { return functions::sin(arg); }
		inline expr sin(half arg) { return functions::sin(arg); }
		inline expr sin(expr arg) { return functions::sin(arg); }

		/// Cosine function.
		/// \param arg function argument
		/// \return cosine value of \a arg
//		template<typename T> typename enable<expr,T>::type cos(T arg) { return functions::cos(arg); }
		inline expr cos(half arg) { return functions::cos(arg); }
		inline expr cos(expr arg) { return functions::cos(arg); }

		/// Tangent function.
		/// \param arg function argument
		/// \return tangent value of \a arg
//		template<typename T> typename enable<expr,T>::type tan(T arg) { return functions::tan(arg); }
		inline expr tan(half arg) { return functions::tan(arg); }
		inline expr tan(expr arg) { return functions::tan(arg); }

		/// Arc sine.
		/// \param arg function argument
		/// \return arc sine value of \a arg
//		template<typename T> typename enable<expr,T>::type asin(T arg) { return functions::asin(arg); }
		inline expr asin(half arg) { return functions::asin(arg); }
		inline expr asin(expr arg) { return functions::asin(arg); }

		/// Arc cosine function.
		/// \param arg function argument
		/// \return arc cosine value of \a arg
//		template<typename T> typename enable<expr,T>::type acos(T arg) { return functions::acos(arg); }
		inline expr acos(half arg) { return functions::acos(arg); }
		inline expr acos(expr arg) { return functions::acos(arg); }

		/// Arc tangent function.
		/// \param arg function argument
		/// \return arc tangent value of \a arg
//		template<typename T> typename enable<expr,T>::type atan(T arg) { return functions::atan(arg); }
		inline expr atan(half arg) { return functions::atan(arg); }
		inline expr atan(expr arg) { return functions::atan(arg); }

		/// Arc tangent function.
		/// \param x first argument
		/// \param y second argument
		/// \return arc tangent value
//		template<typename T,typename U> typename enable<expr,T,U>::type atan2(T x, U y) { return functions::atan2(x, y); }
		inline expr atan2(half x, half y) { return functions::atan2(x, y); }
		inline expr atan2(half x, expr y) { return functions::atan2(x, y); }
		inline expr atan2(expr x, half y) { return functions::atan2(x, y); }
		inline expr atan2(expr x, expr y) { return functions::atan2(x, y); }

		/// \}
		/// \name Hyperbolic functions
		/// \{

		/// Hyperbolic sine.
		/// \param arg function argument
		/// \return hyperbolic sine value of \a arg
//		template<typename T> typename enable<expr,T>::type sinh(T arg) { return functions::sinh(arg); }
		inline expr sinh(half arg) { return functions::sinh(arg); }
		inline expr sinh(expr arg) { return functions::sinh(arg); }

		/// Hyperbolic cosine.
		/// \param arg function argument
		/// \return hyperbolic cosine value of \a arg
//		template<typename T> typename enable<expr,T>::type cosh(T arg) { return functions::cosh(arg); }
		inline expr cosh(half arg) { return functions::cosh(arg); }
		inline expr cosh(expr arg) { return functions::cosh(arg); }

		/// Hyperbolic tangent.
		/// \param arg function argument
		/// \return hyperbolic tangent value of \a arg
//		template<typename T> typename enable<expr,T>::type tanh(T arg) { return functions::tanh(arg); }
		inline expr tanh(half arg) { return functions::tanh(arg); }
		inline expr tanh(expr arg) { return functions::tanh(arg); }

		/// Hyperbolic area sine.
		/// \param arg function argument
		/// \return area sine value of \a arg
//		template<typename T> typename enable<expr,T>::type asinh(T arg) { return functions::asinh(arg); }
		inline expr asinh(half arg) { return functions::asinh(arg); }
		inline expr asinh(expr arg) { return functions::asinh(arg); }

		/// Hyperbolic area cosine.
		/// \param arg function argument
		/// \return area cosine value of \a arg
//		template<typename T> typename enable<expr,T>::type acosh(T arg) { return functions::acosh(arg); }
		inline expr acosh(half arg) { return functions::acosh(arg); }
		inline expr acosh(expr arg) { return functions::acosh(arg); }

