
Chi Metamodel Reference Documentation (Incubation)

Copyright (c) 2010, 2021 Contributors to the Eclipse Foundation

Version 2021-10-19

Contents

1 Introduction 5

2 EMF model constraints 6

2.1 Addressable expressions . 6

3 Chi metamodel 7

3.1 Package chi . 7

3.1.1 ChiIdentifier (datatype) . 7

3.1.2 ChiNumber (datatype) . 7

3.1.3 ChiRealNumber (datatype) . 8

3.1.4 BinaryOperators (enumeration) . 8

3.1.5 ChannelOps (enumeration) . 10

3.1.6 StdLibFunctions (enumeration) . 10

3.1.7 UnaryOperators (enumeration) . 15

3.1.8 AssignmentStatement (class) . 15

3.1.9 BaseFunctionReference (abstract class) 16

3.1.10 BehaviourDeclaration (abstract class) . 16

3.1.11 BinaryExpression (class) . 17

3.1.12 BinaryOp (class) . 22

3.1.13 BoolLiteral (class) . 22

3.1.14 BoolType (class) . 23

3.1.15 BreakStatement (class) . 23

3.1.16 CallExpression (class) . 24

3.1.17 ChannelExpression (class) . 25

3.1.18 ChannelOp (class) . 25

1

3.1.19 ChannelType (class) . 25

3.1.20 ChiObject (class) . 26

3.1.21 CommunicationStatement (abstract class) 26

3.1.22 ConstantDeclaration (class) . 27

3.1.23 ConstantReference (class) . 28

3.1.24 ContinueStatement (class) . 28

3.1.25 CreateCase (abstract class) . 29

3.1.26 Declaration (abstract class) . 29

3.1.27 DelayStatement (class) . 30

3.1.28 DictType (class) . 30

3.1.29 DictionaryExpression (class) . 31

3.1.30 DictionaryPair (class) . 31

3.1.31 DistributionType (class) . 32

3.1.32 EnumDeclaration (class) . 32

3.1.33 EnumTypeReference (class) . 33

3.1.34 EnumValue (class) . 33

3.1.35 EnumValueReference (class) . 33

3.1.36 Expression (abstract class) . 34

3.1.37 FieldReference (class) . 35

3.1.38 FileType (class) . 35

3.1.39 ForStatement (class) . 36

3.1.40 FunctionDeclaration (class) . 36

3.1.41 FunctionReference (class) . 37

3.1.42 FunctionType (class) . 38

3.1.43 IfCase (class) . 39

3.1.44 IfStatement (class) . 39

3.1.45 InstanceType (class) . 40

3.1.46 IntType (class) . 40

3.1.47 IteratedCreateCase (class) . 40

3.1.48 IteratedSelectCase (class) . 41

3.1.49 ListExpression (class) . 41

3.1.50 ListType (class) . 42

2

3.1.51 MatrixExpression (class) . 43

3.1.52 MatrixRow (class) . 43

3.1.53 MatrixType (class) . 44

3.1.54 ModelDeclaration (class) . 44

3.1.55 Name (class) . 45

3.1.56 Number (class) . 45

3.1.57 PassStatement (class) . 46

3.1.58 Position (class) . 46

3.1.59 ProcessDeclaration (class) . 47

3.1.60 ProcessInstance (class) . 48

3.1.61 ProcessReference (class) . 48

3.1.62 ProcessType (class) . 49

3.1.63 ReadCallExpression (class) . 49

3.1.64 RealNumber (class) . 50

3.1.65 RealType (class) . 51

3.1.66 ReceiveStatement (class) . 51

3.1.67 ReturnStatement (class) . 52

3.1.68 RunStatement (class) . 52

3.1.69 SelectCase (class) . 53

3.1.70 SelectStatement (class) . 53

3.1.71 SendStatement (class) . 54

3.1.72 SetExpression (class) . 54

3.1.73 SetType (class) . 55

3.1.74 SliceExpression (class) . 55

3.1.75 Specification (class) . 56

3.1.76 Statement (abstract class) . 57

3.1.77 StdLibFunctionReference (class) . 57

3.1.78 StringLiteral (class) . 64

3.1.79 StringType (class) . 64

3.1.80 TerminateStatement (class) . 64

3.1.81 TimeLiteral (class) . 65

3.1.82 TimerType (class) . 65

3

3.1.83 TupleExpression (class) . 66

3.1.84 TupleField (class) . 66

3.1.85 TupleType (class) . 67

3.1.86 Type (abstract class) . 67

3.1.87 TypeDeclaration (class) . 68

3.1.88 TypeReference (class) . 68

3.1.89 UnaryExpression (class) . 69

3.1.90 UnaryOp (class) . 70

3.1.91 UnresolvedReference (class) . 70

3.1.92 UnresolvedType (class) . 71

3.1.93 Unwind (class) . 71

3.1.94 VariableDeclaration (class) . 72

3.1.95 VariableReference (class) . 73

3.1.96 VoidType (class) . 73

3.1.97 WhileStatement (class) . 74

3.1.98 WriteStatement (class) . 74

4 Legal 76

Bibliography 76

4

Chapter 1

Introduction

Chi is a modeling language for describing and analyzing performance of discrete event systems
by means of simulation. It uses a process-based view, and uses synchronous point-to-point
communication between processes. A process is written as an imperative program, with a syntax
much inspired by the well-known Python language.

Chi is one of the tools of the Eclipse ESCET
TM

project [2].

The Eclipse ESCET project, including the Chi language and toolset, is currently in the Incubation
Phase [1].

This documentation is out of sync with respect to the meta model.

Add general introduction texts about Ecore models/diagrams, from position metamodel, similar
to position and CIF metamodel documentation.

5

Chapter 2

EMF model constraints

In this chapter, the static constraints on a Chi ecore model are listed.

2.1 Addressable expressions

In the ecore model, attributes AssignmentStatement.lhs (Section 3.1.8) and ReceiveStatemen-
t.data (Section 3.1.66) should be addressable, they should refer to variables that can be as-
signed a value. In the ecore model however, these attributes have the generic Expression (Sec-
tion 3.1.36) type. In this section, additional constraints are specified to consider an Expression
(Section 3.1.36) object as being addressable.

The (recursive) constraints are:

1. If the expression is a VariableReference (Section 3.1.95), the expression is addressable.

2. If the expression is a BinaryExpression (Section 3.1.11), and its BinaryExpression.operator
(Section 3.1.11) attribute is BinaryOperators.Projection (Section 3.1.4), and the left-hand
side (BinaryExpression.left (Section 3.1.11)) is a VariableReference (Section 3.1.95) or a
BinaryExpression (Section 3.1.11), and the left-hand side is addressable, the expression is
addressable.

3. If the expression is a TupleExpression (Section 3.1.83), and all of its fields are addressable,
the expression is addressable.

6

Chapter 3

Chi metamodel

3.1 Package chi

Classes and attributes description of the EMF model of the discrete event Chi simulation lan-
guage.

Package URI http://eclipse.org/escet/chi

Namespace prefix chi

Sub-packages none

3.1.1 ChiIdentifier (datatype)

Not yet described.

Name

Instance class name java.lang.String

Basetype

Pattern

3.1.2 ChiNumber (datatype)

Unsigned number literal value.

Name ChiNumber

Instance class name java.lang.String

Basetype string

Pattern 0|([1-9][0-9]*)

7

3.1.3 ChiRealNumber (datatype)

Non-negative real number literal value.

Name ChiRealNumber

Instance class name java.lang.String

Basetype string

Pattern (0|([1-9][0-9]*))((\.[0-9]+)|((\.[0-9]+)?[eE][\-\+]?[0-9]+))

3.1.4 BinaryOperators (enumeration)

Available binary operators in the expressions. Type constraints are listed in the BinaryExpression
(Section 3.1.11) class documentation.

literal Addition (default)
Addition (a + b).

literal Conjunction
Short circuit disjunction (a ∨ b).

Implementations must guarantee short circuit evaluation of this binary operator. Note
that when manipulating expressions, the operands may only be swapped if the resulting
expression evaluates to the same value as the original expression did, when using short
circuit evaluation semantics for both the original and the resulting expression.

literal Disjunction
Short circuit disjunction (a ∨ b).

Implementations must guarantee short circuit evaluation of this binary operator. Note
that when manipulating expressions, the operands may only be swapped if the resulting
expression evaluates to the same value as the original expression did, when using short
circuit evaluation semantics for both the original and the resulting expression.

literal Division
(Real) division (a/b).

Note that division by zero results in a run-time error.

literal ElementTest
Element test on lists, sets, and dictionaries (a ∈ b).

literal Equal
Equality test (a = b).

literal FloorDivision
Floor division (a÷b ≡ ba/bc). Note that floor division is not the same as truncated division,
and neither is it round-to-nearest integer division.

8

a b a÷ b a mod b
7 4 1 3
7 −4 −2 −1
−7 4 −2 1
−7 −4 1 −3

Note that division by zero results in a run-time error.

literal GreaterEqual
Greater or equal (a ≥ b).

literal GreaterThan
Greater than (a > b).

literal LessEqual
Less or equal (a ≤ b).

literal LessThan
Less than (a < b).

literal Maximum
Maximum operator (amax b).

literal Minimum
Minimum operator (amin b).

literal Modulus
Modulus operator (a mod b ≡ a− b · (a÷ b)).

Note that the following relation holds: a = b · (a ÷ b) + (a mod b). For examples, see the
BinaryOperators.FloorDivision (Section 3.1.4) operator.

Note that it is considered a run-time error if the second operand evaluates to zero.

literal Multiplication
Multiplication (a · b).

literal NotEqual
Not-equal (a 6= b).

literal Power
Power operator (ab).

Note that it is considered a run-time error if one of the following conditions holds during
evaluation:

• the base (a) is zero, and the exponent (b) is negative

• the base (a) is negative, and the exponent (b) is a non-integer number

literal Projection
Projection operation, extracts a value from a container value. Meaning and precise seman-
tics depend on the type of the container, see the BinaryExpression (Section 3.1.11) class
description for details.

literal Subset
Subset test (a ⊆ b).

9

literal Subtraction
Subtraction operator (a− b).

3.1.5 ChannelOps (enumeration)

Operations that may be performed on a channel data type.

literal Receive (default)
Only the receiving operation of a channel is allowed.

literal Send
Only the sending operation of a channel is allowed.

literal SendReceive
Both the sending and the receiving operations are allowed. This value means that the user
explicitly stated allowance of both operations.

3.1.6 StdLibFunctions (enumeration)

Available standard library functions. Parameter and return types are listed in the StdLibFunc-
tionReference (Section 3.1.77) class documentation.

Add a ’channel’ function.

literal Abs (default)
Absolute value function.

literal Acos
Arc cosine function.

Note that it is considered a run-time error if evaluation of the absolute value of the argument
evaluates to a number larger than one.

literal Acosh
Inverse hyperbolic cosine function.

Note that it is considered a run-time error if evaluation of the value of the argument
evaluates to a number less than one.

literal Asin
Arc sine function.

Note that it is considered a run-time error if evaluation of the absolute value of the argument
evaluates to a number larger than one.

literal Asinh
Inverse hyperbolic sine function.

literal Atan
Arc tangent function.

10

literal Atanh
Inverse hyperbolic tangent function.

Note that it is considered a run-time error if evaluation of the absolute value of the argument
evaluates to a number greater than or equal to one.

literal Bernoulli
Bernoulli distribution function.

literal Beta
Beta distribution function.

literal Binomial
Binomial distribution function.

literal Bool2String
Convert boolean value to text.

literal Cbrt
Cubic root function.

literal Ceil
Round up (towards ∞). In other words, it results in the smallest integer value that is not
less than the argument.

literal Close
Close a file.

literal Constant
Constant distribution function (useful for debugging).

literal Cos
Cosine function.

literal Cosh
Hyperbolic cosine function.

literal DictKeys
Retrieve the keys of a dictionary.

literal DictValues
Retrieve the values of a dictionary.

literal DrawBernoulli
Compute a sample according to a Bernoulli distribution.

literal DrawBeta
Compute a sample according to a Beta distribution.

literal DrawBinomial
Compute a sample according to a Binomial distribution.

literal DrawErlang
Compute a sample according to a Erlang distribution.

