Skip to content
Snippets Groups Projects
Commit 44c25e9d authored by Olivier BICHLER's avatar Olivier BICHLER
Browse files

Merge branch 'feat_145_GridSample' into 'dev'

Add GridSample impl for 1D and 2D

See merge request !77
parents 10ef1960 2eff4d7f
No related branches found
No related tags found
2 merge requests!93Release v0.3.0,!77Add GridSample impl for 1D and 2D
Pipeline #54174 passed
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#ifndef AIDGE_CPU_OPERATOR_GRIDSAMPLEIMPL_H_
#define AIDGE_CPU_OPERATOR_GRIDSAMPLEIMPL_H_
#include <array>
#include <memory>
#include <tuple>
#include <vector>
#include "aidge/backend/OperatorImpl.hpp"
#include "aidge/operator/GridSample.hpp"
#include "aidge/utils/Registrar.hpp"
#include "aidge/utils/Types.h"
#include "aidge/backend/cpu/data/GetCPUPtr.h"
namespace Aidge {
// compute kernel registry for forward and backward
class GridSampleImpl1DForward_cpu
: public Registrable<GridSampleImpl1DForward_cpu,
std::tuple<DataType, DataType>,
void(const GridSample_Op&,
const std::shared_ptr<Tensor>&,
const std::shared_ptr<Tensor>&,
const std::shared_ptr<Tensor>&)> {};
class GridSampleImpl2DForward_cpu
: public Registrable<GridSampleImpl2DForward_cpu,
std::tuple<DataType, DataType>,
void(const GridSample_Op&,
const std::shared_ptr<Tensor>&,
const std::shared_ptr<Tensor>&,
const std::shared_ptr<Tensor>&)> {};
class GridSampleImpl_cpu : public OperatorImpl {
public:
GridSampleImpl_cpu(const GridSample_Op& op) : OperatorImpl(op, "cpu") {}
static std::unique_ptr<GridSampleImpl_cpu> create(const GridSample_Op &op) {
return std::make_unique<GridSampleImpl_cpu>(op);
}
public:
Elts_t getNbRequiredProtected(const IOIndex_t inputIdx) const override final;
void forward() override;
};
namespace {
// add cpu backend to GridSample_Op<1> implementation registry
static Registrar<GridSample_Op> registrarGridSampleImpl_cpu("cpu", Aidge::GridSampleImpl_cpu::create);
} // namespace
} // namespace Aidge
#endif /* AIDGE_CPU_OPERATOR_GRIDSAMPLEIMPL_H_ */
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#ifndef AIDGE_CPU_OPERATOR_CONVIMPL_FORWARD_KERNEL_H_
#define AIDGE_CPU_OPERATOR_CONVIMPL_FORWARD_KERNEL_H_
#include <algorithm> // std::max, std::min
#include <cmath> // std::fabs, std::trunf, std::nearbyint
#include <cstddef> // std::size_t
#include <cstdint> // std::int64_t
#include "aidge/backend/cpu/data/GetCPUPtr.h"
#include "aidge/backend/cpu/operator/GridSampleImpl.hpp"
#include "aidge/data/half.hpp"
#include "aidge/utils/Registrar.hpp"
#include "aidge/utils/Types.h"
static bool in_bound(float coord, float lower_bound, float upper_bound) noexcept {
return (coord > lower_bound) && (coord < upper_bound);
}
static float unnormalized_coord(float coord, float new_lower_bound, float new_upper_bound) noexcept {
return (coord + 1) / 2 * (new_upper_bound - new_lower_bound) + new_lower_bound;
}
// unused
// static float normalized_coord(float coord, float prev_lower_bound, float prev_upper_bound) noexcept {
// return (coord + prev_lower_bound) / (prev_upper_bound-prev_lower_bound) * 2 - 1;