		/// Hyperbolic area tangent.
		/// \param arg function argument
		/// \return area tangent value of \a arg
//		template<typename T> typename enable<expr,T>::type atanh(T arg) { return functions::atanh(arg); }
		inline expr atanh(half arg) { return functions::atanh(arg); }
		inline expr atanh(expr arg) { return functions::atanh(arg); }

		/// \}
		/// \name Error and gamma functions
		/// \{

		/// Error function.
		/// \param arg function argument
		/// \return error function value of \a arg
//		template<typename T> typename enable<expr,T>::type erf(T arg) { return functions::erf(arg); }
		inline expr erf(half arg) { return functions::erf(arg); }
		inline expr erf(expr arg) { return functions::erf(arg); }

		/// Complementary error function.
		/// \param arg function argument
		/// \return 1 minus error function value of \a arg
//		template<typename T> typename enable<expr,T>::type erfc(T arg) { return functions::erfc(arg); }
		inline expr erfc(half arg) { return functions::erfc(arg); }
		inline expr erfc(expr arg) { return functions::erfc(arg); }

		/// Natural logarithm of gamma function.
		/// \param arg function argument
		/// \return natural logarith of gamma function for \a arg
//		template<typename T> typename enable<expr,T>::type lgamma(T arg) { return functions::lgamma(arg); }
		inline expr lgamma(half arg) { return functions::lgamma(arg); }
		inline expr lgamma(expr arg) { return functions::lgamma(arg); }

		/// Gamma function.
		/// \param arg function argument
		/// \return gamma function value of \a arg
//		template<typename T> typename enable<expr,T>::type tgamma(T arg) { return functions::tgamma(arg); }
		inline expr tgamma(half arg) { return functions::tgamma(arg); }
		inline expr tgamma(expr arg) { return functions::tgamma(arg); }

		/// \}
		/// \name Rounding
		/// \{

		/// Nearest integer not less than half value.
		/// \param arg half to round
		/// \return nearest integer not less than \a arg
//		template<typename T> typename enable<half,T>::type ceil(T arg) { return functions::ceil(arg); }
		inline half ceil(half arg) { return functions::ceil(arg); }
		inline half ceil(expr arg) { return functions::ceil(arg); }

		/// Nearest integer not greater than half value.
		/// \param arg half to round
		/// \return nearest integer not greater than \a arg
//		template<typename T> typename enable<half,T>::type floor(T arg) { return functions::floor(arg); }
		inline half floor(half arg) { return functions::floor(arg); }
		inline half floor(expr arg) { return functions::floor(arg); }

		/// Nearest integer not greater in magnitude than half value.
		/// \param arg half to round
		/// \return nearest integer not greater in magnitude than \a arg
//		template<typename T> typename enable<half,T>::type trunc(T arg) { return functions::trunc(arg); }
		inline half trunc(half arg) { return functions::trunc(arg); }
		inline half trunc(expr arg) { return functions::trunc(arg); }

		/// Nearest integer.
		/// \param arg half to round
		/// \return nearest integer, rounded away from zero in half-way cases
//		template<typename T> typename enable<half,T>::type round(T arg) { return functions::round(arg); }
		inline half round(half arg) { return functions::round(arg); }
		inline half round(expr arg) { return functions::round(arg); }

		/// Nearest integer.
		/// \param arg half to round
		/// \return nearest integer, rounded away from zero in half-way cases
//		template<typename T> typename enable<long,T>::type lround(T arg) { return functions::lround(arg); }
		inline long lround(half arg) { return functions::lround(arg); }
		inline long lround(expr arg) { return functions::lround(arg); }

		/// Nearest integer using half's internal rounding mode.
		/// \param arg half expression to round
		/// \return nearest integer using default rounding mode
//		template<typename T> typename enable<half,T>::type nearbyint(T arg) { return functions::nearbyint(arg); }
		inline half nearbyint(half arg) { return functions::rint(arg); }
		inline half nearbyint(expr arg) { return functions::rint(arg); }

		/// Nearest integer using half's internal rounding mode.
		/// \param arg half expression to round
		/// \return nearest integer using default rounding mode
//		template<typename T> typename enable<half,T>::type rint(T arg) { return functions::rint(arg); }
		inline half rint(half arg) { return functions::rint(arg); }
		inline half rint(expr arg) { return functions::rint(arg); }