11

literal DrawExponential
Compute a sample according to a Exponential distribution.

literal DrawGamma
Compute a sample according to a Gamma distribution.

literal DrawGeometric
Compute a sample according to a Geometric distribution.

literal DrawLogNormal
Compute a sample according to a LogNormal distribution.

literal DrawNormal
Compute a sample according to a Normal distribution.

literal DrawPoisson
Compute a sample according to a Poisson distribution.

literal DrawRandom
Compute a sample according to a Random distribution.

literal DrawTriangle
Compute a sample according to a Triangle distribution.

literal DrawUniform
Compute a sample according to a Uniform distribution.

literal DrawWeibull
Compute a sample according to a Weibull distribution.

literal Empty
Tests whether its container argument is a empty. (Works for list, set, dictionary, and
string.)

literal Enumerate
Return a list of pairs, where the first value is an index number and the second value is a
value from its container argument.

literal Erlang
Erlang distribution function.

literal Exp
Exponential function.

literal Exponential
Exponential distribution function.

literal Finished
Returns whether the process instance has finished already.

literal Floor
Round down (towards −∞). In other words, it results in the largest integer value that
does not exceed the argument.

literal Gamma
Gamma distribution function.

12

literal Geometric
Geometric distribution function.

literal Insert
Insert a value in a sorted list.

literal Int2Real
Convert integer number to real number.

literal Int2String
Convert integer number to text.

literal Length
Length of list, set, dictionary, or string.

literal Ln
Natural logarithmic function.

Note that it is considered a run-time error if evaluation of the argument results in a non-
positive number.

literal Log
Logarithmic (base 10) function.

Note that it is considered a run-time error if evaluation of the argument results in a non-
positive number.

literal LogNormal
LogNormal distribution function.

literal Matrix
Construct a matrix from a list.

Is this a stdlib function?

literal Max
Take the maximum value of a list, dictionary, or set.

literal Min
Take the minimum value of a list, dictionary, or set.

literal Normal
Normal distribution function.

literal Open
Open a file.

literal Poisson
Poisson distribution function.

literal Pop
Extract a value from a container.

literal Random
Core random (uniform from [0, 1)) distribution function.

13

literal Range
Construct a list with numbers in the given range.

literal Real2String
Convert real number to text.

literal Round
Round to nearest integer value. If the value is exactly between two integer values, it is
rounded up (towards ∞). The rounding of an argument r may be computed using the
following expression: bx + 0.5c.

literal SampleFunc
Compute a sample of a distribution.

literal SetSeed
Set seed of a distribution.

literal Sign
Sign function.

literal Sin
Sine function.

literal Sinh
Hyperbolic sine function.

literal Sort
Sort a list.

literal Sqrt
Square root function.

Note that it is considered a run-time error if evaluation of the argument results in a negative
number.

literal String2Bool
Convert string containing textual boolean value to boolean.

Note that it is considered a run-time error if the argument is not an ASCII representation
of a CIF boolean value (true or false).

literal String2Int
Convert textual signed integer number to integer number.

Note that it is considered a run-time error if the argument is not an ASCII representation
of a CIF natural number (ChiNumber (Section 3.1.2)), optionally prefixed with the ASCII
representation of a negation (UnaryOperators.Negate (Section 3.1.7)).

literal String2Real
Convert textual real value to a real number.

Note that it is considered a run-time error if the argument is not an ASCII representation
of a CIF real number (ChiRealNumber (Section 3.1.3)), optionally prefixed with the ASCII
representation of a negation (UnaryOperators.Negate (Section 3.1.7)).

literal Tan
Tangent function.

14

literal Tanh
Hyperbolic tangent function.

literal Timeout
Test whether its timer argument has timed out.

Add/replace with timer ready(timer)→ bool, and time left(timer)→real

literal Triangle
Triangle distribution function.

literal Uniform
Uniform distribution function.

literal Weibull
Weibull distribution function.

3.1.7 UnaryOperators (enumeration)

Expression operator with one child expression.

literal Inverse (default)
(Boolean) inverse operator (¬a).

literal Negate
Negate operator (−a).

literal Plus
Unary plus operator (mostly for completeness only.

literal Sample
Sample operator, draws a sample from a stochastic distribution.

Decide where it may be used safely.

3.1.8 AssignmentStatement (class)

Assigns values to variables.

• AssignmentStatement.type The type of the left-hand side and the type of the right-
hand side must be equal. Sequences of values are interpreted as record value.

• AssignmentStatement.count The number of addressed variables at the left-hand side
must either be 1 (in which case the values at the right-hand side are packed in a tuple),
it must be equal to the number of values at the right-hand side (in which case, a number
of one-to-one assignments are performed simultaneously), or the number of values at the
right-hand side must be 1 (in which case the right-hand side is unpacked to the variables
at the left-hand side).

15

EObject
x ChiObject (Section 3.1.20)
x Statement (Section 3.1.76)
x AssignmentStatement

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont lhs [1] : Expression
Left-hand side of the assignment statement. The expression list must be addressable. See
Section 2.1 for the rules of addressable expressions.

cont rhs [1] : Expression
Right-hand side of the assignment statement. A list of expressions is interpreted as a record
of values.

3.1.9 BaseFunctionReference (abstract class)

Base class for function references.

EObject
x ChiObject (Section 3.1.20)
x Expression (Section 3.1.36)
x BaseFunctionReference

Direct derived classes: FunctionReference (Section 3.1.41), StdLibFunctionReference (Section 3.1.77)

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont type [0..1] : Type (inherited from Expression)
Type of the expression.

• Expression.notNull In type-checked models, Expression.type (Section 3.1.36) is n-
ever null.

• Expression.noVoid Type of an expression is never VoidType (Section 3.1.96).

3.1.10 BehaviourDeclaration (abstract class)

Declaration with behaviour (a model, process, or function definition).

EObject

16

x ChiObject (Section 3.1.20)
x Declaration (Section 3.1.26)
x BehaviourDeclaration

Direct derived classes: FunctionDeclaration (Section 3.1.40), ModelDeclaration (Section 3.1.54),
ProcessDeclaration (Section 3.1.59)

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont name [1] : Name (inherited from Declaration)
Name of the declaration.

• Declaration.name Name of a declaration should be non-empty.

cont statements [1..*] : Statement
Body of statements of the definition.

cont variables [0..*] : VariableDeclaration
Formal parameters and local variables of the definition. Both kinds of variables are
read/write, as parameters are always call-by-value.

3.1.11 BinaryExpression (class)

Binary operator in an expression.

• BinaryExpression.type The allowed types of the left hand side, the right hand side, and
the result depend on the operator. The tables below list them for each possible operator.

Addition operator

Left type Right type Result type
IntType (Section 3.1.46) IntType (Section 3.1.46) IntType (Section 3.1.46)
IntType (Section 3.1.46) RealType (Section 3.1.65) RealType (Section 3.1.65)
RealType (Section 3.1.65) IntType (Section 3.1.46) RealType (Section 3.1.65)
RealType (Section 3.1.65) RealType (Section 3.1.65) RealType (Section 3.1.65)
ListType (Section 3.1.50) ListType (Section 3.1.50) ListType (Section 3.1.50)
TupleType (Section 3.1.85) TupleType (Section 3.1.85) TupleType (Section 3.1.85)
StringType (Section 3.1.79) StringType (Section 3.1.79) StringType (Section 3.1.79)
SetType (Section 3.1.73) SetType (Section 3.1.73) SetType (Section 3.1.73)

For the lists, the element types of the left side, of the right side, and of the result are all the
same.

For records, the element types of the result are the element types of the left side followed by the
element types of the right side, with all field names removed.

For set union, the element types of all the set types must be the same. For union over dictionaries,
the key types must all be the same and the value type must all be the same.

17

Conjunction operator

Left type Right type Result type
BoolType (Section 3.1.14) BoolType (Section 3.1.14) BoolType (Section 3.1.14)

Disjunction operator

Left type Right type Result type
BoolType (Section 3.1.14) BoolType (Section 3.1.14) BoolType (Section 3.1.14)

Division operator

Left type Right type Result type
IntType (Section 3.1.46) IntType (Section 3.1.46) RealType (Section 3.1.65)
IntType (Section 3.1.46) RealType (Section 3.1.65) RealType (Section 3.1.65)
RealType (Section 3.1.65) IntType (Section 3.1.46) RealType (Section 3.1.65)
RealType (Section 3.1.65) RealType (Section 3.1.65) RealType (Section 3.1.65)

ElementTest operator

Left type Right type Result type
t ListType (Section 3.1.50) BoolType (Section 3.1.14)
t SetType (Section 3.1.73) BoolType (Section 3.1.14)
t DictType (Section 3.1.28) BoolType (Section 3.1.14)

At the left side, any static type t may be used. At the right side, for lists and sets, the element type
must be the same type t. For element test on dictionaries, the DictType.keyType (Section 3.1.28)
must be the same type t.

Equal operator

Left type Right type Result type
t t BoolType (Section 3.1.14)

Any two values with same type t can be compared with each other for equality.

FloorDivision operator

Left type Right type Result type
IntType (Section 3.1.46) IntType (Section 3.1.46) IntType (Section 3.1.46)

18

GreaterEqual operator

Left type Right type Result type
IntType (Section 3.1.46) IntType (Section 3.1.46) BoolType (Section 3.1.14)
IntType (Section 3.1.46) RealType (Section 3.1.65) BoolType (Section 3.1.14)
RealType (Section 3.1.65) IntType (Section 3.1.46) BoolType (Section 3.1.14)
RealType (Section 3.1.65) RealType (Section 3.1.65) BoolType (Section 3.1.14)
StringType (Section 3.1.79) StringType (Section 3.1.79) BoolType (Section 3.1.14)

GreaterThan operator

Left type Right type Result type
IntType (Section 3.1.46) IntType (Section 3.1.46) BoolType (Section 3.1.14)
IntType (Section 3.1.46) RealType (Section 3.1.65) BoolType (Section 3.1.14)
RealType (Section 3.1.65) IntType (Section 3.1.46) BoolType (Section 3.1.14)
RealType (Section 3.1.65) RealType (Section 3.1.65) BoolType (Section 3.1.14)
StringType (Section 3.1.79) StringType (Section 3.1.79) BoolType (Section 3.1.14)

LessEqual operator

Left type Right type Result type
IntType (Section 3.1.46) IntType (Section 3.1.46) BoolType (Section 3.1.14)
IntType (Section 3.1.46) RealType (Section 3.1.65) BoolType (Section 3.1.14)
RealType (Section 3.1.65) IntType (Section 3.1.46) BoolType (Section 3.1.14)
RealType (Section 3.1.65) RealType (Section 3.1.65) BoolType (Section 3.1.14)
StringType (Section 3.1.79) StringType (Section 3.1.79) BoolType (Section 3.1.14)

LessThan operator

Left type Right type Result type
IntType (Section 3.1.46) IntType (Section 3.1.46) BoolType (Section 3.1.14)
IntType (Section 3.1.46) RealType (Section 3.1.65) BoolType (Section 3.1.14)
RealType (Section 3.1.65) IntType (Section 3.1.46) BoolType (Section 3.1.14)
RealType (Section 3.1.65) RealType (Section 3.1.65) BoolType (Section 3.1.14)
StringType (Section 3.1.79) StringType (Section 3.1.79) BoolType (Section 3.1.14)

Maximum operator

Left type Right type Result type
IntType (Section 3.1.46) IntType (Section 3.1.46) IntType (Section 3.1.46)
IntType (Section 3.1.46) RealType (Section 3.1.65) RealType (Section 3.1.65)
RealType (Section 3.1.65) IntType (Section 3.1.46) RealType (Section 3.1.65)
RealType (Section 3.1.65) RealType (Section 3.1.65) RealType (Section 3.1.65)
StringType (Section 3.1.79) StringType (Section 3.1.79) StringType (Section 3.1.79)

19

Minimum operator

Left type Right type Result type
IntType (Section 3.1.46) IntType (Section 3.1.46) IntType (Section 3.1.46)
IntType (Section 3.1.46) RealType (Section 3.1.65) RealType (Section 3.1.65)
RealType (Section 3.1.65) IntType (Section 3.1.46) RealType (Section 3.1.65)
RealType (Section 3.1.65) RealType (Section 3.1.65) RealType (Section 3.1.65)
StringType (Section 3.1.79) StringType (Section 3.1.79) StringType (Section 3.1.79)

Modulus operator

Left type Right type Result type
IntType (Section 3.1.46) IntType (Section 3.1.46) IntType (Section 3.1.46)

Multiplication operator

Left type Right type Result type
IntType (Section 3.1.46) IntType (Section 3.1.46) IntType (Section 3.1.46)
IntType (Section 3.1.46) RealType (Section 3.1.65) RealType (Section 3.1.65)
RealType (Section 3.1.65) IntType (Section 3.1.46) RealType (Section 3.1.65)
RealType (Section 3.1.65) RealType (Section 3.1.65) RealType (Section 3.1.65)
SetType (Section 3.1.73) SetType (Section 3.1.73) SetType (Section 3.1.73)
DictType (Section 3.1.28) DictType (Section 3.1.28) DictType (Section 3.1.28)

NotEqual operator

Left type Right type Result type
t t BoolType (Section 3.1.14)

Any two values with same type t can be compared with each other for unequality.

Power operator

Left type Right type Result type
IntType (Section 3.1.46) IntType (Section 3.1.46) RealType (Section 3.1.65)
IntType (Section 3.1.46) RealType (Section 3.1.65) RealType (Section 3.1.65)
RealType (Section 3.1.65) IntType (Section 3.1.46) RealType (Section 3.1.65)
RealType (Section 3.1.65) RealType (Section 3.1.65) RealType (Section 3.1.65)

Projection operator

Left type Right type Right class Result type
ListType (Section 3.1.50) IntType (Section 3.1.46) - tl
DictType (Section 3.1.28) tk - tv
TupleType (Section 3.1.85) - FieldReference (Section 3.1.37) ti
TupleType (Section 3.1.85) IntType (Section 3.1.46) - ti

20

For projection of lists, the result type tl is the same as the element type of the list. For dictionar-
ies, the right hand side must have the same type tk as the key type of the dictionary expression,
and the result type tv is the same type as the value type of the dictionary expression. For a
record type, there are two cases. The first case is where the right hand side is a FieldReference
(Section 3.1.37). In such a case, the referred field must match a field in the record type, and the
result type of the projection is the type of the field addressed. The second case is where the right
hand side has a IntType (Section 3.1.46). In such a case, the result type of the projection is the
type of the field referred to by the right hand side expression, which is the zero-based projection
index.

Subset operator

Left type Right type Result type
SetType (Section 3.1.73) SetType (Section 3.1.73) BoolType (Section 3.1.14)
DictType (Section 3.1.28) DictType (Section 3.1.28) BoolType (Section 3.1.14)

For the subset over sets, the element types of both set types must be the same. For subset over
dictionaries, both key types must be the same and both value types must be the same.

Subtraction operator

Left type Right type Result type
IntType (Section 3.1.46) IntType (Section 3.1.46) IntType (Section 3.1.46)
IntType (Section 3.1.46) RealType (Section 3.1.65) RealType (Section 3.1.65)
RealType (Section 3.1.65) IntType (Section 3.1.46) RealType (Section 3.1.65)
RealType (Section 3.1.65) RealType (Section 3.1.65) RealType (Section 3.1.65)
ListType (Section 3.1.50) ListType (Section 3.1.50) ListType (Section 3.1.50)
SetType (Section 3.1.73) SetType (Section 3.1.73) SetType (Section 3.1.73)
DictType (Section 3.1.28) DictType (Section 3.1.28) DictType (Section 3.1.28)

For subtraction over sets and lists, the element types of all the set types must be the same. For
subtraction over dictionaries, the key types must all be the same and the value type must all be
the same.

EObject
x ChiObject (Section 3.1.20)
x Expression (Section 3.1.36)
x BinaryExpression

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont type [0..1] : Type (inherited from Expression)
Type of the expression.

21

• Expression.notNull In type-checked models, Expression.type (Section 3.1.36) is n-
ever null.

• Expression.noVoid Type of an expression is never VoidType (Section 3.1.96).

cont left [1] : Expression
Left-hand sub-expression of the binary expression.

cont operator [1] : BinaryOp
Operator of the binary expression.

cont right [1] : Expression
Right-hand sub-expression of the binary expression.

3.1.12 BinaryOp (class)

Extra class for attaching position information to a binary operator.

EObject
x ChiObject (Section 3.1.20)
x BinaryOp

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

attr op [1] : BinaryOperators
Binary operator value.

3.1.13 BoolLiteral (class)

Boolean literal value.

• BoolLiteral.type The type of the boolean literal is a BoolType (Section 3.1.14).

EObject
x ChiObject (Section 3.1.20)
x Expression (Section 3.1.36)
x BoolLiteral

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

22

cont type [0..1] : Type (inherited from Expression)
Type of the expression.

• Expression.notNull In type-checked models, Expression.type (Section 3.1.36) is n-
ever null.

• Expression.noVoid Type of an expression is never VoidType (Section 3.1.96).

attr value [1] : EBoolean
Value of the boolean literal.

3.1.14 BoolType (class)

Type denoting a boolean value.

EObject
x ChiObject (Section 3.1.20)
x Type (Section 3.1.86)
x BoolType

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

3.1.15 BreakStatement (class)

The break statement aborts execution of the inner loop. Execution continues with the statement
directly following the loop.

• BreakStatement.usage A break statement may only be used inside a for loop (ForState-
ment.body (Section 3.1.39)) or while loop (WhileStatement.body (Section 3.1.97)).

EObject
x ChiObject (Section 3.1.20)
x Statement (Section 3.1.76)
x BreakStatement

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

23

3.1.16 CallExpression (class)

Expression denoting application of a function definition FunctionDeclaration (Section 3.1.40) or
instantiation of a process definition ProcessDeclaration (Section 3.1.59).

EObject
x ChiObject (Section 3.1.20)
x Expression (Section 3.1.36)
x CallExpression

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont type [0..1] : Type (inherited from Expression)
Type of the expression.

• Expression.notNull In type-checked models, Expression.type (Section 3.1.36) is n-
ever null.

• Expression.noVoid Type of an expression is never VoidType (Section 3.1.96).

cont arguments [0..*] : Expression
Expressions (one for each formal parameter of the function declaration or the process
declaration) denoting the values of the parameters of the application.

• CallExpression.parameterCount The number of argument expressions must be
equal to the number of formal parameters of the function or process type of the
CallExpression.function (Section 3.1.16) attribute.

• CallExpression.parameterTypes The type of each argument expression must be
equal to the type of its corresponding formal parameter of the function type or process
type of the CallExpression.function (Section 3.1.16) attribute.

cont function [1] : Expression
Expression denoting the function to call or the process to instantiate. Often this is a
FunctionReference (Section 3.1.41) or a ProcessReference (Section 3.1.61), but other forms
are allowed too, for example a variable.

• CallExpression.funcType The type of the function expression must be a Function-
Type (Section 3.1.42) or a ProcessType (Section 3.1.62).

cont name [0..1] : Expression
Optional expression expressing the name of the process instance.

• CallExpression.nullName The name expression (CallExpression.name (Section 3.1.16))
must be null if CallExpression.type (Section 3.1.16) is a function (FunctionType (Sec-
tion 3.1.42).

• CallExpression.nameType If the attribute CallExpression.name (Section 3.1.16)
is not null, it must be an expression of type StringType (Section 3.1.79) or of type
IntType (Section 3.1.46).

24

3.1.17 ChannelExpression (class)

Not yet described.

EObject
x ChiObject (Section 3.1.20)
x Expression (Section 3.1.36)
x ChannelExpression

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont type [0..1] : Type (inherited from Expression)
Type of the expression.

• Expression.notNull In type-checked models, Expression.type (Section 3.1.36) is n-
ever null.

• Expression.noVoid Type of an expression is never VoidType (Section 3.1.96).

cont elementType [1] : Type
Not yet described.

3.1.18 ChannelOp (class)

Extra class to attach a position to the channel operations.

EObject
x ChiObject (Section 3.1.20)
x ChannelOp

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

attr ops [1] : ChannelOps
Channel operations.

3.1.19 ChannelType (class)

Data type denoting a channel.

EObject

25

x ChiObject (Section 3.1.20)
x Type (Section 3.1.86)
x ChannelType

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont elementType [1] : Type
Data type of data communicated over the channel. The VoidType (Section 3.1.96) means
that no data is communicated (these are called ‘synchronization channels’).

cont operations [0..1] : ChannelOp
Allowed operations on the channel value.

3.1.20 ChiObject (class)

Base class for all classes with an optional position.

EObject
x ChiObject

Direct derived classes: BinaryOp (Section 3.1.12), ChannelOp (Section 3.1.18), CreateCase (Sec-
tion 3.1.25), Declaration (Section 3.1.26), DictionaryPair (Section 3.1.30), Expression (Sec-
tion 3.1.36), IfCase (Section 3.1.43), MatrixRow (Section 3.1.52), Name (Section 3.1.55), Se-
lectCase (Section 3.1.69), Statement (Section 3.1.76), TupleField (Section 3.1.84), Type (Sec-
tion 3.1.86), UnaryOp (Section 3.1.90), Unwind (Section 3.1.93), VariableDeclaration (Sec-
tion 3.1.94)

cont position [0..1] : Position
Position of the construct in the source file.

3.1.21 CommunicationStatement (abstract class)

Base class for communication (send and receive) actions.

• CommunicationStatement.notInFunction The communication statement may not be
used in a function body (FunctionDeclaration.statements (Section 3.1.40)).

EObject
x ChiObject (Section 3.1.20)
x Statement (Section 3.1.76)
x CommunicationStatement

26

Direct derived classes: ReceiveStatement (Section 3.1.66), SendStatement (Section 3.1.71)

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont channel [1] : Expression
Expression evaluating to the channel communicated on.

• CommunicationStatement.channelType The type of the CommunicationState-
ment.channel (Section 3.1.21) expression must be a channel type (ChannelType (Sec-
tion 3.1.19)).

cont data [0..*] : Expression
For ReceiveStatement (Section 3.1.66), addressables that store the communicated data
if the channel is not a synchronization channel (See Section 2.1 for the constraints on
addressable expressions). For SendStatement (Section 3.1.71), the expression evaluating to
the value communicated over the channel (if not a synchronization channel).

• CommunicationStatement.synchronization If the channel element type is Void-
Type (Section 3.1.96), the data part must be empty.

3.1.22 ConstantDeclaration (class)

Declaration of a name for a constant value.

• ConstantDeclaration.type Type of the constant declaration must be equal to the type
of the value.

EObject
x ChiObject (Section 3.1.20)
x Declaration (Section 3.1.26)
x ConstantDeclaration

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont name [1] : Name (inherited from Declaration)
Name of the declaration.

• Declaration.name Name of a declaration should be non-empty.

cont type [1] : Type
Data type of the value.

27

cont value [1] : Expression
Expression denoting the value.

• ConstantDeclaration.constant Value of the expression may not change, it may
only refer to literals, operators, and other constant values.

• ConstantDeclaration.nocycle A constant value may not (indirectly) depend on
itself.

3.1.23 ConstantReference (class)

Reference of a constant by its name in an expression.

EObject
x ChiObject (Section 3.1.20)
x Expression (Section 3.1.36)
x ConstantReference

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont type [0..1] : Type (inherited from Expression)
Type of the expression.

• Expression.notNull In type-checked models, Expression.type (Section 3.1.36) is n-
ever null.

• Expression.noVoid Type of an expression is never VoidType (Section 3.1.96).

ref constant [1] : ConstantDeclaration
Referenced ConstantDeclaration (Section 3.1.22) in the expression.

• ConstantReference.scope The name of the referenced constant should refer to the
same declaration in the current scope.

3.1.24 ContinueStatement (class)

Abort execution of the body of the inner loop, and continue with the next iteration. For
WhileStatement (Section 3.1.97) loops, execution continues with evaluation of the while con-
dition. For ForStatement (Section 3.1.39) loops, execution continues with computing the next
value of the iteration variables.

• ContinueStatement.usage A continue statement may only be used inside a for loop
(ForStatement.body (Section 3.1.39)) or while loop (WhileStatement.body (Section 3.1.97)).

28

EObject
x ChiObject (Section 3.1.20)
x Statement (Section 3.1.76)
x ContinueStatement

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

3.1.25 CreateCase (abstract class)

One of the cases in a run or start statement.

EObject
x ChiObject (Section 3.1.20)
x CreateCase

Direct derived classes: IteratedCreateCase (Section 3.1.47), ProcessInstance (Section 3.1.60)

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

3.1.26 Declaration (abstract class)

Declaration at the global level of a Chi specification.

EObject
x ChiObject (Section 3.1.20)
x Declaration

Direct derived classes: BehaviourDeclaration (Section 3.1.10), ConstantDeclaration (Section 3.1.22),
EnumDeclaration (Section 3.1.32), TypeDeclaration (Section 3.1.87)

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont name [1] : Name
Name of the declaration.

• Declaration.name Name of a declaration should be non-empty.

29

3.1.27 DelayStatement (class)

Statement to pass some time.

EObject
x ChiObject (Section 3.1.20)
x Statement (Section 3.1.76)
x DelayStatement

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont length [1] : Expression
Expression denoting the length of the delay. Should be non-negative at run-time.

• DelayStatement.type Type of the length expression must be a RealType (Sec-
tion 3.1.65) or an IntType (Section 3.1.46).

3.1.28 DictType (class)

Data type denoting a dictionary.

EObject
x ChiObject (Section 3.1.20)
x Type (Section 3.1.86)
x DictType

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont keyType [1] : Type
Type of the keys of the dictionary type.

• DictType.keyType Type of the keys may not be VoidType (Section 3.1.96).

cont valueType [1] : Type
Type of the values of the dictionary type.

• DictType.valueType Type of the values may not be VoidType (Section 3.1.96).

30

3.1.29 DictionaryExpression (class)

Expression denoting a value with a dictionary type.

• DictionaryExpression.type Type of the expression must be DictionaryExpression (Sec-
tion 3.1.29).

• DictionaryExpression.keyType Type of the key-part of each dictionary-pair must be
the same as the DictType.keyType (Section 3.1.28) type.

• DictionaryExpression.valueType Type of the value-part of each dictionary-pair must
be the same as the DictType.valueType (Section 3.1.28) type.

EObject
x ChiObject (Section 3.1.20)
x Expression (Section 3.1.36)
x DictionaryExpression

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont type [0..1] : Type (inherited from Expression)
Type of the expression.

• Expression.notNull In type-checked models, Expression.type (Section 3.1.36) is n-
ever null.

• Expression.noVoid Type of an expression is never VoidType (Section 3.1.96).

cont pairs [0..*] : DictionaryPair
Key/value pairs of the dictionary expression.

• DictType.keyValues Value of each pair must be unique.

3.1.30 DictionaryPair (class)

Key/value pair of a dictionary value.

EObject
x ChiObject (Section 3.1.20)
x DictionaryPair

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

31

cont key [1] : Expression
Expression denoting the key of the pair.

cont value [1] : Expression
Expression denoting the value of the pair.

3.1.31 DistributionType (class)

Data type denoting a distribution.

EObject
x ChiObject (Section 3.1.20)
x Type (Section 3.1.86)
x DistributionType

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont resultType [1] : Type
Data type of sampled values of the distribution.

3.1.32 EnumDeclaration (class)

Not yet described.

EObject
x ChiObject (Section 3.1.20)
x Declaration (Section 3.1.26)
x EnumDeclaration

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont name [1] : Name (inherited from Declaration)
Name of the declaration.

• Declaration.name Name of a declaration should be non-empty.

cont values [1..*] : EnumValue
Not yet described.

32

3.1.33 EnumTypeReference (class)

Not yet described.

EObject
x ChiObject (Section 3.1.20)
x Type (Section 3.1.86)
x EnumTypeReference

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

ref type [1] : EnumDeclaration
Not yet described.

3.1.34 EnumValue (class)

A value in an enumeration type.

• EnumValue.unique The name of each value must be unique globally, to ensure a proper
mapping of its values back to the correct enum type.

EObject
x ChiObject (Section 3.1.20)
x Name (Section 3.1.55)
x EnumValue

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

attr name [1] : ChiIdentifier (inherited from Name)
Name contained by the class.

3.1.35 EnumValueReference (class)

Reference to the name of a enum type.

• EnumValueReference.type The data type of the reference is equal to the enum type to
which the referenced enum value belongs.

33

EObject
x ChiObject (Section 3.1.20)
x Expression (Section 3.1.36)
x EnumValueReference

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont type [0..1] : Type (inherited from Expression)
Type of the expression.

• Expression.notNull In type-checked models, Expression.type (Section 3.1.36) is n-
ever null.

• Expression.noVoid Type of an expression is never VoidType (Section 3.1.96).

ref value [1] : EnumValue
Reference to the referenced enum value.

3.1.36 Expression (abstract class)

Object denoting a value.

EObject
x ChiObject (Section 3.1.20)
x Expression

Direct derived classes: BaseFunctionReference (Section 3.1.9), BinaryExpression (Section 3.1.11),
BoolLiteral (Section 3.1.13), CallExpression (Section 3.1.16), ChannelExpression (Section 3.1.17),
ConstantReference (Section 3.1.23), DictionaryExpression (Section 3.1.29), EnumValueRefer-
ence (Section 3.1.35), FieldReference (Section 3.1.37), ListExpression (Section 3.1.49), Matrix-
Expression (Section 3.1.51), Number (Section 3.1.56), ProcessReference (Section 3.1.61), Read-
CallExpression (Section 3.1.63), RealNumber (Section 3.1.64), SetExpression (Section 3.1.72),
SliceExpression (Section 3.1.74), StringLiteral (Section 3.1.78), TimeLiteral (Section 3.1.81),
TupleExpression (Section 3.1.83), UnaryExpression (Section 3.1.89), UnresolvedReference (Sec-
tion 3.1.91), VariableReference (Section 3.1.95)

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont type [0..1] : Type
Type of the expression.

• Expression.notNull In type-checked models, Expression.type (Section 3.1.36) is n-
ever null.

• Expression.noVoid Type of an expression is never VoidType (Section 3.1.96).

34

3.1.37 FieldReference (class)

Reference expression the field of a record.

• FieldReference.type Type of the field reference is equal to the type of the referenced
field.

• FieldReference.visible The field must be reachable from the current scope.

EObject
x ChiObject (Section 3.1.20)
x Expression (Section 3.1.36)
x FieldReference

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont type [0..1] : Type (inherited from Expression)
Type of the expression.

• Expression.notNull In type-checked models, Expression.type (Section 3.1.36) is n-
ever null.

• Expression.noVoid Type of an expression is never VoidType (Section 3.1.96).

ref field [1] : TupleField
Referenced field.

3.1.38 FileType (class)

Data type of a stream of data from or to the operating system.

Note: There is no fixed type associated with the data at the stream. Also, a stream may be
opened for reading, for writing, or both. Trying to use a stream in the ‘wrong’ way results in
undefined behaviour.

EObject
x ChiObject (Section 3.1.20)
x Type (Section 3.1.86)
x FileType

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

35

3.1.39 ForStatement (class)

Ierative loop statement. Values from the source are iteratively assigned to variables of the
statement, and the body is executed for each assignment.

Note that the body may contain BreakStatement (Section 3.1.15) or ContinueStatement (Sec-
tion 3.1.24) objects, which cause partial execution of the body. Also, execution of a ReturnState-
ment (Section 3.1.67) causes termination of the body as well as the loop.

EObject
x ChiObject (Section 3.1.20)
x Statement (Section 3.1.76)
x ForStatement

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont body [1..*] : Statement
Statements executed after each assignment of values to the variables.

cont source [1] : Expression
Expression denoting a sequence of values to assign to the variables.

• ForStatement.sourceType The type of the source expression must be a ListType
(Section 3.1.50), SetType (Section 3.1.73), or a DictType (Section 3.1.28).

cont variables [1..*] : VariableDeclaration
Sequence of variables to assign at the start of each iteration. For the purpose of type
correctness, the variable list may be considered to be a list of identifier expressions where
Section 2.1 must be applied to.

• ForStatement.variablesType If the type of the source expression (ForStatemen-
t.source (Section 3.1.39)) is a ListType (Section 3.1.50) or SetType (Section 3.1.73),
the type of the iterated variable must be the element type (ListType.elementType
(Section 3.1.50) or SetType.elementType (Section 3.1.73)). If the type of the source
expression is a dictionary (DictType (Section 3.1.28)), the type of the variables is a
record with the key type and the value type of the dictionary.

• ForStatement.uniqueVariables Names of variables of the statement must be u-
nique to each other as well as in the scope.

3.1.40 FunctionDeclaration (class)

Definition of a user-defined function.

• FunctionDeclaration.bodyReturn All exit points in the statements of a function dec-
laration must end with a ReturnStatement (Section 3.1.67).

36

• FunctionDeclaration.dataOnly Formal parameters and local variables must not contain
timers.

• FunctionDeclaration.noTimeAccess Expressions in the statements of a a function def-
inition may not use TimeLiteral (Section 3.1.81).

• FunctionDeclaration.noCreate FunctionDeclaration.statements (Section 3.1.40) may
not have objects of the RunStatement (Section 3.1.68) class.

• FunctionDeclaration.noDelay FunctionDeclaration.statements (Section 3.1.40) may not
have objects of the DelayStatement (Section 3.1.27) class.

• FunctionDeclaration.noCommunication The communication statement may not be
used in a function body (FunctionDeclaration.statements (Section 3.1.40)).

EObject
x ChiObject (Section 3.1.20)
x Declaration (Section 3.1.26)
x BehaviourDeclaration (Section 3.1.10)
x FunctionDeclaration

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont name [1] : Name (inherited from Declaration)
Name of the declaration.

• Declaration.name Name of a declaration should be non-empty.

cont statements [1..*] : Statement (inherited from BehaviourDeclaration)
Body of statements of the definition.

cont variables [0..*] : VariableDeclaration (inherited from BehaviourDeclaration)
Formal parameters and local variables of the definition. Both kinds of variables are
read/write, as parameters are always call-by-value.

cont returnType [1] : Type
Type of the value returned by the function.

• FunctionDeclaration.typeOfReturnValue The type of the returned value is not
VoidType (Section 3.1.96).

3.1.41 FunctionReference (class)

Reference to a user-defined function.

37

• FunctionReference.type The type of a function reference is a FunctionType (Section 3.1.42),
where its return type (FunctionType.resultType (Section 3.1.42)) is equal to the return type
of the referenced function, and the list of parameter types (FunctionType.parameterTypes
(Section 3.1.42)) must match with the types of the formal parameters of the referenced
function.

EObject
x ChiObject (Section 3.1.20)
x Expression (Section 3.1.36)
x BaseFunctionReference (Section 3.1.9)
x FunctionReference

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont type [0..1] : Type (inherited from Expression)
Type of the expression.

• Expression.notNull In type-checked models, Expression.type (Section 3.1.36) is n-
ever null.

• Expression.noVoid Type of an expression is never VoidType (Section 3.1.96).

ref function [1] : FunctionDeclaration
Referenced function.

• FunctionReference.inScope The referenced function must be visible in the current
scope.

3.1.42 FunctionType (class)

Data type of a function.

EObject
x ChiObject (Section 3.1.20)
x Type (Section 3.1.86)
x ProcessType (Section 3.1.62)
x FunctionType

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

38

cont parameterTypes [0..*] : Type (inherited from ProcessType)
Data types of the formal parameters.

cont resultType [1] : Type
Type of the result value of an application of a function with this function signature.

• FunctionType.resultType The result type a function does not hjave type VoidType
(Section 3.1.96).

3.1.43 IfCase (class)

One case to try in an if statement.

EObject
x ChiObject (Section 3.1.20)
x IfCase

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont body [1..*] : Statement
Statements to execute if the condition is empty or holds.

cont condition [0..1] : Expression
Expression that decides whether or not to execute the body of the object.

• IfCase.boolCondition If the condition is not empty (null), it must have type
BoolType (Section 3.1.14).

3.1.44 IfStatement (class)

Selection statement.

Execution of the statement means sequentially testing whether the IfCase.condition (Section 3.1.43)
holds. If it does not hold, the next case is tried. If the condition is absent or it does hold, the
body associated with the condition is executed. Then the if statement terminates (the remaining
IfCase (Section 3.1.43) objects are not tested nor executed).

EObject
x ChiObject (Section 3.1.20)
x Statement (Section 3.1.76)
x IfStatement

Direct derived classes: none

39

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont cases [1..*] : IfCase
Sequence of if cases to test and potentially execute.

• IfStatement.lastCase The IfCase.condition (Section 3.1.43) may not be empty, ex-
cept for the last case. (This is then considered to be an ‘else’ branch.)

3.1.45 InstanceType (class)

Data type of an instantiated (running) process.

EObject
x ChiObject (Section 3.1.20)
x Type (Section 3.1.86)
x InstanceType

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

3.1.46 IntType (class)

Data type of an integer number.

EObject
x ChiObject (Section 3.1.20)
x Type (Section 3.1.86)
x IntType

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

3.1.47 IteratedCreateCase (class)

A case in a run or start statement that must be expanded at run-time to a number of process
instances.

EObject
x ChiObject (Section 3.1.20)

40

x CreateCase (Section 3.1.25)
x IteratedCreateCase

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont instances [1..*] : CreateCase
Parameterized process instance to instantiate on each iteration.

cont unwinds [1..*] : Unwind
Sequence of loops to expand for the create case.

3.1.48 IteratedSelectCase (class)

Case in a select statement that must be expanded at tun-time to a number of conditions to wait
on.

EObject
x ChiObject (Section 3.1.20)
x SelectCase (Section 3.1.69)
x IteratedSelectCase

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont body [1..*] : Statement (inherited from SelectCase)
Sequence of statements to execute if the select case is chosen.

cont guard [0..1] : Expression (inherited from SelectCase)
Optional guard expression that should hold for the case to be chosen.

• SelectCase.guardType If the guard is present (i.e. not null), the type of the guard
expression should be BoolType (Section 3.1.14).

cont unwinds [1..*] : Unwind
Sequence of loops to expand for the select case.

3.1.49 ListExpression (class)

Expression denoting a list value.

• ListExpression.type The data type of a list expression is a ListType (Section 3.1.50).

41

• ListExpression.elements The element type of its list data type (ListType.elementType
(Section 3.1.50)) must be the same as the type of each of the element value expressions.

EObject
x ChiObject (Section 3.1.20)
x Expression (Section 3.1.36)
x ListExpression

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont type [0..1] : Type (inherited from Expression)
Type of the expression.

• Expression.notNull In type-checked models, Expression.type (Section 3.1.36) is n-
ever null.

• Expression.noVoid Type of an expression is never VoidType (Section 3.1.96).

cont elements [0..*] : Expression
Ordered list of element values.

3.1.50 ListType (class)

Data type of a list value.

EObject
x ChiObject (Section 3.1.20)
x Type (Section 3.1.86)
x ListType

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont elementType [1] : Type
Data type of the elements of a list value.

ref initialLength [0..1] : Expression
Length of the list at initialization.

• ListType.nonZeroInitialLength The ListType.initialLength (Section 3.1.50) can
only be non-zero for for element data types that have an initial value.

Define which data types have an initial value.

Define when a list can have an non-zero initial length.

42

3.1.51 MatrixExpression (class)

Expression denoting a matrix literal (with operators ‘+’ and ‘·’ over real values).

• MatrixExpression.Rowlength Each row in MatrixExpression.rows (Section 3.1.51) must
have the same number of elements.

• MatrixExpression.type The type of the matrix expression must be a MatrixType (Sec-
tion 3.1.53) where the number of rows (MatrixType.rowSize (Section 3.1.53)) matches with
the number of values in MatrixExpression.rows (Section 3.1.51), and the number of columns
(MatrixType.columnSize (Section 3.1.53)) matches with the length of each row,

EObject
x ChiObject (Section 3.1.20)
x Expression (Section 3.1.36)
x MatrixExpression

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont type [0..1] : Type (inherited from Expression)
Type of the expression.

• Expression.notNull In type-checked models, Expression.type (Section 3.1.36) is n-
ever null.

• Expression.noVoid Type of an expression is never VoidType (Section 3.1.96).

cont rows [1..*] : MatrixRow
Class for storing a single row in the matrix.

3.1.52 MatrixRow (class)

A row of elements in a matrix literal.

EObject
x ChiObject (Section 3.1.20)
x MatrixRow

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

43

cont elements [1..*] : Expression
A expression denoting a single value in a matrix.

• MatrixRow.type The type of each element must be RealType (Section 3.1.65).

3.1.53 MatrixType (class)

The type of a matrix.

EObject
x ChiObject (Section 3.1.20)
x Type (Section 3.1.86)
x MatrixType

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont columnSize [1] : Expression
Number of columns in the matrix value.

• MatrixType.columnDimensionIsInt Type of the column dimension expression
must be IntType (Section 3.1.46).

• MatrixType.columnDimensionValue Value must be a constant (and at least one,
as expressed by other constraints).

cont rowSize [1] : Expression
Number of rows in the matrix value.

• MatrixType.rowDimensionIsInt Type of the row dimension expression must be
IntType (Section 3.1.46).

• MatrixType.rowDimensionValue Value must be a constant (and at least one, as
expressed by other constraints).

3.1.54 ModelDeclaration (class)

Toplevel declaration. Defines the experiment being performed. It is allowed to have several
model declarations in a Chi specification.

• ModelDeclaration.noReturn The BehaviourDeclaration.statements (Section 3.1.10) ref-
erence may not contain a ReturnStatement (Section 3.1.67).

EObject
x ChiObject (Section 3.1.20)

44

x Declaration (Section 3.1.26)
x BehaviourDeclaration (Section 3.1.10)
x ModelDeclaration

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont name [1] : Name (inherited from Declaration)
Name of the declaration.

• Declaration.name Name of a declaration should be non-empty.

cont statements [1..*] : Statement (inherited from BehaviourDeclaration)
Body of statements of the definition.

cont variables [0..*] : VariableDeclaration (inherited from BehaviourDeclaration)
Formal parameters and local variables of the definition. Both kinds of variables are
read/write, as parameters are always call-by-value.

3.1.55 Name (class)

Extra class to attach a position to a name.

EObject
x ChiObject (Section 3.1.20)
x Name

Direct derived classes: EnumValue (Section 3.1.34)

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

attr name [1] : ChiIdentifier
Name contained by the class.

3.1.56 Number (class)

Unsigned number expression literal.

• ChiNumber.type Type of the number literal must be a IntType (Section 3.1.46).

EObject
x ChiObject (Section 3.1.20)

45

x Expression (Section 3.1.36)
x Number

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont type [0..1] : Type (inherited from Expression)
Type of the expression.

• Expression.notNull In type-checked models, Expression.type (Section 3.1.36) is n-
ever null.

• Expression.noVoid Type of an expression is never VoidType (Section 3.1.96).

attr value [1] : ChiNumber
String expressing the value of the natural number.

3.1.57 PassStatement (class)

Empty statement, ends immediately, and has no side effects.

EObject
x ChiObject (Section 3.1.20)
x Statement (Section 3.1.76)
x PassStatement

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

3.1.58 Position (class)

Position interval in a source file.

Reuse position metamodel documentation.

Position should have a filename attached.

Position should not have startOffset and endOffset?

EObject
x Position

Direct derived classes: none

46

attr endColumn [1] : EInt
Column number of the character behind the interval.

attr endLine [1] : EInt
Line number of the character behind the interval.

attr endOffset [1] : EInt
Offset of the character behind the interval in the file.

attr source [0..1] : EString
Source file name of the position.

attr startColumn [0..1] : EInt
Column number of the first character in the interval.

attr startLine [1] : EInt
Line number of the first character in the interval.

attr startOffset [1] : EInt
Offset of the first character of the interval in the file.

3.1.59 ProcessDeclaration (class)

Parameterized definition of a process.

• ProcessDeclaration.noReturn The BehaviourDeclaration.statements (Section 3.1.10)
reference may not contain a ReturnStatement (Section 3.1.67).

EObject
x ChiObject (Section 3.1.20)
x Declaration (Section 3.1.26)
x BehaviourDeclaration (Section 3.1.10)
x ProcessDeclaration

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont name [1] : Name (inherited from Declaration)
Name of the declaration.

• Declaration.name Name of a declaration should be non-empty.

cont statements [1..*] : Statement (inherited from BehaviourDeclaration)
Body of statements of the definition.

cont variables [0..*] : VariableDeclaration (inherited from BehaviourDeclaration)
Formal parameters and local variables of the definition. Both kinds of variables are
read/write, as parameters are always call-by-value.

47

3.1.60 ProcessInstance (class)

Single instantiated process in a CreateCase (Section 3.1.25).

EObject
x ChiObject (Section 3.1.20)
x CreateCase (Section 3.1.25)
x ProcessInstance

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont call [1] : Expression
Instantiation expression.

• ProcessInstance.type The type of instantiation expression should be a InstanceType
(Section 3.1.45).

cont var [0..1] : Expression
Variable for assigning the process instance to.

• ProcessInstance.varType The type of the ProcessInstance.var (Section 3.1.60) at-
tribute expression must be of type InstanceType (Section 3.1.45).

3.1.61 ProcessReference (class)

Reference to a process declaration.

• ProcessReference.type Type of the process reference must be a ProcessType (Sec-
tion 3.1.62) class, with matching formal parameeters.

• ProcessReference.scope The name of the reference must refer to the referenced process
declaration in the scope of the expression.

EObject
x ChiObject (Section 3.1.20)
x Expression (Section 3.1.36)
x ProcessReference

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

48

cont type [0..1] : Type (inherited from Expression)
Type of the expression.

• Expression.notNull In type-checked models, Expression.type (Section 3.1.36) is n-
ever null.

• Expression.noVoid Type of an expression is never VoidType (Section 3.1.96).

ref process [1] : ProcessDeclaration
Reference to the referenced process declaration.

• ProcessReference.processNotNull For type-checked chi models, the reference should
not be null.

Check that the not-null requirement is also stated with other references.

3.1.62 ProcessType (class)

Data type of a process declaration.

EObject
x ChiObject (Section 3.1.20)
x Type (Section 3.1.86)
x ProcessType

Direct derived classes: FunctionType (Section 3.1.42)

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont parameterTypes [0..*] : Type
Data types of the formal parameters.

3.1.63 ReadCallExpression (class)

Function application of reading a value from an input stream (often a file).

• ReadCallExpression.resultType The type of the expression is the same as the Read-
CallExpression.type (Section 3.1.63) attribute.

EObject
x ChiObject (Section 3.1.20)
x Expression (Section 3.1.36)
x ReadCallExpression

Direct derived classes: none

49

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont type [0..1] : Type (inherited from Expression)
Type of the expression.

• Expression.notNull In type-checked models, Expression.type (Section 3.1.36) is n-
ever null.

• Expression.noVoid Type of an expression is never VoidType (Section 3.1.96).

cont file [0..1] : Expression
Not yet described.

cont loadType [1] : Type
Type of the read data.

3.1.64 RealNumber (class)

Unsigned real number expression literal.

• ChiRealNumber.type Type of the real number literal must be a RealType (Section 3.1.65).

EObject
x ChiObject (Section 3.1.20)
x Expression (Section 3.1.36)
x RealNumber

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont type [0..1] : Type (inherited from Expression)
Type of the expression.

• Expression.notNull In type-checked models, Expression.type (Section 3.1.36) is n-
ever null.

• Expression.noVoid Type of an expression is never VoidType (Section 3.1.96).

attr value [1] : ChiRealNumber
String describing the value of the unsigned real number.

50

3.1.65 RealType (class)

Data type of the real nmubers.

EObject
x ChiObject (Section 3.1.20)
x Type (Section 3.1.86)
x RealType

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

3.1.66 ReceiveStatement (class)

Perform receive operation on a communication channel.

• ReceiveStatement.channelOp The channel referenced by the CommunicationStatemen-
t.channel (Section 3.1.21) must allow a receive operation to take place.

EObject
x ChiObject (Section 3.1.20)
x Statement (Section 3.1.76)
x CommunicationStatement (Section 3.1.21)
x ReceiveStatement

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont channel [1] : Expression (inherited from CommunicationStatement)
Expression evaluating to the channel communicated on.

• CommunicationStatement.channelType The type of the CommunicationState-
ment.channel (Section 3.1.21) expression must be a channel type (ChannelType (Sec-
tion 3.1.19)).

cont data [0..*] : Expression (inherited from CommunicationStatement)
For ReceiveStatement (Section 3.1.66), addressables that store the communicated data
if the channel is not a synchronization channel (See Section 2.1 for the constraints on
addressable expressions). For SendStatement (Section 3.1.71), the expression evaluating to
the value communicated over the channel (if not a synchronization channel).

• CommunicationStatement.synchronization If the channel element type is Void-
Type (Section 3.1.96), the data part must be empty.

51

3.1.67 ReturnStatement (class)

Statement that ends execution of a function.

EObject
x ChiObject (Section 3.1.20)
x Statement (Section 3.1.76)
x ReturnStatement

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont values [1..*] : Expression
Values returned by the function.

If the number of value expressions in a return statement is 1, the type of the value returned
by the return statement is the same as the type of the value expression. For longer sequences
of value expressions, the type is a record, where each field in the record has the same type
as the type of the associated value expression.

• ReturnStatement.Valuestype The type of the return statement (as explained
above) must be equal to the return type of the function that contains the return
statement.

3.1.68 RunStatement (class)

Statement for executing one or more child processes, either just starting then or running them
until completion.

EObject
x ChiObject (Section 3.1.20)
x Statement (Section 3.1.76)
x RunStatement

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont cases [1..*] : CreateCase
Instantiated child processes.

attr startOnly [1] : EBoolean
Only start the child processes, do not wait until they are all finished.

52

3.1.69 SelectCase (class)

An alternative in a select statement.

EObject
x ChiObject (Section 3.1.20)
x SelectCase

Direct derived classes: IteratedSelectCase (Section 3.1.48)

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont body [1..*] : Statement
Sequence of statements to execute if the select case is chosen.

cont guard [0..1] : Expression
Optional guard expression that should hold for the case to be chosen.

• SelectCase.guardType If the guard is present (i.e. not null), the type of the guard
expression should be BoolType (Section 3.1.14).

3.1.70 SelectStatement (class)

Selection of the next statement to execute from several alternatives based on guard expressions
and ability to execute the next statement.

• SelectStatement.notInFunction The select statement may not be used in a function
(FunctionDeclaration.statements (Section 3.1.40)).

EObject
x ChiObject (Section 3.1.20)
x Statement (Section 3.1.76)
x SelectStatement

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont cases [1..*] : SelectCase
Sequence of cases that belong to this select statement.

53

3.1.71 SendStatement (class)

Perform send operation on a communication channel.

• SendStatement.channelOp The channel referenced by the CommunicationStatemen-
t.channel (Section 3.1.21) must allow a send operation to take place.

EObject
x ChiObject (Section 3.1.20)
x Statement (Section 3.1.76)
x CommunicationStatement (Section 3.1.21)
x SendStatement

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont channel [1] : Expression (inherited from CommunicationStatement)
Expression evaluating to the channel communicated on.

• CommunicationStatement.channelType The type of the CommunicationState-
ment.channel (Section 3.1.21) expression must be a channel type (ChannelType (Sec-
tion 3.1.19)).

cont data [0..*] : Expression (inherited from CommunicationStatement)
For ReceiveStatement (Section 3.1.66), addressables that store the communicated data
if the channel is not a synchronization channel (See Section 2.1 for the constraints on
addressable expressions). For SendStatement (Section 3.1.71), the expression evaluating to
the value communicated over the channel (if not a synchronization channel).

• CommunicationStatement.synchronization If the channel element type is Void-
Type (Section 3.1.96), the data part must be empty.

3.1.72 SetExpression (class)

Expression denoting a set value.

• SetExpression.type The type of a set expression is a SetType (Section 3.1.73).

• SetExpression.elementsType The type of each element expression of a set expression
must be the same as the SetType.elementType (Section 3.1.73) attribute of its type.

EObject
x ChiObject (Section 3.1.20)

54

x Expression (Section 3.1.36)
x SetExpression

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont type [0..1] : Type (inherited from Expression)
Type of the expression.

• Expression.notNull In type-checked models, Expression.type (Section 3.1.36) is n-
ever null.

• Expression.noVoid Type of an expression is never VoidType (Section 3.1.96).

cont elements [0..*] : Expression
Element expressions of the set.

3.1.73 SetType (class)

Data type of a set value.

EObject
x ChiObject (Section 3.1.20)
x Type (Section 3.1.86)
x SetType

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont elementType [1] : Type
Type of the elements of the set.

Check that the void type gets excluded at the appropriate points

3.1.74 SliceExpression (class)

Take a slice of a list. First value in the slice is at the index given by SliceExpression.start
(Section 3.1.74) (if omitted, 0 is taken). Iteratively add next values by incrementing the index
by SliceExpression.step (Section 3.1.74) (if omitted, 1 is taken), until the index is equal or
greater than the value expressed by SliceExpression.end (Section 3.1.74). If the end expression
is omitted, it is equal to the length of the list.

EObject

55

x ChiObject (Section 3.1.20)
x Expression (Section 3.1.36)
x SliceExpression

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont type [0..1] : Type (inherited from Expression)
Type of the expression.

• Expression.notNull In type-checked models, Expression.type (Section 3.1.36) is n-
ever null.

• Expression.noVoid Type of an expression is never VoidType (Section 3.1.96).

cont end [0..1] : Expression
Upper limit of the slice. The list item with this index is not included in the slice.

• SliceExpression.endType If given, the type of the end expression must be IntType
(Section 3.1.46) or IntType (Section 3.1.46).

cont source [1] : Expression
Source expression of the slice.

• SliceExpression.sourceType The source expression of a slice must have a ListType
(Section 3.1.50) type.

cont start [0..1] : Expression
Lower index of the slice.

• SliceExpression.endType If given, the type of the end expression must be IntType
(Section 3.1.46) or IntType (Section 3.1.46).

cont step [0..1] : Expression
Increment of the index.

• SliceExpression.endType If given, the type of the end expression must be IntType
(Section 3.1.46).

3.1.75 Specification (class)

Class denoting a complete Chi specification.

EObject
x Specification

Direct derived classes: none

56

cont declarations [0..*] : Declaration
Global declarations of the specification.

• Specification.namesUnique Each name of its declarations (Specification.declarations
(Section 3.1.75)) must be unique.

• Specification.hasModel A specification must have at least one ModelDeclaration
(Section 3.1.54).

3.1.76 Statement (abstract class)

Abstract base class of a statement.

EObject
x ChiObject (Section 3.1.20)
x Statement

Direct derived classes: AssignmentStatement (Section 3.1.8), BreakStatement (Section 3.1.15),
CommunicationStatement (Section 3.1.21), ContinueStatement (Section 3.1.24), DelayStatemen-
t (Section 3.1.27), ForStatement (Section 3.1.39), IfStatement (Section 3.1.44), PassStatement
(Section 3.1.57), ReturnStatement (Section 3.1.67), RunStatement (Section 3.1.68), SelectState-
ment (Section 3.1.70), TerminateStatement (Section 3.1.80), WhileStatement (Section 3.1.97),
WriteStatement (Section 3.1.98)

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

3.1.77 StdLibFunctionReference (class)

Reference to a standard library function.

• StdLibFunctionReference.type Type of the reference must be the function type of the
referenced function.

57

Math functions

Library function Parameter types Result type
Sign IntType (Section 3.1.46) IntType (Section 3.1.46)
Sign RealType (Section 3.1.65) IntType (Section 3.1.46)
Abs IntType (Section 3.1.46) IntType (Section 3.1.46)
Abs RealType (Section 3.1.65) RealType (Section 3.1.65)
Exp RealType (Section 3.1.65) RealType (Section 3.1.65)
Ln RealType (Section 3.1.65) RealType (Section 3.1.65)
Log RealType (Section 3.1.65) RealType (Section 3.1.65)
Sqrt RealType (Section 3.1.65) RealType (Section 3.1.65)
Cbrt RealType (Section 3.1.65) RealType (Section 3.1.65)
Floor RealType (Section 3.1.65) IntType (Section 3.1.46)
Ceil RealType (Section 3.1.65) IntType (Section 3.1.46)
Round RealType (Section 3.1.65) IntType (Section 3.1.46)
Sin RealType (Section 3.1.65) RealType (Section 3.1.65)
Cos RealType (Section 3.1.65) RealType (Section 3.1.65)
Tan RealType (Section 3.1.65) RealType (Section 3.1.65)
Asin RealType (Section 3.1.65) RealType (Section 3.1.65)
Acos RealType (Section 3.1.65) RealType (Section 3.1.65)
Atan RealType (Section 3.1.65) RealType (Section 3.1.65)
Sinh RealType (Section 3.1.65) RealType (Section 3.1.65)
Cosh RealType (Section 3.1.65) RealType (Section 3.1.65)
Tanh RealType (Section 3.1.65) RealType (Section 3.1.65)
Asinh RealType (Section 3.1.65) RealType (Section 3.1.65)
Acosh RealType (Section 3.1.65) RealType (Section 3.1.65)
Atanh RealType (Section 3.1.65) RealType (Section 3.1.65)

Conversion functions

Library function Parameter types Result type
Int2Real IntType (Section 3.1.46) RealType (Section 3.1.65)
String2Bool StringType (Section 3.1.79) BoolType (Section 3.1.14)
Bool2String BoolType (Section 3.1.14) StringType (Section 3.1.79)
String2Int StringType (Section 3.1.79) IntType (Section 3.1.46)
Int2String IntType (Section 3.1.46) StringType (Section 3.1.79)
String2Real StringType (Section 3.1.79) RealType (Section 3.1.65)
Real2String RealType (Section 3.1.65) StringType (Section 3.1.79)

58

Container functions

Library function Parameter types Result type
Length ListType (Section 3.1.50) IntType (Section 3.1.46)

SetType (Section 3.1.73) IntType (Section 3.1.46)
DictType (Section 3.1.28) IntType (Section 3.1.46)
StringType (Section 3.1.79) IntType (Section 3.1.46)

Empty ListType (Section 3.1.50) BoolType (Section 3.1.14)
SetType (Section 3.1.73) BoolType (Section 3.1.14)
DictType (Section 3.1.28) BoolType (Section 3.1.14)

Pop ListType (Section 3.1.50) type t,
of type t ListType (Section 3.1.50)

of type t
SetType (Section 3.1.73) type t,
of type t SetType (Section 3.1.73)

of type t
DictType (Section 3.1.28) type k,
of types k and v type v,

DictType (Section 3.1.28)
of types k and v

Max ListType (Section 3.1.50) type t
of type t
SetType (Section 3.1.73) type t
of type t

Min ListType (Section 3.1.50) type t
of type t
SetType (Section 3.1.73) type t
of type t

Take ListType (Section 3.1.50), ListType (Section 3.1.50)
IntType (Section 3.1.46)
StringType (Section 3.1.79), StringType (Section 3.1.79)
IntType (Section 3.1.46)

Drop ListType (Section 3.1.50), ListType (Section 3.1.50)
IntType (Section 3.1.46)
StringType (Section 3.1.79), StringType (Section 3.1.79)
IntType (Section 3.1.46)

Head ListType (Section 3.1.50) te
HeadReverse ListType (Section 3.1.50) te
Tail ListType (Section 3.1.50) ListType (Section 3.1.50)
TailReverse ListType (Section 3.1.50) ListType (Section 3.1.50)
Sort ListType (Section 3.1.50), tf ListType (Section 3.1.50)
Insert ListType (Section 3.1.50), tf , te ListType (Section 3.1.50)
Range IntType (Section 3.1.46) ListType (Section 3.1.50)

IntType (Section 3.1.46), ListType (Section 3.1.50)
IntType (Section 3.1.46)

Matrix ListType (Section 3.1.50), MatrixType (Section 3.1.53)
IntType (Section 3.1.46)

For the ‘Length’ function as well as the ‘Empty’ function, the element type of the container

59

parameter (all except the StringType (Section 3.1.79) is not important.

The ‘Pop’ function gets a value from a non-empty container (with any element type t), and
returns the element and the modified container value.

The ‘Max’ and ‘Min’ functions return the biggest respectively smallest value in the list or set.
These functions only work for types with ordered values, that is, for t is one of IntType (Sec-
tion 3.1.46) or RealType (Section 3.1.65).

The ‘Take’ and ‘Drop’ functions on lists, and the ‘Tail’ and ‘TailReverse’ functions, take lists
with any element type, and return lists with the same element type.

The ‘Head’ and ‘HeadReverse’ functions take lists of any element type te, and return elements.

The ‘Sort’ and ‘Insert’ functions accept lists of any element type te, and also return such lists.
The tf parameter is a compare function on two elements, returning a value of type IntType
(Section 3.1.46). The value returned by the compare function should be negative if the first
parameter is ’smaller’ than the second parameter, zero if they are equal, and positive otherwise.

The ‘Range’ function constructs a list with values of the given interval. If only the (exclusive)
upper limit is given, the interval starts at 0. Otherwise, the interval runs from the lower limit
up to and excluding the upper limit.

The ‘Matrix’ function converts a list to a matrix type with a single row. The list must have a
RealType (Section 3.1.65) element type. The second parameter exists for the purpose of type
checking. It must evaluate to a compile-time constant, and indicates the length of the list.

Distribution functions

The following distribution functions construct distributions with various shapes and forms.

Library function Parameter types Result type
Constant BoolType (Section 3.1.14) DistributionType (Section 3.1.31) with

BoolType (Section 3.1.14) result type.
IntType (Section 3.1.46) DistributionType (Section 3.1.31) with

IntType (Section 3.1.46) result type.
RealType (Section 3.1.65) DistributionType (Section 3.1.31) with

RealType (Section 3.1.65) result type.
Bernoulli RealType (Section 3.1.65) DistributionType (Section 3.1.31) with

BoolType (Section 3.1.14) result type.
Binomial RealType (Section 3.1.65), DistributionType (Section 3.1.31) with

IntType (Section 3.1.46) IntType (Section 3.1.46) result type.
Geometric RealType (Section 3.1.65) DistributionType (Section 3.1.31) with

IntType (Section 3.1.46) result type.
Poisson RealType (Section 3.1.65) DistributionType (Section 3.1.31) with

IntType (Section 3.1.46) result type.
Uniform IntType (Section 3.1.46), DistributionType (Section 3.1.31) with

IntType (Section 3.1.46) IntType (Section 3.1.46) result type.
RealType (Section 3.1.65), DistributionType (Section 3.1.31) with
RealType (Section 3.1.65) RealType (Section 3.1.65) result type.

60

Library function Parameter types Result type
Beta RealType (Section 3.1.65), DistributionType (Section 3.1.31) with

RealType (Section 3.1.65) RealType (Section 3.1.65) result type.
Erlang IntType (Section 3.1.46), DistributionType (Section 3.1.31) with

RealType (Section 3.1.65) RealType (Section 3.1.65) result type.
Exponential RealType (Section 3.1.65) DistributionType (Section 3.1.31) with

RealType (Section 3.1.65) result type.
Gamma RealType (Section 3.1.65), DistributionType (Section 3.1.31) with

RealType (Section 3.1.65) RealType (Section 3.1.65) result type.
LogNormal RealType (Section 3.1.65), DistributionType (Section 3.1.31) with

RealType (Section 3.1.65) RealType (Section 3.1.65) result type.
Normal RealType (Section 3.1.65), DistributionType (Section 3.1.31) with

RealType (Section 3.1.65) RealType (Section 3.1.65) result type.
Triangle RealType (Section 3.1.65), DistributionType (Section 3.1.31) with

RealType (Section 3.1.65), RealType (Section 3.1.65) result type.
RealType (Section 3.1.65)

Random - DistributionType (Section 3.1.31) with
RealType (Section 3.1.65) result type.

Weibull RealType (Section 3.1.65), DistributionType (Section 3.1.31) with
RealType (Section 3.1.65) RealType (Section 3.1.65) result type.

SetSeed DistributionType (Section 3.1.31), DistributionType (Section 3.1.31)
IntType (Section 3.1.46)

For StdLibFunctions.SetSeed (Section 3.1.6), the result types of both distribution types must be
the same.

Library function Parameter types Result type
Sample DistributionType (Section 3.1.31) with DistributionType (Section 3.1.31) with

BoolType (Section 3.1.14) result type BoolType (Section 3.1.14) result type,
BoolType (Section 3.1.14).

DistributionType (Section 3.1.31) with DistributionType (Section 3.1.31) with
IntType (Section 3.1.46) result type IntType (Section 3.1.46) result type,

IntType (Section 3.1.46).
DistributionType (Section 3.1.31) with DistributionType (Section 3.1.31) with
RealType (Section 3.1.65) result type RealType (Section 3.1.65) result type,

RealType (Section 3.1.65).

The StdLibFunctions.SampleFunc (Section 3.1.6) function (not to be confused with the ‘sample’
unary operator UnaryOperators.Sample (Section 3.1.7)) takes a distribution, and returns a record
with the updated distribution and the computed sample.

In case the above distribution creation functions do not suffice, the following functions can be
used to compute samples using basic random generators (distributions created with StdLibFunc-
tions.Random (Section 3.1.6)).

Each function takes one or more basic random generators, and the parameters of the distribution
to compute. The answer is a record with the updated random generators (which should be kept
and used again the next time), and the computed sample value. Some algorithms compute two
sample values at the same time. Both these values should be used before computing a next batch
of samples.

61

Library function Parameter types Result type
DrawBernoulli DistributionType (Section 3.1.31), (DistributionType (Section 3.1.31),

RealType (Section 3.1.65) BoolType (Section 3.1.14))
DrawBeta DistributionType (Section 3.1.31), (DistributionType (Section 3.1.31),

DistributionType (Section 3.1.31), DistributionType (Section 3.1.31),
DistributionType (Section 3.1.31), DistributionType (Section 3.1.31),
DistributionType (Section 3.1.31), DistributionType (Section 3.1.31),
RealType (Section 3.1.65), RealType (Section 3.1.65))
RealType (Section 3.1.65)

DrawBinomial DistributionType (Section 3.1.31), (DistributionType (Section 3.1.31),
RealType (Section 3.1.65), IntType (Section 3.1.46))
IntType (Section 3.1.46)

DrawErlang DistributionType (Section 3.1.31), (DistributionType (Section 3.1.31),
DistributionType (Section 3.1.31), DistributionType (Section 3.1.31),
IntType (Section 3.1.46), RealType (Section 3.1.65))
RealType (Section 3.1.65)

DrawExponential DistributionType (Section 3.1.31), (DistributionType (Section 3.1.31),
RealType (Section 3.1.65) RealType (Section 3.1.65))

DrawGamma DistributionType (Section 3.1.31), (DistributionType (Section 3.1.31),
DistributionType (Section 3.1.31), DistributionType (Section 3.1.31),
RealType (Section 3.1.65), RealType (Section 3.1.65))
RealType (Section 3.1.65)

DrawGeometric DistributionType (Section 3.1.31), (DistributionType (Section 3.1.31),
RealType (Section 3.1.65) IntType (Section 3.1.46))

DrawLogNormal DistributionType (Section 3.1.31), (DistributionType (Section 3.1.31),
DistributionType (Section 3.1.31), DistributionType (Section 3.1.31),
RealType (Section 3.1.65), RealType (Section 3.1.65),
RealType (Section 3.1.65) RealType (Section 3.1.65))

DrawNormal DistributionType (Section 3.1.31), (DistributionType (Section 3.1.31),
DistributionType (Section 3.1.31), DistributionType (Section 3.1.31),
RealType (Section 3.1.65), RealType (Section 3.1.65),
RealType (Section 3.1.65) RealType (Section 3.1.65))

DrawPoisson DistributionType (Section 3.1.31), (DistributionType (Section 3.1.31),
RealType (Section 3.1.65), IntType (Section 3.1.46))

DrawTriangle DistributionType (Section 3.1.31), (DistributionType (Section 3.1.31),
RealType (Section 3.1.65), RealType (Section 3.1.65))
RealType (Section 3.1.65),
RealType (Section 3.1.65)

DrawUniform DistributionType (Section 3.1.31), (DistributionType (Section 3.1.31),
IntType (Section 3.1.46), IntType (Section 3.1.46))
IntType (Section 3.1.46)
DistributionType (Section 3.1.31), (DistributionType (Section 3.1.31),
RealType (Section 3.1.65), RealType (Section 3.1.65))
RealType (Section 3.1.65)

DrawWeibull DistributionType (Section 3.1.31), (DistributionType (Section 3.1.31),
RealType (Section 3.1.65), RealType (Section 3.1.65))
RealType (Section 3.1.65)

62

File functions

Library function i Parameter types Result type
Open StringType (Section 3.1.79), FileType (Section 3.1.38)

StringType (Section 3.1.79)
Close FileType (Section 3.1.38) BoolType (Section 3.1.14)

The ‘Open’ function constructs a connection to a file. First parameter is the name of the file.
Second parameter is the mode (r or w).

The ‘Close’ function denotes that all data has been read or written, and the connection may be
dropped.

Instead of a file-name use a url-like notation to keep extensions possible?

Guard functions

Library function Parameter types Result type
Timeout VariableReference (Section 3.1.95) BoolType (Section 3.1.14)

The ‘Timeout’ function takes a parameter referencing a timer variable and gives true if the timer
has timed out.

Timers are now much more useful, change the docs.

Check whether this text represents reality.

EObject
x ChiObject (Section 3.1.20)
x Expression (Section 3.1.36)
x BaseFunctionReference (Section 3.1.9)
x StdLibFunctionReference

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont type [0..1] : Type (inherited from Expression)
Type of the expression.

• Expression.notNull In type-checked models, Expression.type (Section 3.1.36) is n-
ever null.

• Expression.noVoid Type of an expression is never VoidType (Section 3.1.96).

attr function [1] : StdLibFunctions
Referenced function.

63

3.1.78 StringLiteral (class)

Expression denoting a string value.

• StringLiteral.type The type of the string literal expression is a StringType (Section 3.1.79).

EObject
x ChiObject (Section 3.1.20)
x Expression (Section 3.1.36)
x StringLiteral

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont type [0..1] : Type (inherited from Expression)
Type of the expression.

• Expression.notNull In type-checked models, Expression.type (Section 3.1.36) is n-
ever null.

• Expression.noVoid Type of an expression is never VoidType (Section 3.1.96).

attr value [1] : EString
Value of the string literal. The value is the literal value, no quotes around it, and no
escaping of characters takes place in the value.

3.1.79 StringType (class)

Data type for string values.

EObject
x ChiObject (Section 3.1.20)
x Type (Section 3.1.86)
x StringType

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

3.1.80 TerminateStatement (class)

Statement to terminate the execution of a Chi program.

64

Execution of this statement stops all execution activity of the Chi program (It is a global self-
destruct.)

EObject
x ChiObject (Section 3.1.20)
x Statement (Section 3.1.76)
x TerminateStatement

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

3.1.81 TimeLiteral (class)

Expression to refer to the current simulated time.

• TimeLiteral.type Type of the expression is RealType (Section 3.1.65).

EObject
x ChiObject (Section 3.1.20)
x Expression (Section 3.1.36)
x TimeLiteral

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont type [0..1] : Type (inherited from Expression)
Type of the expression.

• Expression.notNull In type-checked models, Expression.type (Section 3.1.36) is n-
ever null.

• Expression.noVoid Type of an expression is never VoidType (Section 3.1.96).

3.1.82 TimerType (class)

Type of a timer.

EObject
x ChiObject (Section 3.1.20)
x Type (Section 3.1.86)
x TimerType

65

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

3.1.83 TupleExpression (class)

Expression denoting a tuple literal value.

• TupleExpression.type The type of a tuple expression is a TupleType (Section 3.1.85),
with the type of its fields being equal to the types of the TupleExpression.fields (Sec-
tion 3.1.83) expressions.

EObject
x ChiObject (Section 3.1.20)
x Expression (Section 3.1.36)
x TupleExpression

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont type [0..1] : Type (inherited from Expression)
Type of the expression.

• Expression.notNull In type-checked models, Expression.type (Section 3.1.36) is n-
ever null.

• Expression.noVoid Type of an expression is never VoidType (Section 3.1.96).

cont fields [2..*] : Expression
Child expressions of a tuple expression.

3.1.84 TupleField (class)

Type of a single field in a tuple type.

EObject
x ChiObject (Section 3.1.20)
x TupleField

Direct derived classes: none

66

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont name [0..1] : Name
Name of the field.

cont type [1] : Type
Type of the field.

3.1.85 TupleType (class)

Tuple type.

• TupleType.unique Field names of the fields should be unique within the tuple type.

EObject
x ChiObject (Section 3.1.20)
x Type (Section 3.1.86)
x TupleType

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont fields [2..*] : TupleField
Available fields in the tuple type.

3.1.86 Type (abstract class)

Base class of all data types.

• Type.nocycle A data type may not refer (indirectly) to itself.

EObject
x ChiObject (Section 3.1.20)
x Type

Direct derived classes: BoolType (Section 3.1.14), ChannelType (Section 3.1.19), DictType (Sec-
tion 3.1.28), DistributionType (Section 3.1.31), EnumTypeReference (Section 3.1.33), FileType
(Section 3.1.38), InstanceType (Section 3.1.45), IntType (Section 3.1.46), ListType (Section 3.1.50),
MatrixType (Section 3.1.53), ProcessType (Section 3.1.62), RealType (Section 3.1.65), SetType
(Section 3.1.73), StringType (Section 3.1.79), TimerType (Section 3.1.82), TupleType (Section 3.1.85),
TypeReference (Section 3.1.88), UnresolvedType (Section 3.1.92), VoidType (Section 3.1.96)

67

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

3.1.87 TypeDeclaration (class)

Declaration to attach a name to a data type.

EObject
x ChiObject (Section 3.1.20)
x Declaration (Section 3.1.26)
x TypeDeclaration

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont name [1] : Name (inherited from Declaration)
Name of the declaration.

• Declaration.name Name of a declaration should be non-empty.

cont type [1] : Type
Type attached to the name.

3.1.88 TypeReference (class)

Reference to a type declaration.

• TypeReference.type Type of the type variable is equal to the type of the referenced type
declaration.

• TypeReference.nocycle A type variable may not reference itself (neither directly nor
indirectly).

EObject
x ChiObject (Section 3.1.20)
x Type (Section 3.1.86)
x TypeReference

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

ref type [1] : TypeDeclaration
Referenced type declaration o the type variable.

68

3.1.89 UnaryExpression (class)

Expression operation with one child expression.

EObject
x ChiObject (Section 3.1.20)
x Expression (Section 3.1.36)
x UnaryExpression

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont type [0..1] : Type (inherited from Expression)
Type of the expression.

• Expression.notNull In type-checked models, Expression.type (Section 3.1.36) is n-
ever null.

• Expression.noVoid Type of an expression is never VoidType (Section 3.1.96).

cont child [1] : Expression
Child expression.

cont operator [1] : UnaryOp
Operation performed on the child expression value.

• UnaryExpression.operatorArgument The type of the unary operator argument
must match with the type of the child expression (Expression.type (Section 3.1.36) of
UnaryExpression.child (Section 3.1.89)).

• UnaryExpression.resultType The result type of the unary expression must match
with the result type of the used operator.

The allowed child types and result types for each operator are listed in the tables below.

Inverse operator

Child type Result type
BoolType (Section 3.1.14) BoolType (Section 3.1.14)

Negate operator

Child type Result type
IntType (Section 3.1.46) IntType (Section 3.1.46)
RealType (Section 3.1.65) RealType (Section 3.1.65)

69

Sample operator

The sample operator takes a distribution as child (an expression with a DistributionType
(Section 3.1.31) as type). The result type of the sample operator depends on the element
type of the child type in the following way:

Child element type Result type
BoolType (Section 3.1.14) BoolType (Section 3.1.14)
IntType (Section 3.1.46) IntType (Section 3.1.46)
RealType (Section 3.1.65) RealType (Section 3.1.65)

• UnaryExpression.sampleNotInFunction The UnaryOperators.Sample (Section 3.1.7)
may not be used in unary expressions (UnaryExpression (Section 3.1.89)) in a function
declaration (FunctionDeclaration (Section 3.1.40)).

3.1.90 UnaryOp (class)

Extra class for attaching a position to a unary operator.

EObject
x ChiObject (Section 3.1.20)
x UnaryOp

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

attr op [1] : UnaryOperators
Unary operator contained in the class.

3.1.91 UnresolvedReference (class)

Reference to a named value which is not yet resolved.

• UnresolvedReference.notInChecked UnresolvedReference (Section 3.1.91) should not
occur in type checked chi models.

• UnresolvedReference.type The UnresolvedReference.type (Section 3.1.91) should be
null.

EObject
x ChiObject (Section 3.1.20)
x Expression (Section 3.1.36)
x UnresolvedReference

70

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont type [0..1] : Type (inherited from Expression)
Type of the expression.

• Expression.notNull In type-checked models, Expression.type (Section 3.1.36) is n-
ever null.

• Expression.noVoid Type of an expression is never VoidType (Section 3.1.96).

attr name [1] : ChiIdentifier
Name given to the unresolved reference.

3.1.92 UnresolvedType (class)

Unresolved type reference.

EObject
x ChiObject (Section 3.1.20)
x Type (Section 3.1.86)
x UnresolvedType

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

attr name [1] : ChiIdentifier
Name of the unresolved type reference.

• UnresolvedType.notInChecked UnresolvedType (Section 3.1.92) should not occur
in type checked chi models.

3.1.93 Unwind (class)

Unwind loop.

EObject
x ChiObject (Section 3.1.20)
x Unwind

Direct derived classes: none

71

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont source [1] : Expression
Source expression to unwind.

• Unwind.sourceType The type of the Unwind.source (Section 3.1.93) expression
must be an iterable container type, a ListType (Section 3.1.50), SetType (Section 3.1.73),
or DictType (Section 3.1.28).

cont variables [1..*] : VariableDeclaration
Local variables of the unwind.

• Unwind.variableNames The names of the variables should be unique within an
unwind.

What do we decide on var overloading/scoping rule?

3.1.94 VariableDeclaration (class)

Declaration of a variable or formal parameter.

EObject
x ChiObject (Section 3.1.20)
x VariableDeclaration

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont initialValue [0..1] : Expression
Optional initial value of the variable.

• VariableDeclaration.initialValue The initial value of a VariableDeclaration (Sec-
tion 3.1.94) must be null if VariableDeclaration.parameter (Section 3.1.94) is true.

• VariableDeclaration.initialValueType If the initial value is not null, the type of
the initial value expression must be equal to the type of the variable.

Timer variables are not allowed as parameter.

cont name [1] : Name
Name of the variable or formal parameter.

attr parameter [1] : EBoolean
Variable is a formal parameter.

cont type [0..1] : Type
Type of the variable.

72

3.1.95 VariableReference (class)

Expression referencing a variable.

• VariableReference.type Type of the variable reference is the same as the type of the
referenced variable.

• VariableReference.inScope The referenced variable must be in the current scope.

EObject
x ChiObject (Section 3.1.20)
x Expression (Section 3.1.36)
x VariableReference

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont type [0..1] : Type (inherited from Expression)
Type of the expression.

• Expression.notNull In type-checked models, Expression.type (Section 3.1.36) is n-
ever null.

• Expression.noVoid Type of an expression is never VoidType (Section 3.1.96).

ref variable [1] : VariableDeclaration
Referenced variable of the variable reference expression.

3.1.96 VoidType (class)

Data type without any values, used as data type for synchronization channels.

EObject
x ChiObject (Section 3.1.20)
x Type (Section 3.1.86)
x VoidType

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

73

3.1.97 WhileStatement (class)

The while statement repeatedly tests its condition, and if it holds, it executes its body. The
repetition ends when the condition evaluates to false.

EObject
x ChiObject (Section 3.1.20)
x Statement (Section 3.1.76)
x WhileStatement

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

cont body [1..*] : Statement
Sequence of statements to be executed when the condition of the while statement evaluates
to true.

cont condition [1] : Expression
Condition of the while statement, used for testing whether the body of the while statement
should be executed.

• WhileStatement.ConditionType Type of the condition expression must be a BoolType
(Section 3.1.14).

3.1.98 WriteStatement (class)

Statement for producing output onto an output stream.

EObject
x ChiObject (Section 3.1.20)
x Statement (Section 3.1.76)
x WriteStatement

Direct derived classes: none

cont position [0..1] : Position (inherited from ChiObject)
Position of the construct in the source file.

attr addNewline [1] : EBoolean
Append a newline after writing the data.

attr toFile [1] : EBoolean
Output stream is a file (rather than a terminal).

74

cont values [1..*] : Expression
Sequence of values to write. If WriteStatement.toFile (Section 3.1.98) holds, the first value
is the stream to write to. Values of type string are written unchanged, other data values
are converted to string first.

Note: Although an implementation should attempt to output a representative string for a
value, some information may get lost during the conversion.

• WriteStatement.fileValue If WriteStatement.toFile (Section 3.1.98) holds, the type
of the first value should be of type FileType (Section 3.1.38).

75

Chapter 4

Legal

The material in this documentation is Copyright (c) 2010, 2021 Contributors to the Eclipse
Foundation.

Eclipse ESCET and ESCET are trademarks of the Eclipse Foundation. Eclipse, and the Eclipse
Logo are registered trademarks of the Eclipse Foundation. Other names may be trademarks of
their respective owners.

License

The Eclipse Foundation makes available all content in this document (“Content”). Unless other-
wise indicated below, the Content is provided to you under the terms and conditions of the MIT
License. A copy of the MIT License is available at https://opensource.org/licenses/MIT.
For purposes of the MIT License, “Software” will mean the Content.

If you did not receive this Content directly from the Eclipse Foundation, the Content is being
redistributed by another party (“Redistributor”) and different terms and conditions may apply to
your use of any object code in the Content. Check the Redistributor’s license that was provided
with the Content. If no such license exists, contact the Redistributor. Unless otherwise indicated
below, the terms and conditions of the MIT License still apply to any source code in the Content
and such source code may be obtained at http://www.eclipse.org.

76

https://opensource.org/licenses/MIT
http://www.eclipse.org

Bibliography

[1] Eclipse Foundation. Eclipse Foundation Project Handbook. https://www.eclipse.org/

projects/handbook/#starting-incubation.

[2] Contributors to the Eclipse Foundation. Eclipse Supervisory Control Engineering Toolkit
(Eclipse ESCET). https://eclipse.org/escet.

77

https://www.eclipse.org/projects/handbook/#starting-incubation
https://www.eclipse.org/projects/handbook/#starting-incubation
https://eclipse.org/escet

	Introduction
	EMF model constraints
	Addressable expressions

	Chi metamodel
	Package chi
	ChiIdentifier (datatype)
	ChiNumber (datatype)
	ChiRealNumber (datatype)
	BinaryOperators (enumeration)
	ChannelOps (enumeration)
	StdLibFunctions (enumeration)
	UnaryOperators (enumeration)
	AssignmentStatement (class)
	BaseFunctionReference (abstract class)
	BehaviourDeclaration (abstract class)
	BinaryExpression (class)
	BinaryOp (class)
	BoolLiteral (class)
	BoolType (class)
	BreakStatement (class)
	CallExpression (class)
	ChannelExpression (class)
	ChannelOp (class)
	ChannelType (class)
	ChiObject (class)
	CommunicationStatement (abstract class)
	ConstantDeclaration (class)
	ConstantReference (class)
	ContinueStatement (class)
	CreateCase (abstract class)
	Declaration (abstract class)
	DelayStatement (class)
	DictType (class)
	DictionaryExpression (class)
	DictionaryPair (class)
	DistributionType (class)
	EnumDeclaration (class)
	EnumTypeReference (class)
	EnumValue (class)
	EnumValueReference (class)
	Expression (abstract class)
	FieldReference (class)
	FileType (class)
	ForStatement (class)
	FunctionDeclaration (class)
	FunctionReference (class)
	FunctionType (class)
	IfCase (class)
	IfStatement (class)
	InstanceType (class)
	IntType (class)
	IteratedCreateCase (class)
	IteratedSelectCase (class)
	ListExpression (class)
	ListType (class)
	MatrixExpression (class)
	MatrixRow (class)
	MatrixType (class)
	ModelDeclaration (class)
	Name (class)
	Number (class)
	PassStatement (class)
	Position (class)
	ProcessDeclaration (class)
	ProcessInstance (class)
	ProcessReference (class)
	ProcessType (class)
	ReadCallExpression (class)
	RealNumber (class)
	RealType (class)
	ReceiveStatement (class)
	ReturnStatement (class)
	RunStatement (class)
	SelectCase (class)
	SelectStatement (class)
	SendStatement (class)
	SetExpression (class)
	SetType (class)
	SliceExpression (class)
	Specification (class)
	Statement (abstract class)
	StdLibFunctionReference (class)
	StringLiteral (class)
	StringType (class)
	TerminateStatement (class)
	TimeLiteral (class)
	TimerType (class)
	TupleExpression (class)
	TupleField (class)
	TupleType (class)
	Type (abstract class)
	TypeDeclaration (class)
	TypeReference (class)
	UnaryExpression (class)
	UnaryOp (class)
	UnresolvedReference (class)
	UnresolvedType (class)
	Unwind (class)
	VariableDeclaration (class)
	VariableReference (class)
	VoidType (class)
	WhileStatement (class)
	WriteStatement (class)

	Legal
	Bibliography