// }
static float unnormalize_grid_sample_coord(float coord, std::size_t size, bool align_corners) noexcept {
return align_corners ? unnormalized_coord(coord, 0.0f, static_cast<float>(size) - 1.0f)
: unnormalized_coord(coord, -0.5f, static_cast<float>(size) - 0.5f);
}
// unused
// static float normalize_grid_sample_coord(float coord, std::size_t size, bool align_corners) noexcept {
// return align_corners ? normalized_coord(coord, 0.0f, static_cast<float>(size) - 1.0f)
// : normalized_coord(coord, -0.5f, static_cast<float>(size) - 0.5f);
// }
static float update_normalized_coord_with_padding(float coord, Aidge::GridSample_Op::PaddingMode padding_mode) {
if (!in_bound(coord, -1.0f, 1.0f)) {
if (padding_mode == Aidge::GridSample_Op::PaddingMode::Border) {
coord = std::min(std::max(-1.0f, coord), 1.0f);
}
else if (padding_mode == Aidge::GridSample_Op::PaddingMode::Reflection) {
float abs_coord = std::fabs(coord);
float int_coord = std::truncf(abs_coord);
std::int32_t nb_refl = static_cast<std::int32_t>((int_coord - 1) / 2);
float res = ((nb_refl + 1)*2) - abs_coord;
coord = (coord > 0) ? (nb_refl % 2 == 0 ? res : -res) \
: (nb_refl % 2 == 0 ? -res : res);
}
}
return coord;
}
static inline std::int64_t update_unnormalized_coord_with_padding(std::int64_t coord, std::int64_t size, Aidge::GridSample_Op::PaddingMode padding_mode) {
if (!in_bound(coord, 0, size)) {
// out of bound. switch padding mode
if (padding_mode == Aidge::GridSample_Op::PaddingMode::Border) {
coord = std::min(std::max(std::int64_t(0), coord), size-std::int64_t(1));
} else if (padding_mode == Aidge::GridSample_Op::PaddingMode::Reflection) {
const std::int64_t quotient = coord / (size-1);
const std::int64_t remainer = std::abs(coord - quotient*(size-1));
coord = (quotient % 2 == 0) ? remainer : size - 1 - remainer;
}
}
return coord;
}
namespace Aidge {
/**
* @brief Forward kernel for 1D GridSample on CPU backend.
* @tparam I Input data type.
* @tparam O Output data type.
* @param params tuple of Attributes from the Operator
* @param inputDims Array of input dimensions.
* @param input_ const input Tensor.
* @param grid_ const grid Tensor.
* @param output_ Output Tensor.
*/
template <class I, class O>
void GridSampleImpl1D_cpu_forward_kernel(const GridSample_Op& op,
const std::shared_ptr<Tensor>& in0,
const std::shared_ptr<Tensor>& in1,
const std::shared_ptr<Tensor>& out)
{
const I* const input = static_cast<const I * const>(in0->getImpl()->rawPtr());
const I* input_ptr = input;
float* const grid = static_cast<float* const>(in1->getImpl()->rawPtr());
float* grid_ptr = grid;
O* const output = static_cast<O* const>(out->getImpl()->rawPtr());
O* output_ptr = output;
const std::size_t N = in0->dim(0);
const std::size_t C = in0->dim(1);
const std::size_t in_H = in0->dim(2);
const std::size_t grid_H = in1->dim(1);
const std::size_t in_N_s = in0->stride(0);
const std::size_t in_C_s = in0->stride(1);
const std::size_t in_H_s = in0->stride(2);
const std::size_t grid_N_s = in1->stride(0);