		/// Nearest integer using half's internal rounding mode.
		/// \param arg half expression to round
		/// \return nearest integer using default rounding mode
//		template<typename T> typename enable<long,T>::type lrint(T arg) { return functions::lrint(arg); }
		inline long lrint(half arg) { return functions::lrint(arg); }
		inline long lrint(expr arg) { return functions::lrint(arg); }
	#if HALF_ENABLE_CPP11_LONG_LONG
		/// Nearest integer.
		/// \param arg half to round
		/// \return nearest integer, rounded away from zero in half-way cases
//		template<typename T> typename enable<long long,T>::type llround(T arg) { return functions::llround(arg); }
		inline long long llround(half arg) { return functions::llround(arg); }
		inline long long llround(expr arg) { return functions::llround(arg); }

		/// Nearest integer using half's internal rounding mode.
		/// \param arg half expression to round
		/// \return nearest integer using default rounding mode
//		template<typename T> typename enable<long long,T>::type llrint(T arg) { return functions::llrint(arg); }
		inline long long llrint(half arg) { return functions::llrint(arg); }
		inline long long llrint(expr arg) { return functions::llrint(arg); }
	#endif

		/// \}
		/// \name Floating point manipulation
		/// \{

		/// Decompress floating point number.
		/// \param arg number to decompress
		/// \param exp address to store exponent at
		/// \return significant in range [0.5, 1)
//		template<typename T> typename enable<half,T>::type frexp(T arg, int *exp) { return functions::frexp(arg, exp); }
		inline half frexp(half arg, int *exp) { return functions::frexp(arg, exp); }
		inline half frexp(expr arg, int *exp) { return functions::frexp(arg, exp); }

		/// Multiply by power of two.
		/// \param arg number to modify
		/// \param exp power of two to multiply with
		/// \return \a arg multplied by 2 raised to \a exp
//		template<typename T> typename enable<half,T>::type ldexp(T arg, int exp) { return functions::scalbln(arg, exp); }
		inline half ldexp(half arg, int exp) { return functions::scalbln(arg, exp); }
		inline half ldexp(expr arg, int exp) { return functions::scalbln(arg, exp); }

		/// Extract integer and fractional parts.
		/// \param arg number to decompress
		/// \param iptr address to store integer part at
		/// \return fractional part
//		template<typename T> typename enable<half,T>::type modf(T arg, half *iptr) { return functions::modf(arg, iptr); }
		inline half modf(half arg, half *iptr) { return functions::modf(arg, iptr); }
		inline half modf(expr arg, half *iptr) { return functions::modf(arg, iptr); }

		/// Multiply by power of two.
		/// \param arg number to modify
		/// \param exp power of two to multiply with
		/// \return \a arg multplied by 2 raised to \a exp
//		template<typename T> typename enable<half,T>::type scalbn(T arg, int exp) { return functions::scalbln(arg, exp); }
		inline half scalbn(half arg, int exp) { return functions::scalbln(arg, exp); }
		inline half scalbn(expr arg, int exp) { return functions::scalbln(arg, exp); }

		/// Multiply by power of two.
		/// \param arg number to modify
		/// \param exp power of two to multiply with
		/// \return \a arg multplied by 2 raised to \a exp
//		template<typename T> typename enable<half,T>::type scalbln(T arg, long exp) { return functions::scalbln(arg, exp); }
		inline half scalbln(half arg, long exp) { return functions::scalbln(arg, exp); }
		inline half scalbln(expr arg, long exp) { return functions::scalbln(arg, exp); }

		/// Extract exponent.
		/// \param arg number to query
		/// \return floating point exponent
		/// \retval FP_ILOGB0 for zero
		/// \retval FP_ILOGBNAN for NaN
		/// \retval MAX_INT for infinity
//		template<typename T> typename enable<int,T>::type ilogb(T arg) { return functions::ilogb(arg); }
		inline int ilogb(half arg) { return functions::ilogb(arg); }
		inline int ilogb(expr arg) { return functions::ilogb(arg); }

