diff --git a/aidge/include/aidge/aidge.hpp b/aidge/include/aidge/aidge.hpp deleted file mode 100644 index 7f32d695a41d954e9f31c6682e3cc6fc0226aed9..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/aidge.hpp +++ /dev/null @@ -1,51 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#ifndef __AIDGE_IMPORTS_H__ -#define __AIDGE_IMPORTS_H__ - -#include "aidge/backend/OperatorImpl.hpp" -#include "aidge/backend/TensorImpl.hpp" -#include "aidge/data/Data.hpp" -#include "aidge/data/Tensor.hpp" -#include "aidge/graph/Connector.hpp" -#include "aidge/graph/GraphView.hpp" -#include "aidge/graph/Node.hpp" -#include "aidge/graph/OpArgs.hpp" -#include "aidge/graphmatching/GRegex.hpp" -#include "aidge/graphmatching/Match.hpp" -#include "aidge/graphmatching/NodeRegex.hpp" -#include "aidge/graphmatching/SeqStm.hpp" -#include "aidge/graphmatching/StmFactory.hpp" -#include "aidge/graphmatching/Utile.hpp" -#include "aidge/operator/Add.hpp" -#include "aidge/operator/AvgPooling.hpp" -#include "aidge/operator/BatchNorm.hpp" -#include "aidge/operator/Conv.hpp" -#include "aidge/operator/ConvDepthWise.hpp" -#include "aidge/operator/FC.hpp" -#include "aidge/operator/GenericOperator.hpp" -#include "aidge/operator/Matmul.hpp" -#include "aidge/operator/MetaOperator.hpp" -#include "aidge/operator/Operator.hpp" -#include "aidge/operator/Producer.hpp" -#include "aidge/operator/ReLU.hpp" -#include "aidge/operator/Softmax.hpp" -#include "aidge/scheduler/Scheduler.hpp" -#include "aidge/utils/CParameter.hpp" -#include "aidge/utils/Parameter.hpp" -#include "aidge/utils/Recipies.hpp" -#include "aidge/utils/Registrar.hpp" -#include "aidge/utils/Types.h" -//#include "aidge/utilsParsing/AstNode.hpp" -//#include "aidge/utilsParsing/ParsingToken.hpp" - -#endif /* __AIDGE_IMPORTS_H__ */ diff --git a/aidge/include/aidge/backend/OperatorImpl.hpp b/aidge/include/aidge/backend/OperatorImpl.hpp deleted file mode 100644 index 7e022145d1eeaa8a2bd79afe69ca06ca57a62651..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/backend/OperatorImpl.hpp +++ /dev/null @@ -1,60 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#ifndef __AIDGE_OPERATORIMPL_H__ -#define __AIDGE_OPERATORIMPL_H__ - -#include <cstddef> -#include <vector> -#include "aidge/utils/Types.h" - -namespace Aidge { -class OperatorImpl { -public: - virtual void forward(){}; - virtual void backward() {} - - /** - * @brief Minimum amount of data from a specific input required by the - * implementation to be run. - * - * @param inputIdx Index of the input analysed. - * @return std::size_t - */ - virtual NbElts_t getNbRequiredData(const IOIndex_t inputIdx) const = 0; - - // Amount of input data that cannot be overwritten during the execution. - virtual NbElts_t getNbRequiredProtected(const IOIndex_t inputIdx) const = 0; - - // Memory required at an output for a given input size. - virtual NbElts_t getRequiredMemory(const IOIndex_t outputIdx, const std::vector<DimSize_t> &inputsSize) const = 0; - - /** - * @brief Total amount of consumed data from a specific input. - * - * @param inputIdx Index of the input analysed. - * @return DimSize_t - */ - virtual NbElts_t getNbConsumedData(const IOIndex_t inputIdx) const = 0; - - /** - * @brief TOtal amount of produced data ready to be used on a specific output. - * - * @param outputIdx Index of the output analysed. - * @return DimSize_t - */ - virtual NbElts_t getNbProducedData(const IOIndex_t outputIdx) const = 0; - - virtual ~OperatorImpl() = default; -}; -} // namespace Aidge - -#endif /* __AIDGE_OPERATORIMPL_H__ */ diff --git a/aidge/include/aidge/backend/TensorImpl.hpp b/aidge/include/aidge/backend/TensorImpl.hpp deleted file mode 100644 index 58f2d547e513d540a491155045c463f9a7199578..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/backend/TensorImpl.hpp +++ /dev/null @@ -1,41 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#ifndef __AIDGE_TENSORIMPL_H__ -#define __AIDGE_TENSORIMPL_H__ - -#include <cstddef> -#include <cstdio> -#include "aidge/utils/Types.h" - -namespace Aidge { -class TensorImpl { -public: - TensorImpl() = delete; - TensorImpl(const char *backend) : mBackend(backend){}; - virtual void copy(const void *src, NbElts_t length) = 0; - virtual void *rawPtr() = 0; - virtual void setRawPtr(void* /*ptr*/) - { - printf("Cannot set raw pointer for backend %s\n", mBackend); - }; - virtual std::size_t scalarSize() const = 0; // Size of one scalar (in bytes) - constexpr const char *backend() const { return mBackend; } - virtual ~TensorImpl() = default; - virtual bool operator==(const TensorImpl &othImpl) const = 0; - -private: - const char *mBackend; -}; - -} // namespace Aidge - -#endif /* __AIDGE_TENSORIMPL_H__ */ diff --git a/aidge/include/aidge/data/Data.hpp b/aidge/include/aidge/data/Data.hpp deleted file mode 100644 index 4edc4b9a5a9fd877cf9a3e84c7f644be2a11534a..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/data/Data.hpp +++ /dev/null @@ -1,75 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#ifndef __AIDGE_DATA_H__ -#define __AIDGE_DATA_H__ - -#include "aidge/utils/Parameter.hpp" - -namespace Aidge { -enum class DataType { - Float64, - Float32, - Float16, - BFloat16, - Binary, - Ternary, - Int2, - Int3, - Int4, - Int5, - Int6, - Int7, - Int8, - Int16, - Int32, - Int64, - UInt2, - UInt3, - UInt4, - UInt5, - UInt6, - UInt7, - UInt8, - UInt16, - UInt32, - UInt64 -}; - -class Data { -public: - constexpr Data(const char* type): mType(type) {}; - constexpr const char* type() const { - return mType; - } - virtual ~Data() = default; - -private: - const char* mType; -}; -} - -namespace { -template <typename T> struct NativeType { static const Aidge::DataType type; }; -template <> const Aidge::DataType NativeType<double>::type = Aidge::DataType::Float64; -template <> const Aidge::DataType NativeType<float>::type = Aidge::DataType::Float32; -template <> const Aidge::DataType NativeType<long>::type = Aidge::DataType::Int64; -template <> const Aidge::DataType NativeType<int>::type = Aidge::DataType::Int32; - -template <> -const char* const EnumStrings<Aidge::DataType>::data[] - = {"Float64", "Float32", "Float16", "BFloat16", "Binary", "Ternary", - "Int2", "Int3", "Int4", "Int5", "Int6", "Int7", "Int8", "Int16", - "Int32", "Int64", "UInt2", "UInt3", "UInt4", "UInt5", "UInt6", - "UInt7", "UInt8", "UInt16", "UInt32", "UInt64"}; -} - -#endif /* __AIDGE_DATA_H__ */ \ No newline at end of file diff --git a/aidge/include/aidge/data/Tensor.hpp b/aidge/include/aidge/data/Tensor.hpp deleted file mode 100644 index 01e2a5a51d86c28d3a89bd9085c60bfad297623f..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/data/Tensor.hpp +++ /dev/null @@ -1,584 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#ifndef __AIDGE_CORE_DATA_TENSOR_H__ -#define __AIDGE_CORE_DATA_TENSOR_H__ - -#include <cstring> -#include <set> -#include <memory> -#include <numeric> -#include <string> -#include <vector> - -#include "aidge/backend/TensorImpl.hpp" -#include "aidge/data/Data.hpp" -#include "aidge/utils/Registrar.hpp" -#include "aidge/utils/Types.h" - -namespace Aidge { - -// Helper to create default arrays -template <typename T, std::size_t ... Is> -constexpr std::array<T, sizeof...(Is)> -create_array_impl(T value, std::index_sequence<Is...>) -{ - // cast Is to void to remove the warning: unused value - return {{(static_cast<void>(Is), value)...}}; -} - -template <typename T, std::size_t N> -constexpr std::array<T, N> create_array(const T& value) -{ - return create_array_impl(value, std::make_index_sequence<N>()); -} - - -// Helper to convert vector to array -template <typename T, typename Iter, std::size_t... Is> -constexpr auto to_array(Iter &iter, std::index_sequence<Is...>) -> std::array<T, sizeof...(Is)> { - return {{((void)Is, T(*iter++))...}}; -} - -/** - * @brief Convert an object with an iterator to an std::array. - */ -template <std::size_t N, typename U = void, typename Iter, typename V = typename std::iterator_traits<Iter>::value_type, - typename T = std::conditional_t<std::is_same<U, void>{}, V, U>> -constexpr auto to_array(Iter iter) -> std::array<T, N> { - return to_array<T>(iter, std::make_index_sequence<N>{}); -} - -namespace detail { - -template <class T, std::size_t N, std::size_t... I> -constexpr std::array<std::remove_cv_t<T>, N> to_array_impl(T (&a)[N], std::index_sequence<I...>) { - return {{a[I]...}}; -} - -} // namespace detail - -/** - * @brief Convert a C-stype array into a C++ std::array. - * - * @tparam T Data type. - * @tparam N Number of elements. - * @param a C-style array to convert. - * @return constexpr std::array<std::remove_cv_t<T>, N> - */ -template <class T, std::size_t N> -constexpr std::array<std::remove_cv_t<T>, N> to_array(T (&a)[N]) { - return detail::to_array_impl(a, std::make_index_sequence<N>{}); -} - -template <typename T, std::size_t N, std::size_t... I> -constexpr std::array<T, N + 1> append(std::array<T, N> a, T t, std::index_sequence<I...>) { - return std::array<T, N + 1>{a[I]..., t}; -} - -template <typename T, std::size_t N, std::size_t... I> -constexpr std::array<T, N + 1> append(T t, std::array<T, N> a, std::index_sequence<I...>) { - return std::array<T, N + 1>{t, a[I]...}; -} - -/** - * @brief Create a new array concatenating the initial one with the value to - * add. - * @details append({1,2,7}, 3) -> {1,2,7,3} - * - * @tparam T Data type. - * @tparam N Number of elements in the initilial array. - * @param a Initial array. - * @param t Element to add. - * @return constexpr std::array<T, N + 1> - */ -template <typename T, std::size_t N> -constexpr std::array<T, N + 1> append(std::array<T, N> a, T t) { - return append(a, t, std::make_index_sequence<N>()); -} - -template <typename T, std::size_t N> -constexpr std::array<T, N + 1> append(T t, std::array<T, N> a) { - return append(t, a, std::make_index_sequence<N>()); -} - -// Generic helper for initializing a Tensor -template <typename T, std::size_t SIZE_0> -struct Array1D { - T data[SIZE_0]; -}; - -template <typename T, std::size_t SIZE_0, std::size_t SIZE_1> -struct Array2D { - T data[SIZE_0][SIZE_1]; -}; - -template <typename T, std::size_t SIZE_0, std::size_t SIZE_1, std::size_t SIZE_2> -struct Array3D { - T data[SIZE_0][SIZE_1][SIZE_2]; -}; - -template <typename T, std::size_t SIZE_0, std::size_t SIZE_1, std::size_t SIZE_2, std::size_t SIZE_3> -struct Array4D { - T data[SIZE_0][SIZE_1][SIZE_2][SIZE_3]; -}; - -/** - * @brief Description for the tensor data structure. - * @details Sets the properties of the tensor without actually containing any data. - * Contains a pointer to an actual contiguous implementation of data. - */ -class Tensor : public Data, - public Registrable<Tensor, std::tuple<std::string, DataType>, std::unique_ptr<TensorImpl>(const Tensor &)> { - private: - DataType mDataType; /** enum to specify data type. */ - std::vector<DimSize_t> mDims; /** Dimensions of the tensor. */ - std::unique_ptr<TensorImpl> mImpl; /** Pointer to the actual data implementation. */ - std::shared_ptr<Tensor> mGrad; /** Pointer to the associated gradient Tensor instance. */ - - // Cached data - std::size_t mSize; /** Number of elements in the Tensor. */ - std::size_t mSizeM1; /** Number of elements in the N-1 first dimensions */ - - public: - static constexpr const char *Type = "Tensor"; - - /** - * @brief Construct a new empty Tensor object. - * @param dataType Sets the type of inserted data. - */ - Tensor(DataType dataType = DataType::Float32) - : Data(Type), - mDataType(dataType), - mDims({}), - mSize(0), - mSizeM1(0) - { - // ctor - } - - /** - * @brief Construct a new Tensor object copied from another one. - * @param otherTensor - */ - Tensor(const Tensor& otherTensor) - : Data(Type), - mDataType(otherTensor.mDataType), - mDims(otherTensor.mDims), - mSize(otherTensor.mSize), - mSizeM1(otherTensor.mSizeM1) - { - if (otherTensor.hasImpl()) { - mImpl = Registrar<Tensor>::create({otherTensor.mImpl->backend(), dataType()})(*this); - mImpl->copy(otherTensor.mImpl->rawPtr(), mSize); - } - } - - /** - * @brief Construct a new Tensor object from the 1-dimension Array helper. - * @tparam T datatype - * @tparam SIZE_0 first array dimension. - */ - template <typename T, std::size_t SIZE_0> - constexpr Tensor(Array1D<T, SIZE_0> &&arr) - : Data(Type), - mDataType(NativeType<T>::type), - mDims({SIZE_0}), - mImpl(Registrar<Tensor>::create({"cpu", NativeType<T>::type})(*this)), - mSize(SIZE_0), - mSizeM1(SIZE_0) { - mImpl->copy(&arr.data[0], SIZE_0); - } - - template <typename T, std::size_t SIZE_0> - constexpr Tensor &operator=(Array1D<T, SIZE_0> &&arr) { - resize({SIZE_0}); - if (!mImpl) { - mImpl = Registrar<Tensor>::create({"cpu", NativeType<T>::type})(*this); - } - mImpl->copy(&arr.data[0], SIZE_0); - return *this; - } - - /** - * @brief Construct a new Tensor object from the 2-dimensions Array helper. - * @tparam T datatype - * @tparam SIZE_0 first array dimension. - * @tparam SIZE_1 second array dimension. - */ - template <typename T, std::size_t SIZE_0, std::size_t SIZE_1> - constexpr Tensor(Array2D<T, SIZE_0, SIZE_1> &&arr) - : Data(Type), - mDataType(NativeType<T>::type), - mDims({SIZE_0, SIZE_1}), - mImpl(Registrar<Tensor>::create({"cpu", NativeType<T>::type})(*this)), - mSize(SIZE_0 * SIZE_1), - mSizeM1(SIZE_1) { - mImpl->copy(&arr.data[0][0], SIZE_0 * SIZE_1); - } - - template <typename T, std::size_t SIZE_0, std::size_t SIZE_1> - constexpr Tensor &operator=(Array2D<T, SIZE_0, SIZE_1> &&arr) { - resize({SIZE_0, SIZE_1}); - if (!mImpl) { - mImpl = Registrar<Tensor>::create({"cpu", NativeType<T>::type})(*this); - } - mImpl->copy(&arr.data[0][0], SIZE_0 * SIZE_1); - return *this; - } - - /** - * @brief Construct a new Tensor object from the 3-dimensions Array helper. - * @tparam T datatype - * @tparam SIZE_0 first array dimension. - * @tparam SIZE_1 second array dimension. - * @tparam SIZE_2 third array dimension. - */ - template <typename T, std::size_t SIZE_0, std::size_t SIZE_1, std::size_t SIZE_2> - constexpr Tensor(Array3D<T, SIZE_0, SIZE_1, SIZE_2> &&arr) - : Data(Type), - mDataType(NativeType<T>::type), - mDims({SIZE_0, SIZE_1, SIZE_2}), - mImpl(Registrar<Tensor>::create({"cpu", NativeType<T>::type})(*this)), - mSize(SIZE_0 * SIZE_1 * SIZE_2), - mSizeM1(SIZE_1 * SIZE_2) { - mImpl->copy(&arr.data[0][0][0], SIZE_0 * SIZE_1 * SIZE_2); - } - - template <typename T, std::size_t SIZE_0, std::size_t SIZE_1, std::size_t SIZE_2> - constexpr Tensor &operator=(Array3D<T, SIZE_0, SIZE_1, SIZE_2> &&arr) { - resize({SIZE_0, SIZE_1, SIZE_2}); - if (!mImpl) { - mImpl = Registrar<Tensor>::create({"cpu", NativeType<T>::type})(*this); - } - mImpl->copy(&arr.data[0][0][0], SIZE_0 * SIZE_1 * SIZE_2); - return *this; - } - - /** - * @brief Construct a new Tensor object from the 4-dimensions Array helper. - * @tparam T datatype - * @tparam SIZE_0 first array dimension. - * @tparam SIZE_1 second array dimension. - * @tparam SIZE_2 third array dimension. - * @tparam SIZE_3 fourth array dimension. - */ - template <typename T, std::size_t SIZE_0, std::size_t SIZE_1, std::size_t SIZE_2, std::size_t SIZE_3> - constexpr Tensor(Array4D<T, SIZE_0, SIZE_1, SIZE_2, SIZE_3> &&arr) - : Data(Type), - mDataType(NativeType<T>::type), - mDims({SIZE_0, SIZE_1, SIZE_2, SIZE_3}), - mImpl(Registrar<Tensor>::create({"cpu", NativeType<T>::type})(*this)), - mSize(SIZE_0 * SIZE_1 * SIZE_2 * SIZE_3), - mSizeM1(SIZE_1 * SIZE_2 * SIZE_3) { - mImpl->copy(&arr.data[0][0][0][0], SIZE_0 * SIZE_1 * SIZE_2 * SIZE_3); - } - - template <typename T, std::size_t SIZE_0, std::size_t SIZE_1, std::size_t SIZE_2, std::size_t SIZE_3> - constexpr Tensor &operator=(Array4D<T, SIZE_0, SIZE_1, SIZE_2, SIZE_3> &&arr) { - resize({SIZE_0, SIZE_1, SIZE_2, SIZE_3}); - if (!mImpl) { - mImpl = Registrar<Tensor>::create({"cpu", NativeType<T>::type})(*this); - } - mImpl->copy(&arr.data[0][0][0][0], SIZE_0 * SIZE_1 * SIZE_2 * SIZE_3); - return *this; - } - - /** - * @brief Copy dimensions, datatype and data of another Tensor. - * @param t other Tensor object. - * @return Tensor& - */ - Tensor &operator=(const Tensor &t) { - resize(t.dims()); - setDatatype(t.dataType()); - if (t.hasImpl()) { - setBackend(t.mImpl->backend()); - mImpl->copy(t.mImpl->rawPtr(), size()); - } - else { - mImpl = nullptr; - } - return *this; - } - - /** - * @brief Assess data type, dimensions, backend and data are the same. - * @param otherTensor - */ - bool operator==(const Tensor &otherTensor) const { - if ((!mImpl && !otherTensor.mImpl) || (dataType() != otherTensor.dataType()) || - (dims() != otherTensor.dims()) || (mImpl->backend() != otherTensor.mImpl->backend())) { - return false; - } - return *mImpl == *(otherTensor.mImpl); - } - - /** - * @brief Set the backend of the Tensor associated implementation - * @details Create and initialized an implementation if non was associated. - * @param name - */ - inline void setBackend(const std::string &name) { - if (mImpl) { - if (strcmp(mImpl->backend(), name.c_str()) != 0) { - // Backend change: create new impl, copy from old to new and replace - // impl - std::unique_ptr<TensorImpl> newImpl = Registrar<Tensor>::create({name, mDataType})(*this); - newImpl->copy(mImpl->rawPtr(), size()); - mImpl = std::move(newImpl); - } - } else - mImpl = Registrar<Tensor>::create({name, mDataType})(*this); - } - - /** - * @brief Get a list of available backends. - * @return std::set<std::string> - */ - static std::set<std::string> getAvailableBackends(){ - std::set<std::string> backendsList; - for(std::tuple<std::string, DataType> tupleKey : Registrar<Tensor>::getKeys()) - backendsList.insert(std::get<0>(tupleKey)); - return backendsList; - } - - /** - * @brief Get the data type enum. - * @return constexpr DataType - */ - constexpr DataType dataType() const { return mDataType; } - - /** - * @brief Set the DataType of the Tensor and converts data - * if the Tensor has already been initialized. - * @param dt DataType. - */ - void setDatatype(const DataType dt) { - if (mImpl && (dataType() != dt)) { - // get ptr before changing Tensor backend or the type difference will trigger a warning - const void *data = mImpl->rawPtr(); - mDataType = dt; - std::unique_ptr<TensorImpl> newImpl = Registrar<Tensor>::create({mImpl->backend(), dt})(*this); - newImpl->copy(data, size()); // /!\ it does not cast data but reinterpret them - mImpl = std::move(newImpl); - } - mDataType = dt; - } - - /** - * @brief Get the Impl object - * @return constexpr const std::unique_ptr<TensorImpl>& - */ - constexpr const std::unique_ptr<TensorImpl> &getImpl() { return mImpl; } - - /** - * @brief Return if an implementaiton has been associated. - * @return true - * @return false - */ - bool hasImpl() const { return (mImpl) ? true : false; } - - /** - * @brief Get number of dimensions of the Tensor. - * @return std::size_t - */ - inline std::size_t nbDims() const { return mDims.size(); } - - /** - * @brief Get dimensions of the Tensor object. - * @tparam DIM number of dimensions. - * @return constexpr std::array<DimSize_t, DIM> - */ - template <DimIdx_t DIM> - constexpr std::array<DimSize_t, DIM> dims() const { - assert(DIM == mDims.size() && "wrong number of dimensions"); - return to_array<DIM>(mDims.cbegin()); - } - - /** - * @brief Get dimensions of the Tensor object. - * @return constexpr const std::vector<DimSize_t>& - */ - constexpr const std::vector<DimSize_t> &dims() const { return mDims; } - - /** - * @brief Get the number of elements in the Tensor object. - * @return constexpr std::size_t - */ - constexpr std::size_t size() const { return mSize; } - - /** - * @brief Get the number of elements in the N-1 dimensions of the Tensor object. - * @return constexpr std::size_t - */ - constexpr std::size_t sizeM1() const { return mSizeM1; } - - /** - * @brief Change the shape of the Tensor object according to the given argument. - * @tparam DIM new dimensions. - * @param dims - */ - template <std::array<DimSize_t, 1>::size_type DIM> // deducing std::array size_type and declaring DIM accordingly - void resize(const std::array<DimSize_t, DIM> &dims) { - static_assert(DIM<=MaxDim,"Too many tensor dimensions required by resize, not supported"); - mDims.assign(dims.begin(), dims.end()); - computeSize(); - } - - void resize(const std::vector<DimSize_t> &dims) { - mDims = dims; - computeSize(); - } - - /** - * @brief Return if the Tensor object has at leastone element. - * @return true - * @return false - */ - bool empty() const { return mDims.empty(); } - - template <typename expectedType, std::array<std::size_t, 1>::size_type DIM> - constexpr expectedType &get(std::array<std::size_t, DIM> idx) { - assert(DIM == mDims.size()); - assert(mImpl); - std::size_t unfoldedIdx = 0; - for (std::size_t i = 0; i < DIM - std::size_t(1); ++i) { - unfoldedIdx = (unfoldedIdx + idx[i]) * mDims[i + 1]; - } - unfoldedIdx += idx[DIM - 1]; - return static_cast<expectedType *>(mImpl->rawPtr())[unfoldedIdx]; - } - - std::string toString() { - if (dims().empty()) { return "{}"; } - std::string res; - std::size_t dim = 0; - std::size_t *dimVals = new std::size_t[nbDims()]; - for (std::size_t i = 0; i < nbDims(); ++i) { - dimVals[i] = 0; - } - std::size_t counter = 0; - res += "{\n"; - if (nbDims()>=2){ - while (counter < mSize) { - std::string spaceString = std::string((dim+1)<<1,' '); - if (dim < nbDims()-2) { - if (dimVals[dim] == 0) { - res += spaceString + "{\n"; - ++dim; - } else if (dimVals[dim] < static_cast<std::size_t>(dims()[dim])) { - res += spaceString + "},\n" + spaceString + "{\n"; - ++dim; - } else { - res += spaceString + "}\n"; - dimVals[dim--] = 0; - dimVals[dim]++; - } - } else { - for (; dimVals[dim] < static_cast<std::size_t>(dims()[dim]); ++dimVals[dim]) { - res += spaceString + "{"; - for (DimSize_t j = 0; j < dims()[dim + 1] - 1; ++j) { - switch (mDataType) - { - case DataType::Int32: - res += " " + std::to_string(static_cast<int *>(mImpl->rawPtr())[counter++]) + ","; - break; - case DataType::Float64: - res += " " + std::to_string(static_cast<double *>(mImpl->rawPtr())[counter++]) + ","; - break; - default: - res += " " + std::to_string(static_cast<float *>(mImpl->rawPtr())[counter++]) + ","; - break; - } - } - switch (mDataType) - { - case DataType::Int32: - res += " " + std::to_string(static_cast<int *>(mImpl->rawPtr())[counter++]) + "}"; - break; - case DataType::Float64: - res += " " + std::to_string(static_cast<double *>(mImpl->rawPtr())[counter++]) + "}"; - break; - default: - res += " " + std::to_string(static_cast<float *>(mImpl->rawPtr())[counter++]) + "}"; - break; - } - if (dimVals[dim] < static_cast<std::size_t>(dims()[dim] - 1)) { - res += ","; - } - res += "\n"; - } - dimVals[dim--] = 0; - dimVals[dim]++; - } - } - for(int i = static_cast<int>(dim); i>=0; --i) { - res += std::string((dim+1)<<1,' ') + "}\n"; - } - }else{ - for (DimSize_t j = 0; j < dims()[0]; ++j) { - switch (mDataType) - { - case DataType::Int32: - res += " " + std::to_string(static_cast<int *>(mImpl->rawPtr())[j]) + ((j < dims()[0]-1) ? "," : "\n"); - break; - case DataType::Float64: - res += " " + std::to_string(static_cast<double *>(mImpl->rawPtr())[j]) + ((j < dims()[0]-1) ? "," : "\n"); - break; - default: - res += " " + std::to_string(static_cast<float *>(mImpl->rawPtr())[j]) + ((j < dims()[0]-1) ? "," : "\n"); - break; - } - } - } - - - res += "}"; - return res; - } - - inline void print() { printf("%s\n", toString().c_str()); } - - std::shared_ptr<Tensor> grad() { - if (!mGrad) { - mGrad = std::make_shared<Tensor>(mDataType); - mGrad->resize(mDims); - - if (mImpl) mGrad->setBackend(mImpl->backend()); - } - - return mGrad; - } - -private: - ///\bug not protected against overflow - std::size_t computeSize() { - if (mDims.empty()) { - mSizeM1 = DimSize_t(0); - mSize = DimSize_t(0); - } - else if (mDims.size() == 1) - { - mSizeM1 = mDims[0]; - mSize = mDims[0]; - } - else { - mSizeM1 = std::accumulate(++mDims.begin(),mDims.end(), DimSize_t(1), std::multiplies<DimSize_t>()); - mSize = static_cast<std::size_t>(mSizeM1 * mDims[0]); - } - - return mSize; - } -}; -} // namespace Aidge - -#endif /* __AIDGE_CORE_DATA_TENSOR_H__ */ diff --git a/aidge/include/aidge/graph/Connector.hpp b/aidge/include/aidge/graph/Connector.hpp deleted file mode 100644 index c5dde5c97c61d3661c1ee9cebe7cc17080950eb9..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/graph/Connector.hpp +++ /dev/null @@ -1,86 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ -#ifndef __AIDGE_CORE_GRAPH_CONNECTOR_H__ -#define __AIDGE_CORE_GRAPH_CONNECTOR_H__ - -#include <cassert> -#include <memory> -#include <vector> - -#include "aidge/utils/Types.h" - -namespace Aidge { - -class Node; -class GraphView; -/** - * @brief Object meant for simpler and more instrinctive user API. - * - * example: - * Connector x(); - * x = Conv(...)(x); - * Connector y = Split(3)(x[0]); // Error! Cannot slice a Connector with one output only - * Connector y = Split(3)(x); - * CustomLayer cl(...); - * Connector z = cl(y) // Error! y has multiple outputs, must specify which one to use - * Connector z1 = cl(y[0]); - * Connector z2 = cl(y[1]); - * Connector z3 = cl(y[2]); - * x = Sum(...)(z1, z2, z3); - * GraphView g = x.generateGraph(); - */ -class Connector { - private: - std::shared_ptr<Node> mNode; - ///\brief output id - ///\details gk_IODefaultIndex is reserved for? - ///\bug Is negative value pertinent? - IOIndex_t mOutputId = gk_IODefaultIndex; - - public: - Connector() : mNode(nullptr) { - // ctor - } - Connector(std::shared_ptr<Node> node); - - ~Connector() = default; - - public: - Connector operator[](IOIndex_t index) { - assert((size() > 1) && "Cannot refer a slice of the output."); - return Connector(mNode, index); - } - - public: - IOIndex_t size() const; - - inline std::shared_ptr<Node> node() const { return mNode; } - - inline IOIndex_t index() const { return mOutputId; } - - private: - Connector(std::shared_ptr<Node> node, IOIndex_t index) : mNode(node) { - assert((index != gk_IODefaultIndex) && (index < size()) && - "Non-valid output index.\n"); - mOutputId = index; - } -}; - -/** - * @brief Generate a GraphView from a list of output Connectors - * - * @param ctors list of output Connector for the graph to generate. - * @return std::shared_ptr<GraphView> - */ -std::shared_ptr<GraphView> generateGraph(std::vector<Connector> ctors); -} // namespace Aidge - -#endif /* __AIDGE_CORE_GRAPH_CONNECTOR_H__ */ \ No newline at end of file diff --git a/aidge/include/aidge/graph/GraphView.hpp b/aidge/include/aidge/graph/GraphView.hpp deleted file mode 100644 index e5fa35354968963859d0b4cbbc01139cbc309250..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/graph/GraphView.hpp +++ /dev/null @@ -1,381 +0,0 @@ - -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#ifndef __AIDGE_CORE_GRAPH_GRAPHVIEW_H__ -#define __AIDGE_CORE_GRAPH_GRAPHVIEW_H__ - -#include <map> -#include <memory> -#include <set> -#include <string> -#include <utility> -#include <vector> - -#include "aidge/graph/Node.hpp" -#include "aidge/utils/Types.h" - -namespace Aidge { -enum class DataType; - -/** - * @brief Groupement of Nodes forming a computational graph on which properties and functions - * can easily and safely be applied or run. - */ -class GraphView : public std::enable_shared_from_this<GraphView> { -private: - /// @brief Name of the graphview - std::string mName; - - /// @brief Set of nodes included in the GraphView - std::set<NodePtr> mNodes; - - /// @brief Set of nodes included in the graphview with names - std::map<std::string, NodePtr> mNodeRegistry; - - /// @brief Nodes without input link - std::set<NodePtr> mInputNodes; - - /// @brief Nodes without output link - std::set<NodePtr> mOutputNodes; - -public: - GraphView(std::string name="") - : mName(name) - { - // ctor - } - - // GraphView(std::set<NodePtr> nodes, std::string name="") - // : mName(name) - // { - // add(nodes); - // } - - bool operator==(const GraphView &gv) const - { - return mNodes == gv.mNodes; - } - - NodePtr operator[](std::string name) - { - assert(mNodeRegistry.find(name) != mNodeRegistry.end() && "Could not find Node in the GraphView."); - return mNodeRegistry.at(name); - } - -/////////////////////////////////////////////////////// -// FUNCTIONAL DESCRIPTION -/////////////////////////////////////////////////////// - - Connector operator()(const std::vector<Connector> ctors); - -/////////////////////////////////////////////////////// -// INNER -/////////////////////////////////////////////////////// -public: - /** - * @brief Name of the node. - * @return std::string - */ - std::string name() const; - - /** - * @brief Set the node name. - * @warning Undefined behaviour when several Nodes have the same name. - * @param name New name for the node. - */ - void setName(const std::string &name); - - /** - * @brief Save the GraphView as a Mermaid graph in a .md file at the - * specified location. - * @param path - */ - void save(std::string path, bool verbose = false) const; - - inline bool inView(NodePtr nodePtr) const { - return mNodes.find(nodePtr) != mNodes.end(); - } - -/////////////////////////////////////////////////////// -// TENSOR MANAGEMENT -/////////////////////////////////////////////////////// -public: - /** @brief Get reference to the set of input Nodes. */ - inline const std::set<NodePtr>& inputNodes() const noexcept { return mInputNodes; } - /** @brief Get reference to the set of output Nodes. */ - inline const std::set<NodePtr>& outputNodes() const noexcept { return mOutputNodes; } - - /** @brief Assess if the given Node is an input Node of the GraphView object. */ - inline bool isInputNode(NodePtr nodePtr) const { - return (mInputNodes.find(nodePtr) != mInputNodes.end()) ? true : false; - } - /** @brief Assess if the given Node is an output Node of the GraphView object. */ - inline bool isOutputNode(NodePtr nodePtr) const { - return (mOutputNodes.find(nodePtr) != mOutputNodes.end()) ? true : false; - } - - /** - * @brief List dataInput connections of the GraphView object's inputNodes. - * @return std::vector<std::pair<NodePtr, IOIndex_t>> - */ - std::vector<std::pair<NodePtr, IOIndex_t>> dataInputs() const; - - /** - * @brief List dataInput connections of the GraphView object's inputNodes. - * @param name Name of the Node. - * @return std::vector<std::pair<NodePtr, IOIndex_t>> - */ - inline auto dataInputs(const std::string name) const { return mNodeRegistry.at(name)->dataInputs(); } - - /** - * @brief List input connections of the GraphView object's inputNodes. - * @return std::vector<std::pair<NodePtr, IOIndex_t>> - */ - std::vector<std::pair<NodePtr, IOIndex_t>> inputs() const; - - /** - * @brief List input connections of the specified GraphView object's inputNode. - * @return std::vector<std::pair<NodePtr, IOIndex_t>> - */ - std::vector<std::pair<NodePtr, IOIndex_t>> inputs(std::string name) const; - - /** - * @brief List output connections of the GraphView object's outputNodes. - * @return std::vector<std::pair<NodePtr, IOIndex_t>> - */ - std::vector<std::vector<std::pair<NodePtr, IOIndex_t>>> outputs() const; - - /** - * @brief Specific i-th output connection of the GraphView object. - * @param nodeName Name of the Node of which to show the output. - * @return std::vector<std::vector<std::pair<NodePtr, IOIndex_t>>> - */ - std::vector<std::vector<std::pair<NodePtr, IOIndex_t>>> outputs( - std::string nodeName) const; - - /** - * @brief Compute dimensions of input/output Tensors for each Operator of the - * GraphView object's Nodes. - */ - void forwardDims(); - - /** @brief Set the same backend for each Operator of the GraphView object's Nodes. */ - void setBackend(const std::string &backend); - /** @brief Set the same backend for each Operator of the GraphView object's Nodes. */ - void setDatatype(const DataType &datatype); - -/////////////////////////////////////////////////////// -// TOPOLOGY -/////////////////////////////////////////////////////// -public: - /** - * @brief Get the parents Nodes of inputNodes. - * @return std::set<NodePtr> - */ - std::set<NodePtr> getParents() const; - /** - * @brief Get parents Nodes of the specified Node. - * @param nodeName Name of the Node. - * @return std::vector<NodePtr> - */ - std::vector<NodePtr> getParents(const std::string nodeName) const; - std::vector<std::vector<NodePtr>> getOrderedParents() const; - - /** - * @brief Get the children Nodes of outputNodes. - * @return std::set<NodePtr> - */ - std::set<NodePtr> getChildren() const; - /** - * @brief Get children Nodes of the specified Node. - * @param nodeName Name of the Node. - * @return std::vector<std::vector<NodePtr>> - */ - std::vector<std::vector<NodePtr>> getChildren(const std::string nodeName) const; - std::set<NodePtr> getChildren( - const NodePtr otherNode) const; // TODO change it for a vector<vector> ? - - /** - * @brief Get the Nodes pointed to by the GraphView object. - * @return std::set<NodePtr> - */ - inline std::set<NodePtr> getNodes() const { return mNodes; } - - /** - * @brief Get the operator with the corresponding name if it is in the - * GraphView. - * @param nodeName Name of the node. - * @return NodePtr returns a new empty node if the one asked for - * was not found. - */ - NodePtr getNode(const char *nodeName) const; - - /** - * @brief Remove a Node from the current GraphView scope without affecting its connections. - * @param nodePtr Node to remove - * @param includeLearnableParam Whether learnable parameters should also be removed. Default true. - */ - void remove(NodePtr nodePtr, bool includeLearnableParam = true); - - // Surrounding nodes management - - void setInputId(IOIndex_t inID, IOIndex_t newNodeOutID); - - /** - * @brief Include a Node to the current GraphView object. - * @param other_Nde Node to add. - * @param includeLearnableParam Include non-data inputs, like weights and biases - * in the GraphView automatically. Default: true. - */ - void add(NodePtr otherNode, bool includeLearnableParam = true); - /** - * @brief Include a set of Nodes to the current GraphView object. - * @param otherNodes - * @param includeLearnableParam - */ - void add(std::set<NodePtr> otherNodes, - bool includeLearnableParam = true); - - /** - * @brief Include every Node inside another GraphView to the current - * GraphView. - * @param other_graph GraphView containing the Nodes to include. - */ - void add(std::shared_ptr<GraphView> otherGraph); - - /** - * @brief Include a Node in the current GraphView and link it to another - * already contained Node. - * - * @param toOtherNode Pointer to the Node to add. - * @param fromOutNode Pointer to the already included Node the new Node will - * be linked to (it will become a parent of the new Node). If the GraphView - * only has one output Node, then default to this Node. - * @param fromTensor Ouput Tensor ID of the already included Node. Default to - * 0. - * @param toTensor Input Tensor ID of the new Node. Default to gk_IODefaultIndex, meaning - * first available data input for the Node. - */ - void addChild(NodePtr toOtherNode, NodePtr fromOutNode = nullptr, - const IOIndex_t fromTensor = IOIndex_t(0), - IOIndex_t toTensor = gk_IODefaultIndex); - - /** - * @brief Include a Node in the current GraphView and link it to another - * already contained Node. - * - * @param toOtherNode Pointer to the Node to add. - * @param fromOutNodeName Name of the already included Node the new Node will - * be linked to (it will become a parent of the new Node). As a name is - * optional, ensure such Node is in the GraphView or it will send back an - * error message. - * @param fromTensor Ouput Tensor ID of the already included Node. Default to - * 0. - * @param toTensor Input Tensor ID of the new Node. Default to gk_IODefaultIndex, meaning - * first available data input for the Node. - */ - inline void addChild(NodePtr toOtherNode, std::string fromOutNodeName, - const IOIndex_t fromTensor = IOIndex_t(0), - IOIndex_t toTensor = gk_IODefaultIndex) { - assert(mNodeRegistry.find(fromOutNodeName) != mNodeRegistry.end() && - "No Node with this name found in the GraphView."); - addChild(toOtherNode, mNodeRegistry.at(fromOutNodeName), fromTensor, toTensor); - } - - /** - * @brief Include a GraphView content in the current GraphView and link - * the two sets by linking one Node from each GraphView. - * @param toOtherView Pointer to the GraphView whose content should be added. - * @param fromOutNode Pair of pointer to Node and Tensor ID for specifying the - * connection. If the GraphView including the other one has only one output - * Node, then it defaults to the first output Tensor of this Node. - * @param toNode Pair of pointer to Node and Tensor ID for specifying the - * connection. If the GraphView whose content is included has only one input - * Node, then it defaults to the first available data input Tensor of this - * Node. - */ - void addChild(std::shared_ptr<GraphView> toOtherView, - std::pair<NodePtr, IOIndex_t> fromOutNode = - std::pair<NodePtr, IOIndex_t>(nullptr, IOIndex_t(0)), - std::pair<NodePtr, IOIndex_t> toNode = - std::pair<NodePtr, IOIndex_t>(nullptr, gk_IODefaultIndex)); - - /** - * @brief Swap two Node instances if possible. - * @param node - * @param otherNode - * @return true - * @return false - */ - bool swap(Node &node, Node &otherNode); - - void link(std::string name1_inID, std::string name2_outID); - - void insert(Node &newNode, Node &inNode, std::initializer_list<Node> outNodes, - IOIndex_t tensorIdx); - - /** - * @brief Replace the current GraphView with the set of given Nodes if possible - * @param newNodes Set of Nodes. - * @return true - * @return false - */ - bool replaceWith(std::set<NodePtr> newNodes); - void updateInputNodes(); - /** - * @brief Process from zero the set of output Nodes. - */ - void updateOutputNodes(); - -private: -/////////////////////////////////////////////////////// -// TENSOR MANAGEMENT -/////////////////////////////////////////////////////// - - /** - * @brief Get the sum of the number of dataInput Nodes for all inputNodes of the GraphView object. - * @return IOIndex_t - */ - IOIndex_t getNbDataInputs() const; - - /** - * @brief Get the sum of the number of free dataInput connection for all inputNodes of the GraphView object. - * @return IOIndex_t - */ - IOIndex_t getNbFreeDataInputs() const; - - /** - * @brief Update the set of inputNodes with a new Node, checking if it can be - * added and removing any Node not part of mInputNode anymore. - * @param nodePtr - */ - void updateInputNodes(NodePtr node); - - /** - * @brief Update the set of outputNodes with a new Node, checking if it can be - * added and removing any Node not part of mOutputNode anymore. - * @param nodePtr - */ - void updateOutputNodes(NodePtr node); - - /////////////////////////////////////////////////////// - // TOPOLOGY - /////////////////////////////////////////////////////// - - void _forwardDims(std::set<NodePtr> listNodes); - - void removeInputNode(const std::string nodeName); - void removeOutputNode(const std::string nodeName); -}; -} // namespace Aidge - -#endif /* __AIDGE_CORE_GRAPH_GRAPHVIEW_H__ */ \ No newline at end of file diff --git a/aidge/include/aidge/graph/Node.hpp b/aidge/include/aidge/graph/Node.hpp deleted file mode 100644 index 0780ce9a24da0ceb0c42b32944021f5df2fa9726..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/graph/Node.hpp +++ /dev/null @@ -1,405 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#ifndef __AIDGE_CORE_GRAPH_NODE_H__ -#define __AIDGE_CORE_GRAPH_NODE_H__ - -#include <cassert> -#include <memory> -#include <set> -#include <string> -#include <vector> -#include <utility> - -#include "aidge/graph/Connector.hpp" -#include "aidge/operator/Operator.hpp" -#include "aidge/utils/Types.h" - -namespace Aidge { - -using NodePtr = std::shared_ptr<Node>; - -class GraphView; - -/** - * @brief Object carrying the topological information of the computational graph. - */ -class Node : public std::enable_shared_from_this<Node> { -private: - struct weakCompare { - bool operator()(const std::weak_ptr<Aidge::GraphView>& a, const std::weak_ptr<Aidge::GraphView>& b) const { - // Compare the content of the weak_ptrs - auto sharedA = a.lock(); - auto sharedB = b.lock(); - if (!sharedB) return false; // nothing after expired pointer - if (!sharedA) return true; - return sharedA < sharedB; // shared_ptr has a valid comparison operator - } - }; - std::string mName; /** Name of the Node. Should be unique. */ - - std::set<std::weak_ptr<GraphView>, weakCompare> mViews; /** Set of pointers to GraphView instances including this Node instance. */ - const std::shared_ptr<Operator> mOperator; // Pointer to the associated Operator - - std::vector<NodePtr> mParents; /** List of parent node for each input (Parent --> Node --> Child) */ - std::vector<std::vector<std::weak_ptr<Node>>> mChildren; /** List of children nodes for each output (Parent --> Node --> Child) */ - std::vector<std::vector<IOIndex_t>> mIdInChildren; /** List of input index for each Node linked to each output of the Node. */ - std::vector<IOIndex_t> mIdOutParents; /** index of the output linked to each input of the Node. Default: gk_IODefaultIndex. */ - -public: - Node() = delete; - - /** - * @brief Construct a new Node object associated with the input Operator. - * @param op Operator giving the Node its number of connections. - * @param name (optional) name for the Node. - */ - Node(std::shared_ptr<Operator> op, const char *name = nullptr); - - virtual ~Node() = default; - - friend bool operator==(const Node &lhs, const Node &rhs) { - return lhs.shared_from_this() == rhs.shared_from_this(); - } - -public: - /////////////////////////////////////////////////////// - // FUNCTIONAL DESCRIPTION - /////////////////////////////////////////////////////// - - /** - * @brief Functional operator for user-friendly connection interface using an ordered set of Connectors. - * @param ctors Ordered Connectors linking their associated Node to the input of the current Node with the same index. - * @return Connector - */ - Connector operator()(const std::vector<Connector> &ctors); - -public: - /////////////////////////////////////////////////////// - // INNER - /////////////////////////////////////////////////////// - - /** - * @brief Name of the Node. - * @return std::string - */ - inline std::string name() const noexcept { return mName; } - - /** - * @brief Set the Node name. - * @warning Undefined behaviour when several Nodes have the same name. - * @param name New name for the node. - */ - void setName(const std::string &name); - - /** - * @brief Type of the node. - * @return std::string - */ - inline std::string type() const { return mOperator->type(); } - - /////////////////////////////////////////////////////// - // OPERATORS - /////////////////////////////////////////////////////// - - /** - * @brief Run forward() function of the associated Operator. - */ - void forward(); - - /** - * @brief Run backward() function of the associated Operator. - */ - void backward(); - - /** - * @brief Get the Operator object of the Node. - * @return std::shared_ptr<Operator> - */ - inline std::shared_ptr<Operator> getOperator() const { return mOperator; } - - /////////////////////////////////////////////////////// - // TENSOR MANAGEMENT - /////////////////////////////////////////////////////// - - /** - * @brief Whether or not every input of the Node is linked to a Parent. - * If true then the Node is ready to be executed. - * @return true - * @return false - */ - bool valid() const; - - /** - * @brief List of pair <Parent, ID of the data intput>. When an input is not - * linked to any Parent, the pair is <nullptr, gk_IODefaultIndex>. - * @return std::vector<std::pair<std::shared_ptr<Node>, IOIndex_t>> - */ - std::vector<std::pair<NodePtr, IOIndex_t>> dataInputs() const; - - /** - * @brief List of pair <Parent, ID of the parent output>. When an input is not linked - * to any Parent, the pair is <nullptr, gk_IODefaultIndex>. - * @return std::vector<std::pair<std::shared_ptr<Node>, IOIndex_t>> - */ - std::vector<std::pair<NodePtr, IOIndex_t>> inputs() const; - - /** - * @brief Parent and its output Tensor ID linked to the inID-th input Tensor. - * If the input is not linked to any Parent, the pair is <nullptr, gk_IODefaultIndex>. - * @param inID - * @return std::pair<std::shared_ptr<Node>, IOIndex_t> - */ - inline std::pair<NodePtr, IOIndex_t> input(const IOIndex_t inID) const { - assert((inID != gk_IODefaultIndex) && (inID < nbInputs()) && "Input index out of bound."); - return std::pair<NodePtr, IOIndex_t>(mParents[inID], mIdOutParents[inID]); - } - - /** - * @brief Set fix value for the specified input by creating a Producer wrapping the given Tensor. - * - * @param idx Input index. - * @param tensor Constant Tensor to add as parent for specified index. - */ - void setInput(const IOIndex_t idx, const std::shared_ptr<Tensor> tensor); - - /** - * @brief Get the lowest index in the InputData Parent list equal to the - * nullptr. - * @return std::size_t - */ - inline IOIndex_t getFirstFreeDataInput() const { - IOIndex_t i = 0; - for (; (i < nbDataInputs()) && (input(i).second != gk_IODefaultIndex); ++i) {} - // assert((i<nbDataInputs()) && "No free data input for Node"); - return (i < nbDataInputs()) ? i : gk_IODefaultIndex; - } - - - IOIndex_t getNbFreeDataInputs() const; - - /** - * @brief List input ids of children liked to outputs of the node - * @return std::vector<std::vector<std::pair<std::shared_ptr<Node>, - * IOIndex_t>>> - */ - std::vector<std::vector<std::pair<NodePtr, IOIndex_t>>> outputs() const; - - /** - * @brief Children and their input Tensor ID linked to the outId-th output - * Tensor. - * @param outId - * @return std::vector<std::pair<std::shared_ptr<Node>, IOIndex_t>> - */ - std::vector<std::pair<NodePtr, IOIndex_t>> - output(IOIndex_t outId) const; - - /** - * @brief Number of inputs, including both data and learnable parameters. - * @details [data, data, weight, bias] => 4 - * @return IOIndex_t - */ - inline IOIndex_t nbInputs() const noexcept { return getOperator()->nbInputs(); } - - /** - * @brief Number of input specifically for data - * @details [data, data, weight, bias] => 2 - * @return IOIndex_t - */ - inline IOIndex_t nbDataInputs() const noexcept { - return getOperator()->nbDataInputs(); - } - - /** - * @brief Number of inputs linked to a Parent's output. - * @return IOIndex_t - */ - IOIndex_t nbValidInputs() const; - - /** - * @brief Getter for the number of Output Tensors of the Node. - * @return IOIndex_t - */ - inline IOIndex_t nbOutputs() const noexcept { return getOperator()->nbOutputs(); } - - IOIndex_t nbValidOutputs() const; - - /////////////////////////////////////////////////////// - // TOPOLOGY - /////////////////////////////////////////////////////// - - /** - * @brief Vector of pointers to each GraphView containing the object - * @return std::vector<GraphView> - */ - inline std::set<std::shared_ptr<GraphView>> views() const noexcept { - std::set<std::shared_ptr<GraphView>> res; - for (const auto &v : mViews) { - res.insert(v.lock()); - } - return res; - } - - /** - * @brief Add a GraphView pointer to the list of GraphView containing - * the current Node. This feature allows transparent GraphViews. - * @param graphPtr Pointer to GraphView to add to the list. - */ - inline void addView(const std::shared_ptr<GraphView> &graphPtr) { - mViews.insert(std::weak_ptr<GraphView>(graphPtr)); - } - - inline void removeView(const std::shared_ptr<GraphView> &graphPtr) { - std::set<std::weak_ptr<GraphView>, weakCompare>::const_iterator viewIt = mViews.cbegin(); - for (; (viewIt != mViews.cend()) && ((*viewIt).lock() != graphPtr) ; ++viewIt) {} - mViews.erase(*viewIt); - } - - /** - * @brief Link another Node to an output of the current Node. - * @param otherNode Pointer to the other Node. - * @param outId ID of the current Node output to connect to the other Node. - * Default to 0. - * @param otherInId ID of the other Node input to connect to the current Node. - * Default to the first avaible data input. - */ - void addChild(NodePtr otherNode, - const IOIndex_t outId = IOIndex_t(0), - IOIndex_t otherInId = gk_IODefaultIndex); - - /** - * @brief Link a Node from a specific GraphView to the current Node. - * @param otherView Pointer to the GraphView whose content should be - * linked to the current Node. - * @param outId ID of the output Tensor to connect to the other Node. - * Default to 0. - * @param otherInId Pair of pointer to Node and Tensor ID for specifying the - * connection. If the GraphView whose content is linked has only one input - * Node, then it defaults to the first available data input Tensor of this - * Node. - */ - void addChild(std::shared_ptr<GraphView> otherView, - const IOIndex_t outId = IOIndex_t(0), - std::pair<NodePtr, IOIndex_t> otherInId = - std::pair<NodePtr, IOIndex_t>(nullptr, gk_IODefaultIndex)); - - /** - * @brief Get the list of parent Nodes. As an input is linked to a unique Node, - * if none is linked then the parent is a nullptr. - * @return std::vector<std::shared_ptr<Node>> - */ - std::vector<NodePtr> getParents() const; - - /** - * @brief Get the pointer to parent of the specified input index. This pointer is nullptr if no parent is linked. - * @param inId Input index. - * @return std::shared_ptr<Node>& - */ - inline NodePtr &getParents(const IOIndex_t inId) { - assert(inId != gk_IODefaultIndex); - return mParents.at(inId); - } - - /** - * @brief Unlink the parent Node at the specified input index and return its pointer. - * Return a nullptr is no parent was linked. - * @param inId Input index. - * @return std::shared_ptr<Node> - */ - NodePtr popParent(const IOIndex_t inId); - - bool removeParent(const IOIndex_t inId); - - /** - * @brief Get the set of pointers to children Nodes linked to the current Node.object. - * @details The returned set does not include any nullptr as an output maybe linked to - * an undifined number of Nodes. It does not change the computation of its associated Operator. - * @return std::set<std::shared_ptr<Node>>> - */ - std::set<NodePtr> getChildren() const; - - std::vector<std::vector<NodePtr>> getOrderedChildren() const; - - /** - * @brief Get the list of children Nodes linked to the output at specified index. - * @param outId Output index. - * @return std::vector<std::shared_ptr<Node>> - */ - std::vector<NodePtr> getChildren(const IOIndex_t outId) const; - - /** - * @brief Remove registered child from children list of specified output if possible. - * If so, also remove current Node from child Node from parent. - * @param std::shared_ptr<Node> Node to remove. - * @param outId Output index. Default 0. - * @return true Child found and removed for given output index. - * @return false Child not found at given index. Nothing removed. - */ - bool removeChild(const NodePtr nodePtr, const IOIndex_t outId = 0); - - /** - * @brief Remove every link of surrounding nodes to it and conversly - */ - void resetConnections(bool includeLearnableParam = false); - -private: - /////////////////////////////////////////////////////// - // OPERATORS - /////////////////////////////////////////////////////// - - // cannot change operator for now - // void setOperator(const std::shared_ptr<Operator> op_ptr); - - /////////////////////////////////////////////////////// - // TENSOR MANAGEMENT - /////////////////////////////////////////////////////// - - /** - * @brief Set the idInChildren parameter. - * @param inID - * @param newNodeOutID - */ - void setInputId(const IOIndex_t inID, const IOIndex_t newNodeOutID); - - /////////////////////////////////////////////////////// - // TOPOLOGY - /////////////////////////////////////////////////////// - - /** - * @brief Add the given Node as a child for the current Node. - * @param otherNode - * @param outId - * @param otherInId - */ - void addChildOp(NodePtr otherNode, const IOIndex_t outId, - const IOIndex_t otherInId); - - /** - * @brief Add the given GraphView's input Node as a child for the current Node - * @param otherGraph - * @param outId - * @param otherInId pointer the GraphView's input Node and its input index. Defaults to the - * only input Node if the GraphView has got one. - */ - void addChildView(std::shared_ptr<GraphView> otherGraph, - const IOIndex_t outId, - std::pair<NodePtr, IOIndex_t> otherInId); - - /** - * @brief Add a Node to the list of parents. - * @param otherNode Node to add to parents list. - * @param inId index for adding the parent. - */ - void addParent(const NodePtr otherNode, const IOIndex_t inId); -}; -} // namespace Aidge - -#endif /* __AIDGE_CORE_GRAPH_NODE_H__ */ diff --git a/aidge/include/aidge/graph/OpArgs.hpp b/aidge/include/aidge/graph/OpArgs.hpp deleted file mode 100644 index dd0cfe1cca8a3f487c18875cff3f90cc56291107..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/graph/OpArgs.hpp +++ /dev/null @@ -1,86 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#ifndef __AIDGE_CORE_GRAPH_OPARGS_H__ -#define __AIDGE_CORE_GRAPH_OPARGS_H__ - -#include <memory> -#include <cassert> - -namespace Aidge { -class Node; -class GraphView; - -/** - * @brief Intermediate representation for Structural description. - */ -class OpArgs { -private: - std::shared_ptr<Node> mNode = nullptr; - std::shared_ptr<GraphView> mView = nullptr; - -public: - OpArgs(const std::shared_ptr<GraphView>& view_) - : mView(view_) {assert(mView && "The GraphView provided should not be a nullptr.");} - - OpArgs(const std::shared_ptr<Node>& node_) - : mNode(node_) {assert(mNode && "The Node provided should not be a nullptr.");} - - inline std::shared_ptr<Node> node() const noexcept { - return mNode; - } - - inline std::shared_ptr<GraphView> view() const noexcept { - return mView; - } -}; - - -///////////////////////////// -// Sequential - -/** - * @brief Create a GraphView by linking every input with the next - * one in a sequential way. Nodes linked with the Sequential graph - * generation instructions must have a single output. - * Sequential(A, B, C) returns A-->B-->C. - * @param inputs List of Node and GraphView to link sequentially. - * @return std::shared_ptr<GraphView> Pointer to the generated view. - */ -std::shared_ptr<GraphView> Sequential(std::initializer_list<OpArgs> inputs); - -///////////////////////////// -// Parallel - -/** - * @brief Creates a GraphView with provided Nodes without linking them. - * @param inputs List of Node and GraphView to link sequentially. - * @return std::shared_ptr<GraphView> pointer to the generated view. - */ -std::shared_ptr<GraphView> Parallel(std::initializer_list<OpArgs> inputs); - -///////////////////////////// -// Residual - -/** - * @brief Create a GraphView by linking every input with the next - * one in a sequential way. Finally the first element output is used - * as another input for the last element. Nodes linked with the Recursive graph - * generation instructions must have a single output. - * Recursive(A, B, C) returns A-->B-->C , A-->C. - * @param inputs List of Node and GraphView to link sequentially. - * @return std::shared_ptr<GraphView> pointer to the generated view. - */ -std::shared_ptr<GraphView> Residual(std::initializer_list<OpArgs> inputs); - -} - -#endif /* __AIDGE_CORE_GRAPH_OPARGS_H__ */ \ No newline at end of file diff --git a/aidge/include/aidge/graphmatching/GRegex.hpp b/aidge/include/aidge/graphmatching/GRegex.hpp deleted file mode 100644 index 1292b607cee35f50dc0acc5f5113946be103065e..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/graphmatching/GRegex.hpp +++ /dev/null @@ -1,63 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - - -#ifndef __AIDGE_GREGEX_H__ -#define __AIDGE_GREGEX_H__ - -#include <stdexcept> // for exception, runtime_error, out_of_range -#include <regex> -#include <memory> // for shared_ptr -#include <algorithm> // for next_permutation - -#include "aidge/graphmatching/Utile.hpp" -#include "aidge/graphmatching/StmFactory.hpp" -#include "aidge/graphmatching/SeqStm.hpp" -#include "aidge/graphmatching/NodeRegex.hpp" -#include "aidge/graphmatching/Match.hpp" - - -namespace Aidge{ - -class GRegex { -// __init__(self,nodes_regex:dict,seq_regexps:list) - - StmFactory mStmFab; - std::vector<SeqStm*> mStmInit; - -public: - GRegex(const std::map<std::string,NodeRegex*>& nodesRegex,std::vector<std::string>& seqRegexps ); - - std::set<NodeTmp> matchFromStartNodes(const std::vector<NodeTmp> startNodes,const std::shared_ptr<GraphView> graphToMatch); - - bool walk_validation_all_stm_are_valid(const std::vector<std::vector<SeqStm*>> all_stm); - - bool walk_validation_all_node_read_validate_by_one_stm(const std::vector<std::vector<SeqStm*>> all_stm); - - bool walk_validation_common_nodes_same_tag_for_all_stm(const std::vector<std::vector<SeqStm*>> all_stm); - - std::set<NodeTmp> get_all_validate_nodes(const std::vector<std::vector<SeqStm*>> all_stm); - - std::vector<SeqStm*> getStmInit() const { - return mStmInit; - } - - StmFactory getStmFab() const { - return mStmFab; - } - - //std::set<std::pair<std::vector<NodeTmp>,std::set<NodeTmp>>> match(const std::shared_ptr<GraphView> graphToMatch); - Match match(const std::shared_ptr<GraphView> graphToMatch); - -}; - -} -#endif //__AIDGE_GREGEX_H__ \ No newline at end of file diff --git a/aidge/include/aidge/graphmatching/Match.hpp b/aidge/include/aidge/graphmatching/Match.hpp deleted file mode 100644 index 27acc2e8a0880f8c62d0ba995fcde5479bdcb501..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/graphmatching/Match.hpp +++ /dev/null @@ -1,44 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#ifndef __AIDGE_MATCH_H__ -#define __AIDGE_MATCH_H__ - -#include <vector> -#include <set> -#include <iostream> -#include <cassert> -#include "aidge/graphmatching/Utile.hpp" - - -namespace Aidge{ - -class Match { - -public: - Match(); - - size_t getNbMatch(); - - void insert(std::vector<NodeTmp> startnodes, std::set<NodeTmp> matchnodes); - - std::vector<std::vector<NodeTmp>> getStartNodes(); - - std::vector<std::set<NodeTmp>> getMatchNodes(); - -protected: - std::vector<std::vector<NodeTmp>> mStartNodes; - std::vector<std::set<NodeTmp>> mMatchNodes; - -}; - -} -#endif //__AIDGE_MATCH_H__ \ No newline at end of file diff --git a/aidge/include/aidge/graphmatching/NodeRegex.hpp b/aidge/include/aidge/graphmatching/NodeRegex.hpp deleted file mode 100644 index 387bfea46f0147613a116beac1f9c6102ed661e5..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/graphmatching/NodeRegex.hpp +++ /dev/null @@ -1,41 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#ifndef __AIDGE_NODEREGEX_H__ -#define __AIDGE_NODEREGEX_H__ -#include <cstdlib> -#include <iostream> -#include <cstring> -#include "aidge/graph/Node.hpp" - - -namespace Aidge { - -class NodeRegex -{ - public: - std::string mCondition; - - NodeRegex(const std::string c){ - mCondition = c; - }; - - // Version 1 - Only test the type of the node (no need for a lexer) - // Input : Node_op - // Output : bool - // return mCondition == Node_op.type - bool _is(std::shared_ptr<Node> &Node_op); - bool isA(std::string NodeType); -}; - -} - -#endif /* ___AIDGE_NODEREGEX_H___ */ \ No newline at end of file diff --git a/aidge/include/aidge/graphmatching/SeqStm.hpp b/aidge/include/aidge/graphmatching/SeqStm.hpp deleted file mode 100644 index 6ccd6cfcd322c4d38af2ad04cd2b3a96d839e6cd..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/graphmatching/SeqStm.hpp +++ /dev/null @@ -1,127 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#ifndef __AIDGE_SEQSTM_H__ -#define __AIDGE_SEQSTM_H__ - -#include <iostream> -#include <map> -#include <regex> -#include <set> -#include <stdexcept> // for exception, runtime_error, out_of_range -#include <string> -#include <utility> -#include <vector> - - -#include "aidge/graphmatching/NodeRegex.hpp" -#include "aidge/graphmatching/Utile.hpp" - - -namespace Aidge { - -class SeqStm { - -private: - const int mStmIdx; - const std::vector<std::vector<int>> mTransitionMatrix; - // str key of type like 'A' that ce use in the A->B .. extpr - const std::map<std::string, NodeRegex *> mNodesRegex; - // mTypeToIdxTransition.first = std::pair node_type , common_tag - // mTypeToIdxTransition.segond = idx in trans matrix - const std::map<NodeTypeKey, int> mTypeToIdxTransition; - - int mActSt; - std::set<NodeTmp> mAllNodeValidated; - std::set<NodeTmp> mAllNodeTested; - std::set<std::pair<NodeTmp, std::string>> mAllCommonNode; - bool mStmIsValid; - - std::pair<NodeRegex *, std::string> getNodeRegexAndCommonAt(int idxType); - - /** - * @brief test the stm on a type - * @return the common tag - */ - std::string transitionOnNodeType(NodeType nodeType); - -public: - SeqStm(const int mStmIdx, - const std::vector<std::vector<int>> &mTransitionMatrix, - const std::map<std::string, NodeRegex *> &mNodesRegex, - const std::map<NodeTypeKey, int> &mTypeToIdxTransition, int mActSt, - std::set<NodeTmp> mAllNodeValidated, std::set<NodeTmp> mAllNodeTested, - std::set<std::pair<NodeTmp, std::string>> mAllCommonNode, - bool mStmIsValid); - - ////////////////////////////////////// - // STM test - ///////////////////////////////////// - - /** - * @brief get if a st is a valide one - * @return bool - */ - bool isAValidSt(int st) { - std::size_t size = mTransitionMatrix.size(); - return st == static_cast<int>(size - 1) ? true : false; - } - - /** - * @brief true if the stm is blocked into st - * @return bool - */ - bool isStmBlocked() { return mActSt == -1 ? true : false; } - - /** - * @brief true if the stm into valide st - * @return bool - */ - bool isValid() { return mStmIsValid; } - - ///////////////////////////////////// - // utile - ///////////////////////////////////// - /** - * @brief extract from a node is type - * @return bool - */ - NodeType getTheNodeType(NodeTmp node); - - void drawStm(); - ///////////////////////////////////// - // geter - ///////////////////////////////////// - - std::set<std::pair<NodeTmp, std::string>> getAllCommonNode() { - return mAllCommonNode; - } - std::set<NodeTmp> getAllNodeTested() { return mAllNodeTested; } - - std::set<NodeTmp> getAllNodeValidated() { return mAllNodeValidated; } - - SeqStm *duplicateStm(); - - int getStmIdx() { return mStmIdx; } - - int getState() { return mActSt; } - ////////////////////////////////////////// - // USE - ////////////////////////////////////////// - /** - * @brief test the stm on a node - * @return pair new stm state, the common tag - */ - std::pair<int, std::string> testNode(const NodeTmp node); -}; -} // namespace Aidge - -#endif /* __AIDGE_SEQSTM_H__ */ \ No newline at end of file diff --git a/aidge/include/aidge/graphmatching/StmFactory.hpp b/aidge/include/aidge/graphmatching/StmFactory.hpp deleted file mode 100644 index 929fdaf3595038f21367768254040c45b291641b..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/graphmatching/StmFactory.hpp +++ /dev/null @@ -1,55 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#ifndef __AIDGE_STMFACTORY_H__ -#define __AIDGE_STMFACTORY_H__ - -#include <map> -#include <utility> -#include <set> -#include <string> -#include <vector> -#include <iostream> -#include <stdexcept> // for exception, runtime_error, out_of_range -#include <regex> - -#include "aidge/graphmatching/NodeRegex.hpp" -#include "aidge/graphmatching/SeqStm.hpp" -#include "aidge/graphmatching/Utile.hpp" - -namespace Aidge{ - - - -class StmFactory { - - const std::map<std::string,NodeRegex*>& mNodesRegex; - std::size_t mCmptStm = 0; -public: - StmFactory(const std::map<std::string,NodeRegex*>& nodesRegex); - //StmFactory(){}; - - SeqStm* makeNewStm(const std::string& sequRegex); - SeqStm* duplicateStm(SeqStm* stm); - - std::size_t getNumberOfStm(){ - return mCmptStm; - } -private: - - ParsingReturn initParsingSequRegex(const std::string& sequRegex); - - std::vector<std::vector<int>> initTransitionMatrix(ParsingReturn& parsing); - -}; -} - -#endif //__AIDGE_STMFACTORY_H__ \ No newline at end of file diff --git a/aidge/include/aidge/graphmatching/Utile.hpp b/aidge/include/aidge/graphmatching/Utile.hpp deleted file mode 100644 index acda78cd181519c86ab0b14d5b01bf91223cec9d..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/graphmatching/Utile.hpp +++ /dev/null @@ -1,50 +0,0 @@ - -/** - * @file - * @brief - * @version file 1.0.0 - * @author vl241552 - * @copyright - * Copyright (c) 2023 CEA, LIST, Embedded Artificial Intelligence Laboratory. - * All rights reserved. - */ - -#ifndef _utile_H_ -#define _utile_H_ - -#include <map> - -#include "aidge/graph/Node.hpp" -#include <map> - -namespace Aidge { - -using NodeTmp = std::shared_ptr<Node>; -using NodeType = std::string; -using CommonTag = std::string; -using NodeTypeKey = std::pair<NodeType, CommonTag>; - -// type def -// struct NodeTypeKey { -// NodeType nodeType; -// std::string commonTag; - -// // for map find -// bool operator<(const NodeTypeKey& other) const { -// if (nodeType != other.nodeType or commonTag != other.commonTag) { -// return false; -// } else { -// return true; -// } -// } - -// }; - -struct ParsingReturn { - std::map<NodeTypeKey, int> typeToIdxTransition; - std::vector<std::pair<NodeTypeKey, std::string>> transition; -}; - -} // namespace Aidge - -#endif //_utile_H_ \ No newline at end of file diff --git a/aidge/include/aidge/operator/Add.hpp b/aidge/include/aidge/operator/Add.hpp deleted file mode 100644 index 36e592682e61fbc178ed4623f88e9fa5f446f25d..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/operator/Add.hpp +++ /dev/null @@ -1,147 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#ifndef __AIDGE_CORE_OPERATOR_ADD_H__ -#define __AIDGE_CORE_OPERATOR_ADD_H__ - -#include <numeric> -#include <vector> -#include <cmath> -#include <memory> -#include <array> - -#include "aidge/utils/Registrar.hpp" -#include "aidge/operator/Operator.hpp" -#include "aidge/data/Tensor.hpp" -#include "aidge/graph/Node.hpp" -#include "aidge/utils/Types.h" - -namespace Aidge { - -template <std::size_t NUM> -class Add_Op : public Operator, - public Registrable<Add_Op<NUM>, std::string, std::unique_ptr<OperatorImpl>(const Add_Op<NUM>&)> { -public: - // FIXME: change accessibility - std::array<std::shared_ptr<Tensor>, NUM> mInputs; - const std::shared_ptr<Tensor> mOutput = std::make_shared<Tensor>(shared_from_this()); - -public: - static constexpr const char* Type = "Add"; - - constexpr Add_Op() - : Operator(Type), - mOutput(std::make_shared<Tensor>()) - { - assert(NUM > 0 && "Add should have at least one input"); - for (std::size_t i = 0; i<NUM; ++i) { - mInputs[i] = std::make_shared<Tensor>(); - } - setDatatype(DataType::Float32); - } - - // Data operator[](const char* inputName) override final { - // std::shared_ptr<Tensor> in = (strcmp(inputName, "data")) ? mInputs[0] : - // (strcmp(inputName, "weight") ? mInputs[1] : - // (strcmp(inputName, "bias") ? mInputs[2] : - // nullptr)); - // assert((in!=nullptr) && "No such parameter"); - // return *in; - // } - - constexpr void associateInput(const IOIndex_t inputIdx, std::shared_ptr<Data> data) override final { - assert(static_cast<std::size_t>(inputIdx) < NUM && "wrong inputIdx for Add operator."); - assert(strcmp(data->type(), Tensor::Type)==0 && "input data must be of Tensor type"); - - mInputs[inputIdx] = std::dynamic_pointer_cast<Tensor>(data); - } - - constexpr void computeOutputDims() override final { - if (!mInputs[0]->empty()) { - const auto expectedDims = mInputs[0]->dims(); - std::size_t nonEmptyInputTensor = 1; - for (; nonEmptyInputTensor<NUM && (!mInputs[nonEmptyInputTensor]->empty()); ++nonEmptyInputTensor) { - assert(expectedDims == mInputs[nonEmptyInputTensor]->dims()); - } - if (nonEmptyInputTensor == NUM) { - mOutput->resize(expectedDims); - } - } - } - - bool outputDimsForwarded() const override final { - std::size_t forwarded = 0; - for (; forwarded < NUM && (!mInputs[forwarded]->empty()); ++forwarded) {} - return ((forwarded==NUM) && !(mOutput->empty())); - } - - // void checkDims() const override final { - // assert(outputDimsForwarded()); - // for (const auto& in : mInputs) { - // assert(in->dims() == mOutput->dims()); - // } - // } - inline Tensor& input(const IOIndex_t inputIdx) const override final { - assert(static_cast<std::size_t>(inputIdx) < NUM && "wrong inputIdx for Add operator."); - return *(mInputs[inputIdx].get()); - } - inline Tensor& output(__attribute__((unused)) const IOIndex_t outputIdx) const override final { return *(mOutput.get()); } - - inline std::shared_ptr<Tensor> getInput(const IOIndex_t inputIdx) const override final { - assert(static_cast<std::size_t>(inputIdx) < NUM && "wrong inputIdx for Add operator."); - return mInputs[inputIdx]; - } - inline std::shared_ptr<Tensor> getOutput(__attribute__((unused)) const IOIndex_t outputIdx) const override final { - assert(outputIdx == 0 && "Add Operators has only 1 outputs"); - return mOutput; - } - - std::shared_ptr<Data> getRawInput(const IOIndex_t inputIdx) const override final { - assert(static_cast<std::size_t>(inputIdx) < NUM && "wrong inputIdx for Add operator."); - return std::static_pointer_cast<Data>(mInputs[inputIdx]); - } - std::shared_ptr<Data> getRawOutput(__attribute__((unused)) const IOIndex_t outputIdx) const override final { - assert(outputIdx == 0 && "operator supports only 1 output"); - return std::static_pointer_cast<Data>(mOutput); - } - - - void setBackend(const std::string& name) { - mImpl = Registrar<Add_Op<NUM>>::create(name)(*this); - mOutput->setBackend(name); - - // FIXME: temporary workaround - for (std::size_t i = 0; i < NUM; ++i) { - mInputs[i]->setBackend(name); - } - } - - void setDatatype(const DataType& datatype) { - mOutput->setDatatype(datatype); - - // FIXME: temporary workaround - for (std::size_t i = 0; i < NUM; ++i) { - mInputs[i]->setDatatype(datatype); - } - } - - inline IOIndex_t nbInputs() const noexcept override final { return NUM; } - inline IOIndex_t nbDataInputs() const noexcept override final { return NUM; } - inline IOIndex_t nbOutputs() const noexcept override final { return 1; } -}; - -template <std::size_t NUM> -inline std::shared_ptr<Node> Add(const char* name = nullptr) { - return std::make_shared<Node>(std::make_shared<Add_Op<NUM>>(), name); -} -} - -#endif /* __AIDGE_CORE_OPERATOR_ADD_H__ */ diff --git a/aidge/include/aidge/operator/AvgPooling.hpp b/aidge/include/aidge/operator/AvgPooling.hpp deleted file mode 100644 index a86942d14e531e5974c8924d8dafb8a4d0bebf85..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/operator/AvgPooling.hpp +++ /dev/null @@ -1,169 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#ifndef __AIDGE_CORE_OPERATOR_AVGPOOLING_H__ -#define __AIDGE_CORE_OPERATOR_AVGPOOLING_H__ - -#include <array> -#include <numeric> -#include <vector> -#include <cmath> - -#include "aidge/data/Tensor.hpp" -#include "aidge/graph/Node.hpp" -#include "aidge/operator/Operator.hpp" -#include "aidge/operator/Producer.hpp" -#include "aidge/utils/Parameter.hpp" -#include "aidge/utils/Registrar.hpp" -#include "aidge/utils/Types.h" - -namespace Aidge { -enum class AvgPoolingParam { StrideDims, KernelDims, PaddingDims }; - -template <DimIdx_t DIM> -class AvgPooling_Op : public Operator, - public Registrable<AvgPooling_Op<DIM>, std::string, std::unique_ptr<OperatorImpl>(const AvgPooling_Op<DIM> &)>, - public Parameterizable<AvgPoolingParam, - std::array<DimSize_t, DIM>, - std::array<DimSize_t, DIM>, - std::array<DimSize_t, (DIM<<1) >> { -private: - // FIXME: change accessibility - std::shared_ptr<Tensor> mInput = std::make_shared<Tensor>(); - const std::shared_ptr<Tensor> mOutput = std::make_shared<Tensor>(); - -public: - static constexpr const char *Type = "AvgPooling"; - - AvgPooling_Op() = delete; - - using Parameterizable_ = Parameterizable<AvgPoolingParam, - std::array<DimSize_t, DIM>, - std::array<DimSize_t, DIM>, - std::array<DimSize_t, (DIM<<1)> >; - template <AvgPoolingParam e> - using param = typename Parameterizable_::template param<e>; - - constexpr AvgPooling_Op(const std::array<DimSize_t, DIM> &kernel_dims, - const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), - const std::array<DimSize_t, (DIM<<1)> &padding_dims = create_array<DimSize_t,(DIM<<1)>(0)) - : Operator(Type), - Parameterizable_(param<AvgPoolingParam::StrideDims>(stride_dims), - param<AvgPoolingParam::KernelDims>(kernel_dims), - param<AvgPoolingParam::PaddingDims>(padding_dims)), - mOutput(std::make_shared<Tensor>()) { - setDatatype(DataType::Float32); - } - - constexpr void associateInput(__attribute__((unused)) const IOIndex_t inputIdx, std::shared_ptr<Data> data) override final { - assert(inputIdx < 1 && "operators supports only 3 inputs"); - assert(strcmp(data->type(), Tensor::Type) == 0 && "input data must be of Tensor type"); - - mInput = std::dynamic_pointer_cast<Tensor>(data); - } - - constexpr void computeOutputDims() override final { - if (!mInput->empty()) { - std::array<DimSize_t, DIM + 2> outputDims = {}; - - for (std::size_t dim = 0; dim < this->template get<AvgPoolingParam::KernelDims>().size() ; ++dim) { - outputDims[dim+2] = 1 + static_cast<DimSize_t>( - std::floor(static_cast<float>(mInput->dims()[dim+2] - - this->template get<AvgPoolingParam::KernelDims>()[dim] + - this->template get<AvgPoolingParam::PaddingDims>()[dim] + - this->template get<AvgPoolingParam::PaddingDims>()[dim+DIM]) / - static_cast<float>(this->template get<AvgPoolingParam::StrideDims>()[dim]))); - } - outputDims[1] = mInput->dims()[1]; - outputDims[0] = mInput->dims()[0]; - mOutput->resize(outputDims); - } - } - - bool outputDimsForwarded() const override final { return !(mOutput->empty()); } - - - inline Tensor& input(__attribute__((unused)) const IOIndex_t inputIdx) const override final { - assert(inputIdx == 0 && "operators supports only 1 inputs"); - return *(mInput.get()); - } - inline Tensor& output(__attribute__((unused)) const IOIndex_t outputIdx) const override final { return *(mOutput.get()); } - - - inline std::shared_ptr<Tensor> getInput(__attribute__((unused)) const IOIndex_t inputIdx) const override final { - assert(inputIdx == 0 && "AvgPooling Operators supports only 1 inputs"); - return mInput; - } - inline std::shared_ptr<Tensor> getOutput(__attribute__((unused)) const IOIndex_t outputIdx) const override final { - assert(outputIdx == 0 && "AvgPooling Operators has only 1 outputs"); - return mOutput; - } - - - std::shared_ptr<Data> getRawInput(__attribute__((unused)) const IOIndex_t inputIdx) const override final { - assert(inputIdx == 0 && "operators supports only 1 inputs"); - return std::static_pointer_cast<Data>(mInput); - } - std::shared_ptr<Data> getRawOutput(__attribute__((unused)) const IOIndex_t outputIdx) const override final { - assert(outputIdx == 0 && "operator supports only 1 output"); - return std::static_pointer_cast<Data>(mOutput); - } - - - void setBackend(const std::string &name) { - mImpl = Registrar<AvgPooling_Op<DIM>>::create(name)(*this); - mOutput->setBackend(name); - - // FIXME: temporary workaround - mInput->setBackend(name); - } - - void setDatatype(const DataType &datatype) { - mOutput->setDatatype(datatype); - - // FIXME: temporary workaround - mInput->setDatatype(datatype); - } - - inline IOIndex_t nbInputs() const noexcept override final { return 1; } - inline IOIndex_t nbDataInputs() const noexcept override final { return 1; } - inline IOIndex_t nbOutputs() const noexcept override final { return 1; } -}; - -template <std::array<DimSize_t, 1>::size_type DIM> -inline std::shared_ptr<Node> AvgPooling(const std::array<DimSize_t, DIM> &kernel_dims, - const char *name = nullptr, - const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), - const std::array<DimSize_t, (DIM<<1)> &padding_dims = create_array<DimSize_t,(DIM<<1)>(0)) { - // FIXME: properly handle default w&b initialization in every cases - static_assert(DIM<=MaxDim,"Too many kernel dimensions required by AvgPooling, not supported"); - auto avgPool = std::make_shared<Node>(std::make_shared<AvgPooling_Op<static_cast<DimIdx_t>(DIM)>>(kernel_dims, stride_dims, padding_dims), name); - return avgPool; -} - -template <DimSize_t DIM> -inline std::shared_ptr<Node> AvgPooling( - DimSize_t const (&kernel_dims)[DIM], - const char *name = nullptr, - const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), - const std::array<DimSize_t, (DIM<<1)> &padding_dims = create_array<DimSize_t,(DIM<<1)>(0)) { - static_assert(DIM<=MaxDim,"Too many kernel dimensions required by AvgPooling, not supported"); - return AvgPooling(to_array(kernel_dims), name, stride_dims, padding_dims); -} -} // namespace Aidge - -namespace { -template <> -const char *const EnumStrings<Aidge::AvgPoolingParam>::data[] = {"StrideDims", - "KernelDims", "PaddingDims"}; -} - -#endif /* __AIDGE_CORE_OPERATOR_AVGPOOLING_H__ */ diff --git a/aidge/include/aidge/operator/BatchNorm.hpp b/aidge/include/aidge/operator/BatchNorm.hpp deleted file mode 100644 index 6c64ae44c04f9a8f37d0dde14b251da94ce72a3f..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/operator/BatchNorm.hpp +++ /dev/null @@ -1,161 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#ifndef __AIDGE_CORE_OPERATOR_BATCHNORM_H__ -#define __AIDGE_CORE_OPERATOR_BATCHNORM_H__ - -#include <array> -#include <memory> -#include <vector> - -#include "aidge/utils/Types.h" -#include "aidge/data/Tensor.hpp" -#include "aidge/graph/Node.hpp" -#include "aidge/operator/Operator.hpp" -#include "aidge/operator/Producer.hpp" -#include "aidge/utils/Parameter.hpp" -#include "aidge/utils/Registrar.hpp" - -namespace Aidge { -enum class BatchNormParam { Epsilon, Momentum }; - - -template <DimIdx_t DIM> -class BatchNorm_Op : public Operator, - public Registrable<BatchNorm_Op<DIM>, std::string, std::unique_ptr<OperatorImpl>(const BatchNorm_Op<DIM> &)>, - public Parameterizable<BatchNormParam, float, float> { -public: - // FIXME: change accessibility - std::array<std::shared_ptr<Tensor>, 5> mInputs = {std::make_shared<Tensor>(), std::make_shared<Tensor>(), - std::make_shared<Tensor>(), std::make_shared<Tensor>(), - std::make_shared<Tensor>()}; - const std::shared_ptr<Tensor> mOutput = std::make_shared<Tensor>(); - - public: - static constexpr const char *Type = "BatchNorm"; - - BatchNorm_Op() = delete; - - using Parameterizable_ = Parameterizable<BatchNormParam, float, float>; - template <BatchNormParam e> - using param = typename Parameterizable_::template param<e>; - - constexpr BatchNorm_Op(float epsilon, float momentum) - : Operator(Type), - Parameterizable_(param<BatchNormParam::Epsilon>(epsilon), - param<BatchNormParam::Momentum>(momentum)), - mOutput(std::make_shared<Tensor>()) { - setDatatype(DataType::Float32); - } - - // Data operator[](const char* inputName) override final { - // std::shared_ptr<Tensor> in = (strcmp(inputName, "data")) ? mInputs[0] : - // (strcmp(inputName, "weight") ? mInputs[1] : - // (strcmp(inputName, "bias") ? mInputs[2] : - // nullptr)); - // assert((in!=nullptr) && "No such parameter"); - // return *in; - // } - - constexpr void associateInput(__attribute__((unused)) const IOIndex_t inputIdx, std::shared_ptr<Data> data) override final { - assert(inputIdx < 5 && "operators supports only 5 inputs"); - assert(strcmp(data->type(), Tensor::Type) == 0 && "input data must be of Tensor type"); - - mInputs[inputIdx] = std::dynamic_pointer_cast<Tensor>(data); - } - - constexpr void computeOutputDims() override final { - if (!mInputs[0]->empty()) { - for (std::size_t i = nbDataInputs(); i < nbInputs(); ++i) { - if(mInputs[i]->size() != mInputs[0]->dims()[1]) { - assert(!mInputs[0]->hasImpl() && "Incompatible size with already implemented learnable parameter"); - mInputs[i]->resize(std::array<DimSize_t, 1>({mInputs[0]->dims()[1]})); - } - } - mOutput->resize(mInputs[0]->dims()); - } - } - - bool outputDimsForwarded() const override final { return !(mOutput->empty()); } - - inline Tensor& input(const IOIndex_t inputIdx) const override final { - assert(inputIdx < 5 && "operators supports only 5 inputs"); - return *(mInputs[inputIdx].get()); } - - inline Tensor& output(__attribute__((unused)) const IOIndex_t outputIdx) const override final { return *(mOutput.get()); } - - - inline std::shared_ptr<Tensor> getInput(const IOIndex_t inputIdx) const override final { - assert(inputIdx < 5 && "BatchNorm Operators supports only 5 inputs"); - return mInputs[inputIdx]; - } - inline std::shared_ptr<Tensor> getOutput(__attribute__((unused)) const IOIndex_t outputIdx) const override final { - assert((outputIdx == 0) && "BatchNorm Operator has only 1 output"); - return mOutput; - } - - - std::shared_ptr<Data> getRawInput(const IOIndex_t inputIdx) const override final { - assert(inputIdx < 5 && "operators supports only 5 inputs"); - return std::static_pointer_cast<Data>(mInputs[inputIdx]); - } - std::shared_ptr<Data> getRawOutput(__attribute__((unused)) const IOIndex_t outputIdx) const override final { - assert(outputIdx == 0 && "operator supports only 1 output"); - return std::static_pointer_cast<Data>(mOutput); - } - - - void setBackend(const std::string &name) { - mImpl = Registrar<BatchNorm_Op<DIM>>::create(name)(*this); - mOutput->setBackend(name); - - // FIXME: temporary workaround - mInputs[1]->setBackend(name); - mInputs[2]->setBackend(name); - mInputs[3]->setBackend(name); - mInputs[4]->setBackend(name); - } - - void setDatatype(const DataType &datatype) { - mOutput->setDatatype(datatype); - - // FIXME: temporary workaround - mInputs[1]->setDatatype(datatype); - mInputs[2]->setDatatype(datatype); - mInputs[3]->setDatatype(datatype); - mInputs[4]->setDatatype(datatype); - } - - inline IOIndex_t nbInputs() const noexcept override final { return 5; } - inline IOIndex_t nbDataInputs() const noexcept override final { return 1; } - inline IOIndex_t nbOutputs() const noexcept override final { return 1; } -}; - -template <DimSize_t DIM> -inline std::shared_ptr<Node> BatchNorm(const float epsilon = 1.0e-5F, - const float momentum = 0.1F, - const char *name = nullptr) { - static_assert(DIM<=MaxDim,"Too many kernel dimensions required by BatchNorm, not supported"); - auto batchNorm = std::make_shared<Node>(std::make_shared<BatchNorm_Op<static_cast<DimIdx_t>(DIM)>>(epsilon, momentum), name); - addProducer(batchNorm, 1, std::array<DimSize_t,0>({}), "scale"); - addProducer(batchNorm, 2, std::array<DimSize_t,0>({}), "shift"); - addProducer(batchNorm, 3, std::array<DimSize_t,0>({}), "batch_mean"); - addProducer(batchNorm, 4, std::array<DimSize_t,0>({}), "batch_variance"); - return batchNorm; -} -} // namespace Aidge - -namespace { -template <> -const char *const EnumStrings<Aidge::BatchNormParam>::data[] = { "Epsilon", "Momentum" }; -} - -#endif // __AIDGE_CORE_OPERATOR_BATCHNORM_H__ \ No newline at end of file diff --git a/aidge/include/aidge/operator/Conv.hpp b/aidge/include/aidge/operator/Conv.hpp deleted file mode 100644 index babeac443dd8d51a8b9d3de5a2e96b8745636060..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/operator/Conv.hpp +++ /dev/null @@ -1,200 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#ifndef __AIDGE_CORE_OPERATOR_CONV_H__ -#define __AIDGE_CORE_OPERATOR_CONV_H__ - -#include <array> -#include <cmath> -#include <numeric> -#include <vector> - -#include "aidge/data/Tensor.hpp" -#include "aidge/graph/Node.hpp" -#include "aidge/operator/Operator.hpp" -#include "aidge/operator/Producer.hpp" -#include "aidge/utils/Parameter.hpp" -#include "aidge/utils/Registrar.hpp" -#include "aidge/utils/Types.h" - -namespace Aidge { -enum class ConvParam { StrideDims, DilationDims, InChannels, OutChannels, KernelDims, PaddingDims }; - -template <DimIdx_t DIM> -class Conv_Op : public Operator, - public Registrable<Conv_Op<DIM>, std::string, std::unique_ptr<OperatorImpl>(const Conv_Op<DIM> &)>, - public Parameterizable<ConvParam, std::array<DimSize_t, DIM>, std::array<DimSize_t, DIM>, DimSize_t, - DimSize_t, std::array<DimSize_t, DIM>, std::array<DimSize_t, (DIM<<1) >> { -public: - // FIXME: change accessibility - std::array<std::shared_ptr<Tensor>, 3> mInputs = {std::make_shared<Tensor>(), std::make_shared<Tensor>(), - std::make_shared<Tensor>()}; - const std::shared_ptr<Tensor> mOutput = std::make_shared<Tensor>(); - - public: - static constexpr const char *Type = "Conv"; - - Conv_Op() = delete; - - using Parameterizable_ = Parameterizable<ConvParam, std::array<DimSize_t, DIM>, std::array<DimSize_t, DIM>, - DimSize_t, DimSize_t, std::array<DimSize_t, DIM>, std::array<DimSize_t, (DIM<<1) >>; - template <ConvParam e> - using param = typename Parameterizable_::template param<e>; - - constexpr Conv_Op(DimSize_t in_channels, - DimSize_t out_channels, - const std::array<DimSize_t, DIM> &kernel_dims, - const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), - const std::array<DimSize_t, (DIM<<1)> &padding_dims = create_array<DimSize_t,(DIM<<1)>(0), - const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1)) - : Operator(Type), - Parameterizable_(param<ConvParam::StrideDims>(stride_dims), - param<ConvParam::DilationDims>(dilation_dims), - param<ConvParam::InChannels>(in_channels), - param<ConvParam::OutChannels>(out_channels), - param<ConvParam::KernelDims>(kernel_dims), - param<ConvParam::PaddingDims>(padding_dims)), - mOutput(std::make_shared<Tensor>()) { - setDatatype(DataType::Float32); - } - - // Data operator[](const char* inputName) override final { - // std::shared_ptr<Tensor> in = (strcmp(inputName, "data")) ? mInputs[0] : - // (strcmp(inputName, "weight") ? mInputs[1] : - // (strcmp(inputName, "bias") ? mInputs[2] : - // nullptr)); - // assert((in!=nullptr) && "No such parameter"); - // return *in; - // } - - // std::shared_ptr<Conv_Op> clone() const override final { - - // } - - constexpr void associateInput(__attribute__((unused)) const IOIndex_t inputIdx, std::shared_ptr<Data> data) override final { - assert(inputIdx < 3 && "operators supports only 3 inputs"); - assert(strcmp(data->type(), Tensor::Type) == 0 && "input data must be of Tensor type"); - - mInputs[inputIdx] = std::dynamic_pointer_cast<Tensor>(data); - } - - constexpr void computeOutputDims() override final { - if (!mInputs[0]->empty()) { - std::array<DimSize_t, DIM + 2> outputDims = {}; - - for (std::size_t dim = 0; dim < this->template get<ConvParam::KernelDims>().size() ; ++dim) { - const DimSize_t kernelExtent = this->template get<ConvParam::DilationDims>()[dim] * - (this->template get<ConvParam::KernelDims>()[dim] - 1) + - 1; - - outputDims[dim+2] = 1 + static_cast<DimSize_t>( - floor(static_cast<float>(mInputs[0]->dims()[dim+2] - kernelExtent + - this->template get<ConvParam::PaddingDims>()[dim] + - this->template get<ConvParam::PaddingDims>()[dim+DIM]) / - static_cast<float>(this->template get<ConvParam::StrideDims>()[dim]))); - } - - outputDims[1] = this->template get<ConvParam::OutChannels>(); - outputDims[0] = mInputs[0]->dims()[0]; - mOutput->resize(outputDims); - } - } - - bool outputDimsForwarded() const override final { return !(mOutput->empty()); } - - - inline Tensor& input(const IOIndex_t inputIdx) const override final { - assert(inputIdx < 3 && "operators supports only 3 inputs"); - return *(mInputs[inputIdx].get()); } - inline Tensor& output(__attribute__((unused)) const IOIndex_t outputIdx) const override final { return *(mOutput.get()); } - - - inline std::shared_ptr<Tensor> getInput(const IOIndex_t inputIdx) const override final { - assert(inputIdx < 3 && "Conv Operators supports only 3 inputs"); - return mInputs[inputIdx]; - } - inline std::shared_ptr<Tensor> getOutput(__attribute__((unused)) const IOIndex_t outputIdx) const override final { - assert((outputIdx == 0) && "Conv Operator has only 1 output"); - return mOutput; - } - - - std::shared_ptr<Data> getRawInput(const IOIndex_t inputIdx) const override final { - assert(inputIdx < 3 && "operators supports only 3 inputs"); - return std::static_pointer_cast<Data>(mInputs[inputIdx]); - } - std::shared_ptr<Data> getRawOutput(__attribute__((unused)) const IOIndex_t outputIdx) const override final { - assert(outputIdx == 0 && "operator supports only 1 output"); - return std::static_pointer_cast<Data>(mOutput); - } - - - void setBackend(const std::string &name) { - mImpl = Registrar<Conv_Op<DIM>>::create(name)(*this); - mOutput->setBackend(name); - - // FIXME: temporary workaround - mInputs[1]->setBackend(name); - mInputs[2]->setBackend(name); - } - - void setDatatype(const DataType &datatype) { - mOutput->setDatatype(datatype); - - // FIXME: temporary workaround - mInputs[0]->setDatatype(datatype); - mInputs[1]->setDatatype(datatype); - mInputs[2]->setDatatype(datatype); - } - - inline IOIndex_t nbInputs() const noexcept override final { return 3; } - inline IOIndex_t nbDataInputs() const noexcept override final { return 1; } - inline IOIndex_t nbOutputs() const noexcept override final { return 1; } -}; - -template <std::array<DimSize_t, 1>::size_type DIM> -inline std::shared_ptr<Node> Conv(DimSize_t in_channels, - DimSize_t out_channels, - const std::array<DimSize_t, DIM> &kernel_dims, - const char *name = nullptr, - const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), - const std::array<DimSize_t, (DIM<<1)> &padding_dims = create_array<DimSize_t,(DIM<<1)>(0), - const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1)) { - // FIXME: properly handle default w&b initialization in every cases - static_assert(DIM<=MaxDim,"Too many kernel dimensions required by Conv, not supported"); - auto conv = std::make_shared<Node>(std::make_shared<Conv_Op<static_cast<DimIdx_t>(DIM)>>(in_channels, out_channels, kernel_dims, stride_dims, padding_dims, dilation_dims), name); - // addProducer(conv, 1, append(append(kernel_dims, in_channels), out_channels), "w"); - addProducer(conv, 1, append(out_channels, append(in_channels, kernel_dims)), "w"); - addProducer(conv, 2, {out_channels}, "b"); - return conv; -} - -template <DimSize_t DIM> -inline std::shared_ptr<Node> Conv( - DimSize_t in_channels, - DimSize_t out_channels, - DimSize_t const (&kernel_dims)[DIM], - const char *name = nullptr, - const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), - const std::array<DimSize_t, (DIM<<1)> &padding_dims = create_array<DimSize_t,(DIM<<1)>(0), - const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1)) { - static_assert(DIM<=MaxDim,"Too many kernel dimensions required by Conv, not supported"); - return Conv(in_channels, out_channels, to_array(kernel_dims), name, stride_dims, padding_dims, dilation_dims); -} -} // namespace Aidge - -namespace { -template <> -const char *const EnumStrings<Aidge::ConvParam>::data[] = {"StrideDims", "DilationDims", "InChannels", "OutChannels", - "KernelDims", "PaddingDims"}; -} - -#endif /* __AIDGE_CORE_OPERATOR_CONV_H__ */ diff --git a/aidge/include/aidge/operator/ConvDepthWise.hpp b/aidge/include/aidge/operator/ConvDepthWise.hpp deleted file mode 100644 index 7cbc609798064e993c7744fdf08865d897518a89..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/operator/ConvDepthWise.hpp +++ /dev/null @@ -1,196 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#ifndef __AIDGE_CORE_OPERATOR_CONVDEPTHWISE_H__ -#define __AIDGE_CORE_OPERATOR_CONVDEPTHWISE_H__ - -#include <array> -#include <cmath> -#include <numeric> -#include <vector> - -#include "aidge/data/Tensor.hpp" -#include "aidge/graph/Node.hpp" -#include "aidge/operator/Operator.hpp" -#include "aidge/operator/Producer.hpp" -#include "aidge/utils/Parameter.hpp" -#include "aidge/utils/Registrar.hpp" -#include "aidge/utils/Types.h" - -namespace Aidge { -enum class ConvDepthWiseParam { StrideDims, DilationDims, Channels, KernelDims, PaddingDims }; - -template <DimIdx_t DIM> -class ConvDepthWise_Op : public Operator, - public Registrable<ConvDepthWise_Op<DIM>, std::string, std::unique_ptr<OperatorImpl>(const ConvDepthWise_Op<DIM> &)>, - public Parameterizable<ConvDepthWiseParam, - std::array<DimSize_t, DIM>, - std::array<DimSize_t, DIM>, - DimSize_t, - std::array<DimSize_t, DIM>, - std::array<DimSize_t, (DIM<<1) >> { - public: - // FIXME: change accessibility - std::array<std::shared_ptr<Tensor>, 3> mInputs = {std::make_shared<Tensor>(), std::make_shared<Tensor>(), - std::make_shared<Tensor>()}; - const std::shared_ptr<Tensor> mOutput = std::make_shared<Tensor>(); - - public: - static constexpr const char *Type = "ConvDepthWise"; - - ConvDepthWise_Op() = delete; - - using Parameterizable_ = Parameterizable<ConvDepthWiseParam, - std::array<DimSize_t, DIM>, - std::array<DimSize_t, DIM>, - DimSize_t, - std::array<DimSize_t, DIM>, - std::array<DimSize_t, (DIM<<1) >>; - template <ConvDepthWiseParam e> - using param = typename Parameterizable_::template param<e>; - - constexpr ConvDepthWise_Op(const std::array<DimSize_t, DIM> &kernel_dims, - const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), - const std::array<DimSize_t, (DIM<<1)> &padding_dims = create_array<DimSize_t,(DIM<<1)>(0), - const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1)) - : Operator(Type), - Parameterizable_(param<ConvDepthWiseParam::StrideDims>(stride_dims), - param<ConvDepthWiseParam::DilationDims>(dilation_dims), - param<ConvDepthWiseParam::Channels>(0), - param<ConvDepthWiseParam::KernelDims>(kernel_dims), - param<ConvDepthWiseParam::PaddingDims>(padding_dims)), - mOutput(std::make_shared<Tensor>()) { - setDatatype(DataType::Float32); - } - - constexpr void associateInput(__attribute__((unused)) const IOIndex_t inputIdx, std::shared_ptr<Data> data) override final { - assert(inputIdx < 3 && "operators supports only 3 inputs"); - assert(strcmp(data->type(), Tensor::Type) == 0 && "input data must be of Tensor type"); - - mInputs[inputIdx] = std::dynamic_pointer_cast<Tensor>(data); - } - - constexpr void computeOutputDims() override final { - if (!mInputs[0]->empty()) { - std::array<DimSize_t, DIM + 2> outputDims = {}; - - for (std::size_t dim = 0; dim < this->template get<ConvDepthWiseParam::KernelDims>().size() ; ++dim) { - const DimSize_t kernelExtent = this->template get<ConvDepthWiseParam::DilationDims>()[dim] * - (this->template get<ConvDepthWiseParam::KernelDims>()[dim] - 1) + - 1; - - outputDims[dim+2] = 1 + static_cast<DimSize_t>( - floor(static_cast<float>(mInputs[0]->dims()[dim+2] - kernelExtent + - this->template get<ConvDepthWiseParam::PaddingDims>()[dim] + - this->template get<ConvDepthWiseParam::PaddingDims>()[dim+DIM]) / - static_cast<float>(this->template get<ConvDepthWiseParam::StrideDims>()[dim]))); - } - this->template get<ConvDepthWiseParam::Channels>() = mInputs[0]->dims()[1]; - // std::array<DimSize_t, DIM+2> weightDims = append(mInputs[0]->dims()[1],append(1, this->template get<ConvDepthWiseParam::KernelDims>())); - // if (mInputs[1]->empty()) { - // mInputs[1]->resize(weightDims); - // } - // if (mInputs[2]->empty()) { - // mInputs[2]->resize({mInputs[0]->dims()[1]}); - // } - outputDims[1] = mInputs[0]->dims()[1]; - outputDims[0] = mInputs[0]->dims()[0]; - mOutput->resize(outputDims); - } - } - - bool outputDimsForwarded() const override final { return !(mOutput->empty()); } - - - inline Tensor& input(const IOIndex_t inputIdx) const override final { - assert(inputIdx < 3 && "operators supports only 3 inputs"); - return *(mInputs[inputIdx].get()); - } - inline Tensor& output(__attribute__((unused)) const IOIndex_t outputIdx) const override final { return *(mOutput.get()); } - - - inline std::shared_ptr<Tensor> getInput(const IOIndex_t inputIdx) const override final { - assert(inputIdx < 3 && "ConvDepthWise Operators supports only 3 inputs"); - return mInputs[inputIdx]; - } - inline std::shared_ptr<Tensor> getOutput(__attribute__((unused)) const IOIndex_t outputIdx) const override final { - assert((outputIdx == 0) && "ConvDepthWise Operator has only 1 output"); - return mOutput; - } - - - std::shared_ptr<Data> getRawInput(const IOIndex_t inputIdx) const override final { - assert(inputIdx < 3 && "operators supports only 3 inputs"); - return std::static_pointer_cast<Data>(mInputs[inputIdx]); - } - std::shared_ptr<Data> getRawOutput(__attribute__((unused)) const IOIndex_t outputIdx) const override final { - assert(outputIdx == 0 && "operator supports only 1 output"); - return std::static_pointer_cast<Data>(mOutput); - } - - - - void setBackend(const std::string &name) { - mImpl = Registrar<ConvDepthWise_Op<DIM>>::create(name)(*this); - mOutput->setBackend(name); - - // FIXME: temporary workaround - mInputs[1]->setBackend(name); - mInputs[2]->setBackend(name); - } - - void setDatatype(const DataType &datatype) { - mOutput->setDatatype(datatype); - - // FIXME: temporary workaround - mInputs[0]->setDatatype(datatype); - mInputs[1]->setDatatype(datatype); - mInputs[2]->setDatatype(datatype); - } - - inline IOIndex_t nbInputs() const noexcept override final { return 3; } - inline IOIndex_t nbDataInputs() const noexcept override final { return 1; } - inline IOIndex_t nbOutputs() const noexcept override final { return 1; } -}; - -template <std::array<DimSize_t, 1>::size_type DIM> -inline std::shared_ptr<Node> ConvDepthWise(const std::array<DimSize_t, DIM> &kernel_dims, - const char *name = nullptr, - const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), - const std::array<DimSize_t, (DIM<<1)> &padding_dims = create_array<DimSize_t,(DIM<<1)>(0), - const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1)) { - // FIXME: properly handle default w&b initialization in every cases - static_assert(DIM<=MaxDim,"Too many kernel dimensions required by ConvDepthWise, not supported"); - auto convDW = std::make_shared<Node>(std::make_shared<ConvDepthWise_Op<static_cast<DimIdx_t>(DIM)>>(kernel_dims, stride_dims, padding_dims, dilation_dims), name); - addProducer(convDW, 1, std::array<DimSize_t,0>({}), "w"); - addProducer(convDW, 2, std::array<DimSize_t,0>({}), "b"); - return convDW; -} - -template <DimSize_t DIM> -inline std::shared_ptr<Node> ConvDepthWise( - DimSize_t const (&kernel_dims)[DIM], - const char *name = nullptr, - const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), - const std::array<DimSize_t, (DIM<<1)> &padding_dims = create_array<DimSize_t,(DIM<<1)>(0), - const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1)) { - static_assert(DIM<=MaxDim,"Too many kernel dimensions required by ConvDepthWise, not supported"); - return ConvDepthWise(to_array(kernel_dims), name, stride_dims, padding_dims, dilation_dims); -} -} // namespace Aidge - -namespace { -template <> -const char *const EnumStrings<Aidge::ConvDepthWiseParam>::data[] = {"StrideDims", "DilationDims", "Channels", - "KernelDims", "PaddingDims"}; -} - -#endif /* __AIDGE_CORE_OPERATOR_CONVDEPTHWISE_H__ */ diff --git a/aidge/include/aidge/operator/FC.hpp b/aidge/include/aidge/operator/FC.hpp deleted file mode 100644 index ebd3a8826dbca292b57f4d3cae749f4e1d7968c8..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/operator/FC.hpp +++ /dev/null @@ -1,155 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#ifndef __AIDGE_CORE_OPERATOR_FC_H__ -#define __AIDGE_CORE_OPERATOR_FC_H__ - -#include <array> -#include <cmath> -#include <numeric> -#include <memory> -#include <vector> - -#include "aidge/utils/Types.h" -#include "aidge/data/Tensor.hpp" -#include "aidge/graph/Node.hpp" -#include "aidge/operator/Operator.hpp" -#include "aidge/operator/Producer.hpp" -#include "aidge/utils/Parameter.hpp" -#include "aidge/utils/Registrar.hpp" - -namespace Aidge { -enum class FCParam { OutChannels, NoBias }; - -class FC_Op : public Operator, - public Registrable<FC_Op, - std::string, - std::unique_ptr<OperatorImpl>(const FC_Op &)>, - public Parameterizable<FCParam, DimSize_t, bool> { -public: - // FIXME: change accessibility - std::array<std::shared_ptr<Tensor>, 3> mInputs = {std::make_shared<Tensor>(), std::make_shared<Tensor>(), std::make_shared<Tensor>()}; - const std::shared_ptr<Tensor> mOutput = std::make_shared<Tensor>(); - -public: - static constexpr const char* Type = "FC"; - - FC_Op() = delete; - - using Parameterizable_ = Parameterizable<FCParam, DimSize_t, bool>; - template <FCParam e> using param = typename Parameterizable_::template param<e>; - - FC_Op(DimSize_t out_channels, bool noBias) - : Operator(Type), - Parameterizable_( - param<FCParam::OutChannels>(out_channels), - param<FCParam::NoBias>(noBias)), - mOutput(std::make_shared<Tensor>()) - { - setDatatype(DataType::Float32); - } - - void associateInput(__attribute__((unused)) const IOIndex_t inputIdx, std::shared_ptr<Data> data) override final { - assert(inputIdx < 3 && "operators supports only 3 inputs"); - assert(strcmp(data->type(), Tensor::Type)==0 && "input data must be of Tensor type"); - if (inputIdx == 2) { - assert(std::dynamic_pointer_cast<Tensor>(data)->size() == ((this->template get<FCParam::NoBias>()) == false ? static_cast<std::size_t>(this->template get<FCParam::OutChannels>()) : 0)); - assert(std::dynamic_pointer_cast<Tensor>(data)->nbDims() == 1); - } - mInputs[inputIdx] = std::dynamic_pointer_cast<Tensor>(data); - if (inputIdx == 0 && mInputs[0]->nbDims() == 1) - mInputs[inputIdx]->resize(std::array<DimSize_t, 2>({1, mInputs[inputIdx]->size()})); - } - - void computeOutputDims() override final { - if (!mInputs[0]->empty()) { - // <in_features**, out_channels> - std::array<DimSize_t, 2> weightDims = {this->template get<FCParam::OutChannels>(), static_cast<DimSize_t>(mInputs[0]->sizeM1())}; - // <out_channels, batch> - std::array<DimSize_t, 2> outputDims = {mInputs[0]->dims()[0], this->template get<FCParam::OutChannels>()}; - - mInputs[1]->resize(weightDims); - mOutput->resize(outputDims); - } - } - - bool outputDimsForwarded() const override final { - return !(mOutput->empty()); - } - - - inline Tensor& input(const IOIndex_t inputIdx) const override final { - assert(inputIdx < 3 && "operators supports only 3 inputs"); - return *(mInputs[inputIdx].get()); } - inline Tensor& output(__attribute__((unused)) const IOIndex_t inputIdx) const override final { return *(mOutput.get()); } - - - inline std::shared_ptr<Tensor> getInput(const IOIndex_t inputIdx) const override final { - assert(inputIdx < 3 && "FC Operators supports only 3 inputs"); - return mInputs[inputIdx]; - } - inline std::shared_ptr<Tensor> getOutput(__attribute__((unused)) const IOIndex_t outputIdx) const override final { - assert((outputIdx == 0) && "FC Operator has only 1 output"); - return mOutput; - } - - - std::shared_ptr<Data> getRawInput(const IOIndex_t inputIdx) const override final { - assert(inputIdx < 3 && "operators supports only 3 inputs"); - return std::static_pointer_cast<Data>(mInputs[inputIdx]); - } - std::shared_ptr<Data> getRawOutput(__attribute__((unused)) const IOIndex_t outputIdx) const override final { - assert(outputIdx == 0 && "operator supports only 1 output"); - return std::static_pointer_cast<Data>(mOutput); - } - - - void setBackend(const std::string& name) { - mImpl = Registrar<FC_Op>::create(name)(*this); - mOutput->setBackend(name); - - // FIXME: temporary workaround - mInputs[0]->setBackend(name); - mInputs[1]->setBackend(name); - mInputs[2]->setBackend(name); - } - - void setDatatype(const DataType& datatype) { - mOutput->setDatatype(datatype); - - // FIXME: temporary workaround - mInputs[0]->setDatatype(datatype); - mInputs[1]->setDatatype(datatype); - mInputs[2]->setDatatype(datatype); - } - - - inline IOIndex_t nbInputs() const noexcept override final { return 3; } - inline IOIndex_t nbDataInputs() const noexcept override final { return 1; } - inline IOIndex_t nbOutputs() const noexcept override final { return 1; } -}; - -inline std::shared_ptr<Node> FC(DimSize_t out_channels, bool noBias = false, const char* name = nullptr) { - // FIXME: properly handle default w&b initialization in every cases - auto fc = std::make_shared<Node>(std::make_shared<FC_Op>(out_channels, noBias), name); - addProducer(fc, 1, {out_channels, 1}, "w"); - addProducer(fc, 2, {(noBias ? 0 : out_channels)}, "b"); // already sets bias dims - return fc; -} -} // namespace Aidge - -namespace { -template <> -const char *const EnumStrings<Aidge::FCParam>::data[] = {"OutChannels", - "NoBias"}; -} - -#endif /* __AIDGE_CORE_OPERATOR_FC_H__ */ \ No newline at end of file diff --git a/aidge/include/aidge/operator/GenericOperator.hpp b/aidge/include/aidge/operator/GenericOperator.hpp deleted file mode 100644 index c8b162919cf381b9659b2d8788c4ad49ce57304e..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/operator/GenericOperator.hpp +++ /dev/null @@ -1,171 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#ifndef __AIDGE_CORE_OPERATOR_GENERICOPERATOR_H__ -#define __AIDGE_CORE_OPERATOR_GENERICOPERATOR_H__ - -#include <memory> -#include <vector> -#include <string> -#include <cassert> -#include <iostream> -#include <type_traits> // is_same<U, T> - -#include "aidge/graph/Node.hpp" -#include "aidge/operator/Operator.hpp" -#include "aidge/utils/CParameter.hpp" -#include "aidge/utils/Registrar.hpp" -#include "aidge/utils/Types.h" - -namespace Aidge { -class GenericOperator_Op - : public Operator, - public Registrable<GenericOperator_Op, std::string, std::unique_ptr<OperatorImpl>(std::shared_ptr<GenericOperator_Op>)> { - private: - CParameter mParams; - IOIndex_t mNbDataIn; - IOIndex_t mNbIn; - IOIndex_t mNbOut; - std::vector<std::shared_ptr<Tensor>> mInputs; - std::vector<std::shared_ptr<Tensor>> mOutputs; - - public: - GenericOperator_Op(const char *type, IOIndex_t nbDataIn, IOIndex_t nbIn, IOIndex_t nbOut) - : Operator(type), mNbDataIn(nbDataIn), mNbIn(nbIn), mNbOut(nbOut) - { - mInputs = std::vector<std::shared_ptr<Tensor>>(nbIn); - for (std::size_t i = 0; i < nbIn; ++i) { - mInputs[i] = std::make_shared<Tensor>(); - } - mOutputs = std::vector<std::shared_ptr<Tensor>>(nbOut); - for (std::size_t i = 0; i < nbOut; ++i) { - mOutputs[i] = std::make_shared<Tensor>(); - } - } - - /** - * @brief Get the Parameter object identified by its name. - * @tparam T expected parameter type. - * @param key Parameter name. - * @details assert if T is not the actual parameter type, if the parameter - * does not exist or internal parameter position is invalid. - * @todo Returning a T const& ? But dangerous => may get an address within - * param buffer that will get invalid after the CParam death. - * @note at() throws if the parameter does not exist, using find to test - * for parameter existance - * @return template<class T> The parameter. - */ - template <class T> - T getParameter(std::string const &key) const { - return mParams.Get<T>(key); - } - - ///\brief Add a parameter value, identified by its name - ///\tparam T expected parameter type - ///\param i_ParamName Parameter name - ///\param i_Value Parameter value - ///\todo Pass i_Value by ref if large or not trivial - ///\bug If parameter already exists, its value is changed but written in the - /// internal buffer in a new location (previous value is still in memory at - /// its previous location) - template <class T> - void addParameter(std::string const &key, T value) { - mParams.Add<T>(key, std::move(value)); - } - - std::string getParameterType(std::string const &key) { return mParams.getParamType(key); } - - std::vector<std::string> getParametersName() { return mParams.getParametersName(); } - - // Override Virtual Opertor methods - void associateInput(__attribute__((unused)) const IOIndex_t inputIdx, __attribute__((unused)) std::shared_ptr<Data> data) override final { - printf("Info: using associateInput() on a GenericOperator.\n"); - } - - void computeOutputDims() override final { - assert(false && "Cannot compute output dim of a GenericOperator"); - } - - bool outputDimsForwarded() const override final { - assert(false && "GenericOperator cannot forward dims"); - return false; - } - - std::shared_ptr<Data> getRawInput(const IOIndex_t inputIdx) const override final { - assert((inputIdx < mNbIn) && "input index out of range for this instance of GenericOperator"); - printf("Info: using getRawInput() on a GenericOperator.\n"); - return std::static_pointer_cast<Data>(mInputs[inputIdx]); - } - - inline Tensor& input(const IOIndex_t inputIdx) const override final { - assert((inputIdx < mNbIn) && "input index out of range for this instance of GenericOperator"); - printf("Info: using input() on a GenericOperator.\n"); - return *mInputs[inputIdx]; - } - - - std::shared_ptr<Tensor> getInput(const IOIndex_t inputIdx) const override final { - assert((inputIdx < mNbIn) && "input index out of range for this instance of GenericOperator"); - printf("Info: using getInput() on a GenericOperator.\n"); - return mInputs[inputIdx]; - } - inline std::shared_ptr<Tensor> getOutput(const IOIndex_t outputIdx) const override final { - assert((outputIdx < mNbOut) && "output index out of range for this instance of GenericOperator"); - printf("Info: using getOutput() on a GenericOperator.\n"); - return mOutputs[outputIdx]; - } - - - std::shared_ptr<Data> getRawOutput(const IOIndex_t outputIdx) const override final { - assert((outputIdx < mNbOut) && "output index out of range for this instance of GenericOperator"); - printf("Info: using getRawOutput() on a GenericOperator.\n"); - return std::static_pointer_cast<Data>(mOutputs[outputIdx]); - } - - Tensor& output(const IOIndex_t outputIdx) const override final { - assert((outputIdx < mNbOut) && "output index out of range for this instance of GenericOperator"); - printf("Info: using output() on a GenericOperator.\n"); - return *mOutputs[outputIdx]; - } - - ~GenericOperator_Op() = default; - - void setBackend(const std::string & /*name*/) { printf("setBackend: not available yet.\n"); } - void setDatatype(const DataType & /*datatype*/) { printf("setDatatype: not available yet.\n"); } - void forward() override final { printf("forward: not available yet.\n"); } - void backward() override final { printf("backward: not available yet.\n"); } - - inline IOIndex_t nbInputs() const noexcept override final { return mNbIn; }; - inline IOIndex_t nbDataInputs() const noexcept override final { return mNbDataIn; }; - inline IOIndex_t nbOutputs() const noexcept override final { return mNbOut; }; -}; - -/** - * @brief Fictive custom operator not associated with any implementation. - * Allows to import unknown operators and simulate new ones. - * @param type Type of the fictive operator. - * @param nbDataIn Number of input data. - * @param nbIn Number input data + number of learnt parameters. - * @param nbOut Number of output data. - * @param name (optional) name of the Operator. - * @return std::shared_ptr<Node> Node associated with the Generic Operator. - */ -inline std::shared_ptr<Node> GenericOperator(const char *type, IOIndex_t nbDataIn, IOIndex_t nbIn, IOIndex_t nbOut, - const char *name = nullptr) { - return std::make_shared<Node>(std::make_shared<GenericOperator_Op>(type, nbDataIn, nbIn, nbOut), name); -} -template <> void GenericOperator_Op::addParameter<std::vector<float>>(std::string const &key, std::vector<float> value); - - -} // namespace Aidge - - -#endif /* __AIDGE_CORE_OPERATOR_GENERICOPERATOR_H__ */ diff --git a/aidge/include/aidge/operator/LeakyReLU.hpp b/aidge/include/aidge/operator/LeakyReLU.hpp deleted file mode 100644 index ed967001a23a6b9dd4cfe5db09ec4f1edd60e5ea..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/operator/LeakyReLU.hpp +++ /dev/null @@ -1,127 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#ifndef __AIDGE_CORE_OPERATOR_LEAKYRELU_H__ -#define __AIDGE_CORE_OPERATOR_LEAKYRELU_H__ - -#include <vector> -#include <memory> - -#include "aidge/utils/Parameter.hpp" -#include "aidge/utils/Registrar.hpp" -#include "aidge/operator/Operator.hpp" -#include "aidge/backend/OperatorImpl.hpp" -#include "aidge/data/Tensor.hpp" -#include "aidge/data/Data.hpp" -#include "aidge/graph/Node.hpp" -#include "aidge/utils/Types.h" - -namespace Aidge { -enum class LeakyReLUParam { - NegativeSlope -}; - -class LeakyReLU_Op : public Operator, - public Registrable<LeakyReLU_Op, std::string, std::unique_ptr<OperatorImpl>(const LeakyReLU_Op&)>, - public Parameterizable<LeakyReLUParam, float> { -public: - // FIXME: change accessibility - std::shared_ptr<Tensor> mInput = std::make_shared<Tensor>(); - const std::shared_ptr<Tensor> mOutput = std::make_shared<Tensor>(); - -public: - static constexpr const char* Type = "LeakyReLU"; - - LeakyReLU_Op() = delete; - - using Parameterizable_ = Parameterizable<LeakyReLUParam, float>; - template <LeakyReLUParam e> using param = typename Parameterizable_::template param<e>; - - LeakyReLU_Op(float negativeSlope) - : Operator(Type), - Parameterizable_( - param<LeakyReLUParam::NegativeSlope>(negativeSlope)) - { - setDatatype(DataType::Float32); - } - - void associateInput(__attribute__((unused)) const IOIndex_t inputIdx, std::shared_ptr<Data> data) override final { - assert(inputIdx == 0 && "operator supports only 1 input"); - assert(strcmp(data->type(), Tensor::Type)==0 && "input data must be of Tensor type"); - mInput = std::dynamic_pointer_cast<Tensor>(data); - } - - void computeOutputDims() override final { - if (!mInput->empty()) - mOutput->resize(mInput->dims()); - } - - bool outputDimsForwarded() const override final { - return !(mOutput->empty()); - } - - - inline Tensor& input(__attribute__((unused)) const IOIndex_t inputIdx) const override final { return *(mInput.get()); } - inline Tensor& output(__attribute__((unused)) const IOIndex_t outputIdx) const override final { return *(mOutput.get()); } - - - inline std::shared_ptr<Tensor> getInput(__attribute__((unused)) const IOIndex_t inputIdx) const override final { - assert((inputIdx == 0) && "LeakyReLU Operator has only 1 input"); - return mInput; - } - inline std::shared_ptr<Tensor> getOutput(__attribute__((unused)) const IOIndex_t outputIdx) const override final { - assert((outputIdx == 0) && "LeakyReLU Operator has only 1 output"); - return mOutput; - } - - - std::shared_ptr<Data> getRawInput(__attribute__((unused)) const IOIndex_t inputIdx) const override final { - assert(inputIdx == 0 && "operator supports only 1 input"); - return std::static_pointer_cast<Data>(mInput); - } - std::shared_ptr<Data> getRawOutput(__attribute__((unused)) const IOIndex_t outputIdx) const override final { - assert(outputIdx == 0 && "operator supports only 1 output"); - return mOutput; - } - - - void setBackend(const std::string& name) { - mImpl = Registrar<LeakyReLU_Op>::create(name)(*this); - mOutput->setBackend(name); - - // FIXME: temporary workaround - mInput->setBackend(name); - } - void setDatatype(const DataType& datatype) { - mOutput->setDatatype(datatype); - - // FIXME: temporary workaround - mInput->setDatatype(datatype); - } - - inline IOIndex_t nbInputs() const noexcept override final { return 1; } - inline IOIndex_t nbDataInputs() const noexcept override final { return 1; } - inline IOIndex_t nbOutputs() const noexcept override final { return 1; } -}; - -inline std::shared_ptr<Node> LeakyReLU(float negativeSlope = 0.0f, const char* name = nullptr) { - // FIXME: properly handle default w&b initialization in every cases - return std::make_shared<Node>(std::make_shared<LeakyReLU_Op>(negativeSlope), name); -} -} - -namespace { -template <> -const char* const EnumStrings<Aidge::LeakyReLUParam>::data[] - = {"NegativeSlope"}; -} - -#endif /* __AIDGE_CORE_OPERATOR_RELU_H__ */ diff --git a/aidge/include/aidge/operator/Matmul.hpp b/aidge/include/aidge/operator/Matmul.hpp deleted file mode 100644 index a871fe516c95802fdb67e81ca3f58fb3be4dce25..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/operator/Matmul.hpp +++ /dev/null @@ -1,143 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#ifndef __AIDGE_CORE_OPERATOR_MATMUL_H__ -#define __AIDGE_CORE_OPERATOR_MATMUL_H__ - -#include <array> -#include <cmath> -#include <numeric> -#include <memory> -#include <vector> - -#include "aidge/utils/Types.h" -#include "aidge/data/Tensor.hpp" -#include "aidge/graph/Node.hpp" -#include "aidge/operator/Operator.hpp" -#include "aidge/operator/Producer.hpp" -#include "aidge/utils/Parameter.hpp" -#include "aidge/utils/Registrar.hpp" - -namespace Aidge { -enum class MatmulParam { OutChannels }; - -class Matmul_Op : public Operator, - public Registrable<Matmul_Op, - std::string, - std::unique_ptr<OperatorImpl>(const Matmul_Op &)>, - public Parameterizable<MatmulParam, DimSize_t> { -public: - std::array<std::shared_ptr<Tensor>, 2> mInputs = {std::make_shared<Tensor>(), std::make_shared<Tensor>()}; - const std::shared_ptr<Tensor> mOutput = std::make_shared<Tensor>(); - -public: - static constexpr const char* Type = "Matmul"; - - Matmul_Op() = delete; - - using Parameterizable_ = Parameterizable<MatmulParam, DimSize_t>; - template <MatmulParam e> using param = typename Parameterizable_::template param<e>; - - Matmul_Op(DimSize_t out_channels) - : Operator(Type), - Parameterizable_( - param<MatmulParam::OutChannels>(out_channels)), - mOutput(std::make_shared<Tensor>()) - { - setDatatype(DataType::Float32); - } - - void associateInput(__attribute__((unused)) const IOIndex_t inputIdx, std::shared_ptr<Data> data) override final { - assert(inputIdx < 2 && "operators supports only 2 inputs"); - assert(strcmp(data->type(), Tensor::Type)==0 && "input data must be of Tensor type"); - mInputs[inputIdx] = std::dynamic_pointer_cast<Tensor>(data); - } - - void computeOutputDims() override final { - if (!mInputs[0]->empty()) { - // <in_features**, out_channels> - std::array<DimSize_t, 2> weightDims = {static_cast<DimSize_t>(mInputs[0]->size()), this->template get<MatmulParam::OutChannels>()}; - // <out_channels, batch> - std::array<DimSize_t, 1> outputDims = {this->template get<MatmulParam::OutChannels>()}; - - mInputs[1]->resize(weightDims); - mOutput->resize(outputDims); - } - } - - bool outputDimsForwarded() const override final { - return !(mOutput->empty()); - } - - - inline Tensor& input(const IOIndex_t inputIdx) const override final { - assert(inputIdx < 2 && "operators supports only 2 inputs"); - return *(mInputs[inputIdx].get()); } - inline Tensor& output(__attribute__((unused)) const IOIndex_t outputIdx) const override final { return *(mOutput.get()); } - - - inline std::shared_ptr<Tensor> getInput(const IOIndex_t inputIdx) const override final { - assert(inputIdx < 2 && "MatMul Operators has 2 inputs"); - return mInputs[inputIdx]; - } - inline std::shared_ptr<Tensor> getOutput(__attribute__((unused)) const IOIndex_t outputIdx) const override final { - assert((outputIdx == 0) && "MatMul Operators has 1 output"); - return mOutput; - } - - - std::shared_ptr<Data> getRawInput(const IOIndex_t inputIdx) const override final { - assert(inputIdx < 2 && "operators supports only 2 inputs"); - return std::static_pointer_cast<Data>(mInputs[inputIdx]); - } - std::shared_ptr<Data> getRawOutput(__attribute__((unused)) const IOIndex_t outputIdx) const override final { - assert(outputIdx == 0 && "operator supports only 1 output"); - return std::static_pointer_cast<Data>(mOutput); - } - - - void setBackend(const std::string& name) { - mImpl = Registrar<Matmul_Op>::create(name)(*this); - mOutput->setBackend(name); - - // FIXME: temporary workaround - mInputs[0]->setBackend(name); - mInputs[1]->setBackend(name); - } - - void setDatatype(const DataType& datatype) { - mOutput->setDatatype(datatype); - - // FIXME: temporary workaround - mInputs[0]->setDatatype(datatype); - mInputs[1]->setDatatype(datatype); - } - - - inline IOIndex_t nbInputs() const noexcept override final { return 2; } - inline IOIndex_t nbDataInputs() const noexcept override final { return 1; } - inline IOIndex_t nbOutputs() const noexcept override final { return 1; } -}; - -inline std::shared_ptr<Node> Matmul(DimSize_t out_channels, const char* name = nullptr) { - // FIXME: properly handle default w&b initialization in every cases - auto matmul = std::make_shared<Node>(std::make_shared<Matmul_Op>(out_channels), name); - addProducer(matmul, 1, {1, out_channels}, "w"); - return matmul; -} -} // namespace Aidge - -namespace { -template <> -const char *const EnumStrings<Aidge::MatmulParam>::data[] = {"OutChannels"}; -} - -#endif /* __AIDGE_CORE_OPERATOR__MATMUL_H__ */ diff --git a/aidge/include/aidge/operator/MetaOperator.hpp b/aidge/include/aidge/operator/MetaOperator.hpp deleted file mode 100644 index 7fa1a20449d055da9cd25e6dc4f987757aca3f4a..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/operator/MetaOperator.hpp +++ /dev/null @@ -1,28 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#ifndef __AIDGE_CORE_OPERATOR_METAOPERATOR_H__ -#define __AIDGE_CORE_OPERATOR_METAOPERATOR_H__ - -#include "aidge/operator/Operator.hpp" - -namespace Aidge { -class MetaOperator : public Operator { -public: - MetaOperator() - : Operator("MetaOp") - { - } - ~MetaOperator() = default; -}; -} - -#endif /* MetaOperator_H__ */ diff --git a/aidge/include/aidge/operator/Operator.hpp b/aidge/include/aidge/operator/Operator.hpp deleted file mode 100644 index 9f24ce884863776f6856ee03fb4feb089e6323e2..