const std::size_t grid_H_s = in1->stride(1);
const std::size_t out_N_s = out->stride(0);
const std::size_t out_C_s = out->stride(1);
const std::size_t out_H_s = out->stride(2);
float* grid_ptr_N = grid;
const I* input_ptr_N = input;
O* output_ptr_N = output;
for (std::size_t n = 0; n < N; ++n) {
grid_ptr = grid_ptr_N;
for (std::size_t grid_x = 0; grid_x < grid_H; ++grid_x) {
output_ptr = output_ptr_N + grid_x*out_H_s;
/*
* change grid_x coord to match padding_mode
* Change range from [-1, 1] to [0, H-1] or [-0.5, H-0.5] according to align_corners
* Handle computation of interpolation
* any value outside bounds is considered 0
* if nearest:
* else if linear:
* else if cubic:
* else : nothing
*/
float x = *grid_ptr;
x = update_normalized_coord_with_padding(x, op.paddingMode());
x = unnormalize_grid_sample_coord(x, in_H, op.alignCorners());
if (op.mode() == GridSample_Op::Mode::Nearest) {
const std::int64_t x_rounded = std::nearbyintf(x);
if (in_bound(x_rounded, 0, in_H)) {
input_ptr = input_ptr_N + x_rounded*in_H_s;
for (std::size_t c = 0; c < C; ++c) {
*output_ptr = *input_ptr;
input_ptr += in_C_s;
output_ptr += out_C_s;
}
} else {
for (std::size_t c = 0; c < C; ++c) {
*output_ptr = O(0);
output_ptr += out_C_s;
}
}
} else if (op.mode() == GridSample_Op::Mode::Linear) {
const std::int64_t x_inf = update_unnormalized_coord_with_padding(static_cast<std::int64_t>(std::floor(x)), in_H, op.paddingMode());
const std::int64_t x_sup = update_unnormalized_coord_with_padding(x_inf + 1, in_H, op.paddingMode());
const I* input_ptr_NC = input_ptr_N;
for (std::size_t c = 0; c < C; ++c) {
const I f_inf = in_bound(x_inf, 0, in_H) ?
input_ptr_NC[static_cast<std::size_t>(x_inf)*in_H_s] : I(0);
const I f_sup = in_bound(x_sup, 0, in_H) ?
input_ptr_NC[static_cast<std::size_t>(x_sup)*in_H_s] : I(0);
*output_ptr = static_cast<O>(static_cast<I>(x - x_inf)*f_inf \
+ static_cast<I>(x_sup - x)*f_sup);
input_ptr_NC += in_C_s;
output_ptr += out_C_s;
}
} else if (op.mode() == GridSample_Op::Mode::Cubic) {
const std::int64_t x_inf = update_unnormalized_coord_with_padding(static_cast<std::int64_t>(std::floor(x)), in_H, op.paddingMode());
const std::int64_t x_sup = update_unnormalized_coord_with_padding(x_inf + 1, in_H, op.paddingMode());
const std::int64_t x_inf_inf = update_unnormalized_coord_with_padding(x_inf - 1, in_H, op.paddingMode());
const std::int64_t x_sup_sup = update_unnormalized_coord_with_padding(x_sup + 1, in_H, op.paddingMode());
const I x1 = static_cast<I>(x - static_cast<float>(x_inf));
const I x2 = x1 * x1;
const I x3 = x1 * x2;
const I* input_ptr_NC = input_ptr_N;
for (std::size_t c = 0; c < C; ++c) {
const I f_inf_inf = in_bound(x_inf_inf, 0, in_H) ? input_ptr_NC[x_inf_inf*in_H_s] : I(0);
const I f_inf = in_bound(x_inf, 0, in_H) ? input_ptr_NC[x_inf*in_H_s] : I(0);
const I f_sup = in_bound(x_sup, 0, in_H) ? input_ptr_NC[x_sup*in_H_s] : I(0);
const I f_sup_sup = in_bound(x_sup_sup, 0, in_H) ? input_ptr_NC[x_sup_sup*in_H_s] : I(0);
const I m_inf = (f_sup - f_inf_inf) / I(2);