		/// Extract exponent.
		/// \param arg number to query
		/// \return floating point exponent
//		template<typename T> typename enable<half,T>::type logb(T arg) { return functions::logb(arg); }
		inline half logb(half arg) { return functions::logb(arg); }
		inline half logb(expr arg) { return functions::logb(arg); }

		/// Next representable value.
		/// \param from value to compute next representable value for
		/// \param to direction towards which to compute next value
		/// \return next representable value after \a from in direction towards \a to
//		template<typename T,typename U> typename enable<half,T,U>::type nextafter(T from, U to) { return functions::nextafter(from, to); }
		inline half nextafter(half from, half to) { return functions::nextafter(from, to); }
		inline half nextafter(half from, expr to) { return functions::nextafter(from, to); }
		inline half nextafter(expr from, half to) { return functions::nextafter(from, to); }
		inline half nextafter(expr from, expr to) { return functions::nextafter(from, to); }

		/// Next representable value.
		/// \param from value to compute next representable value for
		/// \param to direction towards which to compute next value
		/// \return next representable value after \a from in direction towards \a to
//		template<typename T> typename enable<half,T>::type nexttoward(T from, long double to) { return functions::nexttoward(from, to); }
		inline half nexttoward(half from, long double to) { return functions::nexttoward(from, to); }
		inline half nexttoward(expr from, long double to) { return functions::nexttoward(from, to); }

		/// Take sign.
		/// \param x value to change sign for
		/// \param y value to take sign from
		/// \return value equal to \a x in magnitude and to \a y in sign
//		template<typename T,typename U> typename enable<half,T,U>::type copysign(T x, U y) { return functions::copysign(x, y); }
		inline half copysign(half x, half y) { return functions::copysign(x, y); }
		inline half copysign(half x, expr y) { return functions::copysign(x, y); }
		inline half copysign(expr x, half y) { return functions::copysign(x, y); }
		inline half copysign(expr x, expr y) { return functions::copysign(x, y); }

		/// \}
		/// \name Floating point classification
		/// \{


		/// Classify floating point value.
		/// \param arg number to classify
		/// \retval FP_ZERO for positive and negative zero
		/// \retval FP_SUBNORMAL for subnormal numbers
		/// \retval FP_INFINITY for positive and negative infinity
		/// \retval FP_NAN for NaNs
		/// \retval FP_NORMAL for all other (normal) values
//		template<typename T> typename enable<int,T>::type fpclassify(T arg) { return functions::fpclassify(arg); }
		inline int fpclassify(half arg) { return functions::fpclassify(arg); }
		inline int fpclassify(expr arg) { return functions::fpclassify(arg); }

		/// Check if finite number.
		/// \param arg number to check
		/// \retval true if neither infinity nor NaN
		/// \retval false else
//		template<typename T> typename enable<bool,T>::type isfinite(T arg) { return functions::isfinite(arg); }
		inline bool isfinite(half arg) { return functions::isfinite(arg); }
		inline bool isfinite(expr arg) { return functions::isfinite(arg); }

		/// Check for infinity.
		/// \param arg number to check
		/// \retval true for positive or negative infinity
		/// \retval false else
//		template<typename T> typename enable<bool,T>::type isinf(T arg) { return functions::isinf(arg); }
		inline bool isinf(half arg) { return functions::isinf(arg); }
		inline bool isinf(expr arg) { return functions::isinf(arg); }

		/// Check for NaN.
		/// \param arg number to check
		/// \retval true for NaNs
		/// \retval false else
//		template<typename T> typename enable<bool,T>::type isnan(T arg) { return functions::isnan(arg); }
		inline bool isnan(half arg) { return functions::isnan(arg); }
		inline bool isnan(expr arg) { return functions::isnan(arg); }

		/// Check if normal number.
		/// \param arg number to check
		/// \retval true if normal number
		/// \retval false if either subnormal, zero, infinity or NaN
//		template<typename T> typename enable<bool,T>::type isnormal(T arg) { return functions::isnormal(arg); }
		inline bool isnormal(half arg) { return functions::isnormal(arg); }
		inline bool isnormal(expr arg) { return functions::isnormal(arg); }

