Skip to content
Snippets Groups Projects

Fix/PowBackwardKernel

Merged Houssem ROUIS requested to merge hrouis/aidge_backend_cpu:Fix/PowBackwardKernel into dev
1 unresolved thread
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#ifndef AIDGE_CPU_OPERATOR_POWIMPL_BACKWARD_KERNEL_H_
#define AIDGE_CPU_OPERATOR_POWIMPL_BACKWARD_KERNEL_H_
#include <cmath>
#include <numeric>
#include <vector>
#include "aidge/backend/cpu/data/Broadcasting.hpp"
#include "aidge/backend/cpu/operator/PowImpl.hpp"
#include "aidge/utils/Registrar.hpp"
namespace Aidge {
template <class I1, class I2, class O>
void PowImpl_cpu_backward_kernel(const std::vector<std::size_t>& input0Dims,
const std::vector<std::size_t>& input1Dims,
const std::vector<std::size_t>& outputDims,
const void* input0_,
const void* input1_,
const void* gradOutput_,
void* gradientInput0_,
void* gradientInput1_) {
const I1* input0 = static_cast<const I1*>(input0_);
I1* grad0 = static_cast<I1*>(gradientInput0_);
const I2* input1 = static_cast<const I2*>(input1_);
I2* grad1 = static_cast<I2*>(gradientInput1_);
const O* gradOut = static_cast<const O*>(gradOutput_);
// Fill input grads with zeros
auto input0Elements = std::accumulate(input0Dims.cbegin(), input0Dims.cend(), std::size_t(1), std::multiplies<std::size_t>());
std::fill(grad0, grad0 + input0Elements, I1(0));
auto input1Elements = std::accumulate(input1Dims.cbegin(), input1Dims.cend(), std::size_t(1), std::multiplies<std::size_t>());
std::fill(grad1, grad1 + input1Elements, I1(0));
auto totalElements = std::accumulate(outputDims.cbegin(), outputDims.cend(), std::size_t(1), std::multiplies<std::size_t>());
for (size_t i = 0; i < totalElements; ++i)
{
// Compute indexes in inputs 0 and 1 to support broadcasting
std::vector<std::size_t> indexes = getMultiDimIndices(outputDims, i);
std::size_t idx0 = getFlattenedIndex(input0Dims, indexes);
std::size_t idx1 = getFlattenedIndex(input1Dims, indexes);
// grad0 = grad_output * (input1 * pow(input0, (input1 -1)))
grad0[idx0] += gradOut[i]*input1[idx1]* std::pow(input0[idx0], input1[idx1]-1);
// grad1 = grad_output * (output * ln(input0))
grad1[idx1] += gradOut[i] * std::pow(input0[idx0], input1[idx1]) * std::log(input0[idx0]);
}
}
namespace {
static Registrar<PowImplBackward_cpu> registrarPowImplBackward_cpu_Float32(
{DataType::Float32, DataType::Float32, DataType::Float32},
Aidge::PowImpl_cpu_backward_kernel<float, float, float>);
static Registrar<PowImplBackward_cpu> registrarPowImplBackward_cpu_Int32(
{DataType::Int32, DataType::Int32, DataType::Int32},
Aidge::PowImpl_cpu_backward_kernel<int, int, int>);
static Registrar<PowImplBackward_cpu> registrarPowImplBackward_cpu_Float64(
{DataType::Float64, DataType::Float64, DataType::Float64},
Aidge::PowImpl_cpu_backward_kernel<double, double, double>);
} // namespace
} // namespace Aidge
#endif /* AIDGE_CPU_OPERATOR_POWIMPL_BACKWARD_KERNEL_H_ */
Loading