const I m_sup = (f_sup_sup - f_inf) / I(2);
*output_ptr = f_inf \
+ x1 * m_inf \
+ x2 * (3 * (f_sup - f_inf) - 2 * m_inf - m_sup) \
+ x3 * (2*(f_inf - f_sup) + m_inf + m_sup);
input_ptr_NC += in_C_s;
output_ptr += out_C_s;
}
}
grid_ptr += grid_H_s;
}
input_ptr_N += in_N_s;
grid_ptr_N += grid_N_s;
output_ptr_N += out_N_s;
}
}
namespace {
static Registrar<GridSampleImpl1DForward_cpu> registrarGridSampleImpl1DForward_cpu_Float32(
{DataType::Float32, DataType::Float32},
Aidge::GridSampleImpl1D_cpu_forward_kernel<float, float>);
static Registrar<GridSampleImpl1DForward_cpu> registrarGridSampleImpl1DForward_cpu_Float16(
{DataType::Float16, DataType::Float16},
Aidge::GridSampleImpl1D_cpu_forward_kernel<half_float::half, half_float::half>);
static Registrar<GridSampleImpl1DForward_cpu> registrarGridSampleImpl1DForward_cpu_Int32(
{DataType::Int32, DataType::Int32},
Aidge::GridSampleImpl1D_cpu_forward_kernel<int, int>);
static Registrar<GridSampleImpl1DForward_cpu> registrarGridSampleImpl1DForward_cpu_Float64(
{DataType::Float64, DataType::Float64},
Aidge::GridSampleImpl1D_cpu_forward_kernel<double, double>);
/**
* @brief Forward kernel for 1D GridSample on CPU backend.
* @tparam I Input data type.
* @tparam O Output data type.
* @param params tuple of Attributes from the Operator
* @param inputDims Array of input dimensions.
* @param input_ const input Tensor.
* @param grid_ const grid Tensor.
* @param output_ Output Tensor.
*/
template <class I, class O>
void GridSampleImpl2D_cpu_forward_kernel(const GridSample_Op& op,
const std::shared_ptr<Tensor>& in0,
const std::shared_ptr<Tensor>& in1,
const std::shared_ptr<Tensor>& out)
{
const I* input = static_cast<const I *>(in0->getImpl()->rawPtr());
const I* input_ptr = input;
float* const grid = static_cast<float* const>(in0->getImpl()->rawPtr());
float* grid_ptr = grid;
O* const output = static_cast<O* const>(out->getImpl()->rawPtr());
const std::size_t N = in0->dim(0);
const std::size_t C = in0->dim(1);
const std::size_t in_H = in0->dim(2);
const std::size_t in_W = in0->dim(3);
const std::size_t grid_H = in1->dim(1);
const std::size_t grid_W = in1->dim(2);
const std::size_t in_N_s = in0->stride(0);
const std::size_t in_C_s = in0->stride(1);
const std::size_t in_H_s = in0->stride(2);
const std::size_t in_W_s = in0->stride(3);
const std::size_t grid_N_s = in1->stride(0);
const std::size_t grid_H_s = in1->stride(1);
const std::size_t grid_W_s = in1->stride(2);
const std::size_t grid_Coord_s = in1->stride(3);
const std::size_t out_N_s = out->stride(0);
const std::size_t out_C_s = out->stride(1);
const std::size_t out_H_s = out->stride(2);
const std::size_t out_W_s = out->stride(3);
float* grid_ptr_N = grid;
const I* input_ptr_N = input;
O* output_ptr_N = output;
for (std::size_t n = 0; n < N; ++n) {
for (std::size_t grid_y = 0; grid_y < grid_H; ++grid_y) {
for (std::size_t grid_x = 0; grid_x < grid_W; ++grid_x) {
O* output_ptr = output_ptr_N + grid_y*out_H_s + grid_y*out_W_s;
grid_ptr = grid_ptr_N + grid_y*grid_H_s + grid_x*grid_W_s;
/*
* change grid_x coord to match padding_mode
* Change range from [-1, 1] to [0, H-1] or [-0.5, H-0.5] according to align_corners
* Handle computation of interpolation
* any value outside bounds is considered 0
* if nearest:
* else if linear:
* else if cubic:
* else : nothing
*/
float x = *grid_ptr;
float y = grid_ptr[grid_Coord_s];
x = update_normalized_coord_with_padding(x, op.paddingMode());
x = unnormalize_grid_sample_coord(x, in_W, op.alignCorners());
y = update_normalized_coord_with_padding(y, op.paddingMode());
y = unnormalize_grid_sample_coord(y, in_H, op.alignCorners());
if (op.mode() == GridSample_Op::Mode::Nearest) {
const std::int64_t x_rounded = std::nearbyintf(x);
const std::int64_t y_rounded = std::nearbyintf(y);
if (in_bound(x_rounded, 0, in_W) && in_bound(y_rounded, 0, in_H)) {
input_ptr = input_ptr_N + y_rounded*in_H_s + x_rounded*in_W_s;
for (std::size_t c = 0; c < C; ++c) {
*output_ptr = *input_ptr;
input_ptr += in_C_s;
output_ptr += out_C_s;
}
} else {
for (std::size_t c = 0; c < C; ++c) {
*output_ptr = O(0);
output_ptr += out_C_s;
}
}
} else if (op.mode() == GridSample_Op::Mode::Linear) {
const std::int64_t x_r = update_unnormalized_coord_with_padding(static_cast<std::int64_t>(std::floor(x)), in_W, op.paddingMode()); // right
const std::int64_t x_l = update_unnormalized_coord_with_padding(x_r + 1, in_W, op.paddingMode()); // left
const std::int64_t y_t = update_unnormalized_coord_with_padding(static_cast<std::int64_t>(std::floor(y)), in_H, op.paddingMode()); // top
const std::int64_t y_b = update_unnormalized_coord_with_padding(y_t + 1, in_H, op.paddingMode()); // bottom
const I* input_ptr_NC = input_ptr_N;
for (std::size_t c = 0; c < C; ++c) {
const I f_tr = (in_bound(x_r, 0, in_W) && in_bound(y_t, 0, in_H)) ?
input_ptr_NC[static_cast<std::size_t>(y_t)*in_H_s
+ static_cast<std::size_t>(x_r)*in_W_s]
: I(0);
const I f_tl = (in_bound(x_l, 0, in_W) && in_bound(y_t, 0, in_H)) ?
input_ptr_NC[static_cast<std::size_t>(y_t)*in_H_s
+ static_cast<std::size_t>(x_l)*in_W_s]
: I(0);
const I f_br = (in_bound(x_r, 0, in_W) && in_bound(y_b, 0, in_H)) ?
input_ptr_NC[static_cast<std::size_t>(y_b)*in_H_s
+ static_cast<std::size_t>(x_r)*in_W_s]
: I(0);
const I f_bl = (in_bound(x_l, 0, in_W) && in_bound(y_b, 0, in_H)) ?
input_ptr_NC[static_cast<std::size_t>(y_b)*in_H_s
+ static_cast<std::size_t>(x_l)*in_W_s]
: I(0);
// compute weighted sum of the 4 corners
const I w_tr = static_cast<I>((y - static_cast<float>(y_t))*(static_cast<float>(x_r) - x));
const I w_tl = static_cast<I>((y - static_cast<float>(y_t))*(x - static_cast<float>(x_l)));
const I w_br = static_cast<I>((static_cast<float>(y_b) - y)*(static_cast<float>(x_r) - x));
const I w_bl = static_cast<I>((static_cast<float>(y_b) - y)*(x - static_cast<float>(x_l)));
*output_ptr = static_cast<O>(w_tr*f_tr + w_tl*f_tl + w_br*f_br + w_bl*f_bl);
input_ptr_NC += in_C_s;
output_ptr += out_C_s;
}
} else if (op.mode() == GridSample_Op::Mode::Cubic) {
/*
* .. .. .. .. .. ..
* .. 00 01 02 03 ..
* .. 10 11 12 13 ..
* .. 20 21 22 23 ..