		/// Check sign.
		/// \param arg number to check
		/// \retval true for negative number
		/// \retval false for positive number
//		template<typename T> typename enable<bool,T>::type signbit(T arg) { return functions::signbit(arg); }
		inline bool signbit(half arg) { return functions::signbit(arg); }
		inline bool signbit(expr arg) { return functions::signbit(arg); }

		/// \}
		/// \name Comparison
		/// \{

		/// Comparison for greater than.
		/// \param x first operand
		/// \param y second operand
		/// \retval true if \a x greater than \a y
		/// \retval false else
//		template<typename T,typename U> typename enable<bool,T,U>::type isgreater(T x, U y) { return functions::isgreater(x, y); }
		inline bool isgreater(half x, half y) { return functions::isgreater(x, y); }
		inline bool isgreater(half x, expr y) { return functions::isgreater(x, y); }
		inline bool isgreater(expr x, half y) { return functions::isgreater(x, y); }
		inline bool isgreater(expr x, expr y) { return functions::isgreater(x, y); }

		/// Comparison for greater equal.
		/// \param x first operand
		/// \param y second operand
		/// \retval true if \a x greater equal \a y
		/// \retval false else
//		template<typename T,typename U> typename enable<bool,T,U>::type isgreaterequal(T x, U y) { return functions::isgreaterequal(x, y); }
		inline bool isgreaterequal(half x, half y) { return functions::isgreaterequal(x, y); }
		inline bool isgreaterequal(half x, expr y) { return functions::isgreaterequal(x, y); }
		inline bool isgreaterequal(expr x, half y) { return functions::isgreaterequal(x, y); }
		inline bool isgreaterequal(expr x, expr y) { return functions::isgreaterequal(x, y); }

		/// Comparison for less than.
		/// \param x first operand
		/// \param y second operand
		/// \retval true if \a x less than \a y
		/// \retval false else
//		template<typename T,typename U> typename enable<bool,T,U>::type isless(T x, U y) { return functions::isless(x, y); }
		inline bool isless(half x, half y) { return functions::isless(x, y); }
		inline bool isless(half x, expr y) { return functions::isless(x, y); }
		inline bool isless(expr x, half y) { return functions::isless(x, y); }
		inline bool isless(expr x, expr y) { return functions::isless(x, y); }

		/// Comparison for less equal.
		/// \param x first operand
		/// \param y second operand
		/// \retval true if \a x less equal \a y
		/// \retval false else
//		template<typename T,typename U> typename enable<bool,T,U>::type islessequal(T x, U y) { return functions::islessequal(x, y); }
		inline bool islessequal(half x, half y) { return functions::islessequal(x, y); }
		inline bool islessequal(half x, expr y) { return functions::islessequal(x, y); }
		inline bool islessequal(expr x, half y) { return functions::islessequal(x, y); }
		inline bool islessequal(expr x, expr y) { return functions::islessequal(x, y); }

		/// Comarison for less or greater.
		/// \param x first operand
		/// \param y second operand
		/// \retval true if either less or greater
		/// \retval false else
//		template<typename T,typename U> typename enable<bool,T,U>::type islessgreater(T x, U y) { return functions::islessgreater(x, y); }
		inline bool islessgreater(half x, half y) { return functions::islessgreater(x, y); }
		inline bool islessgreater(half x, expr y) { return functions::islessgreater(x, y); }
		inline bool islessgreater(expr x, half y) { return functions::islessgreater(x, y); }
		inline bool islessgreater(expr x, expr y) { return functions::islessgreater(x, y); }

		/// Check if unordered.
		/// \param x first operand
		/// \param y second operand
		/// \retval true if unordered (one or two NaN operands)
		/// \retval false else
//		template<typename T,typename U> typename enable<bool,T,U>::type isunordered(T x, U y) { return functions::isunordered(x, y); }
		inline bool isunordered(half x, half y) { return functions::isunordered(x, y); }
		inline bool isunordered(half x, expr y) { return functions::isunordered(x, y); }
		inline bool isunordered(expr x, half y) { return functions::isunordered(x, y); }
		inline bool isunordered(expr x, expr y) { return functions::isunordered(x, y); }

		/// \name Casting
		/// \{

		/// Cast to or from half-precision floating point number.
		/// This casts between [half](\ref half_float::half) and any built-in arithmetic type. The values are converted
		/// directly using the given rounding mode, without any roundtrip over `float` that a `static_cast` would otherwise do.
		/// It uses the default rounding mode.
		///
		/// Using this cast with neither of the two types being a [half](\ref half_float::half) or with any of the two types
		/// not being a built-in arithmetic type (apart from [half](\ref half_float::half), of course) results in a compiler
		/// error and casting between [half](\ref half_float::half)s is just a no-op.
		/// \tparam T destination type (half or built-in arithmetic type)
		/// \tparam U source type (half or built-in arithmetic type)
		/// \param arg value to cast
		/// \return \a arg converted to destination type
		template<typename T,typename U> T half_cast(U arg) { return half_caster<T,U>::cast(arg); }

		/// Cast to or from half-precision floating point number.
		/// This casts between [half](\ref half_float::half) and any built-in arithmetic type. The values are converted
		/// directly using the given rounding mode, without any roundtrip over `float` that a `static_cast` would otherwise do.
		///
		/// Using this cast with neither of the two types being a [half](\ref half_float::half) or with any of the two types
		/// not being a built-in arithmetic type (apart from [half](\ref half_float::half), of course) results in a compiler
		/// error and casting between [half](\ref half_float::half)s is just a no-op.
		/// \tparam T destination type (half or built-in arithmetic type)
		/// \tparam R rounding mode to use.
		/// \tparam U source type (half or built-in arithmetic type)
		/// \param arg value to cast
		/// \return \a arg converted to destination type
		template<typename T,std::float_round_style R,typename U> T half_cast(U arg) { return half_caster<T,U,R>::cast(arg); }
		/// \}
	}

	using detail::operator==;
	using detail::operator!=;
	using detail::operator<;
	using detail::operator>;
	using detail::operator<=;
	using detail::operator>=;
	using detail::operator+;
	using detail::operator-;
	using detail::operator*;
	using detail::operator/;
	using detail::operator<<;
	using detail::operator>>;

	using detail::abs;
	using detail::fabs;
	using detail::fmod;
	using detail::remainder;
	using detail::remquo;
	using detail::fma;
	using detail::fmax;
	using detail::fmin;
	using detail::fdim;
	using detail::nanh;
	using detail::exp;
	using detail::expm1;
	using detail::exp2;
	using detail::log;
	using detail::log10;
	using detail::log1p;
	using detail::log2;
	using detail::sqrt;
	using detail::cbrt;
	using detail::hypot;
	using detail::pow;
	using detail::sin;
	using detail::cos;
	using detail::tan;
	using detail::asin;
	using detail::acos;
	using detail::atan;
	using detail::atan2;
	using detail::sinh;
	using detail::cosh;
	using detail::tanh;
	using detail::asinh;
	using detail::acosh;
	using detail::atanh;
	using detail::erf;
	using detail::erfc;
	using detail::lgamma;
	using detail::tgamma;
	using detail::ceil;
	using detail::floor;
	using detail::trunc;
	using detail::round;
	using detail::lround;
	using detail::nearbyint;
	using detail::rint;
	using detail::lrint;
#if HALF_ENABLE_CPP11_LONG_LONG
	using detail::llround;
	using detail::llrint;
#endif
	using detail::frexp;
	using detail::ldexp;
	using detail::modf;
	using detail::scalbn;
	using detail::scalbln;
	using detail::ilogb;
	using detail::logb;
	using detail::nextafter;
	using detail::nexttoward;
	using detail::copysign;
	using detail::fpclassify;
	using detail::isfinite;
	using detail::isinf;
	using detail::isnan;
	using detail::isnormal;
	using detail::signbit;
	using detail::isgreater;
	using detail::isgreaterequal;
	using detail::isless;
	using detail::islessequal;
	using detail::islessgreater;
	using detail::isunordered;

	using detail::half_cast;
}


/// Extensions to the C++ standard library.
namespace std
{
	/// Numeric limits for half-precision floats.
	/// Because of the underlying single-precision implementation of many operations, it inherits some properties from
	/// `std::numeric_limits<float>`.
	template<> class numeric_limits<half_float::half> : public numeric_limits<float>
	{
	public:
		/// Supports signed values.
		static HALF_CONSTEXPR_CONST bool is_signed = true;

		/// Is not exact.
		static HALF_CONSTEXPR_CONST bool is_exact = false;

		/// Doesn't provide modulo arithmetic.
		static HALF_CONSTEXPR_CONST bool is_modulo = false;

		/// IEEE conformant.
		static HALF_CONSTEXPR_CONST bool is_iec559 = true;

		/// Supports infinity.
		static HALF_CONSTEXPR_CONST bool has_infinity = true;

		/// Supports quiet NaNs.
		static HALF_CONSTEXPR_CONST bool has_quiet_NaN = true;

		/// Supports subnormal values.
		static HALF_CONSTEXPR_CONST float_denorm_style has_denorm = denorm_present;

		/// Rounding mode.
		/// Due to the mix of internal single-precision computations (using the rounding mode of the underlying
		/// single-precision implementation) with the rounding mode of the single-to-half conversions, the actual rounding
		/// mode might be `std::round_indeterminate` if the default half-precision rounding mode doesn't match the
		/// single-precision rounding mode.
		static HALF_CONSTEXPR_CONST float_round_style round_style = (std::numeric_limits<float>::round_style==
			half_float::half::round_style) ? half_float::half::round_style : round_indeterminate;

		/// Significant digits.
		static HALF_CONSTEXPR_CONST int digits = 11;

		/// Significant decimal digits.
		static HALF_CONSTEXPR_CONST int digits10 = 3;

		/// Required decimal digits to represent all possible values.
		static HALF_CONSTEXPR_CONST int max_digits10 = 5;

		/// Number base.
		static HALF_CONSTEXPR_CONST int radix = 2;

		/// One more than smallest exponent.
		static HALF_CONSTEXPR_CONST int min_exponent = -13;

		/// Smallest normalized representable power of 10.
		static HALF_CONSTEXPR_CONST int min_exponent10 = -4;

		/// One more than largest exponent
		static HALF_CONSTEXPR_CONST int max_exponent = 16;

		/// Largest finitely representable power of 10.
		static HALF_CONSTEXPR_CONST int max_exponent10 = 4;

		/// Smallest positive normal value.
		static HALF_CONSTEXPR half_float::half min() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x0400); }

		/// Smallest finite value.
		static HALF_CONSTEXPR half_float::half lowest() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0xFBFF); }

		/// Largest finite value.
		static HALF_CONSTEXPR half_float::half max() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7BFF); }

		/// Difference between one and next representable value.
		static HALF_CONSTEXPR half_float::half epsilon() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x1400); }

		/// Maximum rounding error.
		static HALF_CONSTEXPR half_float::half round_error() HALF_NOTHROW
			{ return half_float::half(half_float::detail::binary, (round_style==std::round_to_nearest) ? 0x3800 : 0x3C00); }

		/// Positive infinity.
		static HALF_CONSTEXPR half_float::half infinity() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7C00); }

		/// Quiet NaN.
		static HALF_CONSTEXPR half_float::half quiet_NaN() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7FFF); }

		/// Signalling NaN.
		static HALF_CONSTEXPR half_float::half signaling_NaN() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7DFF); }

		/// Smallest positive subnormal value.
		static HALF_CONSTEXPR half_float::half denorm_min() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x0001); }
	};

#if HALF_ENABLE_CPP11_HASH
	/// Hash function for half-precision floats.
	/// This is only defined if C++11 `std::hash` is supported and enabled.
	template<> struct hash<half_float::half> //: unary_function<half_float::half,size_t>
	{
		/// Type of function argument.
		typedef half_float::half argument_type;

		/// Function return type.
		typedef size_t result_type;

		/// Compute hash function.
		/// \param arg half to hash
		/// \return hash value
		result_type operator()(argument_type arg) const
			{ return hash<half_float::detail::uint16>()(static_cast<unsigned>(arg.data_)&-(arg.data_!=0x8000)); }
	};
#endif
}


#undef HALF_CONSTEXPR
#undef HALF_CONSTEXPR_CONST
#undef HALF_NOEXCEPT
#undef HALF_NOTHROW
#ifdef HALF_POP_WARNINGS
	#pragma warning(pop)
	#undef HALF_POP_WARNINGS
#endif

#endif