Compositional Interchange Format (CIF) Metamodel
Reference Documentation (Incubation)

Copyright (c) 2010, 2021 Contributors to the Eclipse Foundation

Version 2021-12-11

ECLIPSE

INCUBATION

Contents

2N : I ons

2.1 Ecore class diagrams| oL

8 CIF metamodell

B.II

BI2

Dcoping rules| oL oL

B.13

VISIDIEEY] .« « o o o e e e

B2

Package cifl

B.21

Cifldentifier (datatype)

B.22

InvKind (enumeration)|

B.2.3

SupKind (enumeration)| L

B.24

AlgParameter (class)[. oo

B25

ComplexComponent (abstract class)|

B.2.6

Component (abstract class)| Lo oL

B2.7

ComponentDef (class)| oo

B.2.8

ComponentInst (class)|o Lo

B.2.9

ComponentParameter (class)| L.

[3.2.10

Equation (class)l

B2.11

EventParameter (class)| o

B.2.12

Group (class)|

B2.13

Invariant (class)|

[3.2.14 ToDecl (abstract class) 30

[3.2.15 LocationParameter (class)|. 30
[3.2.16 Parameter (abstract class)|.o oo Lo 31
[3.2.17 Specification (class)| oo 31
8.3 Package declarations|o oo oo 34
[3-3.1 AlgVariable (class)| 34
[3.3.2 Constant (class)| 35
[3.3.3 ContVariable (class)| 36
[3.3.4 Declaration (abstract class)| L. 38
[3.3.5 DiscVariable (class)| 38
[3.3.6 EnumDecl (class)|. 40
[3-3.7 EnumlLiteral (class)| 41
[3:3.8° Event (class)l 41
[3.3.9 InputVariable (class)| o 42
[3.3.10 TypeDecl (class)| oo 43
[3-3.11 VariableValue (class)| 44
8.4 Package automatalo o 44
[3.4.1 Alphabet (class)| 44
[3.4.2 Assignment (class)| 46
[3.4.3 Automaton (class)| o 47
[3.4.4 Edge (class)|. 49
[3.4.5 EdgeEvent (class)| 51
[3.4.6 EdgeReceive (class)|o 52
[3.4.7 EdgeSend (class)| 52
[3.4.8 ElifUpdate (class)| 53
[3.4.9 TIfUpdate (class)| 54
[3.4.10 Location (class)[. L 54
[3.4.11 Monitors (class)| 56
[3.4.12 Update (abstract class)| L L 57
B.5 Package types| 58
[3.5.1 BoolType (class)| o 58
[3.5.2 CifType (abstract class)| 58

[3.5.3 ComplnstWrapType (class) 59
[3.5.4 CompParamWrapType (class)| 59
[3.5.5 ComponentDefType (class)| 60
[3.5.6 ComponentType (class)| 61
[3.5.7 DictType (class)| 61
[3.5.8 DistType (class)| 62
[3.5.9 EnumType (class)| 62
[3.5.10 Field (class)[. 63
[3.5.11 FuncType (class)| 63
[3.5.12 IntType (class)|o 64
[3.5.13 ListType (class)| 65
[3.5.14 RealType (class)| 65
[3.5.15 SetType (class)|o o 66
[3.5.16 StringType (class)| 66
[3.5.17 TupleType (class)| 67
[3.5.18 TypeRef (class)|. 67
[3.5.19 VoidType (class)| 68
3.6 Package expressions| L o 68
[3.6.1 BinaryOperator (enumeration)| 70
[3.6.2 StdLibFunction (enumeration)| 71
[3.6.3 UnaryOperator (enumeration)| 75
[3.6.4 AlgVariableExpression (class)|o 75
[3.6.5 BaseFunctionExpression (abstract class)| 76
[3.6.6 BinaryExpression (class)|. o Lo L 76
[3.6.7 BoolExpression (class)| o 7
[3.6.8 CastExpression (class)|o oo 79
[3.6.9 ComplnstWrapExpression (class)| 79
[3.6.10 CompParamExpression (class)| 80
[3.6.11 CompParamWrapExpression (class)| 81
[3.6.12 ComponentExpression (class)| 82
[3.6.13 ConstantExpression (class)| oL 83
[3.6.14 ContVariableExpression (class)| 83

[3.6.15 DictExpression (class) o 84
[3.6.16 DictPair (class)[. L 85
[3.6.17 DiscVariableExpression (class)|, 85
[3.6.18 ElifExpression (class)| Lo 86
[3.6.19 EnumLiteralExpression (class)| 86
[3.6.20 EventExpression (class)| o L 87
[3.6.21 Expression (abstract class)|o o L. 87
[3.6.22 FieldExpression (class)[. o oL 88
[3.6.23 FunctionCallExpression (class)| 89
[3.6.24 FunctionExpression (class)l 89
[3.6.25 IfExpression (class)|. 90
[3.6.26 InputVariableExpression (class)|. 91
[3.6.27 IntExpression (class)| 92
[3.6.28 ListExpression (class)| o 93
[3.6.29 LocationExpression (class)|. o L. 93
[3.6.30 ProjectionExpression (class)|. oL L. 94
[3.6.31 RealExpression (class)| 95
[3.6.32 ReceivedExpression (class)l 96
[3.6.33 SelfExpression (class)| Lo L 96
[3.6.34 SetExpression (class)|. o 97
[3.6.35 SliceExpression (class)| o oL 97
[3.6.36 StdLibFunctionExpression (class)|. 98
[3.6.37 StringExpression (class)| o 102
[3.6.38 SwitchCase (class)| 102
[3.6.39 SwitchExpression (class)[. Lo 103
[3.6.40 TauExpression (class)| o 104
[3.6.41 TimeExpression (class)| 105
[3.6.42 TupleExpression (class)l 105
[3.6.43 UnaryExpression (class)| oL 106
B.7 Package functions|.o 107
[3.7.1 AssignmentFuncStatement (class)] 107
[3.7.2 BreakFuncStatement (class)|. 108

[3.7.3 ContinueFuncStatement (class)| 109
[3.7.4 ElifFuncStatement (class)| oL 109
[3.7.5 ExternalFunction (class)[. 110
[3.7.6 Function (abstract class)|. 0oL 111
[3.7.7 FunctionParameter (class)|. 112
[3.7.8 FunctionStatement (abstract class)| 112
[3.7.9 TfFuncStatement (class)l o 113
[3.7.10 InternalFunction (class)| L 113
[3.7.11 ReturnFuncStatement (class)| 115
[3.7.12 WhileFuncStatement (class)|. 115

3.8 Package cifsvg|. 116
[3.8.1 SvgCopy (class)|. 117
[3.8.2 SvgFile (class)| 118
[3.8.3 Svgln (class)| 119
[3.8.4 SvgInEvent (abstract class)| 120
[3.8.5 SvgInEventIf (class)| L 120
[3.8.6 SvegInEventIfEntry (class)| o oo 120
[3.8.7 SvgInEventSingle (class)|. o L 121
[3.8.8 SvgMove (class)| 122
[3.8.9 SvgOut (class)| L 123

8.9 Package print| 124
[3.9.1 PrintForKind (enumeration)[. 125
[3.9.2 Print (class)|. 125
[3.9.3 PrintFile (class)| 127
[3.9.4 PrintFor (class)|. 127
13.10 Package position| o o 128
[3.10.1 Position (class)| 129
[3-10.2 PositionObject (abstract class)| 130

I Distoibutions 131
133

133

Chapter 1

Introduction

CIF is a declarative modeling language for the specification of discrete event, timed, and hy-
brid systems as a collection of synchronizing automata. The CIF tooling supports the entire
development process of controllers, including among others specification, supervisory controller
synthesis, simulation-based validation and visualization, verification, real-time testing, and code
generation.

CIF is one of the tools of the Eclipse ESCET " project [4.

The Eclipse ESCET project, including the CIF language and toolset, is currently in the Incuba-

. (ZECLIPSE

INCUBATION

In this report, the CIF language is defined. The CIF language is defined using a so-called concep-
tual model, also known as metamodel by the Object Management Group (OMG). A metamodel
represents concepts (entities) and relationships between them. The CIF metamodel is described
using (Ecore) class diagrams [3], where classes represent concepts, and associations represent
relationships between concepts. Static semantic constraints and relations that cannot be rep-
resented using class diagrams are stated in the class documentation of the metamodel. The
metamodel and the accompanying constraints are used primarily to formalize the syntax of the
internal (implementation) representation of the language.

This report is organized as follows. The notations and conventions used in this document are
explained in Chapter [2] Chapter [3] describes the CIF metamodel, and Chapter [4] describes the
stochastic distributions in more detail.

Chapter 2

Notations and conventions

2.1 Ecore class diagrams

Metamodels are represented using FEcore class diagrams, which are very similar to UML class
diagrams. In FEcore class diagrams, classifiers represent concepts, and associations represent
relationships between concepts. There are two kinds of classifiers, namely data types and classes.

Data types are used for simple types, whose details are not modeled as classes. Data types are
identified by a name. Examples of data types include booleans, numbers, strings (optionally
restricted using regular expressions), and enumerations.

A class is also identified by its name, and can have a number of structural features, namely
attributes and references. Classes allow inheritance, giving them access to the structural features
of their supertypes/basetypes.

Attributes are identified by name, and they have a data type. Associations between classes
are modeled by references. Like attributes, references are identified by name and have a type.
However, the type is the class at the other end of the association. A reference specifies lower
and upper bounds on its multiplicity. The multiplicity indicators that can be used are shown in
Table Finally, a reference specifies whether it is being used to represent a stronger type of
association, called containment.

Graphically, data types are depicted as rectangles. The rectangles have a yellow background.
The data type name is shown at the top inside the rectangle. The Java class name is shown

Table 2.1: Multiplicity indicators

Indicator | Meaning
n | Exactly n (where n > 1), default notation
n.n | Exactly n (where n > 1), alternative notation
n..m | n up to and including m (where n >0, m > 1, and m > n)
n..x | n or more (where n > 0)

Table 2.2: Ecore diagram classifier icons

Icon | Meaning

[=] Data type

Ef Enumeration
B Class

H Abstract class

Table 2.3: Ecore diagram feature icons

Icon | Meaning
= Attribute with multiplicity [0..1]
T Attribute with multiplicity [1..1]
= Reference with multiplicity [0..1]
B Reference with multiplicity [1..1]
o Reference with multiplicity [0..%]
iF Reference with multiplicity [1..%]

below it. Enumerations differ slightly. They have a green background. Instead of the Java class
name, the enumeration literals are listed below the name of the enumeration.

Classes are depicted as rounded rectangles with a yellow background. The class name is shown
at the top inside the rectangle. Abstract classes have a grey background, and the class name is
shown in italic font. The names, types and multiplicity of the attributes are shown inside the
rectangle. References for which the target class is not part of the diagram, are listed as well.
Features from base classes are listed using a grey font.

Tables[2.2]and [2.3]shows the various icons used in Ecore class diagrams for classifiers and features.

Inheritance relations are depicted as arrows between two classes with a (non-solid) triangle on
the side of the superclass. A reference is depicted as an arrow between two classes, labeled with
its name and its multiplicity. A containment reference is depicted with a solid diamond at the
side of the containing class.

For the CIF language, arrows colored in red are containments, but should be interpreted seman-
tically as references. That is, in order to allow wrapping expressions and types to be used, they
are containments instead of references. See also Section [3.11

2.2 Metamodel documentation conventions

Each (sub-)package is described in a separate section. An informal description of the package
is followed by the Uniform Resource Identifier (URI) of the package, the namespace prefix, and
a list of all the direct sub-packages. All classifiers defined in the package are described in sub-

sections. First the data types are described, then the enumerations, and finally the classes. The
data types are ordered lexicographically, as are the enumerations and classes.

For data types, an informal description of the data type is followed by the name of the data type,
the instance class name, basetype, and the (regular expression) pattern.

For enumerations, an informal description of the enumeration is followed by information about
the enumeration literals, which are ordered lexicographically. For each enumeration literal, a
short informal description is included. The default value of the enumeration (the default literal),
is indicated as well.

For classes, an informal description of the class is followed by the inheritance hierarchy. Note
that all classes that do not have an explicit supertype in the Ecore, implicitly inherit from
EObjectﬂ Therefore, all the inheritance hierarchies start in EFObject. The inheritance hierarchies
are followed by a listing of all the directly derived classes of the class. Finally, all the structural
features of the class are listed, including the inherited ones. The structural features of the
supermost type are listed first, and the ones of the actual class are listed last. Secondary ordering
is lexicographical.

For each structural feature, the type is indicated (‘attr’ for attributes, ‘ref’ for references, and
‘cont’ for containment references). This is followed by the name of the structural feature, the
multiplicity, a colon, and the type. If the structural feature is inherited from a supertype, that
is indicated as well. Finally, an informal description of the structural feature is provided.

1Actually, in the implementation, org.eclipse.emf.ecore.EObject and all classes from metamodels are
interfaces. Implementation classes implement the interfaces and have names ending in Impl. E.g.
org.eclipse.emf.ecore.impl. EObjectImpl implements org.eclipse.emf.ecore. EObject.

10

Chapter 3

CIF metamodel

The CIF metamodel consists of the following packages:

e cif package: includes component structure and component definition/instantiation (Sec-
tion at page ,

e declarations sub-package: includes CIF declarations, including among others events and
variables (Section [3.3] at page [34]),

e automata sub-package: includes automata, the basic components of CIF models (Sec-

tion at page ,
e types sub-package: includes CIF types (Section at page ,
e cxpressions sub-package: includes CIF expressions (Section at page ,

e functions sub-package: includes internal and external user-defined CIF functions (Sec-
tion at page ,

e cifsug sub-package: includes CIF/SVG I/0 declarations (Section at page [116)), and

e print sub-package: includes print I/O declarations (Section at page [124]), and

e position package: position information (Section at page [128]).

The class diagrams are presented and described in the respective sections below.

Note that the position package is not actually part of the CIF metamodel. It is actually part of the
position metamodel, but it is used by the CIF metamodel to represent position information. As
such, the documentation for the position package is included in this document, for completeness.
All CIF classes directly or indirectly derive from PositionObject (Section [3.10.2]).

11

3.1 Scoping

3.1.1 Reference wrapping
One of the features of CIF is that pretty much anything in the entire specification can be

referenced from anywhere in the specification. This is however complicated by the existence of
a component definition/instantiation mechanism.

A():

- al: A() . ComplnstWrapExpression |
O | a2 AQ alm S S
: ComponentInst :
(a) The model (b) The reference expression

Figure 3.1: Wrapping expression example: situation before.

Take a look at Figure[3.1a] It shows a CIF model with a component definition A, which contains
a location x. This component definition is instantiated twice, once as al, and once as a2. Finally,
there is a component b, which refers to location x of component al. The reference is written in
the CIF textual syntax.

Figure shows the corresponding instance of metamodel classes that is generated by the
compiler to represent the al.x text. Instead of just generating a reference to an instance of the
Location (Section class, an expression is used. An instance of the LocationExpression
(Section class is wrapped in an instance of the ComplInstWrapEzpression (Section [3.6.9)
class, which also references an instance of the ComponentInst (Section class.

What we see here is a direct representation of the textual syntax, as we reference location x via
component instantiation al. We need to keep track of references via component instantiations.
If we were to only generate an instance of the LocationEzpression (Section [3.6.29) class, or just
use a direct reference to an instance of the Location (Section class, we would no longer
be able to distinguish between location x in component al, and location x in component a2.

al: a2:
X b:
-C> O al.x —
(a) The model (b) The reference expression

Figure 3.2: Wrapping expression example: situation after.

Figure shows the model after elimination of component definition/instantiation. We see
that components instantiations al and a2 are replaced by components al and a2, which are
essentially equal to the body of component definition A. As such, we now have two locations x,
one in component al, and one in component a2. The text to refer to location x of component
al, as used in component b, is still al.x.

Figure shows the corresponding reference expression. It is no longer necessary to use a

12

wrapping expression, as we can refer to location x in component al directly, as it is a real
location, not one that we can get multiple versions of due to instantiation. As such, there is no
confusion about which location we mean by that reference expression.

Note that wrapping does not only apply to references via component instantiations, but also

to references via component parameters. Also, it does not just apply to expressions references,

but also to type references. See also the ComplInst Wrap Type (Section , CompParam Wrap-

Type (Se, CompInst WrapExpression (Section, and CompParam WrapFExpression
3.6.11]

(Section [3.6.11]) classes.

From this we can conclude that reference expressions, reference types, and their wrapping vari-
ants, are necessary to keep track of the component instantiations and component parameters
via which we reference certain objects. That is, we need to correctly capture all of the infor-
mation contained in the textual representations of references, in our metamodel representation.
This is for instance needed to be able to correctly reroute references during the elimination of
component definition/instantiation. After that elimination step however, wrapping expressions
and wrapping types are no longer present. References do remain expressions, and as such, in the
example, an instance of the LocationEzxpression (Section is contained, instead of a direct
reference to an instance of the Location (Section class. Such containments are colored in
red in the metamodel, as already mentioned in Chapter [2]

3.1.2 Scoping rules

As previously mentioned in Section [3.1.1} one of the features of CIF is that pretty much anything
in the entire specification can be referenced from anywhere in the specification. This is however
complicated by the existence of a component definition/instantiation mechanism, which caused
a need for reference wrapping.

This section explains the scoping rules of CIF. Figure [3.3] shows an example CIF specification.
The rectangles in the figure indicate components and component definitions. The outer rectangle
(the dashed one), indicates the entire specification. The text fragments are written in a slightly
simplified version of the CIF textual syntax. In the remainder of this section, the example is
used to explain the scoping rules.

The first thing to note about the figure are the different colors. They indicate the different scopes
of the specification. The outer-most scope (the red scope) is the specification scope. We walk
the containment hierarchy downwards until we hit a component definition. From there, we start
a new scope, and repeat the process. That is, specifications and component definitions start a
new scope. The idea is that component definitions are definitions, and as such we can’t refer to
objects in component definitions directly. If we were to be able to reference objects in component
definitions directly, and there would not be any instance of such a component definition, or there
would be multiple instances, to what would we be referring? So, to solve this ambiguity, only
once we instantiate a component definition, can we refer to objects within that definition (via
component instantiation reference wrapping expressions for instance).

An example of this is component instantiation c: C() in component a. In component a, in the
red scope, we can’t directly reference objects from component definition C, as those objects are
in the green scope. Once we have c, we can use it to refer to objects in C, such as c.b. In
fact, c.b.a.a.x refers to location x (black scope) in component a.a (black scope) in component
definition B, via component instantiations ¢ (red scope to green scope) and b (green scope to

13

)

inva.x =dx
inv .a.a.x = d.x
type t = int [5..6]

type t = int [2..4]

3 a: C(): K(C ¢)

| b: d: inv c.d.x

| h:

| t v = true; @—>@

1 @—'@ b: B() @
L B(): —
| inv b.x = b.y N

vloer C()

| a

| invc.b.a.ax

D ke K(c) disc t vO = 5

3 inv k.h.x disc .t vl =3

3 p: i.P() disc "t v2 = true

| inv p.x type t = bool

Figure 3.3: Scoping and visibility example.

14

black scope).

Note how a component definition itself is part of the enclosing scope, while the parameters are
part of the new scope that is introduced by the component definition. That is, the parameter
cannot be referenced directly from the enclosing scope. If we look at component definition K, we
see that component parameter c is part of the new blue scope. The type of component parameter
¢ is component C, which is resolved in the enclosing scope (the red scope).

Within a single scope (single color in the figure), anything can be referenced directly. For
instance, in component a (red scope), references b.x and b.y refer to locations in automaton b,
which is part of the same red scope. Furthermore, component definition P (from component i)
can be instantiated directly in component a, as both are in the red scope.

In general, anything within the same scope can be referenced directly, as can anything from
ancestors scopes (the parent scope, the parent of the parent scope, etc). An example of the latter
is d.x in an invariant of component C.B.a (in the black scope), which refers to location C.d.x of
automaton C.d, in the green parent scope. The only two ways to reference things in component
definitions that the reference itself is not a part of, are via component instantiations and via
component parameters. For an example of the latter, see invariant inv c¢.d.x in component
definition K.

Note that it is not allowed to instantiate component definitions which, in the instantiation con-
text, can only be referenced via another component instantiation or via a component parameter.
That is, it is not allowed to instantiate a component definition X, declared inside other com-
ponent definition Y, from outside Y. Conceptually, in an instantiated component, there are no
component definitions.

Also, it is not allowed to refer to a parameter of a component definition, via component in-
stantiations or via other component parameters. Once again, conceptually, in an instantiated
component, there are no parameters.

For user-defined functions, it is not allowed to refer to anything inside a function (parameters
etc) from outside the function. The other way around, from inside a function, it is not allowed
to refer to variables, locations, events, components, component definitions, etc. Objects with
constant values (such as constants etc) may be referenced from inside functions, as may types
(type declarations, enumerations, etc).

The scoping rules for tuple fields are special. See the ProjectionExpression (Section [3.6.30) class
for further details.

3.1.3 Visibility

Within the metamodel, the scoping rules are enough. However, in the CIF textual syntax, the
concept of visibility is important as well.

If we look at Figure we see that relative references to objects that are ‘in scope’ are possible.
For instance, in component a, there is a relative reference to b.x. Reference c.b.a.a.x is a
relative reference as well, even though it uses some component instantiations to reach other
scopes. Relative references refer to objects in the same sub-scope or deeper sub-scopes, possibly
via references to other scopes.

Relative references are also possible to objects defined at higher levels, as for instance shown by

15

discrete variable C.B.a.a.v0, which has type t. This type t is defined one sub-scope above, in
C.B.a.

The other discrete variables in that same automaton, discrete variables vi and v2, also have
type t as their type, but refer to different types t. Since only one object with a given name can
be visible in a scope or sub-scope, types t (in the specification scope) and C.B.t are not visible
in automaton C.B.a.a. They are however ‘in scope’, as they are type declarations in the same
scope or in ancestor scopes.

To be able to refer to objects that are in scope, but are hidden by other declarations of the same
name, absolute references can be used. There are two variants: scope absolute references and
specification absolute references. The type .t of discrete variable v1 is a scope absolute reference.
The reference starts with a single dot (.) and is then relative to the root of the current scope
(the black scope). The type ~t of discrete variable v2 is a specification absolute reference. The
reference starts with a caret (*) and is then relative to the root of the current specification (the
red scope).

Note that functions, similar to components, introduce a sub-scope.

Note that tuple projection expressions may introduce a sub-scope. This scope has the tuple
fields as objects. This kind of sub-scope is special in the sense that the fields are only in scope
of the projection expression. Note that as for all scopes, fields may hide other objects with the
same name, from parent scopes. Note that if it is a field reference, the textual reference to that
field must be a single identifier. For instance, for a tuple-typed variable t, t[i] can be a field
reference but t[1 + 1] can not. If the index expression is a reference to another object that can
be referred to by a single identifier, then that object may be hidden by a tuple field with that
same name. In such cases the object can’t be referred to by a single identifier as the field name
takes precedence, hiding the object. A more complex textual reference, such as a scope absolute
reference, must then be used instead to refer to the object.

16

3.2 Package cif

Figure [3:4) shows the cif package. This package contains classes that are used to represent the
component structure of CIF models. It also includes the component definition/instantiation
related classes.

The Component (Section class represents CIF components. There are three types of
components: automata (Automaton (Section class), groups (Group (Section class),
and component instantiations (ComponentInst (Section|3.2.8)) class). Automata and groups share
a common base class (ComplexComponent (Section ince they share many features. The
root object of every CIF model is an instance of the Specification (Section class, a special

form of Group (Section [3.2.12)).

The bottom part of the cif package diagram deals with component definitions (ComponentDef
(Section [3.2.7)) class) and their formal parameters.
Package URI http://eclipse.org/escet /cif

Namespace prefix cif

Sub-packages declarations (Section [3.3), automata (Section [3.4), types (Section [3.5)), expres-
sions (Section , functions (Section , cifsvg (Section [3.8), print (Section [3.9)

3.2.1 Cifldentifier (datatype)

A CIF identifier starts with a letter or an underscore character, and is followed by zero or more
letters, digits, and/or underscore characters.

Note that it is allowed to use keywords from the textual syntax as identifiers. In the CIF textual
syntax, this is allowed as well, but requires that the keyword is prefixed with a dollar sign ($).
This prefix is not allowed in the metamodel, as there is no ambiguity.

Name Cifldentifier

Instance class name java.lang.String

Basetype http://www.eclipse.org/emf/2002/Ecore#EString

Pattern [A-Za-z_][A-Za-z0-9_]x*

3.2.2 InvKind (enumeration)

Invariant kind. Indicates whether an invariant is a state (exclusion) invariant or a state/event
exclusion invariant, and for state/event exclusion invariants also in what form it is written.

literal EventDisables
A state/event exclusion invariant, giving a sufficient condition for an event to be disabled.
A predicate and event are given with the invariant. The event is disabled in states where
the predicate holds. If the predicate does not hold in a state, the event may or may not be
enabled, depending on the automata and other (invariant) restriction of the system.

17

hitp:feclipse orglesceticif

5 Cificentifier | Eﬁ Component

Java.lang.String

T name : Cifldentifier ‘

=

T T [0..*] components

2 Supkind
= Mone | H Equation [1..1] variable ﬁﬁ Declaration
= Plant
ol Ra . nt ' derivative : EBoolean = false T name : Cifldentifier
equireme o -

= Supervisor

q [0..*] declarations % leDec!

[0..*] equations

2 Inwkine

[0..*) ioDecls

= State
= Eventheeds
— EventDisables

E Componentinst | EE ComplexCompanent |

T [1.1] body
[0.] invariants | E Automaton
| E Invariant T kind : SupKind = None
N - (=D U E Group
=] g -
T supKind : SupKind = Hone —
Iphabet : Alphabet
% inuKind : Invind = State apna ena
=+ monitors : Monitors
X
E Specification
[0.."] parameters, [1.1] value [0.] initials [1.1] predicate | | [0.1] event [0. 4] markeds
% Expression |

[0..*] definitions

Q ComponentDef ‘

| E ComponertParameter | E EventParameter |
5 name : Cifldentifier T sendFlag : EBoolean = false
= 0. on T recvFlag : EBoolean =false
T syncFlag : EBoolean = false
= N
]
[1..1] definition [1.1] type [1.1] location [1.1] variable
) [1..1] event
| ﬁ CifType | | E Location | | E AlgVariable
E Evert |
| = p | = name : Cifldentifier

= controllable : EBooleanObject ‘ = urgent : EBoolean = false

Figure 3.4: cif package

18

literal EventNeeds
A state/event exclusion invariant, giving a necessary condition for an event to be enabled.
A predicate and event are given with the invariant. The event is only enabled in states
where the predicate holds. More precisely, if the predicate does not hold in a state, the
event is disabled.

literal State (default)
A state (exclusion) invariant. A predicate is given with the invariant that indicates which
states are allowed. All states not satisfying the predicate may never be active states, i.e.
may never be reached.

3.2.3 SupKind (enumeration)

Supervisory kind. Indicates how an automaton or invariant is to be interpreted for supervisory
synthesis and related algorithms/tools.

literal None (default)
Regular automaton or invariant. Indicates that the kind is considered irrelevant (it is just
an automaton or invariant, nothing else). This kind is usually used if the automaton or
invariant is not to be used for synthesis, verification, etc.

literal Plant
Plant automaton or invariant. A plant automaton specifies the behavior of the uncontrolled
physical system, or a part of it. Plant automata may abstract away from details of the
actual physical system, if those details are considered irrelevant. A plant invariants restricts
the behavior of the uncontrolled physical system, or a part of it.

literal Requirement
Requirement automaton or invariant. A requirement automaton or invariant (or require-
ment) represents the required behavior of the controlled system, or a part of it. Require-
ments can be synthesized, verified, etc.

literal Supervisor
Supervisor automaton or invariant. A supervisor automaton (or supervisor) can be used
to control the uncontrolled plant. A supervisor invariant restricts the behavior of the
supervised system, or a part of it.

3.2.4 AlgParameter (class)

A formal algebraic (variable) parameter of a ComponentDef (Section [3.2.7)).

Note that there are no constant parameters. However, constants may be provided as actual
arguments for formal algebraic parameters.

EObject
L PositionObject (Section [3.10.2)
L Parameter (Section |3.2.16)

L AlgParameter

19

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont variable [1] : AlgVariable
The algebraic variable declaration that represents the formal algebraic parameter.

Constraints:

e AlgParameter.noValue The variable declaration must not have a value, since the
actual parameter should provide it.

3.2.5 ComplexComponent (abstract class)

Base class for more complex components. That is, for components that have declarations etc.
This class was introduced to allow sharing of structural features between the Automaton (Sec-

tion [3.4.3) and Group (Section [3.2.12)) classes.

EObject
L PositionObject (Section (3.10.2)
L Component (Section [3.2.6)
L ComplezComponent

Direct derived classes: Automaton (Section [3.4.3), Group (Section [3.2.12))

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

attr name [1] : Cifldentifier (inherited from Component)
The name of the component.
Constraints:

e Component.name (non-fatal) Component names must not start with e_, c_, or u_,
as those prefixes are reserved for events.

cont declarations [0..*] : Declaration
The declarations of the component.

cont equations [0..*] : Equation
The equations of the component.

cont initials [0..*] : Ezpression
The initialization predicates of the component. A CIF model can only start in states that
satisfy the initialization predicates.

If no predicates are given, the initialization predicate is true. If multiple predicates are
given, this feature represents the logical conjunction of those predicates. Note that this

20

represents the mathematical conjunction, and not the short-circuit conjunction binary op-
erator. As such, there is no ordering between initialization predicates.

See the documentation of the derived classes for information on how to combine the ini-
tialization predicates with other levels.

Constraints:

¢ ComplexComponent.initialTypes The initialization predicates must have boolean
types.

cont invariants [0..%] : Invariant
The invariants of the component. A CIF model can only be in a state if that state satisfies
the invariants.

If no invariants are given, the invariant is ¢rue. If multiple invariant are given, this feature
represents the logical conjunction of those invariants. Note that this represents the mathe-
matical conjunction, and not the short-circuit conjunction binary operator. As such, there
is no ordering between invariants.

See the documentation of the derived classes for information on how to combine the invari-
ants with other levels.

cont ioDecls [0..*] : ToDecl
The I/O declarations of the component.

Constraints:

e ComplexComponent.maxOneSvgFile Must not contain more than one SugFile
(Section [3.8.2)) declaration.

e ComplexComponent.maxOnePrintFile Must not contain more than one Print-

File (Section [3.9.3]) declaration.

cont markeds [0..%] : Ezpression
The marker predicates of the component. Used as liveness property for, among others,
supervisory controller synthesis.

If no predicates are given, the marker predicate is true. If multiple predicates are given,
this feature represents the logical conjunction of those predicates. Note that this represents
the mathematical conjunction, and not the short-circuit conjunction binary operator. As
such, there is no ordering between marker predicates.

See the documentation of the derived classes for information on how to combine the marker
predicates with other levels.

Constraints:

¢ ComplexComponent.markedTypes The marker predicates must have boolean
types.

3.2.6 Component (abstract class)

Base class of all CIF components. Components model the structure of a CIF model.
EObject

21

L PositionObject (Section |3.10.2)

L Component

Direct derived classes: ComplexComponent (Section , ComponentInst (Section [3.2.8))

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

attr name [1] : Cifldentifier
The name of the component.

Constraints:

e Component.name (non-fatal) Component names must not start with e_, c_, or u_,
as those prefixes are reserved for events.

3.2.7 ComponentDef (class)

A component definition. Component definitions allow reuse of components. They can be in-
stantiated using a Componentinst (Section [3.2.8)). Note that component definitions are not
components themselves. They must be instantiated to become actual components.

In the metamodel, the ComponentDef class itself is just a wrapper that has parameters and
a body. The name of the body defines the name of the component definition. The body is
considered a part of the component definition, and as such, the body (component) may not be
referenced directly.

If we eliminate a component definition, the instantiation is replaced by the body of the component
definition, all reference parameters are substituted in the body (which has become an actual
component), and algebraic parameters become local algebraic variables in that component (the
body).

Constraints:

e ComponentDef.uniqueDecls The names of all parameters and declarations in the body
of the component definition, must be unique within that component definition. For bodies
that are automata, we have to take into account the names of all declarations (including
locations) of those automata. For bodies that are groups, we have to take into account the
names of all declarations, child components, and component definitions, of those groups.

EObject
L PositionObject (Section |3.10.2)

L ComponentDef

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

22

cont body [1] : ComplexComponent
The body of the component definition.

Note that the body of a component definition is a ComplexComponent (Section7 and
not a Component (Section . As such, component instantiations are not allowed as
body. This constraint is implied by the CIF textual syntax. Obviously, the body may
contain a component instantiation, if the body is a group.

Constraints:
e ComponentDef.selfReference The body of a component definition may not, di-

rectly or indirectly, contain an instantiation of the component definition itself. That
is, a component definition may not be defined in terms of itself.

cont parameters [0..¥] : Parameter
The formal parameters of the component definition.

3.2.8 Componentlnst (class)

A component instantiation. Instantiates a ComponentDef (Section [3.2.7).

EObject
L PositionObject (Section (3.10.2)
L Component (Section [3.2.6)
L ComponentInst

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

attr name [1] : Cifldentifier (inherited from Component)
The name of the component.
Constraints:

e Component.name (non-fatal) Component names must not start with e_, c_, or u_,
as those prefixes are reserved for events.

cont definition [1] : CifType
The component definition to instantiate.

This feature contains CifType (Section [3.5.2)) instances, to allow for wrapping types to be
used. See also Section B.11

Constraints:

e ComponentInst.compDefRef The type must reference a component definition.

e ComponentInst.compDefInScope The component definition reference must sat-
isfy the scoping rules.

23

cont parameters [0..%] : Ezpression
The actual parameters (or arguments), to match each of the formal parameters of the
component definition.

Constraints:

e ComponentInst.parameterCount The number of formal parameters must be equal
to the number of actual parameters.

e ComponentInst.parameterTypes The type of each actual parameter must match
the type of the corresponding formal parameter. That is:

— For each formal component parameter, the actual parameter must be a reference
to a matching component. That is, for each formal parameter with its component
definition type, the actual parameter must be a reference to a component that is
an instance of that component definition.

— For each formal event parameter, the actual parameter must be a reference to an
event.
If the formal parameter specifies the controllability of the event, the event used
as actual parameter must have the same controllability as the formal parameter.
If the formal parameter does not specify the controllability, the controllability of
the actual argument does not matter (it may have controllability, but it may also
not have controllability).
If the formal parameter specifies the type of the event, the event used as actual
parameter must have an equal type (including ranges). If the formal parameter
does not specify the type of the event, the type of the event used as actual
parameter does not matter (it may have a type, but it may also not have a type).
If the formal parameter specifies event usage restriction flags, the event used as
actual parameter must support all those usages. If the formal parameter specifies
any flags, it requires that the event used as actual argument supports at least
those usages. If the formal parameter does not specify any flags, it requires that
the event used as actual argument supports all usages. If the event used as actual
argument is an event declaration, it automatically supports all usages. If the event
used as actual argument is an event parameter, its usage restriction flags should
be checked. If the actual event parameter does not have any flags, it supports all
usages. If the actual event parameter does have one or more flags, it supports
only those usages specified by the flags.
It is not possible to use the ‘tau’ event as actual parameter.

— For each formal location parameter, the actual parameter must be a reference to
a location.

— For each formal algebraic parameter, the actual parameter must be an expression
with a compatible type. If the formal parameter type has a range, the actual
parameter type must have one as well, and the range of the type of the actual
parameter must be entirely contained in the range of the type of the formal
parameter.

3.2.9 ComponentParameter (class)

A formal component parameter of a ComponentDef (Section [3.2.7]).

24

EObject
L PositionObject (Section |3.10.2)
L Parameter (Section |3.2.16))

L ComponentParameter

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

attr name [1] : Cifldentifier
The name of the formal component parameter. Note that other formal parameters get their
name via the contained declaration. Since the formal component parameter references a
component definition, it does not contain such a declaration, and the name is instead
included in this class.

Constraints:

e ComponentParameter.name (non-fatal) Component parameter names must not
start with e_, c_, or u_, as those prefixes are reserved for events.

cont type [1] : CifType
The type of components that may be passed along as actual parameter.

This feature contains CifType (Section [3.5.2]) instances, to allow for wrapping types to be
used. See also Section 3.1l

Constraints:
e ComponentParameter.allowedTypes The type must be a component definition
type.

e ComponentParameter.typeInScope The component definition reference must sat-
isfy the scoping rules.

3.2.10 Equation (class)

An equation specifying the defining expression of an algebraic variable, or the derivative of a
continuous variable.

EObject
L PositionObject (Section (3.10.2)
- FEquation

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

25

attr derivative [1] : EBoolean
Indicates whether this equation specifies the derivative of a continuous variable (¢rue) or
the defining expression of an algebraic variable (false).

cont value [1] : Ezpression
The defining value (expression) of the algebraic variable, or the derivative of the continuous
variable.

Constraints:

o Equation.varValueMatch The type of the expression must match the type of the
variable. That is, for algebraic variables, it must match the type of the algebraic
variable declaration, and for derivatives of continuous variables, it must be a real
type. For integer types of algebraic variables, the type of the value must be entirely
contained in the type of the algebraic variable.

e Equation.selfReference The value of an equation may not, directly or indirectly,
refer to the variable (that is, the algebraic variable, or the derivative) of the equation.
That is, the algebraic variable or derivative may not be defined in terms of itself.

This constraint is needed to satisfy the AlgVariable.selfReference and ContVariable.selfReference

constraints.

ref variable [1] : Declaration
The continuous or algebraic variable that is given a value.

Constraints:

e Equation.variableInScope The continuous or algebraic variable must be declared
in the same (sub-)scope as where the equation is located.

e Equation.variableType If derivative is true, then the variable that is referenced
must be a continuous variable. If derivative is false, then the variable that is referenced
must be an algebraic variable.

3.2.11 EventParameter (class)

A formal event parameter of a ComponentDef (Section [3.2.7)).

Constraints:

e EventParameter.flagChannelOnly The ‘send’ (!), ‘receive’ (?7), and ‘synchronization’
(~) flags may only be specified for channel parameters (event parameters with a data type,

including Void Type (Section |3.5.19)).

EObject
L PositionObject (Section |3.10.2)
L Parameter (Section
L EventParameter

Direct derived classes: none

26

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont event [1] : Event
The event declaration that represents the formal event parameter.

attr recvFlag [1] : EBoolean
Receive flag. If set, or if all flags unset, allows receiving use of the event passed via this
parameter. If not set, and any of the other flags are set, receiving is not allowed.

attr sendFlag [1] : FBoolean
Send flag. If set, or if all flags unset, allows sending use of the event passed via this
parameter. If not set, and any of the other flags are set, sending is not allowed.

attr syncFlag [1] : EBoolean
Synchronization flag. If set, or if all flags unset, allows synchronizing use of the event
passed via this parameter. If not set, and any of the other flags are set, synchronizing is
not allowed.

3.2.12 Group (class)
A group component. May contain other components, thus forming a component hierarchy. This
hierarchy can be used to structure the CIF model.

All invariants at this level are combined using logical conjunction operators. The child com-
ponent invariants are combined using logical conjunction operators as well. Assuming we have

local invariants 1,49, . .., i,, and we have child components c1, ¢, ..., ¢y, with child component
invariants ji, jo, ..., Jm, then the invariant for the entire group becomes:
n m
N\ ian o
a=1 b=1

In a similar way, the local initialization predicates are combined with the child component ini-
tialization predicates, and the local marker predicates are combined with the child component
marker predicates.

Note that this uses mathematical conjunctions, and not the short-circuit conjunction binary
operators. As such, there is no ordering between invariants, between initialization predicates,
and between marker predicates.

Constraints:

e Group.uniqueDecls The names of all declarations, child components, and component
definitions defined in a group must be unique within that group.

EObject
L PositionObject (Section |3.10.2)
L Component (Section [3.2.6)

L ComplezComponent (Section (3.2.5)
L Group

27

Direct derived classes: Specification (Section [3.2.17))

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

attr name [1] : Cifldentifier (inherited from Component)
The name of the component.

Constraints:

¢ Component.name (non—fatal) Component names must not start with e_, c_, or u_,
as those prefixes are reserved for events.

cont declarations [0..*] : Declaration (inherited from ComplexComponent)
The declarations of the component.

cont equations [0..*] : Equation (inherited from ComplexComponent)
The equations of the component.

cont initials [0..*] : Expression (inherited from ComplexComponent)
The initialization predicates of the component. A CIF model can only start in states that
satisfy the initialization predicates.

If no predicates are given, the initialization predicate is true. If multiple predicates are
given, this feature represents the logical conjunction of those predicates. Note that this
represents the mathematical conjunction, and not the short-circuit conjunction binary op-
erator. As such, there is no ordering between initialization predicates.

See the documentation of the derived classes for information on how to combine the ini-
tialization predicates with other levels.

Constraints:

e ComplexComponent.initial Types The initialization predicates must have boolean
types.

cont invariants [0..*] : Invariant (inherited from ComplezComponent)
The invariants of the component. A CIF model can only be in a state if that state satisfies
the invariants.

If no invariants are given, the invariant is ¢rue. If multiple invariant are given, this feature
represents the logical conjunction of those invariants. Note that this represents the mathe-
matical conjunction, and not the short-circuit conjunction binary operator. As such, there
is no ordering between invariants.

See the documentation of the derived classes for information on how to combine the invari-
ants with other levels.

cont ioDecls [0..*] : JToDecl (inherited from ComplezComponent)
The 1/0 declarations of the component.

Constraints:

e ComplexComponent.maxOneSvgFile Must not contain more than one SugFile

(Section [3.8.2)) declaration.

28

e ComplexComponent.maxOnePrintFile Must not contain more than one Print-

File (Section [3.9.3)) declaration.

cont markeds [0..*] : Ezpression (inherited from ComplezComponent)
The marker predicates of the component. Used as liveness property for, among others,
supervisory controller synthesis.

If no predicates are given, the marker predicate is true. If multiple predicates are given,
this feature represents the logical conjunction of those predicates. Note that this represents
the mathematical conjunction, and not the short-circuit conjunction binary operator. As
such, there is no ordering between marker predicates.

See the documentation of the derived classes for information on how to combine the marker
predicates with other levels.

Constraints:

¢ ComplexComponent.markedTypes The marker predicates must have boolean
types.

cont components [0..*] : Component
The sub-components of the group component.

cont definitions [0..*] : ComponentDef
The component definitions of the group component.

3.2.13 Invariant (class)

An invariant, with optional supervisory kind. Can either represent a state (exclusion) invariant,
or a state/event exclusion invariant.

EObject
L PositionObject (Section [3.10.2)

L Invariant

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont event [0..1] : Ezpression
The event to exclude.

This feature contains an Ezpression (Section [3.6.21]) instance, to allow for wrapping ex-
pressions to be used. See also Section 3.1

Constraints:
e Invariant.eventOccurrence The ‘event’ feature must be set for state/event exclu-
sion invariants, and must not be set for state (exclusion) invariants.
e Invariant.eventRef The event reference expression, if set, must refer to an event.

e Invariant.eventInScope The event reference, if set, must satisfy the scoping rules.

29

attr invKind [1] : InvKind
The invariant kind of the invariant. Indicates whether the invariant is a state (exclusion)
invariant, or a state/event exclusion invariant, and if applicable, in what form it was
written.

cont predicate [1] : Ezpression
The predicate of the invariant. For a state invariant, it is the predicate that must hold in the
state. For state/event exclusion invariants, it is the predicate that is the necessary /sufficient
condition for the event to be enabled/disabled.

Constraints:
e Invariant.type The invariant predicate must have a boolean type.

attr supKind [1] : SupKind
The supervisory kind of the invariant.

3.2.14 ToDecl (abstract class)

An I/0 declaration. I/O declarations are used to couple the CIF model to external input/output,
outside of the simulation behavior/semantics of the model.

EObject
L PositionObject (Section [3.10.2)
L ToDecl

Direct derived classes: Print (Section [3.9.2)), PrintFile (Section [3.9.3), SvgCopy (Section [3.8.1)),
SugFile (Section [3.8.2)), Sugln (Section [3.8.3), SvgMove (Section [3.8.8)), SvgOut (Section [3.8.9)

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

3.2.15 LocationParameter (class)
A formal location parameter of a ComponentDef (Section |3.2.7]).
EObject
L PositionObject (Section [3.10.2)
- Parameter (Section |3.2.16))
L LocationParameter

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

30

cont location [1] : Location
The location declaration that represents the formal location parameter.

Constraints:

e LocationParameter.nameOnly The location must only have a name, and no ini-
tialization predicates, marker predicates, invariants, edges, or urgency, since it is a
placeholder for a location, and not an actual location.

3.2.16 Parameter (abstract class)

A formal parameter of a ComponentDef (Section |3.2.7]).

EObject
L PositionObject (Section |3.10.2)
L Parameter

Direct derived classes: AlgParameter (Section [3.2.4), ComponentParameter (Section [3.2.9),
EventParameter (Section [3.2.11)), LocationParameter (Section [3.2.15))

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

3.2.17 Specification (class)

A CIF specification. Also called a CIF model. The root object of every CIF model is an instance
of this class, which is a special form of Group (Section [3.2.12]).

Constraints:

e Specification.root Specifications are the roots of all CIF models. That is, specifications
have no parent. Also, the root of any CIF model must be exactly one object, which is a
specification.

e Specification.name The name of any specification must be "specification". Note that
in the CIF textual syntax, the name of a specification cannot be specified.

EObject
L PositionObject (Section (3.10.2)
L Component (Section [3.2.6)
L ComplexComponent (Section [3.2.5
L Group (Section [3.2.12)

L Specification

Direct derived classes: none

31

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

attr name [1] : Cifldentifier (inherited from Component)
The name of the component.

Constraints:

¢ Component.name (non-fatal) Component names must not start with e_, c_, or u_,
as those prefixes are reserved for events.

cont declarations [0..¥] : Declaration (inherited from ComplexComponent)
The declarations of the component.

cont equations [0..*] : Equation (inherited from ComplexComponent)
The equations of the component.

cont initials [0..*] : Expression (inherited from ComplexComponent)
The initialization predicates of the component. A CIF model can only start in states that
satisfy the initialization predicates.

If no predicates are given, the initialization predicate is true. If multiple predicates are
given, this feature represents the logical conjunction of those predicates. Note that this
represents the mathematical conjunction, and not the short-circuit conjunction binary op-
erator. As such, there is no ordering between initialization predicates.

See the documentation of the derived classes for information on how to combine the ini-
tialization predicates with other levels.

Constraints:

e ComplexComponent.initialTypes The initialization predicates must have boolean
types.

cont invariants [0..*] : Invariant (inherited from ComplezComponent)
The invariants of the component. A CIF model can only be in a state if that state satisfies
the invariants.

If no invariants are given, the invariant is ¢rue. If multiple invariant are given, this feature
represents the logical conjunction of those invariants. Note that this represents the mathe-
matical conjunction, and not the short-circuit conjunction binary operator. As such, there
is no ordering between invariants.

See the documentation of the derived classes for information on how to combine the invari-
ants with other levels.

cont ioDecls [0..*] : JToDecl (inherited from ComplezComponent)
The I/O declarations of the component.

Constraints:

e ComplexComponent.maxOneSvgFile Must not contain more than one SugFile
(Section [3.8.2)) declaration.

e ComplexComponent.maxOnePrintFile Must not contain more than one Print-

File (Section [3.9.3)) declaration.

32

http:ifeclipse.orglesceticifideclarations

O controliable : EBooleanObject
= pasitio on

E Constart

‘ ETypeDecl |

= pg

= parameters :
“* FunctionParameter |

9 peciaration
T name : Cifldentifier
' . [I
B algvariable H Event | | Function | H piscvariable

=+ pasition : Position

[D..1] value

| EEnumDecl |

ariable

‘ | E “ariableValue

[=

H cortvariable

]

[1.."] literals

||:-»

| E Input

‘ |I:-§

| E EnumLiteral

‘ T name : Cifldentifier

= po

[1..1] type [1.1] type [1.1] type
[0.1] type H cirfype |
[M.1]1type| = o ‘
.11 type /
[0..1] valug [1..1] value [0.1] value [0..1] dlerivative [0..4] values,
T Expression

Figure 3.5: declarations package

cont markeds [0..*] : Ezpression (inherited from ComplezComponent)

The marker predicates of the component. Used as liveness property for, among others,

supervisory controller synthesis.

If no predicates are given, the marker predicate is true. If multiple predicates are given,
this feature represents the logical conjunction of those predicates. Note that this represents
the mathematical conjunction, and not the short-circuit conjunction binary operator. As

such, there is no ordering between marker predicates.

See the documentation of the derived classes for information on how to combine the marker

predicates with other levels.

Constraints:

e ComplexComponent.markedTypes The marker predicates must have boolean

types.

cont components [0..*] : Component (inherited from Group)
The sub-components of the group component.

cont definitions [0..¥] : ComponentDef (inherited from Group)
The component definitions of the group component.

33

3.3 Package declarations

Figure shows the declarations package. This package contains declaration classes used to
declare ‘small’ objects (compared to for instance component definitions). The Declaration (Sec-

tion [3.3.4]) class is the main class. All declarations have a name. Note that the Function
(Section [3.7.6)) class is further defined in the functions package.

Package URI http://eclipse.org/escet/cif/declarations
Namespace prefix declarations

Sub-packages none

3.3.1 AlgVariable (class)

An algebraic variable declaration. An algebraic variable is a shortcut for an expression. Every-
where the algebraic variable is used, its defining expression could be used instead. Note that
references to other objects in the expression that defines the algebraic variable, are resolved in
the context where the algebraic variable is defined, and not in the context where the algebraic
variable is used.

A difference with constants is that constants must have constant values, while algebraic variables
may depend on the values of for instance variables and locations. Another difference is in scoping.
See also Section 3.11

Note that in the CIF textual syntax, the range of an integer type of an algebraic variable, is
optional. If it is not specified, and a range can be determined for the value of the algebraic
variable, that range is used as the range of the type of the algebraic variable as well. This only
applies to algebraic variables that have an integer type directly. It for instance does not apply
to lists of integers.

Constraints:

e AlgVariable.typeValueMatch The type and value (if specified) of the algebraic variable
must match. This constraint does not apply to algebraic parameters. For integer types,
the range of the type of the value must be entirely contained in the range of the type of
the algebraic variable.

EObject
L PositionObject (Section [3.10.2)
- Declaration (Section [3.3.4))
L AlgVariable

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

34

attr name [1] : Cifldentifier (inherited from Declaration)
The name of the declaration.

Constraints:

e Declaration.name (non-fatal) Declaration names for non-event declarations must
not start with e_, c_, or u_, as those names are reserved for events.

cont type [1] : CifType
The type of the algebraic variable.

Constraints:

e AlgVariable.allowedTypes Component and component definition types are not
allowed for algebraic variables.

cont value [0..1] : Ezpression
The value of the algebraic variable (the defining expression).

Constraints:

e AlgVariable.selfReference The value of an algebraic variable may not, directly or
indirectly, refer to the algebraic variable itself. That is, an algebraic variable may
not be defined in terms of itself. This includes the value of the algebraic variable
(regardless of whether it is defined with the declaration or in one or more equations).

e AlgVariable.uniqueValue For each algebraic variable, the value must be uniquely
defined. That is, either it is defined with the declaration itself (and not in any equa-
tion), or it is defined in a single equation in the same scope as where the variable is
declared (and not in the declaration itself, not in multiple equations), or it is defined
in an equation for each of the locations of the automaton that the variable is declared
in (and not in the declaration itself, not in any equation in the automaton itself, not
more than once per location).

For algebraic variables that are part of an algebraic parameter, the value must not
be set, since then the actual parameter should provide the value. See also the AlgPa-
rameter (Section class constraints.

3.3.2 Constant (class)

A constant declaration. A constant is a shortcut for a constant value. Everywhere the constant is
used, its defining value could be used instead. Note that references to other objects in the value
expression that defines the constant, are resolved in the context where the constant is defined,
and not in the context where the constant is used.

A difference with algebraic variables is that constants must have constant values, while algebraic
variable may depend on the values of for instance variables and locations. Another difference is
in scoping. See also Section [3.1

Note that in the CIF textual syntax, the range of an integer type of a constant, is optional. If
it is not specified, and a range can be determined for the value of the constant, that range is
used as the range of the type of the constant as well. This only applies to constants that have
an integer type directly. It for instance does not apply to lists of integers.

Constraints:

35

e Constant.typeValueMatch The type and value of the constant must match. For integer
types, the range of the type of the value must be entirely contained in the range of the
type of the constant.

EObject
L PositionObject (Section |3.10.2)
L Declaration (Section [3.3.4))
L Constant

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

attr name [1] : Cifldentifier (inherited from Declaration)
The name of the declaration.
Constraints:

e Declaration.name (non-fatal) Declaration names for non-event declarations must
not start with e_, c_, or u_, as those names are reserved for events.

cont type [1] : CifType
The type of the constant.
Constraints:

e Constant.allowedTypes Component and component definition types are not al-
lowed for constants.

cont value [1] : Ezpression
The value of the constant (the defining expression).

Constraints:

e Constant.selfReference The value of a constant may not, directly or indirectly,
refer to the constant itself. That is, a constant may not be defined in terms of itself.

e Constant.constantValue The value of a constant must be constant, and may thus
not refer to objects that can change value, such as discrete and algebraic variables.
Note that expressions may refer to locations (‘is the location active’). Since they can
change as well, location references are not allowed either.

Furthermore, user-defined functions are explicitly disallowed, as we can’t statically
determine whether they terminate.

3.3.3 ContVariable (class)

A continuous variable declaration. Continuous variables are implicitly real typed variables, which
change value according to their derivative, as time passes.

36

Continuous variable declared in an Automaton (Section [3.4.3)), may only be assigned in the
automaton in which they are declared. If they are not declared in an automaton, they may not
be assigned anywhere. They can however be accessed (read) elsewhere.

Constraints:

e ContVariable.selfReference The initial value of a continuous variable may not, directly
or indirectly, refer to the continuous variable itself. That is, a continuous variable may not
be defined in terms of itself. This includes the initial value of the continuous variable, but
not its derivative (regardless of whether it is defined with the declaration or in one or more
equations), which may be defined in terms of the continuous variable itself.

The derivative of a continuous variable may not, directly or indirectly, refer to the derivative

of that continuous variable itself. That is, a derivative may not be defined in terms of itself
(regardless of whether it is defined with the declaration or in one or more equations).

e ContVariable.uniqueDerivative For each continuous variable, the derivative must be
uniquely defined. That is, either it is defined with the declaration itself (and not in any
equation), or it is defined in a single equation in the same scope as where the variable is
declared (and not in the declaration itself, not in multiple equations), or it is defined in an
equation for each of the locations of the automaton that the variable is declared in (and
not in the declaration itself, not in any equation in the automaton itself, not more than
once per location).

EObject
L PositionObject (Section |3.10.2)
L Declaration (Section [3.3.4))
L ContVariable

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

attr name [1] : Cifldentifier (inherited from Declaration)
The name of the declaration.
Constraints:

e Declaration.name (non-fatal) Declaration names for non-event declarations must
not start with e_, c_, or u_, as those names are reserved for events.

cont derivative [0..1] : Ezpression
The derivative of the continuous variable.
Constraints:
e ContVariable.derivativeType If specified, the type of the derivative must be a real
type.

cont value [0..1] : Ezpression
The initial value of the continuous variable. If not specified, defaults to value 0.0.

Constraints:

37

e ContVariable.valueType If specified, the type of the initial value must be a real
type.

3.3.4 Declaration (abstract class)

Base class for ‘small’ (compared to for instance component definitions) CIF object declarations.

EObject
L PositionObject (Section [3.10.2)

L Declaration

Direct derived classes: AlgVariable (Section , Constant (Section , ContVariable (Sec-
tion [3.3.3)), DiscVariable (Section [3.3.5)), EnumDecl (Section [3.3.6), Event (Section|3.3.8)), Func-
tion (Section [3.7.6), InputVariable (Section [3.3.9), TypeDecl (Section [3.3.10))

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

attr name [1] : Cifldentifier
The name of the declaration.
Constraints:

e Declaration.name (non-fatal) Declaration names for non-event declarations must
not start with e_, c_, or u_, as those names are reserved for events.

3.3.5 DiscVariable (class)

A discrete variable declaration.

Discrete variables declared in automata are always local to the Automaton (Section [3.4.3)) in
which they are declared, and can be assigned (modified) only in that automaton. They can
however be accessed (read) elsewhere.

This class is also used for the parameters and local variables of internal user-defined functions.

Furthermore, the class is used for local variables for the receives on edges (the so-called ‘receive
variables’).

Constraints:

e DiscVariable.typeValueMatch Each of the possible values of the discrete variable, if
specified, must match the type of the discrete variable. If the type of the discrete variable
has a range, the ranges of the types of the values must be entirely contained in the range
of the type of the discrete variable.

e DiscVariable.occurrence Discrete variables may not be declared in groups (including
specifications). That is, they must be declared in automata.

They may also be used in function parameters, as local variables in functions, and as receive
variables, but then they are usually not called discrete variables.

38

EObject
L PositionObject (Section [3.10.2)
L Declaration (Section [3.3.4))
L DiscVariable

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

attr name [1] : Cifldentifier (inherited from Declaration)
The name of the declaration.
Constraints:

e Declaration.name (non-fatal) Declaration names for non-event declarations must
not start with e_, c_, or u_, as those names are reserved for events.

cont type [1] : CifType
The type of the discrete variable.
Constraints:

e DiscVariable.allowedTypes Component and component definition types are not
allowed for discrete variables.

cont value [0..1] : Variable Value
The initial value of the discrete variable. If not specified, it has the default value for its
type. The default values for each type are:

e Booleans: false,

e Integers (ranged): the value in the range that is closest to zero,
e Integers (rangeless): 0,

e Reals: 0.0,

e Strings: "7,

e List (rangeless): empty list,

e List (ranged): list with as few elements as possible, with each element the default
value of the element type,

e Set: empty set,

e Dictionary: empty dictionary,

e Tuple: tuple with for each field, the default value for the type of the field,

e Function: function that returns the default value for the return type of the function,

e Distribution: constant distribution with value false for boolean distributions, 0 for
integer distributions, and 0.0 for real distributions,

e Enumerations: the first enumeration literal defined in the enumeration.

39

Some examples of default values for different integer ranges:

Range Default value
[0..5] 0
[2 .. 5] 2
5. —2] -2
[—5 .. 5] 0
[—5 .. 0] 0
Some examples of default values for different list types:
List type Default value
list int /]
list[3] int [0, 0, 0]
list[2..5] real [0.0, 0.0]
Constraints:

e DiscVariable.selfReference The values of a discrete variable may not, directly or
indirectly, refer to the discrete variable itself. That is, a discrete variable may not be
defined in terms of itself.

3.3.6 EnumDecl (class)

An enumeration declaration. An enumeration is a strongly typed set of values, and is often
clearer than arbitrary numbers.

Note that for equality purposes, two enumerations that define the same sequence of values (same
number of values, with the same names, in the same order), are considered compatible types,
and their enumeration literals (the values) can be compared for equality.

Note that for scoping purposes, the literals are defined at the same level as the enumeration dec-
laration itself. This ensures that in the CIF textual syntax, we don’t have to prefix enumeration
literals with the name of the enumeration declaration.

Constraints:

e EnumDecl.uniqueLiterals The names of the enumeration literals of the enumeration
declarations must be unique with respect to the other literals defined in that same enu-
meration, as well as all the declarations at the same level as the enumeration declaration
that the literals are a part of.

EObject
L PositionObject (Section [3.10.2)
- Declaration (Section [3.3.4))
L EnumDecl

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

40

attr name [1] : Cifldentifier (inherited from Declaration)
The name of the declaration.

Constraints:

e Declaration.name (non-fatal) Declaration names for non-event declarations must
not start with e_, c_, or u_, as those names are reserved for events.

cont literals [1..¥] : EnumLiteral
The enumeration literals (values) that make up this enumeration.

3.3.7 EnumlLiteral (class)

An enumeration literal (value) as part of an EnumDecl (Section |3.3.6]).

EObject
L PositionObject (Section |3.10.2)

- EnumlLiteral

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

attr name [1] : Cifldentifier
The name of the enumeration literal.

Constraints:

¢ EnumlLiteral.name (non-fatal) Enumeration literal names must not start with e_,
c_, or u_, as those prefixes are reserved for events.

3.3.8 Event (class)

An event declaration.

Note that events that are not in the alphabet of any automaton, are globally disabled, since the
alphabet of the specification is the union of the alphabets of the automata. In other words, if
an event is not used on any edge, it is globally disabled. Event ‘tau’ is an exception, as it is
never in the alphabet, since ‘tau’ does not synchronize. Channels are exceptions as well, as they
require exactly one sender and one receiver, and if not further restricted by any synchronizing
automata, they are pure channels.

Constraints:

¢ Event.matchNameControllability (non-fatal) If the name of the event starts with c_,
the event must be defined to be controllable. If the name of the event starts with u_, the
event must be defined to be uncontrollable. If the name of the event starts with e_, the
event must not be defined to be controllable or uncontrollable. This is to ensure that the
naming convention (which is also used for syntax highlighting), is not violated.

41

EObject
L PositionObject (Section [3.10.2)
L Declaration (Section [3.3.4))
L Event

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

attr name [1] : Cifldentifier (inherited from Declaration)
The name of the declaration.
Constraints:

e Declaration.name (non-fatal) Declaration names for non-event declarations must
not start with e_, c_, or u_, as those names are reserved for events.

attr controllable [0..1] : EBooleanObject
Indicates the controllability of the event. If true, the event is controllable. If false, the
event is uncontrollable. If null, the event is not defined as controllable or uncontrollable.

cont type [0..1] : CifType
The type of the data communicated via this event, if applicable.
Constraints:

e Event.allowedTypes Component and component definition types are not allowed
for events.

3.3.9 InputVariable (class)

An input variable declaration. An input variable is a variable for which the value is not defined
by the CIF specification, but by an external source. It is allowed for the values of input variables
to change at any time (discontinuously), depending on the external source. Input variables are
read-only in the CIF specification.

EObject
L PositionObject (Section [3.10.2)
- Declaration (Section [3.3.4))
L InputVariable

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

42

attr name [1] : Cifldentifier (inherited from Declaration)
The name of the declaration.

Constraints:

e Declaration.name (non-fatal) Declaration names for non-event declarations must
not start with e_, c_, or u_, as those names are reserved for events.

cont type [1] : CifType
The type of the input variable.
Constraints:

e InputVariable.allowedTypes Component and component definition types are not
allowed for input variables.

3.3.10 TypeDecl (class)

A type declaration. Defines a reusable type. Mostly useful for types that have somewhat larger
textual forms, which can then be referred to by name.

EObject
L PositionObject (Section [3.10.2)
L Declaration (Section [3.3.4))
L TypeDecl

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

attr name [1] : Cifldentifier (inherited from Declaration)
The name of the declaration.
Constraints:

e Declaration.name (non-fatal) Declaration names for non-event declarations must
not start with e_, c_, or u_, as those names are reserved for events.

cont type [1] : CifType
The type of the type declaration. This type and the type declaration have compatible
(equal) types.
Constraints:
e TypeDecl.allowedTypes Component and component definition types are not al-
lowed.

e TypeDecl.selfReference The type of a type declaration may not, directly or indi-
rectly, refer to the type declaration itself. That is, a type declaration may not be
defined in terms of itself.

43

3.3.11 VariableValue (class)

Set of values that represents possible initial values of a DiscVariable (Section |3.3.5)).

EObject
L PositionObject (Section [3.10.2)

- Variable Value

Direct derived classes: none
cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont values [0..*] : Expression
The possible initial values of the variable. If one or more values are specified, the initial
value of the variable is one of those values. If no value is given, the variable can have any
value in its domain.

3.4 Package automata

Figure |3.6|shows the automata package. This package contains classes related to automata. The
Automaton (Section class is the main class. Automata have at least one location. They
may optionally also have an alphabet. Locations may have outgoing edges, and edges may have
guards, updates, and events. This corresponds to most other automaton-based languages.

Package URI http://eclipse.org/escet/cif/automata
Namespace prefix automata

Sub-packages none

3.4.1 Alphabet (class)

An alphabet of an Automaton (Section [3.4.3).

EObject
L PositionObject (Section [3.10.2)
L Alphabet

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

44

hitpileclipse.orglesceticifiautomata

Q Automaton

£ Supkind 2 Invkind
— None — State
= Plant — Eventheeds
— Requirement — EventDisables
= Supervisor

[0..1] alphabet

B siphabet

[0..1] monitors

Q Monitors

¢
[1..*] locations
B Location [0 *] invariarts B mvariant
= name : Cifldentifier T supKind : SupKind = Hone
T urgent : EBoolean = false T invKind : InvKind = State
= p r = position : P n
¢ [0.1]target
[0.*] equations
5 Equation

T derivative : EBoolean = false

= . . [0.] edges

5 variable : Declaration -

Q Edge |
EQ Update T urgent : El =false
= po io [0.] updates = p 1:F
T [1.*]thens [1.‘1thens IT I [0.7] elses 10.7] everts
H EdgeEvert
H assignment | | E Ifupdate |
d | | = posit Posit. | .
[0.] elifs
EdgeSend EdgeReceive
B
ElifUpdate
1..1] addressable
o1 [1.-1] value [0.*] guards ¢ [1..1] predicate [0.*] everts
[0..*] intials [0..*] markeds [1.] guards [1.."] guards [1..1] event 0.1] value [0.1] evert 0.4 events

@ Expression

= p

T type : CifType

Figure 3.6: automata package

45

cont events [0..*] : Expression
The events that define the alphabet. May be empty to denote an empty alphabet. It is
not possible to include the ‘tau’ event in alphabets.

This feature contains Frpression (Section [3.6.21)) instances, to allow for wrapping expres-
sions to be used. See also Section 3.1l

Constraints:

e Alphabet.uniqueEvents (non-fatal) Alphabets must contain unique events.
e Alphabet.eventRefsOnly The expressions must refer to events.
e Alphabet.eventsInScope The event references must satisfy the scoping rules.

e Alphabet.eventParamSync If an event reference refers to an event parameter, the
event parameter should allow synchronization use. That is, the event parameter should
not specify any flags (allow all usages) or should explicitly specify the synchronization
(~) flag to allow synchronization.

3.4.2 Assignment (class)

An assignment update.

Constraints:

e Assignment.types The type of the assigned value must match the type of the addressable
that is assigned. If the variable being assigned has a ranged type, then the range of the type
of the value must have overlap with the range of the type of the variable. It is considered
a run-time error if the evaluated value expression results in a value that is outside of the
range of the assigned variable.

EObject

L PositionObject (Section [3.10.2
L Update (Section [3.4.12

L Assignment

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont addressable [1] : Ezpression
The addressable (a variable, a part of a variable, multiple variables, parts of multiple
variables, etc) to which to assign a value.

It is allowed to create a new key/value pair in a dictionary, if the key of the last projection
does not exist. It is not allowed to create a new key/value pair, if the key of one of the
other projections does not exist.

The indices of the projections of the addressables are evaluated in the ‘old’ state. Note
that the ‘receive variable’, if any, evaluates to the received value.

Constraints:

46

e Assignment.addressableSyntax Adressables may be discrete and continuous vari-
able references (non-wrapped), with projections, and may optionally be wrapped in
tuples (possibly multiple times). Projected string typed variables are not allowed.

e Assignment.variablesInScope The variables that are assigned must be a discrete
or continuous variables declared in the automaton that contains the source location
of the edge of this assignment update. This does not include the ‘receive variable’, if
any. Discrete and continuous variables may be mixed in a single assignment.

cont value [1] : Ezpression
The value to assign to the variable(s).

This expression is evaluated in the ‘old’ state. Note the ‘receive variable’, if any, evaluates
to the received value.

3.4.3 Automaton (class)

An automaton component. This class is the basic leaf component of all component hierarchies.

All invariants at this level are combined using logical conjunction operators. The location in-
variants are combined with the location itself, using logical implication operators. Assuming we
have local invariants 41, 49,...,%,, and we have locations l1,ls,...,l,,, with location invariants
J1,42, - -+ Jm, then the invariant for the entire automaton becomes:

n m
/\ i N\ /\ Iy = Jp
a=1 b=1

In a similar way, the local initialization predicates are combined with the location initialization
predicates, and the local marker predicates are combined with the location marker predicates.

Note that this uses mathematical conjunctions, and not the short-circuit conjunction binary
operators. As such, there is no ordering between invariants, between initialization predicates,
and between marker predicates.

Constraints:
e Automaton.uniqueDecls The names of all declarations and locations defined in an au-
tomaton must be unique within that automaton.

e Automaton.validAlphabet If an alphabet is specified, it must contain at least the events
that occur on the edges of this automaton (excluding communication usage by means of
sends and receives). Note that the ‘tau’ event is never part of alphabets.

e Automaton.noFuncDecl Functions may not be defined in automata.

e Automaton.uniqueUsagePerEvent Each automaton must use a certain event in at
most one way: synchronization, sending, or receiving. The events that are used to syn-
chronize are determined by the alphabet. The send/receive uses are found via the edges.

EObject
L PositionObject (Section |3.10.2)

47

L Component (Section [3.2.6)
L ComplexComponent (Section [3.2.5
L Automaton

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

attr name [1] : Cifldentifier (inherited from Component)
The name of the component.

Constraints:

e Component.name (non-fatal) Component names must not start with e_, c_, or u_,
as those prefixes are reserved for events.

cont declarations [0..*] : Declaration (inherited from ComplexComponent)
The declarations of the component.

cont equations [0..*] : Equation (inherited from ComplezComponent)
The equations of the component.

cont initials [0..*] : Expression (inherited from ComplexComponent)
The initialization predicates of the component. A CIF model can only start in states that
satisfy the initialization predicates.

If no predicates are given, the initialization predicate is true. If multiple predicates are
given, this feature represents the logical conjunction of those predicates. Note that this
represents the mathematical conjunction, and not the short-circuit conjunction binary op-
erator. As such, there is no ordering between initialization predicates.

See the documentation of the derived classes for information on how to combine the ini-
tialization predicates with other levels.

Constraints:

e ComplexComponent.initialTypes The initialization predicates must have boolean
types.

cont invariants [0..*] : Invariant (inherited from ComplezComponent)
The invariants of the component. A CIF model can only be in a state if that state satisfies
the invariants.

If no invariants are given, the invariant is ¢rue. If multiple invariant are given, this feature
represents the logical conjunction of those invariants. Note that this represents the mathe-
matical conjunction, and not the short-circuit conjunction binary operator. As such, there
is no ordering between invariants.

See the documentation of the derived classes for information on how to combine the invari-
ants with other levels.

cont ioDecls [0..*] : JToDecl (inherited from ComplexComponent)
The I/0O declarations of the component.

Constraints:

48

e ComplexComponent.maxOneSvgFile Must not contain more than one SugFile
(Section [3.8.2)) declaration.

¢ ComplexComponent.maxOnePrintFile Must not contain more than one Print-

File (Section [3.9.3)) declaration.

cont markeds [0..*] : Ezpression (inherited from ComplezComponent)
The marker predicates of the component. Used as liveness property for, among others,
supervisory controller synthesis.

If no predicates are given, the marker predicate is true. If multiple predicates are given,
this feature represents the logical conjunction of those predicates. Note that this represents
the mathematical conjunction, and not the short-circuit conjunction binary operator. As
such, there is no ordering between marker predicates.

See the documentation of the derived classes for information on how to combine the marker
predicates with other levels.

Constraints:

e ComplexComponent.markedTypes The marker predicates must have boolean
types.

cont alphabet [0..1] : Alphabet
The alphabet of the automaton. If not specified, it defaults to the events used on the edges
of the automaton (excluding communication usage by means of sends and receives). Note
that the ‘tau’ event is never part of alphabets.

attr kind [1] : SupKind
The supervisory kind of the automaton.

cont locations [1..*] : Location
The locations of the automaton.

cont monitors [0..1] : Monitors
The monitor events of the automaton. For details on monitors, see the Monitors (Sec-

tion [3.4.11)) class.

If not specified, the automaton does not monitor any events.

3.4.4 Edge (class)

An outgoing edge of a Location (Section [3.4.10) of an Automaton (Section |3.4.3]).

EObject
L PositionObject (Section [3.10.2)
L FEdge

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

49

cont events [0..*] : EdgeEvent
The events of the edge. Specifying multiple events is equivalent to duplicating the edge,
with each edge containing one of the events of the original edge. Specifying no events is
equivalent to specifying a single ‘tau’ event.
This feature contains Ezpression (Section instances, to allow for wrapping expres-
sions to be used. See also Section 3.1l

Constraints:

e Edge.uniqueEvents (non-fatal) Edges must contain unique events.

e Edge.oneReceiveAllReceive If one of the events performs a receive, the other
events on that same edge must also perform receives, and the data types of their
events must be equal. This is to ensure that the received value reference expression
(if used), is available, and has a consistent type.

We don’t allow unequal but compatible types, as that would lead to a union of those
types for the received value reference expression, and that would lead to a difference
in type for multiple events on a single edge, and multiple edges with one event each.

cont guards [0..*] : Ezpression
The guard predicates of the edge. An edge is only enabled if the guard evaluates to true
in the current state.
If no predicates are given, the guard predicate is ¢true. If multiple predicates are given, this
feature represents the logical conjunction of those predicates. Note that this represents the
mathematical conjunction, and not the short-circuit conjunction binary operator. As such,
there is no ordering between the guards of an edge.

It is not possible to use ‘receive variables’ in the guards (as they are not ‘in scope’).

Constraints:
e Edge.guardTypes The guard predicates must have boolean types.

ref target [0..1] : Location
The target location (within this automaton) of the edge. If not set, the edge is a self-loop,
which means that the target location of the edge is equal to the source location of the edge.

Constraints:

e Edge.targetInScope The target location of the edge, if specified, must be declared
in the same automaton as the source location of the edge. In particular, location
parameters of component definitions are not allowed.

cont updates [0..*] : Update
The updates to execute if the edge is ‘executed’.

Constraints:

e Edge.uniqueVariables The parts of the variables that are assigned must be unique.
That is, it must never be possible to assign the same part of the same variable twice.
Since we don’t include the guards of conditional updates in the analysis, this may lead
to false positives. We believe that in such cases, the update can easily be rewritten,
and thus the false positives will not be a problem in practice.

We include the projections in the analysis. For tuple projections, the index can always
be statically evaluated, as the type checker needs the index to get the type of the

50

field. Tuple field references are normalized to 0-based field indices. For lists, indices
are evaluated if this is possible statically. Negative array indices are normalized. For
non-array lists, negative indices can not be normalized statically. For dictionaries, the
keys are statically evaluated, if possible. Since not all expressions can be statically
evaluated, and also normalization is not always possible statically, overlap of parts of
variables can not always be properly detected, potentially leading to false positives.
We opt for false positives rather than runtime checks, to avoid having to handle such
cases in many tools and transformations.

Note that ‘receive variables’ may never be assigned in the updates. See also the
Assignment.variablesInScope constraint.

attr urgent [1] : EBoolean
Whether the edge is urgent. If an edge is urgent, and the guard is enabled, then time may
not progress.

Constraints:

e Edge.urgWhenLocUrg (non-fatal) An edge should not be urgent when the source
location of the edge is also urgent, as that adds no additional constraint or behavior.

3.4.5 EdgeEvent (class)

An event of an edge. Optionally with communication, see derived classes.

EObject

L PositionObject (Section (3.10.2)
- EdgeFEvent

Direct derived classes: EdgeReceive (Section [3.4.6), EdgeSend (Section [3.4.7))

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont event [1] : FEzpression
The event reference of the edge event.

This feature contains an Ezpression (Section [3.6.21]) instance, to allow for wrapping ex-
pressions to be used. See also Section [3.1]

Constraints:

e EdgeEvent.eventRefsOnly The expression must refer to an event.
e EdgeEvent.eventsInScope The event references must satisfy the scoping rules.

e EdgeEvent.eventParamUse If an event reference refers to an event parameter, the
event parameter should allow the use of the event as it is used on this edge. That is,
the event parameter should not specify any flags (allow all usages) or should explicitly
specify the flag that allows the usage on this edge.

51

3.4.6 EdgeReceive (class)

A receive event of an edge.

Constraints:

e EdgeReceive.commEvent The event must have a data type.

EObject
L PositionObject (Section (3.10.2)
L EdgeEvent (Section [3.4.5))
L EdgeReceive

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont event [1] : Expression (inherited from EdgeEvent)
The event reference of the edge event.

This feature contains an Ezpression (Section [3.6.21]) instance, to allow for wrapping ex-
pressions to be used. See also Section [3.1

Constraints:
e EdgeEvent.eventRefsOnly The expression must refer to an event.

o EdgeEvent.eventsInScope The event references must satisfy the scoping rules.

e EdgeEvent.eventParamUse If an event reference refers to an event parameter, the
event parameter should allow the use of the event as it is used on this edge. That is,
the event parameter should not specify any flags (allow all usages) or should explicitly
specify the flag that allows the usage on this edge.

3.4.7 EdgeSend (class)

A send event of an edge.

Constraints:

e EdgeSend.commEvent The event must have a data type.

EObject
L PositionObject (Section |3.10.2)
L EdgeFEvent (Section
L EdgeSend

Direct derived classes: none

52

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont event [1] : Ezpression (inherited from EdgeEvent)
The event reference of the edge event.

This feature contains an Expression (Section [3.6.21) instance, to allow for wrapping ex-
pressions to be used. See also Section 3.1

Constraints:

e EdgeEvent.eventRefsOnly The expression must refer to an event.
e EdgeEvent.eventsInScope The event references must satisfy the scoping rules.

o EdgeEvent.eventParamUse If an event reference refers to an event parameter, the
event parameter should allow the use of the event as it is used on this edge. That is,
the event parameter should not specify any flags (allow all usages) or should explicitly
specify the flag that allows the usage on this edge.

cont value [0..1] : Ezpression
The value to send as part of the communication. This expression is evaluated in the ‘old’
state, before any updates are processed.

Constraints:

e EdgeSend.allowedValue If the event has a non-void data type, then the value is
required. If the data type is VoidType (Section [3.5.19), then a value is not allowed.

e EdgeEvent.valueType The type of the value must match the type of the event (first
contained in the second).

3.4.8 ElifUpdate (class)

An ‘elif’ (‘else-if’) alternative of an IfUpdate (Section [3.4.9)).

EObject

L PositionObject (Section [3.10.2)
L ElifUpdate

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont guards [1..¥] : Ezpression
The guard predicates for this alternative.

If multiple predicates are given, this feature represents the logical conjunction of those
predicates. Note that this represents the mathematical conjunction, and not the short-
circuit conjunction binary operator. As such, there is no ordering between the guards.

Constraints:

e ElifUpdate.guardTypes The guard predicates must have boolean types.

53

cont thens [1..*¥] : Update
The update to execute for the ElifUpdate (Section [3.4.8)) if the ‘guards’ evaluate to true.

3.4.9 IfUpdate (class)

A conditional update.

EObject
L PositionObject (Section [3.10.2
- Update (Section|@T|>
L IfUpdate

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont elifs [0..%] : ElifUpdate
The ‘else-if” (‘elif’) alternatives. Processed in order, if the ‘guards’ evaluate to false.

cont elses [0..%] : Update
The ‘else’ updates. Executed if no other alternative has a true guard.

cont guards [1..¥] : Ezpression
The guard predicates for the ‘then’ updates.

If multiple predicates are given, this feature represents the logical conjunction of those
predicates. Note that this represents the mathematical conjunction, and not the short-
circuit conjunction binary operator. As such, there is no ordering between the guards.

Constraints:
e IfUpdate.guardTypes The guard predicates must have boolean types.

cont thens [1..*] : Update
The ‘then’ updates. Executed if the ‘guards’ evaluate to true.

3.4.10 Location (class)

A location of an Automaton (Section [3.4.3]).

EObject
L PositionObject (Section |3.10.2)
L Location

Direct derived classes: none

54

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont edges [0..¥] : Edge
The outgoing edges of the location.

cont equations [0..*] : Equation
The equations of the location.

cont initials [0..*] : Ezpression
The initialization predicates of the location. A CIF model can only start in states that
satisfy the initialization predicates.
If no predicates are given, the initialization predicate is false. If multiple predicates are
given, this feature represents the logical conjunction of those predicates. Note that this
represents the mathematical conjunction, and not the short-circuit conjunction binary op-
erator. As such, there is no ordering between initialization predicates.

Constraints:

e Location.initialTypes The initialization predicates must have boolean types.

cont invariants [0..*] : Invariant
The invariants of the location. A CIF model can only be in a state if that state satisfies
the invariants.
If no invariants are given, the invariant is true. If multiple invariants are given, this
feature represents the logical conjunction of those invariants. Note that this represents the
mathematical conjunction, and not the short-circuit conjunction binary operator. As such,
there is no ordering between invariants.

cont markeds [0..%] : Ezpression
The marker predicates of the location. Used as liveness property for, among others, super-
visory controller synthesis.
If no predicates are given, the marker predicate is false. If multiple predicates are given,
this feature represents the logical conjunction of those predicates. Note that this represents
the mathematical conjunction, and not the short-circuit conjunction binary operator. As
such, there is no ordering between marker predicates.

Constraints:

e Location.markedTypes The marker predicates must have boolean types.

attr name [0..1] : Cifldentifier
The name of the location. If a location is the only location in an automaton, the name

may be omitted, but then the location may not be referenced.

Constraints:

e Location.nameless The name of a location must be set if one of the following condi-
tions holds: (1) the location is not the only location of the automaton; (2) the location
is referenced; (3) the location is a location parameter. In other words, if it is not a
location parameter, it is the only location of the automaton, and it is never referenced,
the name may be omitted.

As for (2), it is not possible to refer to a nameless location in the CIF textual syntax.
However, it is possible to do that in the metamodel, and as such the situation can
result from for instance a model transformation.

55

e Location.name (non-fatal) Location names must not start with e_, c_, or u_, as
those prefixes are reserved for events.

attr urgent [1] : EBoolean
Whether the location is urgent. If a location is urgent, then time may not progress in that
location.

3.4.11 Monitors (class)

The monitor events of an Automaton (Section |3.4.3)).

Automata that monitor events are used to monitor (track, observe) the behavior (or progress) of
those monitor events, as initiated by other components. Monitoring is often used for verification
components, supervisors, etc.

Informally, if an automaton monitors an event, the event is never blocked by that automaton
(guard-wise).

EObject
L PositionObject (Section [3.10.2)
- Monitors

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont events [0..*] : Expression
The set of monitor events.

If no events are specified for this feature, the automaton monitors all events in its alphabet.
This differs from an automaton not having a Monitors (Section [3.4.11)) instance at all, as
that means the automaton does not monitor any events at all.

This feature contains Ezpression (Section [3.6.21)) instances, to allow for wrapping expres-
sions to be used. See also Section B.11

Constraints:
e Automaton.monitorsUniqueEvents (non-fatal) The set of monitor events must
contain unique events.

e Automaton.monitorsEventRefsOnly The expressions must refer to events. Event
‘tau’ is not allowed, as that event is never part of the alphabet, as it does not syn-
chronize with other automata.

e Automaton.monitorsEventsInScope The event references must satisfy the scop-
ing rules.

e Automaton.monitorsSubset Alphabet The set of monitor events must be a subset
of the alphabet.

56

E RealType

cifidentifier

E EnumDec!

Jfava.lang String = position : Position

4, literals : EnumLiteral

hitp:lieclipse orglesceticifitypes

B TypeDec! [1..1] enum B stringType
[1.1] type
E intType H ListType H FuncType
= lower : ElntegerObject = lower : EintegerOhject .
= upper : ElntegerObject = upper : EintegerObject
=+ position : Position = po on ¢
Q BoolType | | Q TypeRef ‘ | Q EnumType |
o position | n |
[1.1] elementType | [1-1] elemenType [0.*] paramTypes [1.-1] returnType
EQ CifType |
= position Po |
[1.1] reference —‘7 I [1.1]reference T [1.1] sampleType [1.1]type (.11 keyType | | [[1.1] valueType
| Q CompinstirapType ‘ | Q ComponentDefType | Q TupleType Q YoidType
H DistType i
Q ComponentType
= po
[1..1] instantiation
— [1..1] definition [2.*] fields
Q Componentinst)
H componentDef | H Field | | H pictType ‘

= positio
D ameter] =+ position : Positior
°* Expression o body :

= name : Cifldentifier
= position : Position

ComplexComponent
= parameters :
°* Parameter

[1..1] parameter [1..1] component

EQ Component |

T name : Cifldentifier

= name : Cifldentifier ‘

o=+ pasition : Positior

| Q ComponentParameter

Figure 3.7: types package

3.4.12 Update (abstract class)

An update of an Fdge (Section .

EObject
L PositionObject (Section [3.10.2)
- Update

Direct derived classes: Assignment (Section , IfUpdate (Section [3.4.9)

cont position [0..1] : Position (inherited from PositionObject)

Optional position information.

57

3.5 Package types

Figure [3.7] shows the types package. This package contains type classes, and is pretty stan-

dard compared to other languages. The CifType (Section [3.5.2)) class is the main class. Of
particular interest may be the CompParamWrapType (Section [3.5.4) and ComplInst Wrap Type

(Section|3.5.3)) classes. They are used to keep track of references via component parameters and
component instantiations. See also Section [3.1

Package URI http://eclipse.org/escet/cif/types
Namespace prefix types

Sub-packages none

3.5.1 BoolType (class)

A boolean type. Represents boolean values.

EObject
L PositionObject (Section (3.10.2)
L CifType (Section
L BoolType

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

3.5.2 CifType (abstract class)

Base class for all CIF types.

EObject
L PositionObject (Section [3.10.2)
L CifType

Direct derived classes: BoolType (Section , ComplInstWrap Type (Section , CompPa-

ram Wrap Type (Sec7 ComponentDefType (Section, ComponentType (Section7
DictType (Section [3.5.7), DistType (Section [3.5.8)), EnumType (Section [3.5.9), FuncType (Sec-
tion , IntType (Section , ListType (Section [3.5.13), RealType (Section [3.5.14)), Set-
Type (Section [3.5.15)), StringType (Section [3.5.16)), TupleType (Section 3.5.17)), TypeRef (Sec-
tion , Void Type (Section

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

58

3.5.3 ComplnstWrapType (class)

Component instantiation reference wrapping type. Allows keeping track of references via compo-
nent instantiations. Similar to the ComplInst WrapExpression (Section class, but for type
references instead of expression references. Similar to the CompParam Wrap Type (Section
class, but for references via component instantiations instead of via component parameters. See
also Section .11

EObject
L PositionObject (Section [3.10.2)
L CifType (Section [3.5.2))

L Complnst Wrap Type

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

ref instantiation [1] : ComponentInst
The component instantiation via which the object is referenced.
Constraints:
e ComplInstWrapType.noCompDefBody Components instantiations that are bod-

ies of component definitions may not be referenced here, as the body is the component
definition.

e ComplnstWrapType.instantiationInScope The component instantiation refer-
ence must satisfy the scoping rules.

cont reference [1] : CifType
The object that is referenced via a component instantiation.

This feature contains CifType (Section [3.5.2]) instances, to allow for wrapping types to be
used.

Constraints:

¢ ComplnstWrapType.reference The reference type must be a reference.

3.5.4 CompParamWrapType (class)

Component parameter reference wrapping type. Allows keeping track of references via component
parameters. Similar to the CompParamWrapExpression (Section class, but for type
references instead of expression references. Similar to the CompInstWrapType (Section
class, but for references via component parameters instead of via component instantiations. See
also Section B.11

EObject
L PositionObject (Section [3.10.2)

59

L CifType (Section [3.5.2))
L CompParam Wrap Type

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

ref parameter [1] : ComponentParameter
The formal component parameter via which the object is referenced.

Constraints:

¢ CompParamWrapType.parameterInScope The component parameter reference
must satisfy the scoping rules.

cont reference [1] : CifType
The object that is referenced via a formal component parameter.

This feature contains CifType (Section [3.5.2)) instances, to allow for wrapping types to be
used.

Constraints:

e CompParamWrapType.reference The reference type must be a reference.

3.5.5 ComponentDefType (class)

A component definition type.

EObject
L PositionObject (Section |3.10.2)
- CifType (Section [3.5.2))

L ComponentDefType

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

ref definition [1] : ComponentDef
The component definition that is used as a type.

Constraints:

e ComponentDefType.definitionInScope The component definition reference must
satisfy the scoping rules.

60

3.5.6 ComponentType (class)

A component type.

EObject
L PositionObject (Section |3.10.2)
L CifType (Section [3.5.2))

L ComponentType

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

ref component [1] : Component
The component that is used as a type.
Constraints:
e ComponentType.noCompDefBody Components that are bodies of component

definitions may not be referenced here, as the body is the component definition. In
such cases a ComponentDefType (Section [3.5.5)) should be used instead.

e ComponentType.noSpec Specifications, which are technically components, may
not be referenced here, as they serve as outer grouping only. Note that in the CIF
textual syntax, they can’t be referenced either, as they don’t have a name.

e ComponentType.componentInScope The component reference must satisfy the
scoping rules.

3.5.7 DictType (class)

A dictionary type. Represents collections of key/value pairs, where keys are unique within a
single dictionary.

EObject
L PositionObject (Section (3.10.2)
L ClifType (Section
L DictType

Direct derived classes: none
cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont keyType [1] : CifType
The type of the keys of the dictionary.

Constraints:

61

e DictType.allowedKeyTypes Component and component definition types, as well
as function and distribution types, are not allowed for dictionary keys.

cont valueType [1] : CifType
The type of the values of the dictionary.

Constraints:

e DictType.allowedValueTypes Component and component definition types are not
allowed for dictionary values.

3.5.8 DistType (class)

A distribution type. Represents stochastic distributions that produce values (samples) according
to a certain probability function.

EObject
L PositionObject (Section (3.10.2)
L CifType (Section
L DistType

Direct derived classes: none
cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont sampleType [1] : CifType
The type of the samples produces by the distribution.

Constraints:

e DistType.allowedSampleTypes Only booleans, integers (without range), and reals
are allowed as sample types.

3.5.9 EnumType (class)

An enumeration type. Represents the enumeration literals of a certain enumeration.

EObject
L PositionObject (Section (3.10.2)
L ClifType (Section
L Enum Type

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

62

ref enum [1] : EnumDecl
The enumeration of which the enumeration literals make up this type.

Constraints:

e EnumRef.enumInScope The enumeration reference must satisfy the scoping rules.

3.5.10 Field (class)

A field of a tuple type.

EObject
L PositionObject (Section [3.10.2)
L Field

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

attr name [0..1] : CifIdentifier
The name of the field. Note that the name is mandatory in the CIF textual syntax, but
is optional to allow for anonymous tuple fields that result from standard library functions,
etc.

cont type [1] : CifType
The type of the field.

Constraints:

e Field.allowedTypes Component and component definition types are not allowed for
tuple fields.

3.5.11 FuncType (class)

A function type. Represents functions.

EObject
L PositionObject (Section (3.10.2)
L CifType (Section
L FuncType

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

63

cont paramTypes [0..%] : CifType
The types of the parameters of the function.

Constraints:

e FuncType.allowedParamTypes Component and component definition types are
not allowed for function parameters.

cont returnType [1] : CifType
The type of the result of the function.

Constraints:

e FuncType.allowedReturnTypes Component and component definition types are
not allowed for function return values.

3.5.12 IntType (class)

An integer type. Represents a subset of all integer values.

The range of integer types is optional. If not specified, the range is [-23! .. 231 —1]. See also
the IntEzpression (Section [3.6.27) class.

Constraints:
e IntType.neitherOrBoth Either the lower bound and the upper bound are specified, or
neither of them are.

e IntType.validRange If the bounds are specified, the lower bound value must be less than
or equal to the upper bound value, to make sure we have a valid (non-empty) range.

EObject
L PositionObject (Section (3.10.2)
L CifType (Section
L IntType

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

attr lower [0..1] : ElntegerObject
The lower bound (inclusive) of the values that make up this type. If it is not specified, it
is implicitly —231.

attr upper [0..1] : ElntegerObject
The upper bound (inclusive) of the values that make up this type. If it is not specified, it
is implicitly 231 — 1.

64

3.5.13 ListType (class)

A list type. Represents ordered collections of elements, possibly with duplicates.

The range of list types is optional. If not specified, the range is [0 .. 231 —1]. This follows
from the use of integers for the ranges. See also the IntType (Section [3.5.12)) and IntExpression

(Section |3.6.27)) classes.

Constraints:

e ListType.neitherOrBoth Either the lower bound and the upper bound are specified, or
neither of them are.

e ListType.nonNegativeRangeBounds If the bounds are specified, they must be non-
negative.

e ListType.validRange If the bounds are specified, the lower bound value must be less
than or equal to the upper bound value, to make sure we have a valid (non-empty) range.

EObject
L PositionObject (Section (3.10.2)
L CifType (Section
L ListType

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont elementType [1] : CifType
The type of the elements of the list.

Constraints:

e ListType.allowedTypes Component and component definition types are not al-
lowed for list elements.

attr lower [0..1] : ElntegerObject
The lower bound (inclusive) of the allowed sizes of the lists that are values of this type. If
it is not specified, it is implicitly 0.

attr upper [0..1] : ElntegerObject
The upper bound (inclusive) of the allowed sizes of the lists that are values of this type. If
it is not specified, it is implicitly 23! — 1.

3.5.14 RealType (class)

A real type. Represents a subset of all real values.