* .. 30 31 32 33 ..
* .. .. .. .. .. ..
*/
const std::int64_t x_1 = update_unnormalized_coord_with_padding(static_cast<std::int64_t>(std::floor(x)), in_W, op.paddingMode());
const std::int64_t x_0 = update_unnormalized_coord_with_padding(x_1 - 1, in_W, op.paddingMode());
const std::int64_t x_2 = update_unnormalized_coord_with_padding(x_1 + 1, in_W, op.paddingMode());
const std::int64_t x_3 = update_unnormalized_coord_with_padding(x_1 + 2, in_W, op.paddingMode());
const std::int64_t y_1 = update_unnormalized_coord_with_padding(static_cast<std::int64_t>(std::floor(y)), in_H, op.paddingMode());
const std::int64_t y_0 = update_unnormalized_coord_with_padding(y_1 - 1, in_H, op.paddingMode());
const std::int64_t y_2 = update_unnormalized_coord_with_padding(y_1 + 1, in_H, op.paddingMode());
const std::int64_t y_3 = update_unnormalized_coord_with_padding(y_1 + 2, in_H, op.paddingMode());
const I* input_ptr_NC = input_ptr_N;
for (std::size_t c = 0; c < C; ++c) {
const I f_00 = in_bound(x_0, 0, in_W) && in_bound(y_0, 0, in_H) ?
input_ptr_NC[x_0*in_W_s + y_0*in_H_s] : I(0);
const I f_01 = in_bound(x_0, 0, in_W) && in_bound(y_1, 0, in_H) ?
input_ptr_NC[x_0*in_W_s + y_1*in_H_s] : I(0);
const I f_02 = in_bound(x_0, 0, in_W) && in_bound(y_2, 0, in_H) ?
input_ptr_NC[x_0*in_W_s + y_2*in_H_s] : I(0);
const I f_03 = in_bound(x_0, 0, in_W) && in_bound(y_3, 0, in_H) ?
input_ptr_NC[x_0*in_W_s + y_3*in_H_s] : I(0);
const I f_10 = in_bound(x_1, 0, in_W) && in_bound(y_0, 0, in_H) ?
input_ptr_NC[x_1*in_W_s + y_0*in_H_s] : I(0);
const I f_20 = in_bound(x_2, 0, in_W) && in_bound(y_0, 0, in_H) ?
input_ptr_NC[x_2*in_W_s + y_0*in_H_s] : I(0);
const I f_30 = in_bound(x_3, 0, in_W) && in_bound(y_0, 0, in_H) ?
input_ptr_NC[x_3*in_W_s + y_0*in_H_s] : I(0);
const I f_11 = in_bound(x_1, 0, in_W) && in_bound(y_1, 0, in_H) ?
input_ptr_NC[x_1*in_W_s + y_1*in_H_s] : I(0);
const I f_12 = in_bound(x_1, 0, in_W) && in_bound(y_2, 0, in_H) ?
input_ptr_NC[x_1*in_W_s + y_2*in_H_s] : I(0);
const I f_13 = in_bound(x_1, 0, in_W) && in_bound(y_3, 0, in_H) ?
input_ptr_NC[x_1*in_W_s + y_3*in_H_s] : I(0);
const I f_21 = in_bound(x_2, 0, in_W) && in_bound(y_1, 0, in_H) ?
input_ptr_NC[x_2*in_W_s + y_1*in_H_s] : I(0);
const I f_22 = in_bound(x_2, 0, in_W) && in_bound(y_2, 0, in_H) ?
input_ptr_NC[x_2*in_W_s + y_2*in_H_s] : I(0);
const I f_23 = in_bound(x_2, 0, in_W) && in_bound(y_3, 0, in_H) ?
input_ptr_NC[x_2*in_W_s + y_3*in_H_s] : I(0);
const I f_31 = in_bound(x_3, 0, in_W) && in_bound(y_1, 0, in_H) ?
input_ptr_NC[x_3*in_W_s + y_1*in_H_s] : I(0);
const I f_32 = in_bound(x_3, 0, in_W) && in_bound(y_2, 0, in_H) ?
input_ptr_NC[x_3*in_W_s + y_2*in_H_s] : I(0);
const I f_33 = in_bound(x_3, 0, in_W) && in_bound(y_3, 0, in_H) ?
input_ptr_NC[x_3*in_W_s + y_3*in_H_s] : I(0);
const I mx_11 = (f_21 - f_01) / I(2);
const I mx_12 = (f_22 - f_02) / I(2);
const I mx_21 = (f_31 - f_11) / I(2);
const I mx_22 = (f_32 - f_12) / I(2);
const I my_11 = (f_12 - f_10) / I(2);
const I my_12 = (f_13 - f_11) / I(2);
const I my_21 = (f_22 - f_20) / I(2);
const I my_22 = (f_23 - f_21) / I(2);
const I mxy_11 = (f_22 - f_20 - f_02 - + f_00) / I(4);
const I mxy_12 = (f_23 - f_21 - f_03 - + f_01) / I(4);
const I mxy_21 = (f_32 - f_30 - f_12 - + f_10) / I(4);
const I mxy_22 = (f_33 - f_31 - f_13 - + f_11) / I(4);
const I a_00 = f_11;
const I a_10 = mx_11;
const I a_20 = I(3)*(f_21 - f_11) - I(2)*mx_11 - mx_21;
const I a_30 = I(2)*(f_11 - f_21) + mx_11 + mx_21;
const I a_01 = my_11;
const I a_11 = mxy_11;
const I a_21 = I(3)*(my_21 - my_11) - I(2)*mxy_11 - mxy_21;
const I a_31 = I(2)*(my_11 - my_21) + mxy_11 + mxy_21;
const I a_02 = I(3)*(f_12 - f_11) - I(2)*my_11 - my_12;
const I a_12 = I(3)*(mx_12 - mx_11) - I(2)*mxy_11 - mxy_12;
const I a_22 = I(9)*(f_11 + f_22 - f_21 - f_12) + I(3)*(I(2)*(mx_11 - mx_12 + my_11 - my_21) + mx_21 - mx_22 + my_12 - my_22) + mxy_22 + I(2)*(mxy_12 + mxy_21 + I(2)*mxy_11);
const I a_32 = - mxy_12 - mxy_22 + I(2)*(my_22 - my_12 - mxy_11 - mxy_21 + I(2)*(my_21 - my_11) + I(3)*(f_21 + f_12 - f_11 - f_22)) + I(3)*(mx_12 + mx_22 - mx_11 - mx_21);
const I a_03 = I(2)*(f_11 - f_12) + my_11 + my_12;
const I a_13 = I(2)*(mx_11 - mx_12) + mxy_11 + mxy_12;
const I a_23 = - mxy_21 - mxy_22 + I(2)*(-mx_21 + mx_22 - mxy_11 - mxy_12 + I(2)*(mx_12 - mx_11) + I(3)*(f_12 + f_21 - f_11 - f_22)) + I(3)*(my_21 + my_22 - my_11 - my_12);
const I a_33 = mxy_11 + mxy_21 + mxy_12 + mxy_22 + I(2)*(mx_11 + mx_21 - mx_12 - mx_22 + my_11 - my_21 + my_12 - my_22 + I(2)*(f_11 - f_21 - f_12 + f_22));
const I x2 = static_cast<I>(x*x);
const I x3 = static_cast<I>(x*x*x);
const I y2 = static_cast<I>(y*y);
const I y3 = static_cast<I>(y*y*y);
*output_ptr = static_cast<O>( \
a_00 + a_10*x + a_20*x2 + a_30*x3 \
+ a_01*y + a_11*x*y + a_21*x2*y + a_31*x3*y \
+ a_02*y2 + a_12*x*y2 + a_22*x2*y2 + a_32*x3*y2 \
+ a_03*y3 + a_13*x*y3 + a_23*x2*y3 + a_33*x3*y3);
input_ptr_NC += in_C_s;
output_ptr += out_C_s;
}
}
}
}
input_ptr_N += in_N_s;
grid_ptr_N += grid_N_s;
output_ptr_N += out_N_s;
}
}
static Registrar<GridSampleImpl2DForward_cpu> registrarGridSampleImpl2DForward_cpu_Float32(
{DataType::Float32, DataType::Float32},
Aidge::GridSampleImpl2D_cpu_forward_kernel<float, float>);
