
EPTF Web GUI, Function Description
Tamás Levente Kiss

Version 1551-CNL 113 864, Rev. PA2, 2018-02-14

Table of Contents
System Requirements . 1

3rd party libraries . 1

Functionality . 1
DsRestAPI. 2
WebGUI Framework . 2

General Functionality . 2

Web Application Interface . 2

The Setup Descriptor . 3

Models . 4

Common Viewmodels . 5

Common Views. 5

Utilities . 7
CustomizableApp. 8

MVVM Pattern Synopsys . 8

General functionality . 9

View Interface . 9

Viewmodel Interface . 10

Available Viewmodels . 10
GuiEditor . 11

Architecture . 11

Classes and Their Roles . 13

Usage . 18

Overview . 19

Description of Files in the Feature. 19

Installation. 19

Configuration . 19

Using the Framework . 20

Options . 20

Creating a New Application . 20

Using the CustomizableApp . 20

Basic Overview. 21

Options . 21

Using the DsRestAPI Console . 22

Using the GuiEditor . 23

Editors . 23

Setup Editor . 23

Viewmodel Editor . 31

View Editor . 31

UIConfig Editor. 32

Online Help . 32

Structure of the source code . 32

Abbreviations . 33

References . 34

System Requirements

3rd party libraries
EPTF Web GUI uses the following 3rd party libraries:

Product Number Product Name Product Description

1/CAX 105 8330 CodeMirror 5.6.0 CodeMirror is used for editing JavaScript, CSS
and HTML code in an online manner.

7/CAX 105 4268 DataTables 1.10.3 Product is used to show and to interact with data
displayed in table views.

33/CAX 105 3414 jQuery 2.2.3 It provides a rich function set including, but not
limited to HTML document traversal and
manipulation, event handling, animation, and
AJAX calls. Other 3rd parties depend on this
library as well.

1/CAX 105 8528 jQuery Splitter 0.14.0 jQuery Splitter is a plugin that splits the web
content with movable splitter between them.

16/CAX 105 4236 jQuery UI 1.11.4 jQuery UI is used to create user interface
interactions, effects, widgets, and themes built
on top of the jQuery JavaScript Library.

1/CAX 105 8531 JSON Editor 0.7.23 JSON Editor takes a JSON Schema and uses it to
generate an HTML form.

1/CAX 105 8835 Ajv JSON Schema
Validator 3.8.0

Product is used for validating JSON descriptors
based on a JSON schema.

4/CAX 105 6647 jsTree 3.0.9 jsTree draws interactive trees displaying tree-
like data structures

2/CAX 105 6945 Flot 0.8.3 Flot is used by TitanSim BrowserGUI and
WebGU to display charts (e.g.: CPS, RPS charts). It
replaces a similar 3rd party component that was
removed from TitanSim due to licensing
problems.

1/CAX 105 8146 Html2Canvas 0.4.1 Html2Canvas is used to convert any html
element to canvas, which then can be saved as
an image file. Used by the UIHandler
(BrowserGUI) and WebGUI features.

Functionality
The EPTF Web GUI feature provides the following functionality:

• Provides the framework, which is responsible for the loading and unloading of web
applications

• Web Applications: CustomizableApp, RequestTester, GuiEditor

1

• CustomizableApp can show highly customizable GUIs.

• Custom requests can be issued directly to the server with the DsRestAPI Console web application.

• The setups that customize the CustomizableApp can be edited in GuiEditor.

DsRestAPI
The javascript API of DsRestAPI is used to communicate with the server. It is taken form the CLL [3].
For more information on the API functions please see [4].

The API can be easily replaced with another one, so connecting to other services is also possible.

WebGUI Framework

General Functionality
When started, the framework will create the application buttons and load the default application if
specified. The list of available applications and the default application’s name is contained in
MainConfig.json.

The framework also handles the loading and unloading the applications. The applications are given
the WebAppModel at start that can be used to interact with the main configuration and the
configuration of the application. It also contains the SetupModel which can create, load, and save
setups.

Web Application Interface
The applications must provide the following interface so that they can be integrated into the
framework:

• info()

This must return an object with an icon and name property. These will be displayed on the
buttons.

• load(p_webAppModel, p_params, p_framework)

This method is called when the application should start. The webAppModel is a model which can
be used to access the configuration, the API and other useful functions. The parameters contain
the application parameters specified in the main configuration or set by other applications. The
framework can be used to switch to other applications and to change the parameters of other
applications.

• unload(callback)

This method is called when the application should be unloaded (when switching
applications).The callback must be called with a boolean true value for the unload to be
completed or false to cancel the unload.

2

The Setup Descriptor
The CustomizableApp is used to display setups. Setups describe the user interface that is displayed in
the application.

A setup consists of the following files:

• Request.json - contains the request [4], [5].

• ViewModelInstances.json - contains the list of viewmodel descriptors.

• ViewInstances.json - contains the list of view descriptors.

• Imports.json - contains the list of import descriptors.

• Setup.css - contains the css of the setup. A normal css file.

• Setup.html - contains the html of the setup. A html snippet which will be inserted into the main
html when loading the setup.

• Desktop.json - contains data of the editors in GuiEditor (e.g. position, visibility)

The descriptors are json objects with the following members:

• Viewmodel descriptor:

◦ class:
"the viewmodel class name"

◦ dataPathList:
[[0,0], [0,1]]: The list of data connections. The data connections point to a request in the
request tree.

◦ dataPathStrList:
the list of data paths represented by strings (e.g. "EntityGroups.Scenarios.ScStart"), used to
make it more human readable

◦ selectionToControlPathList:
same as dataPathList but for selection connections

◦ selectionToControlPathStrList“:
same as dataPathStrList but for selection connections

◦ customData:
{}: an object that can be used to customize the viewmodel instance

• View descriptor:

◦ class:
"the view class name"

◦ viewModelIndexes:
[13, 28]: the index of the connected viewmodels

◦ parentID:
"the parent id of the view"

◦ idsCreating:
["id13", "id28"]: the list of ids that are the parentIds of other views

3

◦ customData:
{}: an object that can be used to customize the view instance

• Import descriptor:

◦ setupName:
"the setup name we want to import"

◦ parentID:
"the parent id where the setup view will be inserted"

◦ setupParams:
[]: a list of setup parameters

◦ requetsPath:
[0,1]: the path of a request whose child the setup’s request will become; when undefined, the
imported setup’s request will be added to the root request list

Models
The framework contains models which can be used to interact with the server.

WebAppModel

The webAppModel is created at start and is given to the applications in their load functions.

It contains functions to interact with the configuration files.

SetupModel

The setup model handles every setup operation from listing setups to creating new ones and saving
them.

It uses the ImportResolver when loading a setup that contain imported setups. When importing a
setup:

• The setup parameters have to be resolved.

• The request path has to be shifted by the number of new requests.

• The viewmodel indexes have to be shifted by the number of new viewmodel instances.

• The view ids have to be made unique.

• The imported setup html must be inserted as a view.

• The css files have to be merged.

WebAppBase

A class that can be used as a base class of applications.

Its load function can be called with a list of javascript files, a start function and the API. It will
import the javascript files and call the start function with a callback that must be called when it is
finished.

4

Common Viewmodels

FileSelector

The FileSelector viewmodel can be used to create a file browser.

Common Views
Framework provides common view elements that all applications can use.

Aligners

• Base Aligner is responsible for orienting its child views horizontally or vertically, based on the
custom data, the child views are positioned proportionately according to the custom data or
equally if it is not given. It also provides jQuery UI resizable functionality.

• ElementAligner is derived from the Base Aligner, implementing the same functionality,
difference is the subviews given in custom data are the ones aligned, not the child views.

AutoGUI

AutoGUI is a minimalist display generator for responses. Tree-based display which uses indentation
and different colors to separate different levels of the tree, children are nested.

Nodes can be collapsed. Initially the root’s first child subtree is fully expanded.

When a node (or a separator line) which is not a leaf node is clicked the following happens:

• If all of the children are expanded, then they will be collapsed

• If all children collapsed, or only one is expanded then all will be expanded, but only the
immediate children, their children may be expanded or not based on if it was previously
expanded or not.

When a node which is a leaf node on the lowest level is clicked, a prompt pops up with an input box
to change values.

Basic Button

Standard HTML Button element with or without image and/or text.

Checkbox or Switch

Standard HTML Checkbox element with or without an image of Switch and/or text.

ComboBox

Regular combobox, which can have a predefined list and a default value.

5

Condition

A view that only shows one of its connected child views based on the state of the connected
viewmodel.

Div

Regular container element for other visual elements.

Labels

Label: Standard HTML Input element displaying value of a DataSource element. Based on custom
data it may or may not be changed.

Scroll

A scroll bar view that can be used to scroll data that is not currently present in the html.

Status LED

Displays an image assigned for certain members of enumerated Status LED DataSource types with or
without a Label.

Tables

• Vertical Table: A table visual element, where rows may be subviews. Data sorting and filtering
can be set up.

• Element Table: Based on the Vertical Table. The columns may be subviews.

• Element Table for Large Data: Based on Element Table and Scroll class. Implements streaming
data from a larger collection.

Tabs

• Base Tabs: A jQuery UI Tabs view.

• Tabs with Data: Either a horizontal or vertical tabs view that display data received from a
connected viewmodel.

Json editor

A Json editor view that can be used to edit json objects with a json schema.

Code editor

A text editor with syntax highlighting, validation and formatting.

Context menu

A context menu view.

6

FileSelector

A file browser view that can be used to browse the http server.

Utilities
The framework contains common functions, classes and resources that can be used anywhere.

Utilities

Contains useful functions, like object copying, string operations, etc.

TaskUtils

Contains several classes and functions that make it easier to manage asynchronous operations

FileLoader

A small class that makes it easier to load and save a text file.

JsonLoader

A small class that makes it easier to load and save json files.

JsTreeUtils

Contains useful functions for dealing with jsTrees.

LineDrawer

A utility class that draws svg arrows. Needs two endpoints to draw the arrow. The endpoints are
javascript objects that can have the following members:

• getOffset- the only required function, which returns the endpoint’s offset

• multiple- whether multiple offsets are given; the nearest two will be connected by the arrow

• getOffsets- if multiple offsets are given, this function must return them

• getZIndex- the z-index of the endpoint: the arrow will choose the biggest from its two endpoints
+ 1

• style: either horizontal or vertical

• isEnabled- whether the endpoint is visible: if one of them is not visible, the arrow is not drawn

ViewUtils

Contains utilities that deal with views. Also contains the dialog classes.

Common functions usable by views:

• checkVisibility(conditionViewmodel, id):
Hides or shows the element depending on the condition viewmodel’s state.

7

• addLabel(id, text, class):
Adds a label at the top of the element.

• getViewmodelsFromExpectedInteface(viewmodelList, classname):
Returns the ordered list of viewmodels for the given view class. The view class must implement
the static expectsInterface function.

• processCss(customData, parentId):
It will insert css rules that only apply below the element with parentId.

• applyCss(customData, id):
Adds the customData.css to the element style attribute.

• jumpToEditor(id):
Scrolls the viewport so the element with the id becomes visible.

DataSourceUtils

Contains functions that convert the help and request to a jsTree specific data structure.

Also contains functions that check response structure equality and whether a given response
corresponds to a given request.

RequestBuilderFromHelp_full

Creates a large request from the DataSource help.

RequestBuilderFromHelp_manual

This is a utility class that is used to edit the whole request and the filters as well. It uses the help to
validate requests and to automatically guess parameters when their typedescriptor is given in the
help.

HelpTreeBuilder

Creates a tree from the flat help.

CustomizableApp
CustomizableApp can display a setup.

MVVM Pattern Synopsys
MVVM stands for Model-View-View Model. This pattern reverses the coupling direction, which
allows multiple View Models to use a Model, multiple Views use a View Model. This approach also
enables swapping components dynamically, and introducing isolated unit testing.

The CustomizableApp uses a component called Binder whose main task is to connect the views and
viewmodels. The Binder also feeds the Models with the data from the server and notifies the Views
to refresh themselves; hence it accompanies the application in the Main.js file.

8

The file and folder structure is straight forward, in the root of CustomizableApp the main, model and
base view and viewmodel files are placed, and all the other views and viewmodels are located in a
subfolder named accordingly.

General functionality
The main viewmodel and view is first initialized: this will create the view and viewmodel instances
based on the setup.

After the initialization, the applicationCreated function of all viewinstances is called. Finally, the
main loop starts in the binder which periodically calls the refresh method of the view instances.

WARNING
If there are asynchronous calls in applicationCreated, it will not necessarily be
completed before the first refresh.

View Interface
A view is a JavaScript class that has the following public methods:

9

1. A Constructor accepting the following arguments:

a. List of connected viewmodels

b. Node ID to incorporate into the emitted HTML

c. Node ID of the container element

d. Custom Data

2. applicationCreated

3. refresh(fullRefresh)

The method applicationCreated is called when the View can start emitting actual HTML into its
container element.

The method refresh is called when new data is available in the Model, and the View can fetch it
from a viewmodel to refresh the display. The parameter fullRefresh will indicate if the structure of
the data changed, so the visual element can be rebuilt accordingly.

If the view implements certain static functions, then better integration is provided into GuiEditor.
See 2.4.2.2.8 for more information.

Viewmodel Interface
A viewmodel is a JavaScript class that has the following mandatory public methods:

1. A Constructor accepting the following arguments:

2. Base viewmodel

3. Options

4. Functions that get called on creation:

5. setSelectionToControl(object): sets the selection connections object (the request pointed to by
the selection path) one at a time

6. setReponseDataPath(index, path): sets the data connections one at a time

7. setBinder(binder): sets the binder whose notifyChange method can be called

8. An interface for the Views implementing functions such as:select(index), getTable(), getList()

If the viewmodel implements certain static functions, then better integration is provided into
GuiEditor. See Sanity Checker for more information.

Available Viewmodels

AutoGUI

Simply offers the raw response to be drawn by the view. Its primary aim is a predictable display of
data. Not meant for usage other than development. It feeds the AutoGUI view with data containing
every element below its data connection point, recursively.

10

Condition

The viewmodel serving the same named view. If the response was filtered its state will be false. If it
was a Boolean value, it will use it as its state.

DynamicTable

DynamicTable can change its headers in runtime. This is necessary, as the headers are set (when the
views are initialized) before the first response arrives.

It also has options for data manipulation and separator insertion.

Element Relay

This viewmodel expands fields from an element. In fact, it turns an element enumeration into a list,
which can be fed into views that are getList capable.

Filter and Sort

Altering data for view with filtering and/or sorting.

Flex Aligner

Providing percentages to position the connected views.

Scroll for RangeFilter

Extra scrollbar handling for windowing tables from the response.

Table for Large Data

This viewmodel is streaming rows from the response to the view on the fly, speeding up display on
view side.

GuiEditor
The GuiEditor application can be used to create and edit the setups which are displayed on the
CustomizableApp GUI (for more information, see Web Application Interface).

WARNING
Editing these files manually will cause undetermined behavior both in
GuiEditor and in the CustomizableApp GUI.

GuiEditor also contains small tools to create or edit available views and viewmodels, and to edit the
configuration file of the GUI.

Architecture
GuiEditor uses an MVVM-like architecture similarly to CustomizableApp.

11

Figure: Class hierarchy

12

Figure: Class interactions

Classes and Their Roles
The Main module creates the main components and initializes them when the load function gets
called by the framework.

Models

Models contain the parsed setup data and functions that manipulate them directly.

Every single view, viewmodel and import descriptor has its own model. Every model has a
corresponding editor. The model also contains the editor’s desktop data read from the Desktop.json
file.

They handle changes which apply only to their part of the setup but happen elsewhere.

For example, when a request gets deleted, the data path will no longer be correct in the viewmodel
descriptors, so we have to update them.

The main model also handles resources and loading / saving / deleting / creating setups.

Model (M)

Config, setup, view and viewmodel files handling. It creates the editor models at startup and when
adding new editors.

Viewmodel Editor (M_VME)

Handles request data and selection connections and the custom data for the viewmodel descriptor.

Connections are references to the nodes of the request tree, for example, [1,2,3] means the 4th child
of the 3rd child of the 2nd request.

Logic:

• adding, deleting, reordering connections

• deleteConnectionsWithPrefix:
When deleting a request, we have to remove all connections that point to it or one of its
descendants.

• updateConnections:
When a request is deleted or added, we have to update the references to the tree.e.g: we delete
[1,2,3], then [1,2,7,8] becomes [1,2,6,8]e.g: we add [1,2,3], then [1,2,7,8] becomes [1,2,8,8]

• moving requests:
consists of three parts:

◦ we change the fromPrefix to toPrefix

◦ or update the prefix: a node was deleted and a new node was added, we already know how
to update it using the updateConnections

13

View Editor (M_VE)

Handling viewmodel connections, subviews and the custom data for the view descriptor.

Viewmodel connections are represented as an index, the view has a parentID and an idsCreating
list.

Logic:

• adding, deleting, reordering viewmodel connections

• viewModelDeleted:
when deleting a viewmodel, the index of the preceeding viewmodels has to be decreased in the
descriptor

• the logic for handling subviews is in the corresponding viewmodel

Import Editor (M_IE)

Import descriptor handling. Similarly to viewmodels, the request path needs to be kept up-to-date.

Viewmodels

Viewmodels create an interface between the models and the views. They contain the logic for
handling changes in the setup.

They handle the events that occur in the views (for example, creating a request after a drag and
drop).

They also convert the descriptors to a format that the views can visualize.

Main viewmodel (VM)

Handling the setups, mainly a proxy to the model, refreshes the views through the binder on setup
switching and creating a new setup.

Request Editor (VM_RE)

Mainly a proxy for utility classes that handle editing the request and filters (see
RequestBuilderFromHelp_manual) and creating the help tree (see HelpTreeBuilder).

It converts the request, filters and help trees into a format that can be used with jsTree.

It can be used to find requests that have selection or filter (so we can highlight them in the view).

It also contains convenient functions that convert a request to a sizeOf or a dataElementPresent
request.

Editor Container (VM_EC)

Handles creating, editing and deleting the view, viewmodel, import and html editor viewmodels
(both in the beginning and one at a time).

14

It is also a proxy to the SanityChecker.

It handles listing available view and viewmodel classes, and the available setups.

Handles deleting a view-view connection (before connections are replaced with a new one)

Handles renaming view-view connections.

Logic:

• When a view or import gets deleted, we have to delete the following connections:

◦ The connections to the subviews (only in case we deleted a view)

◦ The connection to the parent view

Import Editor (VM_IE)

Only a proxy to its model.

Viewmodel Editor (VM_VME)

Mainly a proxy to its model. Also contains functions that the view can use to show a tooltip, create
the jsTree, and to check if it is valid based on its custom data and connections.

View Editor (VM_VE)

In addition to being a proxy to its model and providing similar functions as the viewmodel editor, it
also handles the logic behind view-view connections:

• Child id generation:
The child ids will always have the form: parentId_classname_connectionIndex.

• Renaming child ids:
This is used to keep the ids valid. When an id changes, it means we have to change the ids of the
connected subviews.

• Child view order changed (from, to):
This happens when inserting, removing or reordering the child views. We rename the
connections betweeen the two indexes. We actually simulate the renaming, since only the
indexes of the child connections change by either +1 or -1 depending on the relation of the
indexes.

• Cycle detection:
When connecting this view to another, the parentId will change. If one of the original child ids
is a prefix of the new parentId, then we have created a cycle.

Html Editor (VM_HE)

Handles accessing the html and css of the setup and the view connections.

When the html changes, the ids are collected. These can be used for view connections. In order to
keep existing connections, we create a mapping between the old ids and the new ones.

15

Sanity Checker (VM_SC)

Handles the validation of views, viewmodels, their connections and custom data based on
descriptors that are obtained by static functions of the classes.

These descriptors are the following:

• class.getHelp:
return the help info as a string

• class.getCustomDataSchema:
return the json schema that describes the custom data of the view or viewmodel

• viewmodelClass.providesInterface:
return a list of function names that can be called by the connected views

• viewmodelClass.expectsConnection:
return a description of connections, see CViewModel_TableForLargeData.expectsConnection for a
complex example

• viewClass.expectsInterface:
return a list of expected interfaces, see CView_BasicButton.expectsInterface for an example

In the beginning, it imports all available javascript files of the viewmodels and views.

It can also be used to import files one at a time. This is used when saving javascript files in content
editor, which validates the syntax and updates the validation functions.

Content Editor (VM_CE)

Handles the creation, loading and saving of the files for views and viewmodels.

We store the open files in a hashmap. Each entry contains the file loader, the file name, whether the
file was edited, and whether it is already saved. When an action happens (a file gets saved for
example), we simply update the appropriate parts (the file becomes saved in this example).

Most actions, like content changes, saving or closing an editor use the hashmap ids. However, the id
is not always known (for example, when creating a new file), so we also store the name-id pairs.
This is useful when we try to open or delete an already opened file.

When saving a file, we use the sanity checker to try to import the file. This shows if the file has
syntax errors.

UIConfig Editor (VM_U)

Handles the loading and saving of the UIConfig.json. The json schema descriptor of the UIConfig can
also be found here.

Views

The views display the setup.

The request appears as a jsTree.

16

The view, viewmodel, import and html editors are draggable boxes which can be collapsed and also
contain jsTrees that represent the corresponding part of the setup.

The settings of the editor boxes are stored in the Desktop.json file of the setup.

Common view functions include the searching, handling the z-index changes and pressing the
delete key.

Main view (V)

The main view of GuiEditor. It is responsible for switching between GuiEditor applications and
handling setups (loading, creating, saving, etc).

Also stores the currently focused editor which can handle delete key press and z-index changes.

Request Editor (V_RE)

The view that is used to edit the request. The help and request jsTrees and their event handling
functions can be found here.

There are also functions for handling changes that happens to the request outside this view.

Element Editor (V_EE)

A JSON editor for requests that also implements the common editor functions.

Trick: since the editor can be closed both from outside and from the editor itself, we bind a handler
to the "remove" event of the editor.

Filter Editor (V_FE)

The filter editor for requests. It contains the jsTree which represents the filter and the functions
that handle the events that occur on the tree.

Trick: copying a node in the jsTree will call a callback. If we recreate (delete and create again) the
tree in this callback we get errors, since jsTree will try to call other methods on the now non-
existing tree. So we use a zero timer to recreate the tree as the event queue will only be processed
when all function calls complete.

Filter Element Editor (V_FEE)

Similarly to V_EE it is a JSON editor that edits a single part of a filter.

Editor Container (V_EC)

This is the central view that handles communication between the different editors. It is also a proxy
to the connections view. The context menu, and custom data editor views and their options are also
located here.

17

Base Editor

The base view for the small editors: view, viewmodel, import, html.

It contains as much common functionality as possible: the common view and editor functions, the
context menu and custom data editing functions.

View (V_VE), Viewmodel (V_VME), Import (V_IE) and Html (V_HE) Editors

They are the editor boxes that visualize the corresponding parts of the setup.

Connections View (V_C)

Handles the connections between objects. A connection consists of its two endpoints and a
LineDrawer instance (see LineDrawer). The connections are stored in a list.

When adding a connection, we only know one of its endpoints directly and have some information
about the other end. So the endpoint we add will contain the connection type and an identifier that
Editor Container will use to find the other endpoint. The identifier can be a completely different
data type across connection types.For example in View-Viewmodel connections, the identifier is
simply the viewmodel index that the view is connected to. But the identifier of a Reuqest-Viewmodel
connection is actually a function that returns a path to the request which will be the other endpoint
of the connection.

Endpoints also store the object from which they originate, so after deleting (or moving) an object
(for example a view editor), we simple delete (or refresh) those connections whose either
endpoint’s object is the deleted (or moved) object.

A method where we hide all objects and show only those that can be reached from the given object
or from which the given object is reachable is also implemented here.

Base Content Editor

The base class for view and viewmodel content editors. It handles the tab and panel manipulations
and saving the edited content.

Trick: the tab ids are the same as the keys of the hashmap of the Content Editor viewmodel.

View and viewmodel content editors (V_VCE, V_VMCE)

These views handle the visualization of the view and viewmodel content editors that edit the
javascript, html and css files.

Json Content Editor (V_JCE)

A JSON configuration editor view that is used to edit the application configuration files.

Usage

18

Overview
The EPTF Web GUI is developed as a framework for web applications. Currently available web
applications include the new DataSource [6], [7] GUI client, the DsRestAPI Console and GuiEditor.

The framework uses the pull model based DsRestAPI javascript API [4], [5]. However, applications
can provide their own implementation so it is possible to create user interfaces for other services as
well in the framework.

Description of Files in the Feature
The feature includes the following structure:

• CustomizableContent:
Contains custom content for applications. This directory should be writable by the user for
some applications to work correctly.

• Libs:
Contains the 3rd party solutions listed in 3rd Party Libraries

• Utils:
Contains the DsRestAPI (Utils/DsRestAPI/DsRestAPI.js) and other useful implementations
intended for common usage.

• WebApplicationFramework:
Provides the base models for the WebApplications and the framework functionality.

• WebApplications: Contains the applications.

Installation
Installation is not needed. Instead, an http server that can serve the resources and handle the API
requests is required.

The CLL DsRestAPI feature provides such http server, see [5] on how to use it.

Configuration
The main config of the framework, MainConfig.json, is located in the CustomizableContent directory.

Application specific options are contained in their respective customization directories as

19

AppConfig.json.

Specific options will be explained in the descriptions of the components that use them.

The config files can be edited manually or using GuiEditor (see section UIConfigEditor).

Using the Framework

Figure: Available applications

The framework provides functionality to load the available web applications as well as common
and useful functions and classes.

The framework will create the buttons that can be used to switch applications. The currently loaded
web application is displayed with a green background.

Options
The available applications are contained in the MainConfig.json file in the availableApps array. Each
application descriptor must contain a "directory" member, which is the directory where the
application Main.js can be found.

If present the defaultApp option, which should be the name of an application, will be used to load
the specified application at start.

Creating a New Application
A web application must have a Main.js file in a directory that can be served by the http server. The
folder must be present in the availableApps array. This way, the Main.js file will be imported at start.

In the Main.js file, do the following:

1. Create the WebApplications array if it does not exist yet:
var WebApplications = WebApplications || [];

2. Add a new instance of your application to this array:
WebApplications.push(new Your_Application());

3. The instance must implement the web application interface functions described in section
Functionality.

Using the CustomizableApp

20

Figure: The CustomizableApp

The CustomizableApp is used to display setups. Setups describe the user interface that is displayed in
the application. The structure of the setups is described in section Functionality. A basic overview
can be found below.

The aim of this application is to provide very high customizability. Setups can be edited to change
the layout or use other view elements. It is even possible to create new views and viewmodels. All
this can be done with the GuiEditor application (see section Using the GuiEditor).

Basic Overview
The setup contains a request [4], [5] which will periodically be sent to the server.

The data will be displayed by different views, like buttons and checkboxes. Views, like tables and
aligners, are also responsible for the layout.

Viewmodels convert the response received to a data structure that the views can display. They also
handle events which interact with the request, like selection changes or setData commands.

Options
The following CustomizableApp-specific options are available:

1. setup:
The default loaded setup

2. overlayEnabledOnSelect:
Whether an overlay with a loading sign is shown when changing the selection on a requestThe
overlay is displayed until a valid response arrives.

3. overlayEnabledOnSetData

4. overlayOpacity:

21

The opacity of the overlay, it must be between 0 and 1

5. refreshInterval:
The frequency in milliseconds with which requests are sent to the server, or -1 to disable
periodic update (requests are still sent after selection change or setData requests)

6. filesToInclude:
The list of additional javascript files that will be loaded. The DsRestAPI files (or something
implementing the DsRestAPI interface) must be included here.

Using the DsRestAPI Console

Figure: The DsRestAPI Console application

The DsRestAPI Console Application consists of two editor boxes, one for creating requests, and one
to display the response. Below these for help there is a tree to show the relations of the elements of
the DataSource. Above that is a text box to search in the tree.

The Search textbox will filter and highlight all the nodes which match the given text. Searching is
not case sensitive, and partially matched nodes are listed as well. The result tree will show not just
the matching nodes but all the nodes included in the path to get to that node.

After a request is constructed, by pressing the Send Request button a response can be received if it
has a correct JSON syntax. If the request is syntactically incorrect an alert will inform the user.
When the request is semantically incorrect, the response will be a JSON object containing an error
message.

When the Full Help to Request button is clicked the Request editor box is filled with a request to
get data from the full help tree.

With the Get help in JSON format button in the Response editor box the help tree will appear as a
JSON object.

22

When a correct request is given indentation can be added with the Prettify request JSON button.

If the response is not an error, a visual element AutoGUI will show the result.

Using the GuiEditor
The GuiEditor application can be used to create and edit the setups, viewmodels and view elements
which are displayed in the CustomizableApp.

Editors
The tabs at the top can be used to switch between different editors in the application.

The available editors are:

• Setup Editor:
it can be used to create and edit setups.

• View Setup as Text:
shows the edited setup as a JSON string, which can’t be directly edited.

• Viewmodel Editor:
it can be used to create and edit viewmodel classes which can then be used in the Setup Editor.

• View Editor:
it can be used to create and edit views including their html, css and javascript files.

• UIConfig Editor:
some GUI settings can be edited here.

Setup Editor

23

Figure: Setup Editor

The Setup Editor is where the GUI descriptors (the setups) can be edited The Setup Descriptor.

The editor contains the following elements:

1. The editor switching tab.

2. Buttons to create, load and save setups.

3. Buttons that interact with the currently edited setup.

4. The DataSource help tree, which lists all known dataElements that can be queried in a getData
request [6], [7].

5. The request represented as a tree [4], [5].

6. The viewmodels of the setup.

7. The views of the setup.

8. The imported setups.

9. The setup html and css editor.

10. The filter editor.

11. A legend is available by clicking in the bottom right corner.

General GUI Elements and Operations

Drag and Drop

Figure Drag and drop: insert as child, sibling or not allowed

Drag and drop is allowed between certain trees. A checkmark will show whether the operation is
allowed.

A small triangular marker will indicate the position to which the node will be dropped.

If it points directly at the target node, it will be inserted as the child of the target.

If it points above or below the target node, then it will be inserted as a sibling of the target.

Context Menu

Right-clicking some elements will bring up a context menu that contains useful options for editing
the setup.

24

JSON Editor

Figure 1. The JSON editor

Json editor can edit json data based on a json schema.

To add or remove members of an object, the Object Properties button can be used to toggle a list of
available members or to create new ones when the schema allows it.

Code Editor

25

Figure 2. The code editor

It can be used to edit textual data with syntax highlighting where available.

Editing the Request

The request will be used to query the server for data, which can be shown on the GUI. To get more
familiar with DsRestAPI requests, please see [4] and [5].

Requests that have selection have a red left border. Request with filters have a violet top border.
Request with rangeFilters have a green bottom border. Requests with writable info have blue right
border.

When hovering over a request tree node, the request json will be displayed in a small popup as text.

Methods of Editing the Request

1. Drag and drop:
The fastest way to edit the request is to use drag and drop from the help tree to the request tree.
A darker background will show the area of the request tree. GuiEditor will try to guess the
values of the parameters if the reference type name is given in the help descriptor of the

26

parameter. It will not allow the request to be inserted if a parameter with a reference type is
missing. To force insert a request, hold down the ctrl key while dropping the node.

WARNING
The parameter values will be left undefined, they have to be filled in
manually. To delete a request, drag and drop it to the help tree.

2. Add empty request button and Add child request menu element:
If the help is not available or not complete, these buttons can be used to insert empty requests
which can then be edited with a json editor.

Menu Options

When right-clicking on a single request, the following options are available:

• Edit request:
Open a json editor that can be used to edit the request.

• Edit filter:
Open the filter editor to edit the filter of the request.

• Add child request:
Adds an empty child request.

• Copy:
Inserts the same request again. This is useful when only a single parameter must be changed
but everything else is the same.

• Delete:
Removes the request.

• Convert to sizeOf / dataElementPresent:
The sizeOf and dataElementPresent requests are hard to create using the drag and drop or
manual methods. These options make it easy.

• Expand / Collapse all:

27

Opens or closes all nodes of the tree.

Editing the Filters

Filters are used to disable some parts of the request. To get more familiar with DsRestAPI filters,
please see [4].

On the filter editor, the Create button will create the filter whose dataValue is true by default.

Help tree elements can be dragged to the nodes of the filters. This will convert a dataValue to a
request.

Request tree elements can also be dragged to the filter to create a reference to the parent requests.

Similarly to editing a request, the filter parts can also be edited with a json editor using the "Edit
filter" option of the context menu.

Manual editing of the filter structure is possible with the other options in the context menu.

The button next to the close button will open the context menu of the root of the filter.

Editing the Viewmodel Instances

Viewmodels are used to convert the data returned for the request to something that views can
understand. For example, a table viewmodel will convert the response, which is a tree, to a two-
dimensional array.

Data connections are used to tell a viewmodel where to get its data. Selection connections are used
to control the selection of the given request.

Viewmodels can be customized using their so called custom data. The custom data is a json object
that can be used by the viewmodel to define or alter its behavior. For example, a table viewmodel
might be customized to transpose the table or make the first row of the table the header. Most
viewmodels provide a json schema which describe the available custom data options.

28

Viewmodels can be added with the Add viewmodel… button. A dialog will appear where the
viewmodel class must be chosen. Some classes have help information which can also be viewed
here.

To create a viewmodel connection, simply drag a request below the Data or Selection connections
node.

WARNING The order of the connections matter.

Data and selection connections will be represented with black and red arrows respectively.

The custom data of the viewmodel can be edited using the code editor with the Edit button or using
the json editor with the appropriate context menu option.

Right clicking on the viewmodel editor title will show a context menu. The following options are
available:

• Edit with schema:
Edit the custom data with the json editor.

• Copy:
Create a new viewmodel with the same class and custom data.

• Change class:
Change the class of the viewmodel.

• Show only this:
Hides all editors that are not connected to this one.

• Show all:
Show all hidden editors.

• Delete:
Remove the viewmodel.

Editing the View Instances

Views are the GUI elements that will appear on the screen. Views can be nested into each other. For
example, connecting a button to an aligner will insert that button into the aligner on the GUI.

The custom data of a view can be used to alter how the view behaves or looks. For example, the
custom data of all views can contain a css field that can be used to alter the look of that single view
instance.

Views can be added with the Add view… button similarly to adding a viewmodel.

To connect a viewmodel to a view, simply drag the viewmodel’s View connection point below the
Viewmodel connections of the view.

To connect another view as a subview, drag the other view’s Child of… node to the view’s Parent
of… node.

The connections between views are shown as green arrows.

29

WARNING The order of both the viewmodel and view connections matter.

The custom data can be edited the same way as for the viewmodels. The context menu also contains
the same options.

Editing the Setup html and css

The setup html and css can be used to define the base of the GUI. Views can only appear inside the
setup html, so at least one div with an id is required.

The html editor can be used to edit the html and css of the setup using the code editor.

The ids of the html will be shown in the tree. Views can be connected to these ids by dragging their
Child of… node and dropping it on a node in the tree. These connections are represented as light
green arrows.

Importing Setups

Setups can be imported using the Import setup… button.

The imported setup must be connected to a view or the setup html. This can be done by dragging
the Import into… node to the Parent of… node of a view or a node of the html editor.

A request can also be connected to the import by dragging a request to the Request connection
node. This way, the request of the imported setup will be inserted below the connected request, so it
is possible to write generic setups, which do not work by themselves, but can be imported.

The context menu contains options to delete the import or change the imported setup.

Searching

The Search… button can be used to search for any kind of string in the setup. When the string is
found somewhere, that part of the GUI will be highlighted.

For example, searching for the string ``button'' will find all requests that query a button but also
all views that are buttons.

The Clear search button will clear the search results.

Validating

Some views and viewmodels implement validating functions which are checked when their custom
data or connections change. Description of these functions can be found in section Functionality.

Invalid views and viewmodels will have a red border. When hovering over their title, the cause of
the invalid state will be shown.

30

Viewmodel Editor

Figure: The Viewmodel Editor

The Viewmodel Editor makes it possible to create and edit custom viewmodel classes. The interface
that viewmodels must implement are described in Viewmodel Interface.

The following buttons can be found in the editor:

• New / Load / Save / Save as:
They all function as expected. Unsaved files will be shown with red letters.

• Load template:
With the load template button, a built-in viewmodel can be loaded and saved as a custom
viewmodel.

WARNING
The viewmodel class name must be changed, otherwise either the original or
the new one will be imported but not both.

For the custom viewmodel to appear in the Setup Editor the following conditions must be met:

• The edited file must be syntactically correct. This will be checked after saving it.

• The first line must contain the class definition:
function ClassName(p_viewmodel, p_customData) {

View Editor

31

Figure 3. The View Editor

The Viewmodel Editor makes it possible to create and edit custom views including their html, css
and javascript files which appear on another tab as three different editors. The interface that views
must implement are described in View Interface.

Everything else works the same way as in the Viewmodel Editor.

The first line of the javascript file of the view must be something like:
function ClassName(p_viewmodels, p_viewId, p_parentId, p_customData) {

UIConfig Editor
This editor can be used to edit the config files of the applications and the MainConfig.json. For
details about the config file, please see section Configuration.

Online Help
The Online help regarding the configuration and usage of DsRestAPI can be found here.

Structure of the source code
The source code is organized into the following structure:

• htdocs

Contains the files of the EPTF Web GUI. See 3.2 for more details.

• project

A placeholder.

32

http://ttcn.ericsson.se/TitanSim/Help/StartUp_and_Use/Controlling_TitanSim/Using_TitanSim_Data_Source_REST_API.html

• doc

A placeholder.

License files:

Name Purpose

license.txt File containing the license information _

epl-v10.html_ The Eclipse Public License

Abbreviations
API

Application Programming Interface

CLL

Core Library

EPTF

Ericsson Performance Test Framework

GUI

Graphical User Interface

JSON

JavaScript Object Notation

REST

Representational State Transfer

SUT

System Under Test

TCC

Test Competence Center

TitanSim

New synonym for the EPTF Framework

TTCN-3

Testing and Test Control Notation version 3

UI

User Interface

XML

33

Extensible Markup Language

XSD

XML Schema Definition

References
[1] RFC 6733
Diameter Base Protocol, October 2012

[2] RFC 3261
SIP: Session Initiation Protocol, June 2002

[3] EPTF Core Library for TTCN-3 toolset with TITAN, Function Specification

[4] EPTF CLL DsRestAPI, Function Description

[5] EPTF Core Library DsRestAPI, User Guide

[6] EPTF CLL DataSource, Function Description

[7] EPTF CLL DataSource, User Guide

34

http://www.ietf.org/rfc/rfc6733.txt
http://www.ietf.org/rfc/rfc3261.txt

	EPTF Web GUI, Function Description
	Table of Contents
	System Requirements
	3rd party libraries

	Functionality
	DsRestAPI
	WebGUI Framework
	General Functionality
	Web Application Interface
	The Setup Descriptor
	Models
	Common Viewmodels
	Common Views
	Utilities

	CustomizableApp
	MVVM Pattern Synopsys
	General functionality
	View Interface
	Viewmodel Interface
	Available Viewmodels

	GuiEditor
	Architecture
	Classes and Their Roles

	Usage
	Overview
	Description of Files in the Feature
	Installation
	Configuration
	Using the Framework
	Options
	Creating a New Application

	Using the CustomizableApp
	Basic Overview
	Options

	Using the DsRestAPI Console
	Using the GuiEditor
	Editors
	Setup Editor
	Viewmodel Editor
	View Editor
	UIConfig Editor

	Online Help
	Structure of the source code

	Abbreviations
	References