Real values are implemented using Java’s double data type, which is conceptually associated
with double-precision 64-bit format IEEE 754 values as specified in IEEE Standard for Binary

65

Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985 (IEEE, New York). The IEEE 754
standard includes not only positive and negative numbers that consist of a sign and magnitude,
but also positive and negative zeros, positive and negative infinities, and a special Not-a-Number
(NaN) value. A NaN value is used to represent the result of certain invalid operations such
as dividing zero by zero. We explicitly exclude positive and negative infinities, as wel as NaN
values, and any operation that results in them is considered a run-time evaluation error. Negative
zero values are automatically converted to positive zero values. See also the RealExpression

(Section [3.6.31)) class.

EObject
L PositionObject (Section |3.10.2)
L CifType (Section
L RealType

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

3.5.15 SetType (class)

A set type. Represents unordered collections of elements, without duplicates.

EObject
L PositionObject (Section (3.10.2)
L CifType (Section
L SetType

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont elementType [1] : CifType
The type of the elements of the set.

Constraints:

e SetType.allowedTypes Component and component definition types, as well as func-
tion and distribution types, are not allowed for set elements.

3.5.16 StringType (class)

A string type. Represents string values, in other words, it represents texts.
EObject

66

L PositionObject (Section |3.10.2)
L CifType (Section [3.5.2))

L String Type
Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

3.5.17 TupleType (class)

A tuple type. Represents ordered collections of elements, where the number of elements is fixed,
and each element can have a different type.

EObject

L PositionObject (Section (3.10.2)
L CifType (Section [3.5.2))
L Tuple Type

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont fields [2..%] : Field
The fields of the tuple.

Constraints:

e TupleType.uniqueFieldNames The names of the fields of the tuple type must be
unique with respect to the other fields defined in that same tuple type.

3.5.18 TypeRef (class)

A type reference. Represents the same values as the values of the referred type declaration.

EObject
L PositionObject (Section (3.10.2)
L CifType (Section
L TypeRef

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

67

ref type [1] : TypeDecl
The TypeDecl (Section |3.3.10) that this type reference refers to.

Constraints:

e TypeRef.typeInScope The type declaration reference must satisfy the scoping rules.

3.5.19 VoidType (class)

A void type. Used to represent the type of a channel over which no data is communicated.

Constraints:

e VoidType.occurrence The ‘void’ type may only be used as type of events (and event
parameters). It may not be used in other types (such as list types), in type declarations,

etc.
EObject
L PositionObject (Section (3.10.2)
L CifType (Section [3.5.2))
L VoidType

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

3.6 Package expressions

Figure shows the expressions package. This package contains expression classes, and is pretty
standard compared to other languages.

The Ezpression (Section [3.6.21)) class is the main class. Note that all expressions have a manda-
tory type. The derived classes above the Ezpression (Section |3.6.21)) class represent literals,
operators, collections, etc.

The derived classes below Ezpression (Section [3.6.21]) all deal with references to objects in the
CIF language. Of particular interest may be the CompParamWrapEzxpression (Section |3.6.11))
and ComplInstWrapExpression (Section [3.6.9)) classes. They are used to keep track of references
via component parameters and component instantiations. See also Section [3.1

Package URI http://eclipse.org/escet/cif/expressions

Namespace prefix expressions

Sub-packages none

68

[—

saseol

il

anien (1]
hon

A Lel

upuavodwey 5

wonenuEysu [-1]

Uonens - suomenbe 37
a6p3 - sabpe
aueeau) : SusiEn

asie; - ueajoog3 - atin

seupuepD | sweu

usgese

weaue

sy < sweu 4,

P

[—

asje; = ukspoog3 : sngeausp L

k [——

mpauered (111

Jasweied

[

[——

sousisjar

souamjai 1]

wnw = uoRaUNIAS © uopaun &

aiqenen (1]

(

) |

[Coommommes 5| [vomotrzomonnan 5|

T

T

snengeE
anen

[

~

=0

piouli1]

[

womsog - uon nnru_

=

[wommmsczmamenon |

T

wosaades B

J—— swawss [0l

awawara (0]

[—

sweisd [0l

opouny [1-1]

uBea [170)

puali gl

piua L1 Piue L1

xopur 1111

sprenB 1)

w1

sl spienb [,}]

usI1

SUDISSBILXYID1898 3/B10°5HIDBT ANY

wa il

wBu bl

P (1

?nd!,?n,_

womisog : voursed 421
?_ﬁm!:m_

P

1esans
uomppy
uespeRans:
uogssacaunyy
uosmaBEL|
snnpeyy
{enbaun
1enb3
[enbiaeag
e
renb3ssay
usyyssaq
uogauniucs
IeucwpUOOE
uoqesgdu|
uogaunisg

]

s

uossaixgieun B

uogounfsiq = Jegesadghieuig

[

sojerado

srcwes.
snig
-,

suodxs —
Bumz —
umsueo —
Iswiong —
mag
wnowsg —

smea -
(-
¥ -
[T
samog —
[
wnas —

k

3l =2
_

sosdokioun 5

womunias 5

expressions package

.8

Figure 3

69

3.6.1 BinaryOperator (enumeration)

Binary operators for the BinaryExzpression (Section [3.6.6). Type constraints are listed in the
BinaryEzpression (Section |3.6.6)) class documentation.

literal Addition
Integer addition binary operator (+), as well as list concatenation, string concatenation,
and dictionary update.

literal BiConditional
Logical biconditional (or ‘if and only if’) binary operator (<).

literal Conjunction
Logical conjunction binary operator (A), as well as set intersection (N).

Note that even though expressions are side effect free, evaluation may still fail. Implementa-
tions must guarantee short circuit evaluation of this operator. Note that when manipulating
expressions, the operands may only be switched if the resulting expression evaluates to the
same value as the original expression did, when using short circuit evaluation semantics for
both the original and resulting expression.

literal Disjunction (default)
Logical disjunction binary operator (V), as well as set union (U).

Note that even though expressions are side effect free, evaluation may still fail. Implementa-
tions must guarantee short circuit evaluation of this operator. Note that when manipulating
expressions, the operands may only be switched if the resulting expression evaluates to the
same value as the original expression did, when using short circuit evaluation semantics for
both the original and resulting expression.

literal Division
Real division binary operator (/).

Division by zero is considered a run-time error.

literal ElementOf
Element-of binary operator (€).

literal Equal
Equality binary operator (=).

literal GreaterEqual
Greater than or equal comparison binary operator (>).

literal GreaterThan
Greater than comparison binary operator (>).

literal Implication
Logical implication (or material condition, or material implication) binary operator (=).

Note that even though expressions are side effect free, evaluation may still fail. Implementa-
tions must guarantee short circuit evaluation of this operator. Note that when manipulating
expressions, the operands may only be switched if the resulting expression evaluates to the
same value as the original expression did, when using short circuit evaluation semantics for
both the original and resulting expression.

70

literal IntegerDivision
Integer division binary operator (div). Note that this operator has the truncated division,
or round towards zero, semantics.

a b adivb | amodbd
7 4 1 3

7 —4 | -1 3

-714 -1 -3
-71-41]1 -3

Division by zero is considered a run-time error.

literal LessEqual
Less than or equal comparison binary operator (<).

literal LessThan
Less than comparison binary operator (<).

literal Modulus
Integer modulus binary operator (mod). Note that a mod b = a — b- (a div b). The result
has the same sign as the divident (the first operand). For examples, see the IntegerDivision
binary operator.

It is considered a run-time error if the second operand evaluates to zero.

literal Multiplication
Multiplication binary operator ().

literal Subset
Subset binary operator (C).

literal Subtraction
Subtraction binary operator (—), as well as set difference (\), and dictionary update.

literal Unequal
Inequality binary operator ().

3.6.2 StdLibFunction (enumeration)

Standard library functions. Parameter types and return types are listed in the StdLibFunction-
Ezpression (Section [3.6.36]) class documentation.

literal Abs
Absolute value function: abs(z) = |z|.

literal Acos
Arc cosine function, with a result in the range [0 .. 7].

It is considered a run-time error if evaluation of the absolute value of the argument results
in a number larger than one.

literal Acosh
Inverse hyperbolic cosine function.

71

literal Asin
Arc sine function, with a result in the range [-7/2 .. 7/2].

It is considered a run-time error if evaluation of the absolute value of the argument results

in a number larger than one.

literal Asinh
Inverse hyperbolic sine function.

literal Atan
Arc tangent function, with a result in the range [—7/2 .. 7/2].

literal Atanh
Inverse hyperbolic tangent function.

literal Bernoulli
Bernoulli distribution function.

literal Beta
Beta distribution function.

literal Binomial
Binomial distribution function.

literal Cbrt
Cubic root function: cbrt(z) = /.

literal Ceil
Ceiling function. Rounds up (towards oo). In other words, results in the smallest integer
value that is not less than the argument.

literal Constant
Constant distribution function (useful for debugging/testing).

literal Cos
Cosine function, with angle given in radians.

literal Cosh
Hyperbolic cosine function: cosh(z) = (e* 4+ e~*)/2.

literal Delete
Delete function, to remove an element from a list, by using a zero-based index. Negative
indices count from the end of the list backwards.

It is considered a run-time error if an index is out of range for the list.

literal Empty
Empty function, to check whether containers are empty.

literal Erlang
Erlang distribution function.

literal Exp
Exponential function: exp(x) = .

literal Exponential
Exponential distribution function.

72

literal Floor
Floor function. Rounds down (towards —oc). In other words, results in the largest integer
value that is not exceed the argument.

literal Format
Formatting function. Applies a format pattern (first argument, string literal) to the re-
maining arguments.

literal Gamma
Gamma distribution function.

literal Geometric
Geometric distribution function.

literal Ln
Natural logarithmic function.

It is considered a run-time error if evaluation of the argument results in a non-positive
number.

literal Log
Logarithmic (base 10) function.

It is considered a run-time error if evaluation of the argument results in a non-positive
number.

literal LogINNormal
Log-normal distribution function.

literal Maximum

. . z ifx>=
Maximum value function: max(z,y) = { v

y ifzx<uy.
literal Minimum (default)
if v <=y,
Minimum value function: min(x,y) = {33 1 . Y
y ifz>y.

literal Normal
Normal distribution function.

literal Poisson
Poisson distribution function.

literal Pop
Pops the first element from a list, and returns a tuple of the element and the list without
that element.

It is considered a run-time error if the list is empty.

literal Power
Power (exponentiation) function: pow(a,b) = a’. Note that 0° = 1.

It is considered a run-time error if one of the following conditions holds during evaluation:

e the base is zero, and the exponent is negative,

73

e the base is negative, and the exponent is a non-integer number.

literal Random
Random (standard uniform) distribution function.

literal Round
Round function. Rounds to the nearest integer value. If the value is exactly between two
integer values, it is rounded up (towards co). That is: round(z) = |z + 0.5].

literal Scale
Linear scaling with offset. A value v is interpreted in input interval [inmin .. inmax], and
transformed to a value in output interval [outmin .. outmaz]:

scale(v, inmin, inmazx, outmin, outmazx) = outmin + fraction * (outmax — outmin)
with fraction = (v — inmin)/(inmax — inmin)

The intervals may be increasing or decreasing. The input value does not have to be included
in the input interval. In that case it helps to think of the function as applying a linear
transformation.

It is considered a run-time error if the input interval is empty (inmin = inmax), as that
leads to division by zero.
literal Sign
-1 ifzx <0,
Sign (or signum) function: sign(z) =<0 if z =0,
ifx > 0.

literal Sin
Sine function, with angle given in radians.

literal Sinh
Hyperbolic sine function: sinh(z) = (e® —e™%)/2.

literal Size
Function to get the size of a string, list, set, or dictionary.

literal Sqrt
Square root function: sqrt(z) = /x.

It is a run-time error if the argument evaluates to a negative number.

literal Tan
Tangent function, with angle given in radians.

literal Tanh
Hyberbolic tangent function: tanh(z) = sinh(x)/cosh(x).

literal Triangle
Triangle distribution function.

literal Uniform
Uniform distribution function.

literal Weibull
Weibull distribution function.

74

3.6.3 UnaryOperator (enumeration)

Unary operators for the UnaryEzpression (Section [3.6.43)). Type constraints are listed in the
UnaryExpression (Section [3.6.43)) class documentation.

literal Inverse (default)
Logical inverse unary operator ().

literal Negate
Numerical negation (or additive inverse, or opposite) unary operator (—).

literal Plus
Numerical plus unary operator (+). Identity operator.

literal Sample
Sample unary operator. Draws a sample from a stochastic distribution, resulting in a tuple,
with the sampled value, and the original distribution with a modified seed.

3.6.4 AlgVariableExpression (class)

An algebraic variable reference expression.

Constraints:

e AlgVariableExpression.type The type of this expression must match the type of the
referenced algebraic variable. For ranged types, the range of the type of this expression
must be equal to the range of the type of the algebraic variable, if it is specified.

EObject
L PositionObject (Section (3.10.2)
- Expression (Section [3.6.21))
L AlgVariableExpression

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont type [1] : CifType (inherited from Expression)
The type of the expression.

ref variable [1] : AlgVariable
The referenced algebraic variable.

Constraints:

e AlgVariableExpression.variableInScope The algebraic variable reference must
satisfy the scoping rules.

(0]

3.6.5 BaseFunctionExpression (abstract class)

Base class for function reference expressions.

EObject
L PositionObject (Section (3.10.2)
L Expression (Section [3.6.21))
L BaseFunctionEzpression

Direct derived classes: FunctionExpression (Section [3.6.24]), StdLibFunctionExpression (Sec-
tion |3.6.36))

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont type [1] : CifType (inherited from Ezpression)
The type of the expression.

3.6.6 BinaryExpression (class)

A binary expression.

Constraints:

e BinaryExpression.type The types of the left child expression, right child expression, and
the type of the binary expression itself (the result type), depend on the BinaryOperator
(Section [3.6.1]). Table lists the allowed combinations.

Note that for the BinaryOperator. Equal (Section and BinaryOperator. Unequal (Sec-
tion binary operators, the types of the left and right child expressions must be equal.
However, component types and component definition types, as well as function and dis-
tribution types, are not allowed, as those types don’t support value equality. For ranged
types, the ranges are ignored.

Note that for the BinaryOperator. ElementOf (Section binary operator, the type of
the left child expressions must not be a component type, a component definition type, a
function type, or a distribution types, as those types don’t support value equality. For
ranged types, the ranges are ignored.

For the BinaryOperator.Modulus (Section [3.6.1]) binary operator, the result range calcula-
tion is simplified, leading not only to simpler calculations, but also to more intuitive result
ranges. It does however result in larger result ranges (over-approximations).

For integer types, if one of the operands has a rangeless integer type, the result type is also
rangeless, if the result type is an integer type as well.

For list types, if one of the operands is an array, we try to keep the result an array as well.
However, over approximations are sometimes used for the result types.

e BinaryExpression.divideByZero For the BinaryOperator.Integer Division (Section|3.6.1)
and BinaryOperator. Modulus (Section |3.6.1)) binary operators, if the right child expression

76

has an integer type with range [0 .. 0], then the model is invalid, as this can only result in
a division by zero run-time evaluation error.

EObject
L PositionObject (Section |3.10.2)
L Expression (Section [3.6.21))
L BinaryEzpression

Direct derived classes: none
cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont type [1] : CifType (inherited from Expression)
The type of the expression.

cont left [1] : Fxpression
The left child of the binary expression.

attr operator [1] : BinaryOperator
The binary operator of the binary expression.

cont right [1] : Expression
The right child of the binary expression.

3.6.7 BoolExpression (class)

A boolean value literal expression.

Constraints:

e BoolExpression.type The type of a boolean expression must be a boolean type.

EObject
L PositionObject (Section |3.10.2)
L Expression (Section [3.6.21))
L BoolEzxpression

Direct derived classes: none
cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont type [1] : CifType (inherited from Expression)
The type of the expression.

attr value [1] : EBoolean
The boolean value.

7

Operator Left type Right type Result type
Implication bool bool bool
BiConditional bool bool bool
Disjunction bool bool bool
set t set t set t
Conjunction bool bool bool
set t set t set t
LessThan int / real int / real bool
LessEqual int / real int / real bool
GreaterThan int / real int / real bool
GreaterEqual int / real int / real bool
Equal t t bool
Unequal t t bool
Addition int [11 . ul] int [lz .. UQ] int [ll 4o ..U +’LL2}
int int int
int real real
real int real
real real real
list t list t list t
list [l1 .. ul] t list [lg .. ’l,LQ] t list [ll + s .. ul + UQ] t
string string string
dict(k:v) dict(k:v) dict(k:v)
Subtraction int Iy .. ui] int [l2 .. ug) int [ly —ug .. up — o]
int int int
int real real
real int real
real real real
set t set t set t
dict(k:v) dict(k:v) dict(k:v)
dict(k:v) set k dict(k:v)
dict(k:v) list k dict(k:v)
dict(k:v) list [.. u] k dict(k:v)
l1- 1, l1- 1o,
Multiplication int [l1 .. u1] int [l2 .. u2] int | min b -uz, .. max b~ uz,
uy - 127 uy - 127
Ul - u2 Ul - u2
int int int
int real real
real int real
real real real
Division int / real int / real real
L . . . min{z divy | z € [l1 .. u1],y € [l2 .. u2],y # 0} ..
IntegerDivision int [l1 .. u4] int [l2 .. u2] int | max{e divy | ¢ e Ui wily € s . ual,y # 0}]
int int int
min(0, —max(|l2], |uz|) +1) ifl; < 0)
Modulus int [l .. ui) int [l2 .. ug) int max(0, max(|la|, |us|) — 1)0 ifliilsoo
L (0 ifu; < 0>
int int int
ElementOf t list t bool
t list [I .. u]t bool
t set t bool
k dict(k:v) bool
Subset set t set t bool

Table 3.1: Binary exp?@ssion type constraints.

Child type Cast/result type

int real

int string

real string

bool string

string int (rangeless)
string real

string bool
automaton reference (including ‘self’) string

t t

Table 3.2: Cast expression type constraints.

3.6.8 CastExpression (class)

Cast expression.

It is considered a run-time error if casting from a string value, and the string value is not a valid
textual representation of a value for the result type.

Constraints:
e CastExpression.type The types of the child expression and the cast expression itself

must match. For ¢ to ¢ casts, the types must be exactly equal. That is, for ranged types
the ranges must be equal as well. Table lists the allowed combinations.

EObject
L PositionObject (Section (3.10.2)
L Ezpression (Section |3.6.21)
L CastExpression

Direct derived classes: none
cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont type [1] : CifType (inherited from Ezpression)
The type of the expression.

cont child [1] : Expression
The child of the cast expression.

3.6.9 ComplnstWrapExpression (class)

Component instantiation reference wrapping expression. Allows keeping track of references via
component instantiations. Similar to the Complnst Wrap Type (Section |3.5.3) class, but for ex-
pression references instead of type references. Similar to the CompParamWrapFEzpression (Sec-

79

tion [3.6.11)) class, but for references via component instantiations instead of via component
parameters. See also Section (3.1

Constraints:

e ComplnstWrapExpression.type The type of the component instantiation reference
wrapping expression must be equal to the type of its reference expression.

EObject
L PositionObject (Section (3.10.2)
- Expression (Section [3.6.21))
L ComplInst WrapEzxpression

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont type [1] : CifType (inherited from Expression)
The type of the expression.

ref instantiation [1] : ComponentInst
The component instantiation via which the object is referenced.

Constraints:

e ComplInstWrapExpression.noCompDefBody Components instantiations that are
bodies of component definitions may not be referenced here, as the body is the com-

ponent definition.
e ComplnstWrapExpression.instantiationInScope The component instantiation
reference must satisfy the scoping rules.

cont reference [1] : Fzpression
The object that is referenced via a component instantiation.

This feature contains Ezpression (Section [3.6.21)) instances, to allow for wrapping expres-
sions to be used.

Constraints:

e ComplnstWrapExpression.reference The reference expression must be a refer-
ence.
3.6.10 CompParamExpression (class)

A component parameter reference expression.

Constraints:

e CompParamExpression.type The type of the component parameter reference expres-
sion must match the type of the referenced component parameter.

80

EObject
L PositionObject (Section (3.10.2)
L Expression (Section [3.6.21))
L CompParamEzxpression

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont type [1] : CifType (inherited from Ezpression)
The type of the expression.

ref parameter [1] : ComponentParameter
The referenced component parameter.
Constraints:

e CompParamExpression.parameterInScope The component parameter must sat-
isfy the scoping rules.

3.6.11 CompParamWrapExpression (class)

Component parameter reference wrapping expression. Allows keeping track of references via com-
ponent parameters. Similar to the CompParam Wrap Type (Section class, but for expression
references instead of type references. Similar to the Complnst WrapEzpression (Section
class, but for references via component parameters instead of via component instantiations. See

also Section [B.1]

Constraints:

e CompParamWrapExpression.type The type of the component parameter reference
wrapping expression must be equal to the type of its reference expression.

EObject
L PositionObject (Section |3.10.2)
L Expression (Section [3.6.21)
L CompParamWrapEzxpression

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont type [1] : CifType (inherited from Ezpression)
The type of the expression.

81

ref parameter [1] : ComponentParameter
The formal component parameter via which the object is referenced.

Constraints:
e CompParamWrapExpression.parameterInScope The component parameter ref-
erence must satisfy the scoping rules.
cont reference [1] : Ezpression
The object that is referenced via a formal component parameter.

This feature contains Frpression (Section [3.6.21)) instances, to allow for wrapping expres-
sions to be used.

Constraints:

e CompParamWrapExpression.reference The reference expression must be a ref-

erence.

3.6.12 ComponentExpression (class)

A component reference expression.

Constraints:

e ComponentExpression.type The type of the component reference expression must be
a component type that refers to the same component as this expression does.

EObject
L PositionObject (Section |3.10.2)
L Expression (Section [3.6.21)
L ComponentExpression

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont type [1] : CifType (inherited from FEzpression)
The type of the expression.
ref component [1] : Component
The referenced component.
Constraints:
e ComponentExpression.noCompDefBody Components that are bodies of compo-
nent definitions may not be referenced here, as the body is the component definition.

e ComponentExpression.noSpec Specifications, which are technically components,
may not be referenced here, as they serve as outer grouping only. Note that in the
CIF textual syntax, they can’t be referenced either, as they don’t have a name.

e ComponentExpression.componentInScope The component reference must sat-
isfy the scoping rules.

82

3.6.13 ConstantExpression (class)

A constant reference expression.
Constraints:
e ConstantExpression.type The type of this expression must match the type of the ref-

erenced constant. For ranged types, the range of the type of this expression must be equal
to the range of the type of the constant, if specified.

EObject
L PositionObject (Section |3.10.2)
L Expression (Section [3.6.21)
L ConstantExpression

Direct derived classes: none
cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont type [1] : CifType (inherited from Ezpression)
The type of the expression.

ref constant [1] : Constant
The referenced constant.

Constraints:

e ConstantExpression.constantInScope The constant reference must satisfy the
scoping rules.

3.6.14 ContVariableExpression (class)

A continuous variable reference expression.

Constraints:

e ContVariableExpression.type The type of the variable reference expression must be a
real type.

EObject
L PositionObject (Section |3.10.2)
L Expression (Section [3.6.21))
L ContVariable Expression

Direct derived classes: none

83

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont type [1] : CifType (inherited from Ezpression)
The type of the expression.

attr derivative [1] : EBoolean
Indicates whether this reference is a reference to the derivative of the variable (¢rue) or to
the variable itself (false).

ref variable [1] : ContVariable
The referenced continuous variable.

Constraints:

e ContVariableExpression.variableInScope The continuous variable reference must
satisfy the scoping rules.

3.6.15 DictExpression (class)

A dictionary literal expression.
It is considered a run-time error if a dictionary literal has duplicate keys.

Constraints:

e DictExpression.type The type of the dictionary expression must be a dictionary type.
Each of the keys of the pairs must match the key type of the dictionary type. Each of the
values of the pairs must match the value type of the dictionary type. For ranged types,
the ranges (if specified) of the keys and values must be contained in the range of the key
type and value type respectively.

EObject
L PositionObject (Section (3.10.2)
L Expression (Section [3.6.21))
L DictExpression

Direct derived classes: none
cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont type [1] : CifType (inherited from Ezpression)
The type of the expression.

cont pairs [0..*] : DictPair
The key/value pairs of the dictionary.

84

3.6.16 DictPair (class)

A single key/value pair for a DictEzpression (Section |3.6.15)).

EObject
L PositionObject (Section |3.10.2)
L DictPair

Direct derived classes: none
cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont key [1] : Ezpression
The key of the key/value pair.

cont value [1] : Ezpression
The value of the key/value pair.

3.6.17 DiscVariableExpression (class)

A discrete variable reference expression.

Constraints:

e DiscVariableExpression.type The type of the discrete variable reference expression
must match the type of the referenced discrete variable. For ranged types, the ranges
(if specified) must be equal.

EObject
L PositionObject (Section (3.10.2)
L Expression (Section [3.6.21)
L DiscVariableExpression

Direct derived classes: none
cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont type [1] : CifType (inherited from Ezpression)
The type of the expression.

ref variable [1] : DiscVariable
The referenced discrete variable.

Constraints:

e DiscVariableExpression.variableInScope The discrete variable reference must
satisfy the scoping rules.

85

3.6.18 ElifExpression (class)

An ‘elif’ (‘else-if’) alternative of an IfEzpression (Section [3.6.25)).

EObject
L PositionObject (Section [3.10.2)
L ElifExpression

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont guards [1..*] : Expression
The guard predicates for this alternative.

If multiple predicates are given, this feature represents the logical conjunction of those
predicates. Note that this represents the mathematical conjunction, and not the short-
circuit conjunction binary operator. As such, there is no ordering between the guards.

Constraints:
¢ ElifExpression.guardTypes The guard predicates must have boolean types.

cont then [1] : Ezpression
The value that the IfExpression (Section [3.6.25) evaluates to if the ‘guard’ evaluates to
true.

3.6.19 EnumlLiteralExpression (class)

An enumeration literal reference expression.

Constraints:

e EnumlLiteralExpression.type The type of an enumeration literal expression must be
equal to the enumeration that the literal is a part of.

EObject
L PositionObject (Section (3.10.2)
L Expression (Section [3.6.21))
L EnumlLiteral Expression

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont type [1] : CifType (inherited from Ezpression)
The type of the expression.

86

ref literal [1] : EnumlLiteral
The referenced enumeration literal.

Constraints:

e EnumlLiteralExpression.literallInScope The enumeration literal reference must
satisfy the scoping rules.

3.6.20 EventExpression (class)

An event reference expression.

Only used for event references, as events can’t be used in a value context. It is part of the
expression tree, to allow wrapping expressions to be used. See also Section [3.1

Can not be used to refer to the ‘tau’ event.

Constraints:

e EventExpression.type The type of an event expression must be a boolean type.

EObject
L PositionObject (Section (3.10.2)
- Expression (Section [3.6.21))
L EventExpression

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont type [1] : CifType (inherited from Expression)
The type of the expression.

ref event [1] : Event
The referenced event.

Constraints:

o EventExpression.eventInScope The event reference must satisfy the scoping rules.

e EventExpression.occurrence Events may only be used in places where they are
directly used as event reference (such as events on edges, in alphabets, in monitor
sets, in component instantiation arguments for event parameters, etc). They may
thus explicitly not be used in functions, guards, initial values of variables, etc.

3.6.21 Expression (abstract class)

Base class for all CIF expressions.

87

EObject
L PositionObject (Section |3.10.2)

L Ezpression

Direct derived classes: AlgVariableExpression (Section , BaseFunctionExpression (Sec-

tion [3.6.5)), BinaryFExzpression (Section , BoolEzpression (Section , CastEzpression
(Sect, ComplInst WrapExpression (Section(3.6.9), CompParamExpression (Section,
CompParamWrapEzpression (Section|3.6.11)), ComponentExpression (Section, Constant-
Ezxpression (Section, ContVariable Expression (Section, DictEzpression (Section,
DiscVariableExpression (Section , EnumLiteral Expression (Section , EventFExpres-

sion (Section, FieldExpression (Section, FunctionCallEzpression (Section [3.6.23)),
IfExpression (Section nput VariableExpression (Secti, IntEzxpression (Section|3.6.27)),

3.6.28 3.6.29)

ListEzxpression (Section [3.6.28)), LocationExpression (Section [3.6.29)), ProjectionExpression (Sec-
tion[3.6.30), RealExpression (Section|3.6.31)), Received Expression (Section|3.6.32)), SelfExpression
(Section [3.6.33)), SetExpression (Sect7 SliceExpression (Section7 StringExpres-
ston (Section [3.6.37)), SwitchExpression (Section [3.6.39)), TauExpression (Section , Time-
Ezxpression (Section, TupleExpression (Se, UnaryFExpression (Section

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont type [1] : CifType
The type of the expression.

3.6.22 FieldExpression (class)

A tuple field reference expression.

Constraints:

e FieldExpression.occurrence Instances of FieldExpression may only occur in the index
feature of the ProjectionFExpression (Section [3.6.30) class. They must not be wrapped in
other expressions.

e FieldExpression.type The type of a field expression must be an integer type, with as
range the single value that corresponds to the 0-based index of the field in the tuple type
of which it is a part.

EObject
L PositionObject (Section (3.10.2)
L Ezpression (Section 3.6.21)
L FieldFBxpression

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

88

cont type [1] : CifType (inherited from Ezpression)
The type of the expression.

ref field [1] : Field
The referenced tuple field.

Constraints:

e FieldExpression.fieldInScope The field reference must satisfy the scoping rules.
For the details, see the ProjectionExpression (Section [3.6.30)).

3.6.23 FunctionCallExpression (class)

A function call expression.

Constraints:

e FunctionCallExpression.type The type of the function call expression must match the
types of the function and the parameters. That is, the function must have a function type.
The type of the functional call expression must match the result type of the function type.
For ranged types, the ranges (if specified) must be equal. The count and types of the
parameters must match the parameter types of the function type. For ranged types, the
ranges (if specified) of the parameters must be contained in the ranges of the parameter
types of the function type.

EObject
L PositionObject (Section [3.10.2)
L Expression (Section [3.6.21)

L FunctionCallEzpression

Direct derived classes: none
cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont type [1] : CifType (inherited from Ezpression)
The type of the expression.

cont function [1] : Expression
The function to call.

cont params [0..*] : Expression
The function parameters for the function call.

3.6.24 FunctionExpression (class)

A user-defined function reference expression.

Constraints:

89

e FunctionExpression.type The type of a function reference expression must be a function
type, with a return type matching the return type of the referenced function, and parameter
types matches the parameter types of the referenced function. For ranged types, the ranges
must match exactly.

EObject
L PositionObject (Section |3.10.2)
L Expression (Section |3.6.21)
L BaseFunctionEzpression (Section
L FunctionFExpression

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont type [1] : CifType (inherited from Expression)
The type of the expression.

ref function [1] : Function
The referenced user-defined function.
Constraints:

e FunctionExpression.functionInScope The function reference must satisfy the scop-
ing rules.

3.6.25 IfExpression (class)

A conditional expression.

Constraints:

e IfExpression.type The type of the ‘then’ expression, the type of the ‘else’ expression, the
types of the ‘thens’ of the ‘elif’ expressions (if any), and the type of this expression, must
all match.

Component and component definition types are not allowed.

For integer types, for ‘then’ range [It .. ut], for ‘else’ range [le .. ue], for ‘elif’ ranges
[[f, - uf,], in case of n ‘elif’ alternatives, 0 < n, the range of this expression must be

0<i<n 0<i<n
are merged. Similarly, ranges for other ranged types are merged.

equal to [It minle min < min (lfi)) .. ul max ue max < max (ufl)>] That is, the ranges

Note that the guards of the alternatives are not taken into account. Also, if one of the
alternatives has a non-ranged integer type, the result has a non-ranged integer type as well.
Similar notes apply to other ranged types.

EObject

90

L PositionObject (Section |3.10.2)
L Expression (Section [3.6.21)
L IfExpression

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont type [1] : CifType (inherited from Expression)
The type of the expression.

cont elifs [0..*] : ElifEzpression
The ‘elif’ (‘else-if’) alternatives. Processed in order, if the ‘guard’ evaluates to false.

cont else [1] : Ezxpression
The ‘else’ value. Returned if no other alternative has a true guard.

cont guards [1..*] : Expression
The guard predicates for the ‘then’ value.

If multiple predicates are given, this feature represents the logical conjunction of those
predicates. Note that this represents the mathematical conjunction, and not the short-
circuit conjunction binary operator. As such, there is no ordering between the guards.

Constraints:
e IfExpression.guardTypes The guard predicates must have boolean types.

cont then [1] : Ezpression
The ‘then’ value. Returned if the ‘guard’ evaluates to true.

3.6.26 InputVariableExpression (class)

An input variable reference expression.
Constraints:
e InputVariableExpression.type The type of this expression must match the type of the

referenced input variable. For ranged types, the ranges (if specified) must be equal.

EObject
L PositionObject (Section |3.10.2)
L Expression (Section [3.6.21)
L InputVariableExpression

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

91

cont type [1] : CifType (inherited from Ezpression)
The type of the expression.

ref variable [1] : InputVariable
The referenced input variable.
Constraints:

e InputVariableExpression.variableInScope The input variable reference must sat-
isfy the scoping rules.

3.6.27 IntExpression (class)

An integer value literal expression.

The value of integer value literal expressions is encoded using the FInt datatype, which matches
32-bit integers in the range [-23! .. 231 — 1]. Note that integer values are also used for the bounds
of ranges (see IntType (Section [3.5.12))), which means that both values and integer type ranges
are limited to that given range of integers.

Operations that result in overflow or underflow should be considered errors, and under no cir-
cumstance should wrapping or saturation take place.

If operations depend only on integer types with ranges, we enforce that no overflow can ever
happen, by using static semantic constraints, as to avoid run-time overflow detection. If one
of the operands involves a rangeless integer type, range checking is disabled for that operation,
deferring the responsibility to run-time, and thus the implementation.

Constraints:

e IntExpression.type The type of an integer expression with value v must be an integer
type with range [v .. v].

EObject
L PositionObject (Section (3.10.2)
L Expression (Section [3.6.21))
L IntFxpression

Direct derived classes: none
cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont type [1] : CifType (inherited from Ezpression)
The type of the expression.

attr value [1] : Elnt
The integer value. May be negative, zero, or positive.

92

3.6.28 ListExpression (class)

A list literal expression.
Operations that result in overflow on the sizes of lists should be considered errors.

If operations depend only on list types with ranges, we enforce that no out-of-range errors can
ever happen, by using static semantic constraints, as to avoid run-time out-of-range detection. If
one of the operands involves a rangeless list type, range checking is disabled for that operation,
deferring the responsibility to run-time, and thus the implementation.

Constraints:

e ListExpression.type The type of the list expression must be a list type, with range [n .. n]
for a list of n elements. Each of the elements must match the element type of the list type.
For ranged element types, the ranges (if specified) of the types of the elements must be
contained in the range of the element type of the list type.

EObject
L PositionObject (Section (3.10.2)
L Expression (Section [3.6.21))
L ListExpression

Direct derived classes: none
cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont type [1] : CifType (inherited from Expression)
The type of the expression.

cont elements [0..%] : Expression
The elements of the list.

3.6.29 LocationExpression (class)

A location reference expression. Represents an ‘is the location active’ boolean expression.

Constraints:

e LocationExpression.type The type of a location expression must be a boolean type.

EObject
L PositionObject (Section |3.10.2)
L Expression (Section |3.6.21)
L LocationExpression

Direct derived classes: none

93

Child type Index (type) Projection/result type

list t int t
list t int[a..b] t
list [l .. u] t int t
list [I .. u] t int[a..b] t
dict(k:v) k v
string int string
tuple(tl f1, t2 £2, ..., tn fn) int i ti
tuple(tl {1, t2 £2, ..., tn fn) field fi ti

Table 3.3: Projection expression type constraints.

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont type [1] : CifType (inherited from Expression)
The type of the expression.

ref location [1] : Location
The referenced location.

Constraints:

e LocationExpression.locationInScope The location reference must satisfy the scop-
ing rules.

3.6.30 ProjectionExpression (class)

Projection expression.

Lists can be indexed using a zero-based index. Negative indices count from the end of the list
backwards. It is considered a run-time error if an index is out of range for the list.

Dictionaries can be indexed using keys. It is considered a run-time error if a key is not in the
dictionary. An exception is the last projection of an addressable, as a new key/value pair is
created if the key does not exist for such a projection.

Strings can be indexed similar to lists.

Tuples can be indexed using a zero-based index. It is considered a run-time error if an index is
out of range (negative or greater than or equal to the size of the tuple).

Tuples can also be indexed using field names. In such a case, the inder expression must be a
FieldExpression (Section [3.6.22)), which must not be wrapped by any other expressions.

Constraints:

e ProjectionExpression.type The types of the child expression and the projection expres-
sion itself must match. Table [3.3] lists the allowed combinations.

EObject

94

L PositionObject (Section |3.10.2)
L Expression (Section [3.6.21)
L ProjectionFExpression

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont type [1] : CifType (inherited from FEzpression)
The type of the expression.

cont child [1] : Expression
The child expression of the projection expression. This is the value that is being projected.

cont index [1] : Ezpression
The projection index of the projection expression. This indicates what to project from the
child expression.

Constraints:

e ProjectionExpression.indexInScope For projection on tuples, the fields of the
tuple type of the child expression are in scope, and the fields take precedence over any
other objects with those names, in the same scope.

3.6.31 RealExpression (class)

A real number value literal expression.

Constraints:

e RealExpression.type The type of a real expression must be a real type.

EObject
L PositionObject (Section (3.10.2)
L Expression (Section [3.6.21))
L RealEzpression

Direct derived classes: none
cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont type [1] : CifType (inherited from Ezpression)
The type of the expression.

attr value [1] : EString
The real number value. Note that real numbers are represented in the metamodel as

95

strings, to keep the original formatting, and to keep the precise value. For details on the
representation of real numbers in the implementation, see the RealType (Section [3.5.14))
class.

The syntax of the strings is CIF textual syntax for real numbers. Note that this explicitly
excludes negative real numbers, which are real numbers with a unary negation operator.

3.6.32 ReceivedExpression (class)

A reference to the value received as part of a channel communication.

Constraints:

e ReceivedExpression.scope The received value only exists in the updates of edges, for
edges where a value is received. Received variables may not be assigned (are read-only).
They may be used on the right hand side of assignments, as projection indices in the
addressables, and in guards for ‘if” updates.

¢ ReceivedExpression.type The type of a received value reference expression must have
the same type as the type of the event or events over which data is communicated. If
multiple events are present on the edge, they must have equal types. If communication
over a VoidType (Section channel is performed, the received value does not exist,
as there a no values for ‘void’ types.

EObject
L PositionObject (Section (3.10.2)
- Expression (Section [3.6.21))
L ReceiwedEzxpression

Direct derived classes: none
cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont type [1] : CifType (inherited from Ezpression)
The type of the expression.

3.6.33 SelfExpression (class)

A self reference to an automaton or automaton definition.
Constraints:
e SelfExpression.scope The self expression may only be used within automata and au-
tomaton definitions.

e SelfExpression.type The type of a self expression must be an automaton type or au-
tomaton definition type, referring to the automaton or automaton definition in which the
self expression is used.

96

EObject
L PositionObject (Section (3.10.2)
L Expression (Section [3.6.21))
L SelfExpression

Direct derived classes: none
cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont type [1] : CifType (inherited from Ezpression)
The type of the expression.

3.6.34 SetExpression (class)

A set literal expression.
Constraints:
e SetExpression.type The type of the set expression must be a set type. Each of the
elements must match the element type of the set type. For ranged element types, the

ranges (if specified) of the types of the elements must be contained in the range of the
element type of the set type.

EObject
L PositionObject (Section (3.10.2)
L Expression (Section [3.6.21))
L SetEzpression

Direct derived classes: none
cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont type [1] : CifType (inherited from Expression)
The type of the expression.

cont elements [0..*] : Expression
The elements of the set.

3.6.35 SliceExpression (class)

Slice expression.

Lists can also be sliced, using a begin and end index. This results in a part of the original list,
for the sub-range [begin .. end — 1]. Both indices are optional. An omitted begin index equals 0,

97

Child type begin end Slice/result type
list t int/int [a .. b]/omit int/int [a .. b]/omit list t
list [..7]t int/int [y .. y]/omit int/int [z .. z]/omit list [w .. w],
with w only possible result size

list [{..7]]t int (other) int (other) list [0 .. {]
list [..w]t int/int [y .. y]/omit, int/int [z .. z]/omit, list [v .. w],

with 0 <=y <=1 with 0 <=z <=1 with v and w as narrow as possible
list [..u]t int (other) int (other) list [0 .. u]
string int int string

Table 3.4: Slice expression type constraints.

and an omitted end index equals the length of the list. Indices may be negative to count from
the end of the list backwards. Out of range slice indices are handled gracefully. An index that
is too large is replaced by the list size. A lower bound larger than the upper bound results in an
empty list. This applies to negative indices as well.

Strings can be sliced similar to lists.

Constraints:

e SliceExpression.type The types of the child expression and the slice expression itself
must match. Table 34 lists the allowed combinations.

EObject
L PositionObject (Section (3.10.2)
L Expression (Section [3.6.21))
L SliceExpression

Direct derived classes: none
cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont type [1] : CifType (inherited from Expression)
The type of the expression.

cont begin [0..1] : Ezpression
The begin index. May be omitted to default to 0.

cont child [1] : Ezpression
The child expression. This is the value that is being sliced.

cont end [0..1] : Expression
The end index. May be omitted to default to the length of the list.

3.6.36 StdLibFunctionExpression (class)

Standard library function reference expression.

98

Constraints:

e StdLibFunctionExpression.occurrence Standard library function references may only
occur as the ‘function’ of a FunctionCallEzpression (Section [3.6.23). They must occur
there directly, as the value of the ‘function’ feature, without any other expressions around
them. This is mainly to ensure that distribution standard library functions can not be
passed around as values.

e StdLibFunctionExpression.occurrenceDist Standard library function references for
distribution functions, may only in the ‘value’ of the DiscVariable (Section class.
That is, distributions may only be created in the initial values of discrete variables, declared
in automata.

e StdLibFunctionExpression.type The type of the standard library expression depends
on the StdLibFunction (Section [3.6.2)), and for some functions, also on the parameters.
Tables and [3.7] list the allowed combinations.

For integer types, if one of the parameters has a rangeless integer type, the result type is
also rangeless, if the result type is an integer type as well. Similar relations hold for other
ranged types.

The StdLibFunction.Format (Section |3.6.2) function has as first argument a string typed
value, and may additionally have more arguments, of any type.

e StdLibFunctionExpression.formatPatternLiteral The first argument to the StdLib-
Function.Format (Section [3.6.2) function must be a string literal expression, to use as
format pattern.

e StdLibFunctionExpression.formatPattern The format pattern of the StdLibFunc-
tion.Format (Section function must not have any decoding errors, explicit indices
must not result in integer overflow, used indices (1-based, either implicit or explicit) may
not be out of range, and the values corresponding to the specifiers must have appropriate

types.

e StdLibFunctionExpression.formatUsed (non-fatal) The format pattern (first argu-
ment) of the StdLibFunction. Format (Section[3.6.2) function should contain specifiers with
indices (1-based, either implicit or explicit) that refer to each of the other arguments of the
function call.

EObject
L PositionObject (Section (3.10.2)
- Expression (Section [3.6.21))
L BaseFunctionEzpression (Section
L StdLibFunctionEzpression

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

99

Function Parameter types Result type

min{|z| |z €[l .. u]} ..

Abs int [I .. u] int max{|z] | = € [l .. u]}
int int
real real
Cbrt real real
Ceil real int
Delete list t, int list ¢
list, int[a..b] list t
list [I .. u] t, int list [Omax! —1 .. Omaxu — 1] t
list [I .. u] t, int[a..b] list [0max! —1 .. Omaxu —1] t
Empty list t bool
list [I .. u] t bool
set t bool
dict(k:v) bool
Exp real real
Floor real int
Format string, ... string
Ln real real
Log real real
Minimum int [ly .. u1], int [l .. ug] int [l; minly .. uq min us]
int, int int
real, int real
int, real real
real, real real
Maximum int [ly .. u1], int [l .. ug] int [l; maxly .. u; maxus
int, int int
real, int real
int, real real
real, real real
Pop list ¢ tuple(t, list t)
list [.. u]t tuple(t, list [0max!—1 .. Omaxu — 1] t)
ind Y
Power int [Iy .. wq], int [y .. us], lo >=0 int E;I;{{xxy |‘ 9;66 [[llll le]]”yyee[[l;z 1;22]]}} h
int / real, int / real real
Round real int
Scale int / real, int / real, ... (5 parameters) real
-1 ifl<0 -1 ifu<O
Sign int [I ..] int 0 ifli=0] .. 0 ifu=0
1 ifl>0 1 ifu>0
int int[—1 .. 1]
real int[—1 .. 1]
Size string int
list t int
list [.. u] t int I .. u
set t int
dict(k:v) int
Sqrt real real

Table 3.5: General standard library function type constraints.

100

Function Parameter types Result type

Acosh real real
Acos real real
Asinh real real
Asin real real
Atanh real real
Atan real real
Cosh real real
Cos real real
Sinh real real
Sin real real
Tanh real real
Tan real real

Table 3.6: Trigonometric standard library function type constraints.

Function Parameter types Result type

Bernoulli real dist bool
Beta real, real dist real
Binomial real, int dist int
Constant bool dist bool
int dist int
real dist real
Erlang int, real dist real
Exponential real dist real
Gamma real, real dist real
Geometric real dist int
LogNormal real, real dist real
Normal real, real dist real
Poisson real dist int
Random - dist real
Triangle real, real, real dist real
Uniform int, int dist int
real, real dist real
Weibull real, real dist real

Table 3.7: Distribution standard library function type constraints.

101

cont type [1] : CifType (inherited from Ezpression)
The type of the expression.

attr function [1] : StdLibFunction
The referenced standard library function.

3.6.37 StringExpression (class)

A string value literal expression.

Constraints:

e StringExpression.type The type of a string expression must be a string type.

EObject
L PositionObject (Section |3.10.2)
L Expression (Section [3.6.21))
L StringFExpression

Direct derived classes: none
cont position [0..1] : Position (inherited from PositionObject)

Optional position information.

cont type [1] : CifType (inherited from FEzpression)
The type of the expression.

attr value [1] : EString
The string value.

3.6.38 SwitchCase (class)

A single case of a SwitchExpression (Section [3.6.39)).

EObject
L PositionObject (Section [3.10.2)

L SwitchCase

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont key [0..1] : Ezpression
The key of the switch case. If specified, the case can only be selected if the ‘value’ of the

102

SwitchExpression (Section is equal to this key. If not specified, the case is an ‘else’
case and it can always be selected.

This feature contains Expression (Section instances. If the ‘value’ of the switch
expression refers to an automaton, the key is a location reference. The expression is stored
in such a way that it refers to the location from the scope of this expression. Wrapping
expressions may thus be used. See also Section In the textual syntax, only an identifier
(possibly escaped) may be used in such cases.

Constraints:

e SwitchCase.keyType If the ‘key’ is specified, and if the ‘value’ of the switch expres-
sion does not refer to an automaton, the type of the ‘key’ expression and the type of
that ‘value’ must be type compatible (ignoring ranges).

e SwitchCase.keyLocRef If the ‘key’ is specified, and if the ‘value’ of the switch
expression refers to an automaton, the ‘key’ must be a reference to a location of that
automaton. The reference must be valid from the scope of this expression. In the
textual syntax, only an identifier (possibly escaped) may be used.

cont value [1] : Ezpression
The value of the switch case. The value is used as result of the switch expression if the
case is selected.

Constraints:

e SwitchCase.valueType Component types and component definition types are not
allowed for values of cases, as components and component definitions are not meant
to be used as values.

3.6.39 SwitchExpression (class)

A switch expression.
Constraints:
e SwitchExpression.type The type of the switch expression must be the union of the types

of the ‘value’ expressions of the ‘cases’. This implies that those expressions must be type
compatible (ignoring ranges).

e SwitchExpression.complete If the ‘value’ refers to an automaton, the ‘cases’ must be
complete for all locations of the automaton.

e SwitchExpression.overspecified If the ‘value’ refers to an automaton, the ‘cases’ must
not be overspecified (same location multiple times as key of one of a case).

e SwitchExpression.superfluousElse (non-fatal) If the ‘value’ refers to an automaton,
the ‘cases’” must not be overspecified (an ‘else’ is present while all locations are already
specified as ‘key’ of a case).

EObject
L PositionObject (Section [3.10.2)

103

L Expression (Section [3.6.21))

L SwitchExpression

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont type [1] : CifType (inherited from Ezpression)
The type of the expression.

cont cases [1..*¥] : SwitchCase
The cases of the switch. They are processed in order.
Constraints:
e SwitchExpression.elseOccurrence At most one of the ‘cases’ may be an ‘else’. If
it is present, it must be the last of the ‘cases’.
e SwitchExpression.elseMandatory If the ‘value’ does not refer to an automaton,
an ‘else’ case is mandatory.
cont value [1] : Ezpression
The control value of the switch expression.
Constraints:
e SwitchExpression.valueEquality If the ‘value’ does not refer to an automaton, it
must have a type that supports value equality.

e SwitchExpression.valueType Component types and component definition types
are only allowed if the ‘value’ refers to an automaton.

3.6.40 TauExpression (class)
A ‘tau’ event reference expression. Refers to the implicitly always present non-synchronizing
‘tau’ event. This event is neither controllable nor uncontrollable.

Constraints:

e TauExpression.occurrence Instances of TauExpression (Section|3.6.40) are only allowed
in the ‘events’ feature of the EdgeFvent (Section |3.4.5) class.

e TauExpression.type The type of a ‘tau‘ expression must be a boolean type, similar to
event expressions.

EObject
L PositionObject (Section |3.10.2)
L Expression (Section [3.6.21))
L TauFEzpression

Direct derived classes: none

104

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont type [1] : CifType (inherited from Ezpression)
The type of the expression.

3.6.41 TimeExpression (class)

A reference to the implicitly always available, global variable ‘time’.

Constraints:

e TimeExpression.type The type of a time reference expression must be a real type.

EObject
L PositionObject (Section |3.10.2)
L Expression (Section [3.6.21))
L TimeFEzpression

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont type [1] : CifType (inherited from FEzpression)
The type of the expression.

3.6.42 TupleExpression (class)

A tuple literal expression.

Constraints:

e TupleExpression.type The type of the tuple expression must be a tuple type. Each of
the fields must match the type of the corresponding field of the tuple type. For ranged
types, the ranges (if specified) of the types of the fields (elements) must be equal to the
range of the type of the corresponding field of the tuple type.

EObject
L PositionObject (Section (3.10.2)
L Expression (Section [3.6.21))
L TupleExpression

Direct derived classes: none

105

Operator Child type Result type

Inverse bool bool
Negate int I .. u int [—u .. -]
int int
real real
Plus int [1 .. u int [1 .. u
int int
real real
Sample dist t tuple(t, dist t)

Table 3.8: Unary expression type constraints.

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont type [1] : CifType (inherited from FEzpression)
The type of the expression.

cont fields [2..*] : Expression
The fields (elements) of the tuple.

3.6.43 UnaryExpression (class)

A unary expression.

Constraints:

e UnaryExpression.type The types of the child expression and the unary expression itself
(the result type), depend on the UnaryOperator (Section [3.6.3). Table lists the allowed
combinations.

For integer types, if the child has a rangeless integer type, the result type is also rangeless,
if the result type is an integer type as well. Similar relations hold for other ranged types.

EObject
L PositionObject (Section (3.10.2)
L Expression (Section [3.6.21))
L UnaryEzpression

Direct derived classes: none
cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont type [1] : CifType (inherited from FEzpression)
The type of the expression.

cont child [1] : Expression
The child of the unary expression.

106

http:/ieclipse.orglesceticiffunctions

EE CifType % Function E FunctionParameter E Disc\ariable

[0.*] parameters | o position : Positio [1.1] parameter | = ;5

=+ position ; Position | [1-*] returnTypes = positio

—

| E ExternalFunction ‘ | E InternalFunction

value :
VariableValue

[0..*] variables

[1..*] statements

| EE FunctionStatement |

E ReturnFuncStatement

E BreakFuncStatement

[1..*] thens l [0.] elses [1.*]thens T .11 T

E IfFuncStatement

| E ContinueFuncStatement |

| E AssignmentFuncStatement |

E WhileFuncStatement

| = positio,

| = position : Position |

¢ ¢

H EifFuncStatement

[1."] guards [1.] guards [.] guards [1.*] values [1..1] addressable [1.1] value

| Eﬁ Expression |

| = position : Positior |

Figure 3.9: functions package

attr operator [1] : UnaryOperator
The unary operator of the unary expression.

3.7 Package functions

Figureshows the functions package. The Function (Section class acts as a base class for
all user-defined functions. We have two concrete variants of user-defined functions: internal user-
defined functions, which are fully defined within the CIF specification, and external user-defined
function, for which the header is defined in the CIF specification, and the actual implementation
resides outside of the CIF specification. The upper part of the diagram is mostly concerned with
the features common to all user-defined functions. The lower part contains the statements that
can be used in the internal user-defined functions.

Package URI http://eclipse.org/escet/cif/functions

Namespace prefix functions

Sub-packages none

3.7.1 AssignmentFuncStatement (class)

An assignment internal function statement.

107

Constraints:

e AssignmentFuncStatement.types The type of the assigned value must match the type
of the addressable that is assigned. For ranged types, if the variable being assigned has a
ranged type with a range, then the range of the type of the value must have overlap with
the range of the type of the variable. It is considered a run-time error if the evaluated
value expression results in a value that is outside of the range of the assigned variable.

EObject

L PositionObject (Section (3.10.2)
L FunctionStatement (Section [3.7.8))

L AssignmentFuncStatement

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont addressable [1] : Ezpression
The addressable (a variable, a part of a variable, multiple variables, parts of multiple

variables, etc) to which to assign a value.

It is allowed to create a new key/value pair in a dictionary, if the key of the last projection
does not exist. It is not allowed to create a new key/value pair, if the key of one of the
other projections does not exist.

Constraints:

e AssignmentFuncStatement.addressableSyntax Adressables may be discrete vari-
able references (non-wrapped), with projections, and may optionally be wrapped in
tuples (possibly multiple times). Projected string typed variables are not allowed.

e AssignmentFuncStatement.variablesInScope The variables that are assigned
must a local variables declared in the same function as the assignment statement,
or they must be parameters of that same function. Local variables and parameters
may be mixed in a single assignment.

e AssignmentFuncStatement.uniqueVariables The parts of variables that are as-
signed must be unique. That is, it must never be possible to assign the same part of
the same variable twice. We do include the projections in the analysis, but only as far
as we can statically evaluate and normalize the indices. See the "Edge.uniqueVariables’
constraint for the complete details.

cont value [1] : Ezpression
The value to assign to the variables.

3.7.2 BreakFuncStatement (class)

A break internal function statement. Breaks out of the closest enclosing while statement.

Constraints:

108

e BreakFuncStatement.occurrence Break statements may only occur in the body of
while statements.

EObject

L PositionObject (Section (3.10.2)
L FunctionStatement (Section |3.7.8))

L BreakFuncStatement

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

3.7.3 ContinueFuncStatement (class)

A continue internal function statement. Continues with the next iteration (if any) of the closest
enclosing while statement, or breaks out of it (if the guards no longer hold).

Constraints:

e ContinueFuncStatement.occurrence Continue statements may only occur in the body
of while statements.

EObject

L PositionObject (Section [3.10.2)
L FunctionStatement (Section |3.7.8)

L ContinueFuncStatement

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

3.7.4 ElifFuncStatement (class)

An ‘elif’ (‘else-if”) alternative of an IfFuncStatement (Section |3.7.9).

EObject

L PositionObject (Section [3.10.2))
L ElifFuncStatement

Direct derived classes: none

109

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont guards [1..¥] : Ezpression
The guard predicates for this alternative.

If multiple predicates are given, this feature represents the logical conjunction of those

predicates. Note that this represents the mathematical conjunction, and not the short-
circuit conjunction binary operator. As such, there is no ordering between the guards.

Constraints:
e ElifFuncStatement.guardTypes The guard predicates must have boolean types.

cont thens [1..*] : FunctionStatement
The statements to execute for the ElifFuncStatement (Section [3.7.4) if the ‘guards’ evaluate
to true.

3.7.5 ExternalFunction (class)

An external user-defined function. The CIF specification only defines the header of the function,
and the actual implementation resides outside of the CIF specification.

External user-defined functions are generally used to allow access from within CIF specifications
to algorithms and functions defined in other languages. Functions are used to perform calcula-
tions, rather than for parts of the system that have run-time behavior, such as discrete event
control algorithms, or hybrid dynamics.

Constraints:

¢ ExternalFunction.uniqueParams The names of all parameters of the function, must be
unique within that function.

EObject
L PositionObject (Section |3.10.2)
L Declaration (Section [3.3.4))

L Function (Section

L ExternalFunction

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

attr name [1] : Cifldentifier (inherited from Declaration)
The name of the declaration.

Constraints:

e Declaration.name (non-fatal) Declaration names for non-event declarations must
not start with e_, c_, or u_, as those names are reserved for events.

110

cont parameters [0..%] : FunctionParameter (inherited from Function)
The parameters of the user-defined function.

cont returnTypes [1..¥] : CifType (inherited from Function)
The return types of the user-defined function. If multiple types are defined, then the return
type of the function is a tuple with nameless fields of those types.

Constraints:

e Function.allowedReturnTypes Component types and component definition types
are not allowed in return types of functions, as components and component definitions
are not meant to be used as values.

attr function [1] : EString
A textual reference to the external implementation of the function. The contents is inter-
preted by the tooling, such as for instance simulators.

3.7.6 Function (abstract class)

Base class for all external user-defined functions.
We use value semantics for the parameters of functions.

Constraints:

e Function.sideEffectFree All user-defined functions in CIF are pure mathematical func-
tions and therefore, must be deterministic, and may not have side effects.

This is enforced for internal user-defined functions by not allowing the use of variable ‘time’,
the scoping rules regarding references to objects outside of the function, and the restricted
use of distribution standard library functions.

For external user-defined functions, it is (often) impossible to check this constraint in
an implementation, and the responsibility for checking this is therefore delegated to the
end user. Practically, this means that for instance logging statements in functions, while
essentially side effects, may be permitted, as long as the function returns the same value,
if given the same arguments. This is essential for correct simulation results, as the results
of function calls may for instance be cached by a simulator.

EObject
L PositionObject (Section [3.10.2)
L Declaration (Section [3.3.4))

L Function

Direct derived classes: ExternalFunction (Section [3.7.5)), InternalFunction (Section [3.7.10)

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

attr name [1] : Cifldentifier (inherited from Declaration)
The name of the declaration.

111

Constraints:

e Declaration.name (non-fatal) Declaration names for non-event declarations must
not start with e_, c_, or u_, as those names are reserved for events.

cont parameters [0..%] : FunctionParameter
The parameters of the user-defined function.

cont returnTypes [1..¥] : CifType
The return types of the user-defined function. If multiple types are defined, then the return
type of the function is a tuple with nameless fields of those types.

Constraints:
e Function.allowedReturnTypes Component types and component definition types

are not allowed in return types of functions, as components and component definitions
are not meant to be used as values.

3.7.7 FunctionParameter (class)

A parameter of a user-defined function.

EObject
L PositionObject (Section |3.10.2)

L FunctionParameter

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont parameter [1] : DiscVariable
The discrete variable, doubling as the function parameter. Reusing the DiscVariable (Sec-
tion class makes it possible to use the same references as for discrete variables, also
for function parameters.

Constraints:

e FunctionParameter.allowedTypes Component types and component definition
types are not allowed for function parameters, as components and component def-
initions are not meant to be used as values.

e FunctionParameter.noValue The parameter declaration must not have a value,
since the actual parameter should provide it.

3.7.8 FunctionStatement (abstract class)
Base class for all statements of internal user-defined functions.

EObject

112

L PositionObject (Section |3.10.2)

L FunctionStatement

Direct derived classes: AssignmentFuncStatement (Section [3.7.1), BreakFuncStatement (Sec-

tion , ContinueFuncStatement (Section , IfFuncStatement (Section [3.7.9), Return-
FuncStatement (Section [3.7.11), WhileFuncStatement (Section [3.7.12)

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

3.7.9 IfFuncStatement (class)

A conditional internal function statement.

EObject
L PositionObject (Section (3.10.2)
L FunctionStatement (Section [3.7.8)
L IfFuncStatement

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont elifs [0..*] : ElifFuncStatement
The ‘else-if” (‘elif’) alternatives. Processed in order, if the ‘guards’ evaluate to false.

cont elses [0..*] : FunctionStatement
The ‘else’ statements. If present, these statements are executed if no other alternative has
a true guard.

cont guards [1..¥] : Ezpression
The guard predicates for the ‘then’ statements.

If multiple predicates are given, this feature represents the logical conjunction of those
predicates. Note that this represents the mathematical conjunction, and not the short-
circuit conjunction binary operator. As such, there is no ordering between the guards.

Constraints:
e IfFuncStatement.guardTypes The guard predicates must have boolean types.

cont thens [1..%] : FunctionStatement
The ‘then’ statements. Executed if the ‘guards’ evaluate to true.

3.7.10 InternalFunction (class)

An internal user-defined function. The function is completely defined within the CIF specifica-
tion.

113

Constraints:

e InternalFunction.uniqueDecls The names of all parameters and local variables in the
body of the function, must be unique within that function.

e InternalFunction.endWithReturn All executions/evaluations of the function must end
with a return statement.

e InternalFunction.unreachable (non-fatal) Unreachable statements are not allowed.

EObject
L PositionObject (Section |3.10.2)
L Declaration (Section [3.3.4))
L Function (Section
L InternalFunction

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

attr name [1] : Cifldentifier (inherited from Declaration)
The name of the declaration.

Constraints:

e Declaration.name (non-fatal) Declaration names for non-event declarations must
not start with e_, c_, or u_, as those names are reserved for events.

cont parameters [0..%] : FunctionParameter (inherited from Function)
The parameters of the user-defined function.

cont returnTypes [1..¥] : CifType (inherited from Function)
The return types of the user-defined function. If multiple types are defined, then the return
type of the function is a tuple with nameless fields of those types.

Constraints:
e Function.allowedReturnTypes Component types and component definition types

are not allowed in return types of functions, as components and component definitions
are not meant to be used as values.

cont statements [1..*] : FunctionStatement
The statements that form the body of the internal user-defined function.

cont variables [0..*] : DiscVariable
The local variable declarations of the internal user-defined function. Reusing the Disc-
Variable (Section [3.3.5)) class makes it possible to use the same references as for discrete
variables, also for local variables of functions.

Constraints:

114

e InternalFunction.allowedVarTypes Component types and component definition
types are not allowed for local variables of functions, as components and component
definitions are not meant to be used as values.

e InternalFunction.deterministicVarInit Local variables of functions must have at
most one initial value. That is, they may not be initialized in a non-deterministic way.
In other words, they are either given an explicit initial value, or they get the default
value for their type. For the default values for each of the CIF types, see the value
feature of the DiscVariable (Section class.

3.7.11 ReturnFuncStatement (class)

A return internal function statement.

EObject

L PositionObject (Section |3.10.2)
- FunctionStatement (Section |3.7.8])

L ReturnFuncStatement

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont values [1..*] : Expression
The return values of the return statement.
Constraints:
e ReturnFuncStatement.types The types of the return values must match the return
types of the function. For ranged types, if a return type has a ranged type with a

range, then the range of the type of the corresponding return value, must be entirely
contained in the range of the return type.

3.7.12 WhileFuncStatement (class)

A while internal function statement.

EObject

L PositionObject (Section [3.10.2)
- FunctionStatement (Section |3.7.8))

L WhileFuncStatement

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

115

hitp:ileclipse.orgle sceticificifsvg

EE loDec!
Fay I L £y fu
0..1] svgFile i
[0.1] svdl H svaFile [0.4] svaFile H svain
R i 5 path : EStri
. = position : P '
1] [0..1] svgFile [0..1] svgFile
[1..1] event
EE SwvginEvent
| E SvgCopy | | E SvghMove |
| [P |
[1.1] attrTextPos R b ; - X)
H Position

| H svainEventif |

-

= source : EString

T startLine : EInt

T endOffset : Eint
T startColumn : Elnt

T endLine : Elnt

7 endColumn : Eint H svainEventifErtry

T startOffset : Ent
T location : EString

[2..*] entries

X

[0.1] post .1]id [1.4] event [1.1] event

Max) | .y [0.1] guard .11id
| @ Expression |

[1.1]id | | [1.1] value [M.17id | | [0.1]pre

5* type : CifType

Figure 3.10: cifsvg package

cont guards [1..¥] : Ezpression
The guard predicates for the ‘while’ statements.

If multiple predicates are given, this feature represents the logical conjunction of those
predicates. Note that this represents the mathematical conjunction, and not the short-
circuit conjunction binary operator. As such, there is no ordering between the guards.

Constraints:

e WhileFuncStatement.guardTypes The guard predicates must have boolean types.

cont statements [1..*] : FunctionStatement
The statements that form the body of the while statement.

3.8 Package cifsvg

Figure shows the cifsvg package. This package contains classes that describe CIF/SVG
I/0O declarations, used to couple CIF models to SVG images, for SVG visualization. CIF/SVG
I/O declarations fall outside of the simulation behavior/semantics of the model. The SugFile
(Section class declares the SVG file to use, the other declarations specifies how to modify
the SVG image during simulation, and how to interact with it.

116

Package URI http://eclipse.org/escet/cif/cifsvg
Namespace prefix cifsvg

Sub-packages none

3.8.1 SvgCopy (class)

SVG copy declaration. Copies a part of the SVG tree, and renames the copied elements.

Constraints:

e SvgCopy.svgFileDefined Either the copy declaration specifies an SVG file to use, or one
of the ancestors of the copy declaration does.

e SvgCopy.overlap (non-fatal) The tree to copy must not be a subtree of any other tree
that is copied, as the result is then dependent on the order of application of the copies.
Copying the exact same tree (same root elements) multiple times however, does not pose
any problems.

e SvgCopy.unique The ids of the elements in copied tree, after prefixing and/or postfixing
them, should be unique in the SVG image.

e SvgCopy.prePost A prefix value or a postfix value must be specified, or both of them,
but not neither of them.

e SvgCopy.nonRoot Copying the root element of an SVG image’s XML tree is not allowed,
as copies are added as siblings of their originals, and there can only be one root element.

EObject
L PositionObject (Section (3.10.2)
L JoDecl (Section
L SvgCopy

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont id [1] : Ezpression
The ‘id’ of the SVG element that is root of the tree to copy.

Constraints:

e SvgCopy.idType The ‘id’ expression must have a string type.

e SvgCopy.idStaticEval The expression must be statically evaluable, after elimination
of component definition/instantiation, and checking for cycles. In particular, it must
not change during simulation.

e SvgCopy.idExists An element with the given ‘id‘ must exist in the SVG image.

117

e SvgCopy.idValidName The ‘id’ must be a valid XML/SVG name.
cont post [0..1] : Expression
The text to postfix to the names of copied SVG elements.

Constraints:

e SvgCopy.postType The ‘post’ expression must have a string type.

e SvgCopy.postStaticEval The expression must be statically evaluable, after elimi-
nation of component definition/instantiation, and checking for cycles. In particular,
it must not change during simulation.

e SvgCopy.postValidName The ‘post’ must be a valid XML/SVG name postfix.
cont pre [0..1] : Expression
The text to prefix to the names of copied SVG elements.

Constraints:

e SvgCopy.preType The ‘pre’ expression must have a string type.

e SvgCopy.preStaticEval The expression must be statically evaluable, after elimina-
tion of component definition/instantiation, and checking for cycles. In particular, it
must not change during simulation.

e SvgCopy.preValidName The ‘pre’ must be a valid XML/SVG name prefix.

cont svgFile [0..1] : SvgFile
If specified, indicates the SVG image to use for the copy declaration. If not specified, the
SVG image specified by the closest ancestor that specifies an SVG image is used.

3.8.2 SvgFile (class)

A declaration of the SVG file to use for the CIF/SVG declarations. If specified in a component,
it applies to that component and all its children recursively, unless overridden in a deeper scope
or CIF/SVG declaration. If specified in a CIF/SVG declaration, it applies only to that specific
CIF/SVG declaration.

Constraints:

e SvgFile.validSvgFile The SVG file must exist on disk, and be a valid SVG file.

EObject
L PositionObject (Section |3.10.2)
L ToDecl (Section
L SvgFile

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

118

attr path [1] : EString
The absolute or relative local file system path to the SVG image to use. May use both /
and \ as path separators. If relative, the path is relative to the path of the CIF file.

3.8.3 Svgln (class)

A CIF/SVG input mapping. Used to specify how clicking a certain element of the SVG image
influences the traces chosen by the CIF simulator. In other words, it turns a certain element of
the SVG image into an interactive SVG element.

Constraints:

e SvglIn.svgFileDefined Either the input mapping specifies an SVG file to use, or one of
the ancestors of the input mapping does.

e SvgIn.unique No two input mappings may be defined for the same element ‘id’, per SVG

file.
EObject
L PositionObject (Section (3.10.2)
L JoDecl (Section [3.2.14])
L Svgln

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont event [1] : SvgInEvent
A specification of which event to choose during simulation, when the interactive SVG
element for this input mapping is clicked.

cont id [1] : Ezpression
The ‘id’ of the interactive SVG element.

Constraints:

e Svgln.idType The ‘id’ expression must have a string type.

e SvglIn.idStaticEval The expression must be statically evaluable, after elimination
of component definition/instantiation, and checking for cycles. In particular, it must
not change during simulation.

e SvgIn.idExists An element with the given ‘id* must exist in the SVG image.
e SvgIn.idValidName The ‘id’ must be a valid XML/SVG name.
cont svgFile [0..1] : SvgFile

If specified, indicates the SVG image to use for the input mapping. If not specified, the
SVG image specified by the closest ancestor that specifies an SVG image is used.

119

3.8.4 SvgInEvent (abstract class)

A specification of the which event to choose during simulation, when an interactive SVG element
for an input mapping is clicked.

EObject
L PositionObject (Section [3.10.2)

L SvgInFEvent

Direct derived classes: SvgInEventIf (Section [3.8.5)), SvgInEventSingle (Section (3.8.7))

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

3.8.5 SvgInEventIf (class)

CIF/SVG input mapping event choice using an if/then/else construction.

EObject
L PositionObject (Section (3.10.2)
- SvgInEvent (Section [3.8.4)
L SvgInEventlf

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont entries [2..*%] : SvgInEventIfEntry
The entries of the if/then/else. The first entry is the ‘if’. The remaining entries are ‘elif’
entries. If the last entry has no ‘guard’, the entry represents and ‘else’. The entries are
evaluated in the given order.

It is considered a runtime error if none of the entries can be chosen at runtime.

Constraints:

e SvgInEventlIf.else Only the last entry may be an ‘else’, and may thus omit the
‘guard’.
3.8.6 SvgInEventIfEntry (class)

A single entry of a CIF/SVG input mapping ‘if” event choice.

EObject

120

L PositionObject (Section |3.10.2)
L SvgInFEventlfEntry

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont event [1] : Ezpression
The event to choose if the guard holds.

This feature contains Ezpression (Section [3.6.21) instances, to allow for wrapping expres-
sions to be used. See also Section 3.1l

Constraints:

e SvgInEventIfEntry.event The event reference expression must refer to an event.
o SvgInEventIfEntry.eventInScope The event reference must satisfy the scoping
rules.
cont guard [0..1] : Ezpression
The guard predicates of the entry. The entry is only ‘chosen’ if the guard evaluates to true.

If no predicate is given, the entry acts as an emphelse, and can always be chosen (essentially
a true guard).

Constraints:

e SvgInEventIfEntry.guardType The guard predicate must have a boolean type.

3.8.7 SvgInEventSingle (class)

CIF/SVG input mapping event choice that always chooses the same event.

EObject
L PositionObject (Section [3.10.2)
L SvgInEvent (Section [3.8.4)
L SvgInFEventSingle

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont event [1] : Ezpression
The event to choose.

This feature contains FEzpression (Section [3.6.21)) instances, to allow for wrapping expres-
sions to be used. See also Section B.11

Constraints:

e SvgInEventSingle.event The event reference expression must refer to an event.
e SvgInEventSingle.eventInScope The event reference must satisfy the scoping rules.

121

3.8.8 SvgMove (class)

SVG move declaration. Moves a shape to an absolute position.

Constraints:

e SvgMove.svgFileDefined Either the move declaration specifies an SVG file to use, or
one of the ancestors of the move declaration does.

e SvgMove.noTransform If an SVG element is moved, it must not also have an SVG
output mapping for the ‘transform’ attribute, as that would override the move.

e SvgMove.unique No two move declarations may be defined for the same element ‘id’, per

SVG file.
EObject
L PositionObject (Section [3.10.2)
- JoDecl (Section [3.2.14))
L SvgMove

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont id [1] : Ezpression
The ‘id’ of the SVG element for which the shape is to be moved.

Constraints:

e SvgMove.idType The ‘id’ expression must have a string type.

e SvgMove.idStaticEval The expression must be statically evaluable, after elimina-
tion of component definition/instantiation, and checking for cycles. In particular, it
must not change during simulation.

e SvgMove.idExists An element with the given ‘id* must exist in the SVG image.

e SvgMove.idValidName The ‘id’ must be a valid XML/SVG name.
cont svgFile [0..1] : SvgFile

If specified, indicates the SVG image to use for the move declaration. If not specified, the
SVG image specified by the closest ancestor that specifies an SVG image is used.

cont x [1] : Expression
The x coordinate of the upper left corner of the bounding box of the shape to move, relative
to the upper left corner of the canvas, after moving.

Constraints:

e SvgMove.xType The ‘x’ expression must have an numeric (integer or real) type.

e SvgMove.xStaticEval The expression must be statically evaluable, after elimination
of component definition/instantiation, and checking for cycles. In particular, it must
not change during simulation.

122

cont y [1] : Fxpression
The y coordinate of the upper left corner of the bounding box of the shape to move, relative
to the upper left corner of the canvas, after moving.

Constraints:

e SvgMove.yType The ‘y’ expression must have an numeric (integer or real) type.

e SvgMove.yStaticEval The expression must be statically evaluable, after elimination
of component definition/instantiation, and checking for cycles. In particular, it must
not change during simulation.

3.8.9 SvgOut (class)

A CIF/SVG output mapping. Used to specify how the state of the CIF model is to be used to
update the SVG image, during simulation.

Constraints:

e SvgOut.svgFileDefined Either the output mapping specifies an SVG file to use, or one
of the ancestors of the output mapping does.

e SvgOut.unique No two output mappings may be defined for the same element ‘id’ and
attribute name, per SVG file. Similarly, no two output mappings may be defined for the
same text node (taking into account that different element ids may lead to the same text
node), per SVG file.

EObject
L PositionObject (Section (3.10.2)
- IoDecl (Section
L SvgOut

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

attr attr [0..1] : EString
If specified, indicates the name of the attribute of which to change the value. If not
specified, indicates that the text of the element is to be changed.

Constraints:
e SvgOut.textNode If no attribute name is specified, the SVG element must have a
text node.

e SvgOut.attrValidName If an attribute name is specified, it must be a valid XML/SVG
name.

e SvgOut.elemNameInSvgll (non-fatal) If an attribute name is specified, the
name of the element (not its ‘id’), must be defined in the SVG 1.1 standard.

123

e SvgOut.attrNameInSvgll (non-fatal) If an attribute name is specified, the at-
tribute name must be defined for the element, in the SVG 1.1 standard.

e SvgOut.attrld If an attribute name is specified, it must not be the id attribute, in
any casing.

e SvgOut.attrStyle If an attribute name is specified, it must not be the style at-
tribute, in any casing.

cont attrTextPos [1] : Position
Position information for the attribute string literal of the output mapping, or for the text
keyword of the output mapping.

cont id [1] : Ezpression
The ‘id’ of the SVG element to modify.

Constraints:

e SvgOut.idType The ‘id’ expression must have a string type.

e SvgOut.idStaticEval The expression must be statically evaluable, after elimination
of component definition/instantiation, and checking for cycles. In particular, it must
not change during simulation.

e SvgOut.idExists An element with the given ‘id‘ must exist in the SVG image.

e SvgOut.idValidName The ‘id’ must be a valid XML/SVG name.

cont svgFile [0..1] : SvgFile
If specified, indicates the SVG image to use for the output mapping. If not specified, the
SVG image specified by the closest ancestor that specifies an SVG image is used.

cont value [1] : Ezpression
The expression to evaluate to obtain the value to use as output, to set the value of the
attribute or text label.

Constraints:

e SvgOut.valueType Component types and component definition types are not al-
lowed for the value, as components and component definitions are not meant to be
used as values.

3.9 Package print

Figure shows the print package. This package contains classes that describe print 1/O
declarations, used to produce textual output from CIF models. Print I/O declarations fall
outside of the simulation behavior/semantics of the model. The PrintFile (Section [3.9.3) class
declares the file (or target) to which to print the text, while the Print (Section [3.9.2)) class
specifies what to print and when to print it.

Package URI http://eclipse.org/escet/cif /print

Namespace prefix print

Sub-packages none

124

EQ loDecl

hitp:ieclipse.org/esceticifiprint

| H PrintFile H print ‘
T path : EString [0..1] file =+ position : Position |
=+ pasition : Position b &]
[0..*] fors
| H PrintFor |
T kind : PrimtForKind = Event
= position ! Position
[]
2 PrintForkind
— Event [0.1] txtPre [0..1] txtPost [0.1] evert [0..1] whenPre [0..1] whenPost
- Time ‘ EE Expression ‘
= Mame
— Initial =% pasition @ Posion
= Fcl 5 type : CifType

Figure 3.11: print package

3.9.1 PrintForKind (enumeration)

Specifies the kind of a ’for’ filter of a PrintFor (Section [3.9.4) class.

literal Event (default)
Filter that includes all event transitions.

literal Final

Filter that includes the virtual transition after the last (final or deadlock) state.

literal Initial

Filter that includes the virtual transition before the first (initial) state.

literal Name
Filter that includes the event transitions for a specific event.

literal Time
Filter that includes all time transitions.

3.9.2 Print (class)

Print I/O declaration. Specifies what to print and when to print it.

Constraints:

125

e Print.txtPrePost A pre/source or post/target state text must be specified, or both of
them, but not neither of them.

EObject
L PositionObject (Section (3.10.2)
- JoDecl (Section
L Print

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont file [0..1] : PrintFile
The file (or target) to which to print the text.

If not specified, the file specified by the closest ancestor that specifies a PrintFile (Sec-
tion [3.9.3)) is used. If none exists, ":stdout" is used.

cont fors [0..*] : PrintFor
The ‘for’ filters for this print declaration. Only transitions for which at least one of the
filters matches, lead to text being printed. If no filters are specified, it defaults to initial,
event, time.

Constraints:
e Print.duplFor (non-fatal) The ‘for’ filters should not contain duplicates (be over-
specified). That is, specifying the same kind multiple times should be avoided (except
PrintForKind. Name (Section[3.9.1)). Furthermore, specifying the same event multiple

times should be avoided. Finally, specifying PrintForKind. Event (Section (3.9.1]) (all
events) and PrintForKind.Name (Section [3.9.1)) (specific event) should be avoided.

cont txtPost [0..1] : Ezpression
If specified, indicates the text to print for the post/target state.

Evaluation result is converted to a textual representation. String typed results are a special
case, as no double quotes are added, and escaping is not performed.

Constraints:

e Print.txtPostType (non-fatal) The type of a print declaration post text, if speci-
fied, must not have a component or component definition type.

cont txtPre [0..1] : Ezpression
If specified, indicates the text to print for the pre/source state.

Evaluation result is converted to a textual representation. String typed results are a special
case, as no double quotes are added, and escaping is not performed.

Constraints:

e Print.txtPreType (non-fatal) The type of a print declaration pre text, if specified,
must not have a component or component definition type.

126

cont whenPost [0..1] : Expression
If specified, filters post/target states. Text is only printed if the predicate holds for a
post/target state.

Constraints:
e Print.whenPostType The ‘when‘ ‘post‘ predicate must have a boolean type.

cont whenPre [0..1] : Ezpression
If specified, filters pre/source states. Text is only printed if the predicate holds for a
pre/source state.

Constraints:

e Print.whenPreType The ‘when’ ‘pre’ predicate must have a boolean type.

3.9.3 PrintFile (class)

The file (or target) to which to print text. Applies to the scope in which it is specified, and all
child scopes recursively, unless overridden in a deeper scope.

EObject
L PositionObject (Section [3.10.2)
L ToDecl (Section [3.2.14])

L PrintFile

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

attr path [1] : EString
The path of file (or target). If it refers to a file, it must be an absolute or relative local file
system path to the file. May use both / and \ as path separators. If relative, the path is
relative to the path of the CIF file. Special values, such as ":stdout", are supported as
well.

3.9.4 PrintFor (class)

A ‘for’ filter of a Print (Section[3.9.2)). Filters transitions to keep only those that match the ‘for’
filter.

Constraints:

e PrintFor.eventSpecified The ‘event’ must be specified if and only if the ‘kind’ is Print-
ForKind.Name (Section [3.9.1]).

EObject

127

L PositionObject (Section |3.10.2)
- PrintFor

Direct derived classes: none

cont position [0..1] : Position (inherited from PositionObject)
Optional position information.

cont event [0..1] : Ezpression
The event to include, for this ‘for’ filter.

This feature contains Fzpression (Section [3.6.21)) instances, to allow for wrapping expres-
sions to be used. See also Section B.11

Constraints:

e PrintFor.event The event reference expression must refer to an event.

e PrintFor.eventInScope The event reference must satisfy the scoping rules.

attr kind [1] : PrintForKind
The kind of the ‘for’ filter.

3.10 Package position

Figure [3.12] shows the position package.

EQ Position Qbject E Position

source ; EString
startLine : Elnt
endffset : Elnt
startColumn : Elnt
endLine : Elnt
endColumn : Elnt
start(fTset : Elnt
location : EString

[0..1] position

r0-0-0~0~0+~0+~0 O

http:lleclipse.orgfescet/position

Figure 3.12: position package

The position package contains classes used to represent position information, for source tracking.
A position is represented as a continuous region in a textual source (the source text).

The Position (Section |3.10.1)) class represents actual position information. The abstract Posi-
tionObject (Section [3.10.2)) class can be used as a base class for other classes, and allows those

classes to store position information.

128

Package URI http://eclipse.org/escet/position
Namespace prefix position

Sub-packages none

3.10.1 Position (class)

Position (source tracking) information.

Constraints:

e Position.lines The startLine must be smaller than or equal to the endLine.

e Position.columns If the startLine is equal to the endLine, the startColumn must be
smaller than or equal to the endColumn.

e Position.offsets The startOffset must be smaller than or equal to the endOffset.

EObject
L Position

Direct derived classes: none

attr endColumn [1] : Elnt
The 1-based column index of the end (inclusive) of the position region, with respect to the
start of the source text.

Constraints:
e Position.endColumnValue Value must be greater than or equal to one.

attr endLine [1] : Elnt
The 1-based line index of the end (inclusive) of the position region, with respect to the
start of the source text.

Constraints:
e Position.endLineValue Value must be greater than or equal to one.

attr endOffset [1] : Elnt
The 0-based byte index of the end (inclusive) of the position region, with respect to the
start of the source text.

Constraints:
e Position.endOffsetValue Value must be greater than or equal to zero.

attr location [1] : EString
The location of the source file that contains the position. Must be an absolute local file
system path, with platform specific path separators. The path does not have to refer to an
existing file. That is, it may not be assumed that a file with that path actually exists on
disk.

129

attr source [0..1] : EString
Optional source identification. Usually, this is a file name.

attr startColumn [1] : Elnt
The 1-based column index of the start (inclusive) of the position region, with respect to
the start of the source text.

Constraints:
e Position.startColumnValue Value must be greater than or equal to one.

attr startLine [1] : Elnt
The 1-based line index of the start (inclusive) of the position region, with respect to the
start of the source text.

Constraints:
e Position.startLineValue Value must be greater than or equal to one.

attr startOffset [1] : Elnt
The 0-based byte index of the start (inclusive) of the position region, with respect to the
start of the source text.

Constraints:

e Position.startOffset Value Value must be greater than or equal to zero.
3.10.2 PositionObject (abstract class)
Base class for other classes, facilitating the storage of position information.

EObject
L PositionObject

Direct derived classes: none

cont position [0..1] : Position
Optional position information.

130

Chapter 4

Distributions

This chapter gives an overview of the stochastic distributions that are available in CIF, as well
as their properties.

Tables and respectively list the constant, discrete, and continuous distributions
present in CIF. Each of the tables lists the name of the distribution in their first column, and
the parameters and sample type in the second column. In the third column, they list the name
of the distribution and its parameters as used in a book by Law & Kelton [2], except for the
StdLibFunction. Constant (Section distributions. Those distributions return the provided
parameter value as sampled value each time. Their main use is for testing and debugging. The
fourth, fifth, and sixth column list the mean, variance, and range of the distributions respectively.

For the Weibull function, I'(z) is the gamma function, defined as I'(z) = [t==1 . e~tdt for
all real numbers z > 0.

Name Type signature Book Mean Variance Range
Constant distributions returning the specified value.

Constant bool (bool b) - b 0 {true, false}
Constant int (int 4) -) 0 (—00, 00)
Constant real (real r) - r 0 (—00, 0)

Table 4.1: Constant distributions and their properties.

131

Name Type signature Book Mean Variance Range

Bernoulli distribution with chance p € [0, 1] for true.
Bernoulli bool (real p) Bernoulli(p) p p(1—p) {true, false}

Binomial distribution with t > 0 experiments with chance p € [0, 1].
Binomial int (real p, int) bin(¢, p) t-p t-p(1—p) {0,1,2,...,¢}

Geometric distribution, number of failed Bernoulli(p) experiments with chance p € (0,1] before
first success.

Geometric int (real p) geom(p) 1Tp 11;_,” {0,1,2,...}

Poisson distribution with rate r > 0.

Poisson int (real r) P(r) T r {0,1,2,...}

Discrete uniform distribution with a < b.

Uniform int (int a, b) DU(a, b—1) b=l (G-l g 041 a42,... b—1}

Table 4.2: Discrete distributions and their properties.

Name Type signature Book Mean Variance Range
Beta distribution with shape parameters a > 0 and b > 0.
Beta real (real a, b) B(a, b) 2 e [0,1]

Erlang distribution with parameter m > 0 and scale parameter b > 0, also known as the
Gamma(m, b) distribution.

Erlang real (int m, real b)) m-Erlang(b) m-b m - b? [0,00)
Negative exponential distribution with scale parameter b > 0.

Exponential real (real b) expo(b) b b? [0, 00)
Gamma distribution with shape parameter a > 0 and scale parameter b > 0.

Gamma real (real a, b) Gamma(a, b) a-b a-b? [0, 0)
Lognormal distribution with b > 0.

LogNormal real (real a, b) LN(a, b) eots e2atb(eb — 1) [0,00)
Normal distribution with b > 0.

Normal real (real a, b) N(a, b) a b (—00,00)
Random distribution, shorthand for the continuous uniform distribution from 0 to 1.
Random real () U(o, 1) z 5 [0,1)
Triangle distribution from a to ¢ with the top at b, a < b < c.

Triangle real (real a, b, ¢) triang(a, ¢, b) a+§+c a2+b2+52*1’§'b*a'cfb'c [a, c]
Continuous uniform distribution from a to b, with a < b.

Uniform real (real a, b) U(a, b) ath (bIS)Z [a,)
Weibull distribution with shape parameter a > 0 and scale parameter b > 0.

Weibull real (real a, b) Weibull(a, b)) 2-T(2) % (2-T(3) - %éf) [0, 0)

Table 4.3: Continuous distributions and their properties.

132

Chapter 5
Legal

The material in this documentation is Copyright (¢) 2010, 2021 Contributors to the Eclipse
Foundation.

Eclipse ESCET and ESCET are trademarks of the Eclipse Foundation. Eclipse, and the Eclipse
Logo are registered trademarks of the Eclipse Foundation. Other names may be trademarks of
their respective owners.

License

The Eclipse Foundation makes available all content in this document (“Content”). Unless other-
wise indicated below, the Content is provided to you under the terms and conditions of the MIT
License. A copy of the MIT License is available at https://opensource.org/licenses/MIT.
For purposes of the MIT License, “Software” will mean the Content.

If you did not receive this Content directly from the Eclipse Foundation, the Content is being
redistributed by another party (“Redistributor”) and different terms and conditions may apply to
your use of any object code in the Content. Check the Redistributor’s license that was provided
with the Content. If no such license exists, contact the Redistributor. Unless otherwise indicated
below, the terms and conditions of the MIT License still apply to any source code in the Content
and such source code may be obtained at http://www.eclipse.org.

133

https://opensource.org/licenses/MIT
http://www.eclipse.org

Bibliography

Eclipse Foundation. Eclipse Foundation Project Handbook. https://www.eclipse.org/
projects/handbook/#starting-incubation.

Averill M. Law and David Kelton. Simulation modeling and analysis. McGraw-Hill, New
York, second edition, 1991.

Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF' Eclipse Modeling
Framework. Addison-Wesley, 2009.

Contributors to the Eclipse Foundation. Eclipse Supervisory Control Engineering Toolkit
(Eclipse ESCET). https://eclipse.org/escet.

134

https://www.eclipse.org/projects/handbook/#starting-incubation
https://www.eclipse.org/projects/handbook/#starting-incubation
https://eclipse.org/escet

	Introduction
	Notations and conventions
	Ecore class diagrams
	Metamodel documentation conventions

	CIF metamodel
	Scoping
	Reference wrapping
	Scoping rules
	Visibility

	Package cif
	CifIdentifier (datatype)
	InvKind (enumeration)
	SupKind (enumeration)
	AlgParameter (class)
	ComplexComponent (abstract class)
	Component (abstract class)
	ComponentDef (class)
	ComponentInst (class)
	ComponentParameter (class)
	Equation (class)
	EventParameter (class)
	Group (class)
	Invariant (class)
	IoDecl (abstract class)
	LocationParameter (class)
	Parameter (abstract class)
	Specification (class)

	Package declarations
	AlgVariable (class)
	Constant (class)
	ContVariable (class)
	Declaration (abstract class)
	DiscVariable (class)
	EnumDecl (class)
	EnumLiteral (class)
	Event (class)
	InputVariable (class)
	TypeDecl (class)
	VariableValue (class)

	Package automata
	Alphabet (class)
	Assignment (class)
	Automaton (class)
	Edge (class)
	EdgeEvent (class)
	EdgeReceive (class)
	EdgeSend (class)
	ElifUpdate (class)
	IfUpdate (class)
	Location (class)
	Monitors (class)
	Update (abstract class)

	Package types
	BoolType (class)
	CifType (abstract class)
	CompInstWrapType (class)
	CompParamWrapType (class)
	ComponentDefType (class)
	ComponentType (class)
	DictType (class)
	DistType (class)
	EnumType (class)
	Field (class)
	FuncType (class)
	IntType (class)
	ListType (class)
	RealType (class)
	SetType (class)
	StringType (class)
	TupleType (class)
	TypeRef (class)
	VoidType (class)

	Package expressions
	BinaryOperator (enumeration)
	StdLibFunction (enumeration)
	UnaryOperator (enumeration)
	AlgVariableExpression (class)
	BaseFunctionExpression (abstract class)
	BinaryExpression (class)
	BoolExpression (class)
	CastExpression (class)
	CompInstWrapExpression (class)
	CompParamExpression (class)
	CompParamWrapExpression (class)
	ComponentExpression (class)
	ConstantExpression (class)
	ContVariableExpression (class)
	DictExpression (class)
	DictPair (class)
	DiscVariableExpression (class)
	ElifExpression (class)
	EnumLiteralExpression (class)
	EventExpression (class)
	Expression (abstract class)
	FieldExpression (class)
	FunctionCallExpression (class)
	FunctionExpression (class)
	IfExpression (class)
	InputVariableExpression (class)
	IntExpression (class)
	ListExpression (class)
	LocationExpression (class)
	ProjectionExpression (class)
	RealExpression (class)
	ReceivedExpression (class)
	SelfExpression (class)
	SetExpression (class)
	SliceExpression (class)
	StdLibFunctionExpression (class)
	StringExpression (class)
	SwitchCase (class)
	SwitchExpression (class)
	TauExpression (class)
	TimeExpression (class)
	TupleExpression (class)
	UnaryExpression (class)

	Package functions
	AssignmentFuncStatement (class)
	BreakFuncStatement (class)
	ContinueFuncStatement (class)
	ElifFuncStatement (class)
	ExternalFunction (class)
	Function (abstract class)
	FunctionParameter (class)
	FunctionStatement (abstract class)
	IfFuncStatement (class)
	InternalFunction (class)
	ReturnFuncStatement (class)
	WhileFuncStatement (class)

	Package cifsvg
	SvgCopy (class)
	SvgFile (class)
	SvgIn (class)
	SvgInEvent (abstract class)
	SvgInEventIf (class)
	SvgInEventIfEntry (class)
	SvgInEventSingle (class)
	SvgMove (class)
	SvgOut (class)

	Package print
	PrintForKind (enumeration)
	Print (class)
	PrintFile (class)
	PrintFor (class)

	Package position
	Position (class)
	PositionObject (abstract class)

	Distributions
	Legal
	Bibliography