static Registrar<GridSampleImpl2DForward_cpu> registrarGridSampleImpl2DForward_cpu_Float16(
{DataType::Float16, DataType::Float16},
Aidge::GridSampleImpl2D_cpu_forward_kernel<half_float::half, half_float::half>);
static Registrar<GridSampleImpl2DForward_cpu> registrarGridSampleImpl2DForward_cpu_Int32(
{DataType::Int32, DataType::Int32},
Aidge::GridSampleImpl2D_cpu_forward_kernel<int, int>);
static Registrar<GridSampleImpl2DForward_cpu> registrarGridSampleImpl2DForward_cpu_Float64(
{DataType::Float64, DataType::Float64},
Aidge::GridSampleImpl2D_cpu_forward_kernel<double, double>);
} // namespace
} // namespace Aidge
#endif /* AIDGE_CPU_OPERATOR_CONVIMPL_FORWARD_KERNEL_H_ */
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include "aidge/backend/cpu/operator/GridSampleImpl.hpp"
#include <functional>
#include <vector>
#include "aidge/backend/cpu/data/GetCPUPtr.h"
#include "aidge/backend/cpu/operator/GridSampleImpl_forward_kernels.hpp"
#include "aidge/operator/GridSample.hpp"
#include "aidge/utils/Types.h"
Aidge::Elts_t Aidge::GridSampleImpl_cpu::getNbRequiredProtected(IOIndex_t /*inputIdx*/) const {
// this implementation can be in-place
return Elts_t::DataElts(0);
}
void Aidge::GridSampleImpl_cpu::forward() {
const auto& op_ = static_cast<const GridSample_Op&>(mOp);
// Find the correct kernel type
const auto outputDataType = op_.getOutput(0)->dataType();
const Registrar<GridSampleImpl1DForward_cpu>::registrar_key registrarKey = {
op_.getInput(0)->dataType(),
outputDataType};
std::function<void(const GridSample_Op&,
const std::shared_ptr<Tensor>&,
const std::shared_ptr<Tensor>&,
const std::shared_ptr<Tensor>&)> kernelFunc;
const std::size_t nbSpatialFeat = op_.getInput(0)->nbDims();
switch (nbSpatialFeat)
{
case 1:
kernelFunc = Registrar<GridSampleImpl1DForward_cpu>::create(registrarKey);
break;
case 2:
kernelFunc = Registrar<GridSampleImpl2DForward_cpu>::create(registrarKey);
break;
default:
AIDGE_THROW_OR_ABORT(std::runtime_error, "No CPU {} kernel available for {} dimensions.", op_.type(), nbSpatialFeat);
break;
}
// Convert input data (no overhead if not needed!)
// TODO: right now, if needed, memory will be allocated/deallocated at each
// call to forward(). We might put the following shared_ptr as members of
// this class to avoid that.
std::shared_ptr<Tensor> input0Fallback, input1Fallback;
const auto& input0 = std::make_shared<Tensor>(op_.getInput(0)->refCastFrom(input0Fallback, *op_.getOutput(0)));
const auto& input1 = std::make_shared<Tensor>(op_.getInput(1)->refCastFrom(input1Fallback, *op_.getOutput(0)));
// Call kernel
kernelFunc(op_,
input0, // input
input1, // grid
op_.getOutput(0) // output
);
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment