diff --git a/include/aidge/data/DataFormat.hpp b/include/aidge/data/DataFormat.hpp index 4df854a1ea880e3e7def7ff6aee798ab95d30254..9b929b14ad373f37f488df80d9ed7823d3da1b20 100644 --- a/include/aidge/data/DataFormat.hpp +++ b/include/aidge/data/DataFormat.hpp @@ -83,6 +83,25 @@ using DataFormatTranspose = std::array<std::size_t, 5>; */ DataFormatTranspose getPermutationMapping(const DataFormat& src, const DataFormat& dst); +/** + * @brief Determine the output data format after applying a transpose operation. + * + * This function computes the new data format after transposing a tensor. + * It follows these steps: + * 1. Retrieves the permutation mapping from the default format (NCHW) to the input format. + * 2. Applies the given output dimensions order to compute the new permutation. + * 3. Determines the number of dimensions associated with the input data format. + * 4. Identifies the corresponding data format for the new permutation. + * + * @param inputDataFormat The data format of the input tensor. + * @param outputDimsOrder The permutation applied to the input tensor's dimensions. + * @return DataFormat The computed output data format after applying the permutation. + * + * @throws std::runtime_error if the provided permutation is invalid for the given format. + * @pre `outputDimsOrder` must be a valid permutation of the format's dimensions. + */ +DataFormat getTransposeOutputDataFormat(const DataFormat inputDataFormat, const std::array<std::size_t, 5> outputDimsOrder); + } // namespace Aidge namespace { diff --git a/src/data/DataFormat.cpp b/src/data/DataFormat.cpp index 8b7460b3d42de2e2ddb60a6332405141f87b297c..25621e1af0f37b340cc008efdcc407dd3028e0e4 100644 --- a/src/data/DataFormat.cpp +++ b/src/data/DataFormat.cpp @@ -51,6 +51,25 @@ static std::size_t getNbDimensions(DataFormat dformat) { return nbDimensions[static_cast<std::size_t>(dformat)]; } +/** + * @brief Get the DataFormat corresponding to a given permutation vector. + * + * @param perm The permutation vector. + * @return DataFormat The matching DataFormat, or DataFormat::Default if not found. + */ +static DataFormat getDataFormatFromPermutation(const DataFormatTranspose& perm, const unsigned int nbDims) { + for (size_t i = 0; i < NB_DFORMAT; ++i) { + DataFormat candidateFormat = static_cast<DataFormat>(i); + const DataFormatTranspose& candidatePerm = getPermutationFromNCHW(candidateFormat); + + if (std::equal(candidatePerm.begin(), candidatePerm.begin() + nbDims, perm.begin())) { + return candidateFormat; + } + } + Log::warn("No matching DataFormat found for the given permutation : {}", perm); + return DataFormat::Default; +} + DataFormatTranspose getPermutationMapping(const DataFormat& src, const DataFormat& dst) { AIDGE_ASSERT((src != DataFormat::Any && dst != DataFormat::Any), "Permutation is not defined for DataFormat::Any"); if (src == DataFormat::Default || dst == DataFormat::Default || src == dst) { @@ -78,4 +97,31 @@ DataFormatTranspose getPermutationMapping(const DataFormat& src, const DataForma return src_to_dst; } + +/** + * @brief Applies one permutation to another. + * + * Given an initial permutation `perm1` and another permutation `perm2`, + * this function returns a new permutation that results from applying `perm2` to `perm1`. + * + * @param perm1 The base permutation (original ordering → intermediate ordering). + * @param perm2 The permutation to apply (intermediate ordering → final ordering). + * @return DataFormatTranspose The resultng permutation (original ordering → final ordering). + */ +static DataFormatTranspose applyPermutation(const DataFormatTranspose& perm1, const DataFormatTranspose& perm2) { + DataFormatTranspose permuted{}; + for (std::size_t i = 0; i < perm1.size(); ++i) { + permuted[i] = perm2[perm1[i]]; + } + return permuted; +} + +DataFormat getTransposeOutputDataFormat(const DataFormat inputDataFormat, const std::array<std::size_t, 5> outputDimsOrder){ + const DataFormatTranspose permFromInput = getPermutationFromNCHW(inputDataFormat); + const DataFormatTranspose newPerm = applyPermutation(permFromInput, outputDimsOrder); + + const unsigned int nbDims = getNbDimensions(inputDataFormat); + + return getDataFormatFromPermutation(newPerm, nbDims); +} } // namespace Aidge \ No newline at end of file diff --git a/src/operator/Transpose.cpp b/src/operator/Transpose.cpp index f9d612353a5fe8764419d6ac2f7fe1702f2a5df8..51c2d59605c2a6c3bb5c17b24663191c8e004bd0 100644 --- a/src/operator/Transpose.cpp +++ b/src/operator/Transpose.cpp @@ -77,7 +77,14 @@ bool Aidge::Transpose_Op::forwardDims(bool /*allowDataDependency*/) { AIDGE_ASSERT(i == outputDimsOrder()[i], "Permutation vector ({}) must be the identity above the input tensor rank ({}).", outputDimsOrder(), getInput(0)->dims()); } + mOutputs[0]->resize(outputDims); + + // Set the data format of the output tensor + std::array<std::size_t, 5> outputDimsArray; + std::copy_n(outputDimsOrder().begin(), 5, outputDimsArray.begin()); + + mOutputs[0]->setDataFormat(getTransposeOutputDataFormat(getInput(0)->dataFormat(), outputDimsArray)); return true; } return false; diff --git a/unit_tests/operator/Test_TransposeImpl.cpp b/unit_tests/operator/Test_TransposeImpl.cpp index be54b8c426416c44a3587b2bb16c29b087e57e6d..0e3037773dae0a6f4c40e7ec1b4a45644ce8b017 100644 --- a/unit_tests/operator/Test_TransposeImpl.cpp +++ b/unit_tests/operator/Test_TransposeImpl.cpp @@ -205,7 +205,7 @@ TEST_CASE("[cpu/operator] Transpose DataFormat") { SECTION("NCHW to NHWC"){ std::shared_ptr<Tensor> input = std::make_shared<Tensor>(std::vector<std::size_t>({16,3,224,450})); input->setDataFormat(Aidge::DataFormat::NCHW); - + input->setBackend("cpu"); auto transposeNode = Transpose({0,2,3,1}); auto op = std::static_pointer_cast<OperatorTensor>(transposeNode -> getOperator()); @@ -218,15 +218,99 @@ TEST_CASE("[cpu/operator] Transpose DataFormat") { SECTION("NHWC to NCHW"){ std::shared_ptr<Tensor> input = std::make_shared<Tensor>(std::vector<std::size_t>({16,3,224,450})); input->setDataFormat(Aidge::DataFormat::NHWC); - + input->setBackend("cpu"); auto transposeNode = Transpose({0,3,1,2}); auto op = std::static_pointer_cast<OperatorTensor>(transposeNode -> getOperator()); op->associateInput(0,input); op->setBackend("cpu"); transposeNode->forward(); + REQUIRE(op->getOutput(0)->dataFormat() == DataFormat::NCHW); + } + SECTION("CHWN to NCHW") { + std::shared_ptr<Tensor> input = std::make_shared<Tensor>(std::vector<std::size_t>({3,224,450,16})); + input->setDataFormat(Aidge::DataFormat::CHWN); + input->setBackend("cpu"); + auto transposeNode = Transpose({3,0,1,2}); - REQUIRE(op->getOutput(0)->dataFormat() == DataFormat::NHWC); + auto op = std::static_pointer_cast<OperatorTensor>(transposeNode->getOperator()); + op->associateInput(0, input); + op->setBackend("cpu"); + transposeNode->forward(); + + REQUIRE(op->getOutput(0)->dataFormat() == DataFormat::NCHW); + } + + SECTION("NCDHW to NDHWC") { + std::shared_ptr<Tensor> input = std::make_shared<Tensor>(std::vector<std::size_t>({16,3,8,224,450})); + input->setDataFormat(Aidge::DataFormat::NCDHW); + input->setBackend("cpu"); + auto transposeNode = Transpose({0,2,3,4,1}); + + auto op = std::static_pointer_cast<OperatorTensor>(transposeNode->getOperator()); + op->associateInput(0, input); + op->setBackend("cpu"); + transposeNode->forward(); + + REQUIRE(op->getOutput(0)->dataFormat() == DataFormat::NDHWC); + } + + SECTION("NDHWC to NCDHW") { + std::shared_ptr<Tensor> input = std::make_shared<Tensor>(std::vector<std::size_t>({16,8,224,450,3})); + input->setDataFormat(Aidge::DataFormat::NDHWC); + input->setBackend("cpu"); + auto transposeNode = Transpose({0,4,1,2,3}); + + auto op = std::static_pointer_cast<OperatorTensor>(transposeNode->getOperator()); + op->associateInput(0, input); + op->setBackend("cpu"); + transposeNode->forward(); + + REQUIRE(op->getOutput(0)->dataFormat() == DataFormat::NCDHW); + } + + SECTION("CDHWN to NCDHW") { + std::shared_ptr<Tensor> input = std::make_shared<Tensor>(std::vector<std::size_t>({3,8,224,450,16})); + input->setDataFormat(Aidge::DataFormat::CDHWN); + input->setBackend("cpu"); + auto transposeNode = Transpose({4,0,1,2,3}); + + auto op = std::static_pointer_cast<OperatorTensor>(transposeNode->getOperator()); + op->associateInput(0, input); + op->setBackend("cpu"); + transposeNode->forward(); + + REQUIRE(op->getOutput(0)->dataFormat() == DataFormat::NCDHW); } + + SECTION("(Identity) NCHW to NCHW)") { + std::shared_ptr<Tensor> input = std::make_shared<Tensor>(std::vector<std::size_t>({16,3,224,450})); + input->setDataFormat(Aidge::DataFormat::NCHW); + input->setBackend("cpu"); + auto transposeNode = Transpose({0,1,2,3}); // Identity permutation + + auto op = std::static_pointer_cast<OperatorTensor>(transposeNode->getOperator()); + op->associateInput(0, input); + op->setBackend("cpu"); + transposeNode->forward(); + + REQUIRE(op->getOutput(0)->dataFormat() == DataFormat::NCHW); + } + + SECTION("Invalid Format Handling") { + std::shared_ptr<Tensor> input = std::make_shared<Tensor>(std::vector<std::size_t>({16,3,224,450})); + input->setDataFormat(Aidge::DataFormat::Default); + input->setBackend("cpu"); + auto transposeNode = Transpose({0,2,3,1}); + + auto op = std::static_pointer_cast<OperatorTensor>(transposeNode->getOperator()); + op->associateInput(0, input); + op->setBackend("cpu"); + + transposeNode->forward(); + REQUIRE(op->getOutput(0)->dataFormat() == DataFormat::Default); + //Should throw a Warning + } + }