Skip to content
Snippets Groups Projects
Commit 991a38c1 authored by Houssem ROUIS's avatar Houssem ROUIS
Browse files

add fc operator

parent 7401428e
No related branches found
No related tags found
3 merge requests!15version 0.2.0,!12Lenetop,!10Lenet operators
This commit is part of merge request !10. Comments created here will be created in the context of that merge request.
......@@ -15,6 +15,7 @@
#include "aidge/backend/cuda/data/TensorImpl.hpp"
#include "aidge/backend/cuda/operator/AvgPoolingImpl.hpp"
#include "aidge/backend/cuda/operator/ConvImpl.hpp"
#include "aidge/backend/cuda/operator/FCImpl.hpp"
#include "aidge/backend/cuda/operator/MaxPoolingImpl.hpp"
#include "aidge/backend/cuda/operator/ProducerImpl.hpp"
#include "aidge/backend/cuda/operator/ReLUImpl.hpp"
......
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#ifndef AIDGE_BACKEND_CUDA_OPERATOR_FCIMPL_H_
#define AIDGE_BACKEND_CUDA_OPERATOR_FCIMPL_H_
#include <array>
#include <memory>
#include <tuple>
#include <vector>
#include <cudnn.h>
#include "aidge/backend/OperatorImpl.hpp"
#include "aidge/operator/FC.hpp"
#include "aidge/utils/Registrar.hpp"
#include "aidge/utils/Types.h"
#include "aidge/backend/cuda/utils/CudaUtils.hpp"
namespace Aidge {
class FCImplForward_cuda : public Registrable<FCImplForward_cuda,
std::tuple<DataType>,
void(unsigned int , unsigned int , unsigned int, bool, const void* , const void* , const void* , void*)> {};
class FCImpl_cuda : public OperatorImpl {
private:
// CuDNN specific variables
public:
FCImpl_cuda(const FC_Op &op) : OperatorImpl(op) {}
static std::unique_ptr<FCImpl_cuda> create(const FC_Op &op) {
return std::make_unique<FCImpl_cuda>(op);
}
public:
void forward();
// ~FCImpl_cuda();
private:
template <class T> void forward_(const Tensor& input0, const Tensor& input1, const Tensor& input2, bool noBias, DimSize_t outChannels);
};
namespace {
// add cuda backend to FC_Op implementation registry
static Registrar<FC_Op> registrarFCImpl_cuda("cuda", Aidge::FCImpl_cuda::create);
} // namespace
} // namespace Aidge
#endif /* AIDGE_BACKEND_CUDA_OPERATOR_FCIMPL_H_ */
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#ifndef AIDGE_CUDA_OPERATOR_FCIMPL_FORWARD_KERNEL_H_
#define AIDGE_CUDA_OPERATOR_FCIMPL_FORWARD_KERNEL_H_
#include <stdexcept>
#include <cfloat>
#include <cuda.h>
#include <cuda_runtime_api.h>
#include "aidge/data/Data.hpp"
#include "aidge/backend/cuda/operator/FCImpl.hpp"
#include "aidge/backend/cuda/utils/CudaUtils.hpp"
namespace Aidge {
template<class T>
void fc_forward_cuda(DimSize_t nbInputs, DimSize_t inChannels, DimSize_t outChannels, bool noBias, const void *input, const void *weights, const void *bias, void *output);
namespace {
static Registrar<FCImplForward_cuda> registrarFCImpl2DForward_cuda_Float32({DataType::Float32}, Aidge::fc_forward_cuda<float>);
static Registrar<FCImplForward_cuda> registrarFCImpl2DForward_cuda_Float64({DataType::Float64}, Aidge::fc_forward_cuda<double>);
} // namespace
}
#endif /* AIDGE_CUDA_OPERATOR_FCIMPL_FORWARD_KERNEL_H_ */
\ No newline at end of file
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include <cassert>
#include <chrono> // std::chrono::milliseconds
#include <numeric> // std::accumulate
#include <thread> // std::this_thread::sleep_for
#include <vector>
#include <iostream>
#include "aidge/utils/Types.h"
#include "aidge/operator/FC.hpp"
#include "aidge/backend/cuda/data/TensorImpl.hpp"
#include "aidge/backend/cuda/operator/FCImpl_CUDA_kernels.hpp"
#include "aidge/backend/cuda/operator/FCImpl.hpp"
#include "aidge/backend/cuda/utils/CudaContext.hpp"
void Aidge::FCImpl_cuda::forward() {
assert(mOp.getRawInput(0) && "missing input #0");
assert(mOp.getRawInput(1) && "missing input #1");
assert(mOp.getRawInput(2) && "missing input #2");
std::shared_ptr<Tensor> inputFallback, input1Fallback, input2Fallback;
const auto& input0 = std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->refCastFrom(inputFallback, *std::static_pointer_cast<Tensor>(mOp.getRawOutput(0)));
const auto& input1 = std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->refCastFrom(input1Fallback, *std::static_pointer_cast<Tensor>(mOp.getRawOutput(0)));
const auto& input2 = std::static_pointer_cast<Tensor>(mOp.getRawInput(2))->refCastFrom(input2Fallback, *std::static_pointer_cast<Tensor>(mOp.getRawOutput(0)));
const FC_Op& fcOp = static_cast<const FC_Op&>(mOp);
bool noBias = fcOp.template getAttr<FCAttr::NoBias>();
DimSize_t outChannels = fcOp.template getAttr<FCAttr::OutChannels>();
if (std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType() == DataType::Float64) {
forward_<double>(input0, input1, input2, noBias, outChannels);
}
else {
forward_<float>(input0, input1, input2, noBias, outChannels);
}
}
template<class T>
void Aidge::FCImpl_cuda::forward_(const Tensor& input0, const Tensor& input1, const Tensor& input2, bool noBias, DimSize_t outChannels)
{
Aidge::fc_forward_cuda<T>(
input0.dims()[0],
input0.size() / input0.dims()[0],
outChannels,
noBias,
input0.getImpl()->rawPtr(),
input1.getImpl()->rawPtr(),
input2.getImpl()->rawPtr(),
std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr());
}
\ No newline at end of file
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include <stdio.h>
#include "aidge/backend/cuda/operator/FCImpl_CUDA_kernels.hpp"
template<class T>
__global__
void fc_forward_cuda_kernel(std::size_t nbInputs, std::size_t inChannels, std::size_t outChannels, bool noBias,const T* input, const T* weights, const T* bias, T *output)
{
const std::size_t idx = blockIdx.x * blockDim.x + threadIdx.x;
for(std::size_t batch=idx; batch<nbInputs; ++batch)
{
for (std::size_t out = 0; out < outChannels; ++out) {
T sum = 0;
for (std::size_t in = 0; in < inChannels; ++in) {
sum += input[batch * inChannels + in] * weights[out * inChannels + in];
}
output[batch * outChannels + out] = sum + (noBias ? 0 : bias[out]);
}
}
}
namespace Aidge{
template<class T>
void fc_forward_cuda(DimSize_t nbInputs, DimSize_t inChannels, DimSize_t outChannels, bool noBias, const void* input_, const void* weights_, const void* bias_, void* output_)
{
const T* input = static_cast<const T*>(input_);
const T* weights = static_cast<const T*>(weights_);
const T* bias = static_cast<const T*>(bias_);
T * output = static_cast<T*>(output_);
const dim3 blocksPerGrid = {(static_cast<unsigned int>(inChannels) + 255) / 256, 1, static_cast<unsigned int>(outChannels)};
const dim3 threadsPerBlocks = {256, 1, 1};
fc_forward_cuda_kernel<<<blocksPerGrid, threadsPerBlocks>>>(nbInputs, inChannels, outChannels, noBias, input, weights, bias, output);
CHECK_CUDA_STATUS(cudaPeekAtLastError());
}
}
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include <array>
#include <catch2/catch_test_macros.hpp>
#include "Test_cuda.hpp"
#include "aidge/data/Tensor.hpp"
#include "aidge/backend/cpu.hpp"
#include "aidge/backend/cuda.hpp"
using namespace Aidge;
TEST_CASE("[gpu/operator] FC(forward)", "[FC][GPU]") {
std::shared_ptr<Tensor> myWeights = std::make_shared<Tensor>(Array2D<float, 5, 75>{
{{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}}});
std::shared_ptr<Tensor> myBias = std::make_shared<Tensor>(Array1D<float, 5>{{1, 2, 3, 4, 5}});
std::shared_ptr<Tensor> myOutput = std::make_shared<Tensor>(Array2D<float, 2, 5>{
{{23601, 23602, 23603, 23604, 23605}, {68601, 68602, 68603, 68604, 68605}}});
myWeights->setBackend("cuda");
myBias->setBackend("cuda");
std::shared_ptr<Node> myFC = FC(75, 5, false, "myfc");
auto op = std::static_pointer_cast<OperatorTensor>(myFC -> getOperator());
op -> associateInput(1, myWeights);
op -> associateInput(2, myBias);
SECTION("2D input") {
std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(Array2D<float, 2, 75>{
{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74},
{75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119,
120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134,
135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149}}});
myInput->setBackend("cuda");
op->associateInput(0, myInput);
op -> setDataType(DataType::Float32);
op -> setBackend("cuda");
op->computeOutputDims();
myFC->forward();
float* computedOutput = new float[myOutput->size()]();
cudaMemcpy(computedOutput, op->getOutput(0)->getImpl()->rawPtr(), sizeof(float) * myOutput->size(), cudaMemcpyDeviceToHost);
for(int i = 0; i < myOutput->size(); i++){
const float targetOutput = *(static_cast<float*>(myOutput->getImpl()->rawPtr()) + i);
std::cout << "targetOutput " << targetOutput << ", out " << computedOutput[i]<<std::endl;
REQUIRE(fabs(computedOutput[i] - targetOutput) < 1e-6);
}
delete[] computedOutput;
}
SECTION("4D input") {
std::shared_ptr<Tensor> myInput =
std::make_shared<Tensor>(Array4D<float, 2, 3, 5, 5>{{{{{0, 1, 2, 3, 4},
{5, 6, 7, 8, 9},
{10, 11, 12, 13, 14},
{15, 16, 17, 18, 19},
{20, 21, 22, 23, 24}},
{{25, 26, 27, 28, 29},
{30, 31, 32, 33, 34},
{35, 36, 37, 38, 39},
{40, 41, 42, 43, 44},
{45, 46, 47, 48, 49}},
{{50, 51, 52, 53, 54},
{55, 56, 57, 58, 59},
{60, 61, 62, 63, 64},
{65, 66, 67, 68, 69},
{70, 71, 72, 73, 74}}},
{{{75, 76, 77, 78, 79},
{80, 81, 82, 83, 84},
{85, 86, 87, 88, 89},
{90, 91, 92, 93, 94},
{95, 96, 97, 98, 99}},
{{100, 101, 102, 103, 104},
{105, 106, 107, 108, 109},
{110, 111, 112, 113, 114},
{115, 116, 117, 118, 119},
{120, 121, 122, 123, 124}},
{{125, 126, 127, 128, 129},
{130, 131, 132, 133, 134},
{135, 136, 137, 138, 139},
{140, 141, 142, 143, 144},
{145, 146, 147, 148, 149}}}}});
myInput->setBackend("cuda");
op->associateInput(0, myInput);
op -> setDataType(DataType::Float32);
op -> setBackend("cuda");
op->computeOutputDims();
myFC->forward();
float* computedOutput = new float[myOutput->size()]();
cudaMemcpy(computedOutput, op->getOutput(0)->getImpl()->rawPtr(), sizeof(float) * myOutput->size(), cudaMemcpyDeviceToHost);
for(int i = 0; i < myOutput->size(); i++){
const float targetOutput = *(static_cast<float*>(myOutput->getImpl()->rawPtr()) + i);
REQUIRE(fabs(computedOutput[i] - targetOutput) < 1e-6);
}
delete[] computedOutput;
}
}
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment