
Position Metamodel Reference Documentation (Incubation)

Copyright (c) 2010, 2021 Contributors to the Eclipse Foundation

Version 2021-10-19

Contents

1 Introduction 2

2 Notations and conventions 3

2.1 Ecore class diagrams . 3

2.2 Metamodel documentation conventions . 4

3 Position metamodel 6

3.1 Package position . 6

3.1.1 Position (class) . 7

3.1.2 PositionObject (abstract class) . 8

4 Legal 9

Bibliography 9

1

Chapter 1

Introduction

The position language is a language to represent position information, for source tracking. A
position is represented as a continuous region in a textual source (the source text). This language
is typically not used by itself, but other languages can use this language to provide position infor-
mation storage. By using a common language for position information, the position information
can be handled generically by e.g. parsers, type checkers and text editors.

The position language is part of the common functionality provided by the Eclipse ESCET
TM

project [3].

The Eclipse ESCET project, including the position language, is currently in the Incubation
Phase [1].

In this report, the position language is defined. The position language is defined using a so-called
conceptual model, also known as metamodel by the Object Management Group (OMG). A meta-
model represents concepts (entities) and relationships between them. The position metamodel
is described using (Ecore) class diagrams [2], where classes represent concepts, and associations
represent relationships between concepts. Static semantic constraints and relations that cannot
be represented using class diagrams are stated in the class documentation of the metamodel.
The metamodel and the accompanying constraints are used primarily to formalize the syntax of
the internal (implementation) representation of the language.

This report is organized as follows. The notations and conventions used in this document are
explained in Chapter 2 and Chapter 3 describes the position metamodel.

2

Chapter 2

Notations and conventions

2.1 Ecore class diagrams

Metamodels are represented using Ecore class diagrams, which are very similar to UML class
diagrams. In Ecore class diagrams, classifiers represent concepts, and associations represent
relationships between concepts. There are two kinds of classifiers, namely data types and classes.

Data types are used for simple types, whose details are not modeled as classes. Data types are
identified by a name. Examples of data types include booleans, numbers, strings (optionally
restricted using regular expressions), and enumerations.

A class is also identified by its name, and can have a number of structural features, namely
attributes and references. Classes allow inheritance, giving them access to the structural features
of their supertypes/basetypes.

Attributes are identified by name, and they have a data type. Associations between classes
are modeled by references. Like attributes, references are identified by name and have a type.
However, the type is the class at the other end of the association. A reference specifies lower
and upper bounds on its multiplicity. The multiplicity indicators that can be used are shown in
Table 2.1. Finally, a reference specifies whether it is being used to represent a stronger type of
association, called containment.

Graphically, data types are depicted as rectangles. The rectangles have a yellow background.
The data type name is shown at the top inside the rectangle. The Java class name is shown

Table 2.1: Multiplicity indicators

Indicator Meaning
n Exactly n (where n ≥ 1), default notation

n..n Exactly n (where n ≥ 1), alternative notation
n..m n up to and including m (where n ≥ 0, m ≥ 1, and m > n)
n..∗ n or more (where n ≥ 0)

3

Table 2.2: Ecore diagram classifier icons

Icon Meaning

Data type

Enumeration

Class

Abstract class

Table 2.3: Ecore diagram feature icons

Icon Meaning

Attribute with multiplicity [0..1]

Attribute with multiplicity [1..1]

Reference with multiplicity [0..1]

Reference with multiplicity [1..1]

Reference with multiplicity [0..∗]

Reference with multiplicity [1..∗]

below it. Enumerations differ slightly. They have a green background. Instead of the Java class
name, the enumeration literals are listed below the name of the enumeration.

Classes are depicted as rounded rectangles with a yellow background. The class name is shown
at the top inside the rectangle. Abstract classes have a grey background, and the class name is
shown in italic font. The names, types and multiplicity of the attributes are shown inside the
rectangle. References for which the target class is not part of the diagram, are listed as well.
Features from base classes are listed using a grey font.

Tables 2.2 and 2.3 shows the various icons used in Ecore class diagrams for classifiers and features.

Inheritance relations are depicted as arrows between two classes with a (non-solid) triangle on
the side of the superclass. A reference is depicted as an arrow between two classes, labeled with
its name and its multiplicity. A containment reference is depicted with a solid diamond at the
side of the containing class.

2.2 Metamodel documentation conventions

Each (sub-)package is described in a separate section. An informal description of the package
is followed by the Uniform Resource Identifier (URI) of the package, the namespace prefix, and
a list of all the direct sub-packages. All classifiers defined in the package are described in sub-
sections. First the data types are described, then the enumerations, and finally the classes. The
data types are ordered lexicographically, as are the enumerations and classes.

For data types, an informal description of the data type is followed by the name of the data type,

4

the instance class name, basetype, and the (regular expression) pattern.

For enumerations, an informal description of the enumeration is followed by information about
the enumeration literals, which are ordered lexicographically. For each enumeration literal, a
short informal description is included. The default value of the enumeration (the default literal),
is indicated as well.

For classes, an informal description of the class is followed by the inheritance hierarchy. Note
that all classes that do not have an explicit supertype in the Ecore, implicitly inherit from
EObject1. Therefore, all the inheritance hierarchies start in EObject. The inheritance hierarchies
are followed by a listing of all the directly derived classes of the class. Finally, all the structural
features of the class are listed, including the inherited ones. The structural features of the
supermost type are listed first, and the ones of the actual class are listed last. Secondary ordering
is lexicographical.

For each structural feature, the type is indicated (‘attr’ for attributes, ‘ref’ for references, and
‘cont’ for containment references). This is followed by the name of the structural feature, the
multiplicity, a colon, and the type. If the structural feature is inherited from a supertype, that
is indicated as well. Finally, an informal description of the structural feature is provided.

1Actually, in the implementation, org.eclipse.emf.ecore.EObject and all classes from metamodels are
interfaces. Implementation classes implement the interfaces and have names ending in Impl. E.g.
org.eclipse.emf.ecore.impl.EObjectImpl implements org.eclipse.emf.ecore.EObject.

5

Chapter 3

Position metamodel

The position metamodel consists of only one packages, the position package. The class diagram
is presented and described in the section below.

3.1 Package position

Figure 3.1 shows the position package.

Figure 3.1: position package

The position package contains classes used to represent position information, for source tracking.
A position is represented as a continuous region in a textual source (the source text).

The Position (Section 3.1.1) class represents actual position information. The abstract Posi-
tionObject (Section 3.1.2) class can be used as a base class for other classes, and allows those
classes to store position information.

6

Package URI http://eclipse.org/escet/position

Namespace prefix position

Sub-packages none

3.1.1 Position (class)

Position (source tracking) information.

Constraints:

• Position.lines The startLine must be smaller than or equal to the endLine.

• Position.columns If the startLine is equal to the endLine, the startColumn must be
smaller than or equal to the endColumn.

• Position.offsets The startOffset must be smaller than or equal to the endOffset.

EObject
x Position

Direct derived classes: none

attr endColumn [1] : EInt
The 1-based column index of the end (inclusive) of the position region, with respect to the
start of the source text.

Constraints:

• Position.endColumnValue Value must be greater than or equal to one.

attr endLine [1] : EInt
The 1-based line index of the end (inclusive) of the position region, with respect to the
start of the source text.

Constraints:

• Position.endLineValue Value must be greater than or equal to one.

attr endOffset [1] : EInt
The 0-based byte index of the end (inclusive) of the position region, with respect to the
start of the source text.

Constraints:

• Position.endOffsetValue Value must be greater than or equal to zero.

attr location [1] : EString
The location of the source file that contains the position. Must be an absolute local file
system path, with platform specific path separators. The path does not have to refer to an
existing file. That is, it may not be assumed that a file with that path actually exists on
disk.

7

attr source [0..1] : EString
Optional source identification. Usually, this is a file name.

attr startColumn [1] : EInt
The 1-based column index of the start (inclusive) of the position region, with respect to
the start of the source text.

Constraints:

• Position.startColumnValue Value must be greater than or equal to one.

attr startLine [1] : EInt
The 1-based line index of the start (inclusive) of the position region, with respect to the
start of the source text.

Constraints:

• Position.startLineValue Value must be greater than or equal to one.

attr startOffset [1] : EInt
The 0-based byte index of the start (inclusive) of the position region, with respect to the
start of the source text.

Constraints:

• Position.startOffsetValue Value must be greater than or equal to zero.

3.1.2 PositionObject (abstract class)

Base class for other classes, facilitating the storage of position information.

EObject
x PositionObject

Direct derived classes: none

cont position [0..1] : Position
Optional position information.

8

Chapter 4

Legal

The material in this documentation is Copyright (c) 2010, 2021 Contributors to the Eclipse
Foundation.

Eclipse ESCET and ESCET are trademarks of the Eclipse Foundation. Eclipse, and the Eclipse
Logo are registered trademarks of the Eclipse Foundation. Other names may be trademarks of
their respective owners.

License

The Eclipse Foundation makes available all content in this document (“Content”). Unless other-
wise indicated below, the Content is provided to you under the terms and conditions of the MIT
License. A copy of the MIT License is available at https://opensource.org/licenses/MIT.
For purposes of the MIT License, “Software” will mean the Content.

If you did not receive this Content directly from the Eclipse Foundation, the Content is being
redistributed by another party (“Redistributor”) and different terms and conditions may apply to
your use of any object code in the Content. Check the Redistributor’s license that was provided
with the Content. If no such license exists, contact the Redistributor. Unless otherwise indicated
below, the terms and conditions of the MIT License still apply to any source code in the Content
and such source code may be obtained at http://www.eclipse.org.

9

https://opensource.org/licenses/MIT
http://www.eclipse.org

Bibliography

[1] Eclipse Foundation. Eclipse Foundation Project Handbook. https://www.eclipse.org/

projects/handbook/#starting-incubation.

[2] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF Eclipse Modeling
Framework. Addison-Wesley, 2009.

[3] Contributors to the Eclipse Foundation. Eclipse Supervisory Control Engineering Toolkit
(Eclipse ESCET). https://eclipse.org/escet.

10

https://www.eclipse.org/projects/handbook/#starting-incubation
https://www.eclipse.org/projects/handbook/#starting-incubation
https://eclipse.org/escet

	Introduction
	Notations and conventions
	Ecore class diagrams
	Metamodel documentation conventions

	Position metamodel
	Package position
	Position (class)
	PositionObject (abstract class)

	Legal
	Bibliography