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/operator/Operator.hpp +++ /dev/null @@ -1,99 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#ifndef __AIDGE_CORE_OPERATOR_OPERATOR_H__ -#define __AIDGE_CORE_OPERATOR_OPERATOR_H__ - -#include <memory> -#include <string> -#include <vector> - -#include "aidge/backend/OperatorImpl.hpp" -#include "aidge/data/Data.hpp" -#include "aidge/data/Tensor.hpp" -#include "aidge/utils/Types.h" - -namespace Aidge { - -class Operator : public std::enable_shared_from_this<Operator> { -protected: - std::unique_ptr<OperatorImpl> mImpl; // implementation of the operator - -private: - std::string mType; - -public: - Operator() = delete; - Operator(const char* type) : mType(type) {} - virtual ~Operator(); - - -public: - - virtual void associateInput(const IOIndex_t inputIdx, std::shared_ptr<Data> data) = 0; - virtual void computeOutputDims() = 0; - virtual bool outputDimsForwarded() const = 0; - virtual std::shared_ptr<Data> getRawInput(const IOIndex_t inputIdx) const = 0; - virtual std::shared_ptr<Tensor> getInput(const IOIndex_t inputIdx) const = 0; - virtual Tensor& input(const IOIndex_t /*inputIdx*/) const = 0; - virtual std::shared_ptr<Data> getRawOutput(const IOIndex_t outputIdx) const = 0; - virtual std::shared_ptr<Tensor> getOutput(const IOIndex_t outputIdx) const = 0; - virtual Tensor& output(const IOIndex_t /*outputIdx*/) const = 0; - -/////////////////////////////////////////////////////// -// IMPLEMENTATION -/////////////////////////////////////////////////////// - - virtual void setBackend(const std::string& name) = 0; - virtual void setDatatype(const DataType& datatype) = 0; - - /** - * @brief Minimum amount of data from a specific input for one computation pass. - * @param inputIdx Index of the input analysed. - * @return NbElts_t - */ - NbElts_t getNbRequiredData(const IOIndex_t inputIdx) const; - - /** - * @brief Amount of data from a specific input actually used in one computation pass. - * - * @param inputIdx Index of the input analysed. - * @return NbElts_t - */ - NbElts_t getNbConsumedData(const IOIndex_t inputIdx) const; - - /** - * @brief Amount of data ready to be used on a specific output. - * - * @param outputIdx Index of the output analysed. - * @return NbElts_t - */ - NbElts_t getNbProducedData(const IOIndex_t outputIdx) const; - - virtual void forward(); - - virtual void backward(); - -/////////////////////////////////////////////////////// -// INNER -/////////////////////////////////////////////////////// - - std::string type() const { - return mType; - } - - virtual IOIndex_t nbInputs() const noexcept = 0; - virtual IOIndex_t nbDataInputs() const noexcept = 0; - virtual IOIndex_t nbOutputs() const noexcept = 0; -}; -} // namespace Aidge - -#endif /* __AIDGE_CORE_OPERATOR_OPERATOR_H__ */ diff --git a/aidge/include/aidge/operator/Producer.hpp b/aidge/include/aidge/operator/Producer.hpp deleted file mode 100644 index 4d5461957826e9ebea4a39bb9a7618604e80797a..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/operator/Producer.hpp +++ /dev/null @@ -1,144 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#ifndef __AIDGE_CORE_OPERATOR_PRODUCER_H__ -#define __AIDGE_CORE_OPERATOR_PRODUCER_H__ - -#include <array> -#include <vector> - -#include "aidge/utils/Types.h" -#include "aidge/data/Tensor.hpp" -#include "aidge/graph/Node.hpp" -#include "aidge/operator/Operator.hpp" -#include "aidge/utils/Parameter.hpp" -#include "aidge/utils/Registrar.hpp" - -namespace Aidge { - -class Producer_Op - : public Operator, - public Registrable<Producer_Op, std::string, std::unique_ptr<OperatorImpl>( - const Producer_Op &)> { -private: - std::shared_ptr<Tensor> mOutput; - -public: - static constexpr const char* Type = "Producer"; - - template <std::size_t DIM> - Producer_Op(const std::array<DimSize_t, DIM>& dims) - : Operator(Type), - mOutput(std::make_shared<Tensor>()) - { - //ctor - setDatatype(DataType::Float32); - mOutput->resize(dims); - } - - Producer_Op(const std::shared_ptr<Tensor> tensor) - : Operator(Type), - mOutput(tensor) - { - setDatatype(tensor->dataType()); - } - - void associateInput(__attribute__((unused)) const IOIndex_t inputIdx, __attribute__((unused)) std::shared_ptr<Data> data) override final { - assert(false && "Producer operator takes no input"); - } - - constexpr void computeOutputDims() override final {} - - constexpr bool outputDimsForwarded() const override final {return true;} - - - [[noreturn]] inline Tensor& input(__attribute__((unused)) const IOIndex_t inputIdx) const override final { - assert(false); - exit(-1); - } - inline Tensor& output(__attribute__((unused)) const IOIndex_t outputIdx) const override final { return *(mOutput.get()); } - - - inline std::shared_ptr<Tensor> getInput(__attribute__((unused)) const IOIndex_t inputIdx) const override final { - assert(false && "Producer Operator has no input"); - return nullptr; - } - inline std::shared_ptr<Tensor> getOutput(__attribute__((unused)) const IOIndex_t outputIdx) const override final { - assert((outputIdx == 0) && "Producer Operator has only 1 output"); - return mOutput; - } - - - std::shared_ptr<Data> getRawInput(__attribute__((unused)) const IOIndex_t inputIdx) const override final { - assert(false && "Producer operator takes no input"); - return nullptr; - } - - std::shared_ptr<Data> getRawOutput(__attribute__((unused)) const IOIndex_t outputIdx) const override final { - assert(outputIdx == 0 && "operator supports only 1 output"); - return std::static_pointer_cast<Data>(mOutput); - } - - inline const std::vector<DimSize_t> dims() const noexcept { return mOutput->dims(); } - - void setBackend(const std::string& name) { - mImpl = Registrar<Producer_Op>::create(name)(*this); - mOutput->setBackend(name); - } - void setDatatype(const DataType& datatype) { - mOutput->setDatatype(datatype); - } - - inline IOIndex_t nbInputs() const noexcept override final { return 0; }; - inline IOIndex_t nbDataInputs() const noexcept override final { return 0; }; - inline IOIndex_t nbOutputs() const noexcept override final { return 1; }; - -public: - void forward() override final { - printf("Basic Producer forward() function.\n"); - } - void backward() override final { - printf("Basic Producer backward() function.\n"); - } -}; - -template <std::array<DimSize_t, 1>::size_type DIM> -inline std::shared_ptr<Node> Producer(const std::array<DimSize_t, DIM> &dims, const char *name = nullptr) { - static_assert(DIM<=MaxDim,"Too many tensor dimensions required by Producer, not supported"); - return std::make_shared<Node>(std::make_shared<Producer_Op>(dims), name); -} - -template <std::size_t DIM> -inline std::shared_ptr<Node> Producer(DimSize_t const (&dims)[DIM], const char *name = nullptr) { - return Producer(to_array(dims), name); -} - -inline std::shared_ptr<Node> Producer(const std::shared_ptr<Tensor> tensor, const char *name = nullptr) { - return std::make_shared<Node>(std::make_shared<Producer_Op>(tensor), name); -} - -template <std::array<DimSize_t, 1>::size_type DIM> -void addProducer(std::shared_ptr<Node>& otherNode, const IOIndex_t inputIdx, const std::array<DimSize_t, DIM>& dims, const char* extension) { - assert(inputIdx != gk_IODefaultIndex); - static_assert(DIM<=MaxDim,"Too many tensor dimensions required by addProducer, not supported"); - const char* prodName = otherNode->name().empty() ? nullptr : (otherNode->name() + std::string("_") + std::string(extension)).c_str(); - auto prod = Producer(dims, prodName); - prod->addChild(otherNode, 0, inputIdx); - otherNode->getOperator()->associateInput(inputIdx, prod->getOperator()->getRawOutput(0)); -} - -template <std::size_t DIM> -void addProducer(std::shared_ptr<Node>& otherNode, const IOIndex_t inputIdx, DimSize_t const (&dims)[DIM], const char* extension) { - addProducer(otherNode, inputIdx, to_array(dims), extension); -} -} // namespace Aidge - -#endif /* __AIDGE_CORE_OPERATOR_PRODUCER_H__ */ \ No newline at end of file diff --git a/aidge/include/aidge/operator/ReLU.hpp b/aidge/include/aidge/operator/ReLU.hpp deleted file mode 100644 index 93bc9a74091c2893dc7b1f7fcc34c72828f34f27..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/operator/ReLU.hpp +++ /dev/null @@ -1,110 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#ifndef __AIDGE_CORE_OPERATOR_RELU_H__ -#define __AIDGE_CORE_OPERATOR_RELU_H__ - -#include <cassert> -#include <memory> -#include <vector> - -#include "aidge/utils/Registrar.hpp" -#include "aidge/operator/Operator.hpp" -#include "aidge/backend/OperatorImpl.hpp" -#include "aidge/data/Tensor.hpp" -#include "aidge/data/Data.hpp" -#include "aidge/graph/Node.hpp" -#include "aidge/utils/Types.h" - -namespace Aidge { - -class ReLU_Op : public Operator, - public Registrable<ReLU_Op, std::string, std::unique_ptr<OperatorImpl>(const ReLU_Op&)> { -public: - // FIXME: change accessibility - std::shared_ptr<Tensor> mInput = std::make_shared<Tensor>(); - const std::shared_ptr<Tensor> mOutput = std::make_shared<Tensor>(); - -public: - static constexpr const char* Type = "ReLU"; - - ReLU_Op() - : Operator(Type) - { - setDatatype(DataType::Float32); - } - - void associateInput(__attribute__((unused)) const IOIndex_t inputIdx, std::shared_ptr<Data> data) override final { - assert(inputIdx == 0 && "operator supports only 1 input"); - assert(strcmp(data->type(), Tensor::Type)==0 && "input data must be of Tensor type"); - mInput = std::dynamic_pointer_cast<Tensor>(data); - } - - void computeOutputDims() override final { - if (!mInput->empty()) - mOutput->resize(mInput->dims()); - } - - bool outputDimsForwarded() const override final { - return !(mOutput->empty()); - } - - - inline Tensor& input(__attribute__((unused)) const IOIndex_t inputIdx) const override final { return *(mInput.get()); } - inline Tensor& output(__attribute__((unused)) const IOIndex_t outputIdx) const override final { return *(mOutput.get()); } - - - inline std::shared_ptr<Tensor> getInput(__attribute__((unused)) const IOIndex_t inputIdx) const override final { - assert((inputIdx == 0) && "ReLU Operator has only 1 input"); - return mInput; - } - inline std::shared_ptr<Tensor> getOutput(__attribute__((unused)) const IOIndex_t outputIdx) const override final { - assert((outputIdx == 0) && "ReLU Operator has only 1 output"); - return mOutput; - } - - - std::shared_ptr<Data> getRawInput(__attribute__((unused)) const IOIndex_t inputIdx) const override final { - assert(inputIdx == 0 && "operator supports only 1 input"); - return std::static_pointer_cast<Data>(mInput); - } - std::shared_ptr<Data> getRawOutput(__attribute__((unused)) const IOIndex_t outputIdx) const override final { - assert(outputIdx == 0 && "operator supports only 1 output"); - return std::static_pointer_cast<Data>(mOutput); - } - - - void setBackend(const std::string& name) { - mImpl = Registrar<ReLU_Op>::create(name)(*this); - mOutput->setBackend(name); - - // FIXME: temporary workaround - mInput->setBackend(name); - } - void setDatatype(const DataType& datatype) { - mOutput->setDatatype(datatype); - - // FIXME: temporary workaround - mInput->setDatatype(datatype); - } - - inline IOIndex_t nbInputs() const noexcept override final { return 1; } - inline IOIndex_t nbDataInputs() const noexcept override final { return 1; } - inline IOIndex_t nbOutputs() const noexcept override final { return 1; } -}; - -inline std::shared_ptr<Node> ReLU(const char* name = nullptr) { - // FIXME: properly handle default w&b initialization in every cases - return std::make_shared<Node>(std::make_shared<ReLU_Op>(), name); -} -} - -#endif /* __AIDGE_CORE_OPERATOR_RELU_H__ */ diff --git a/aidge/include/aidge/operator/Softmax.hpp b/aidge/include/aidge/operator/Softmax.hpp deleted file mode 100644 index 9be2acde8570bdc250054e9bed7a1b0d5c3e52ff..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/operator/Softmax.hpp +++ /dev/null @@ -1,110 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#ifndef __AIDGE_CORE_OPERATOR_SOFTMAX_H__ -#define __AIDGE_CORE_OPERATOR_SOFTMAX_H__ - -#include <cassert> -#include <memory> -#include <vector> - -#include "aidge/utils/Registrar.hpp" -#include "aidge/operator/Operator.hpp" -#include "aidge/backend/OperatorImpl.hpp" -#include "aidge/data/Tensor.hpp" -#include "aidge/data/Data.hpp" -#include "aidge/graph/Node.hpp" -#include "aidge/utils/Types.h" - -namespace Aidge { - -class Softmax_Op : public Operator, - public Registrable<Softmax_Op, std::string, std::unique_ptr<OperatorImpl>(const Softmax_Op&)> { -public: - // FIXME: change accessibility - std::shared_ptr<Tensor> mInput = std::make_shared<Tensor>(); - const std::shared_ptr<Tensor> mOutput = std::make_shared<Tensor>(); - -public: - static constexpr const char* Type = "Softmax"; - - Softmax_Op() - : Operator(Type) - { - setDatatype(DataType::Float32); - } - - void associateInput(__attribute__((unused)) const IOIndex_t inputIdx, std::shared_ptr<Data> data) override final { - assert(inputIdx == 0 && "operator supports only 1 input"); - assert(strcmp(data->type(), Tensor::Type)==0 && "input data must be of Tensor type"); - mInput = std::dynamic_pointer_cast<Tensor>(data); - } - - void computeOutputDims() override final { - if (!mInput->empty()) - mOutput->resize(mInput->dims()); - } - - bool outputDimsForwarded() const override final { - return !(mOutput->empty()); - } - - - inline Tensor& input(__attribute__((unused)) const IOIndex_t inputIdx) const override final { return *(mInput.get()); } - inline Tensor& output(__attribute__((unused)) const IOIndex_t outputIdx) const override final { return *(mOutput.get()); } - - - inline std::shared_ptr<Tensor> getInput(__attribute__((unused)) const IOIndex_t inputIdx) const override final { - assert((inputIdx == 0) && "Softmax Operator has only 1 input"); - return mInput; - } - inline std::shared_ptr<Tensor> getOutput(__attribute__((unused)) const IOIndex_t outputIdx) const override final { - assert((outputIdx == 0) && "Softmax Operator has only 1 output"); - return mOutput; - } - - - std::shared_ptr<Data> getRawInput(__attribute__((unused)) const IOIndex_t inputIdx) const override final { - assert(inputIdx == 0 && "operator supports only 1 input"); - return std::static_pointer_cast<Data>(mInput); - } - std::shared_ptr<Data> getRawOutput(__attribute__((unused)) const IOIndex_t outputIdx) const override final { - assert(outputIdx == 0 && "operator supports only 1 output"); - return std::static_pointer_cast<Data>(mOutput); - } - - - void setBackend(const std::string& name) { - mImpl = Registrar<Softmax_Op>::create(name)(*this); - mOutput->setBackend(name); - - // FIXME: temporary workaround - mInput->setBackend(name); - } - void setDatatype(const DataType& datatype) { - mOutput->setDatatype(datatype); - - // FIXME: temporary workaround - mInput->setDatatype(datatype); - } - - inline IOIndex_t nbInputs() const noexcept override final { return 1; } - inline IOIndex_t nbDataInputs() const noexcept override final { return 1; } - inline IOIndex_t nbOutputs() const noexcept override final { return 1; } -}; - -inline std::shared_ptr<Node> Softmax(const char* name = nullptr) { - // FIXME: properly handle default w&b initialization in every cases - return std::make_shared<Node>(std::make_shared<Softmax_Op>(), name); -} -} - -#endif /* __AIDGE_CORE_OPERATOR_SOFTMAX_H__ */ diff --git a/aidge/include/aidge/scheduler/Scheduler.hpp b/aidge/include/aidge/scheduler/Scheduler.hpp deleted file mode 100644 index 2abe90e111c0997928d270b149a6ab4a460eb3aa..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/scheduler/Scheduler.hpp +++ /dev/null @@ -1,71 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#ifndef __AIDGE_SCHEDULER_H__ -#define __AIDGE_SCHEDULER_H__ - -#include <chrono> -#include <memory> -#include <set> -#include <string> -#include <vector> - -namespace Aidge { -class Node; -class GraphView; - -class SequentialScheduler { -public: - struct SchedulingElement { - SchedulingElement( - std::shared_ptr<Node> node_, - std::chrono::time_point<std::chrono::high_resolution_clock> start_, - std::chrono::time_point<std::chrono::high_resolution_clock> end_) - : node(node_), start(start_), end(end_) {} - - std::shared_ptr<Node> node; - std::chrono::time_point<std::chrono::high_resolution_clock> start; - std::chrono::time_point<std::chrono::high_resolution_clock> end; - }; - - SequentialScheduler(std::shared_ptr<GraphView> graphView) - : mGraphView(graphView) - { - // ctor - }; - ~SequentialScheduler() = default; - - /** - * @brief Run the provided Computational Graph with a batch of data - */ - void forward(bool forwardDims = true, bool verbose = false); - - /** - * @brief Save in a Markdown file the order of layers execution. - * @param fileName Name of the generated file. - */ - void saveSchedulingDiagram(const std::string& fileName) const; - -private: - /** - * @brief Set of layers receiving an input from currently processing layers - * - * @param producers Set of layers ready to run. - * @return std::set<std::shared_ptr<Node>> - */ - std::set<std::shared_ptr<Node>> getConsumers(const std::set<std::shared_ptr<Node>>& producers) const; - - std::shared_ptr<GraphView> mGraphView; - std::vector<SchedulingElement> mScheduling; -}; -} // namespace Aidge - -#endif /* __AIDGE_SCHEDULER_H__ */ \ No newline at end of file diff --git a/aidge/include/aidge/utils/CParameter.hpp b/aidge/include/aidge/utils/CParameter.hpp deleted file mode 100644 index 7f799c8eb7ef5b49644186f62b5828a03e395d1f..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/utils/CParameter.hpp +++ /dev/null @@ -1,118 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#ifndef __AIDGE_CPARAMETER_H__ -#define __AIDGE_CPARAMETER_H__ - -#include <assert.h> -#include <map> -#include <vector> -#include <cstddef> - -namespace Aidge { - -///\todo store also a fix-sized code that indicates the type -///\todo managing complex types or excluding non-trivial, non-aggregate types -class CParameter -{ -public: - // not copyable, not movable - CParameter(CParameter const &) = delete; - CParameter(CParameter &&) = delete; - CParameter &operator=(CParameter const &) = delete; - CParameter &operator=(CParameter &&) = delete; - CParameter() : m_Params({}){}; - - /** - * \brief Returning a parameter identified by its name - * \tparam T expected parameter type - * \param i_ParamName Parameter name - * \details assert if T is not the actual parameter type, if the parameter does not - * exist or interna parameter position is invalid. - * \todo Returning a T const& ? But dangerous => the client may get an address within - * param buffer that will get invalid after the CParam death. - * \note at() throws if the parameter does not exist, using find to test for parameter existance - */ - template<class T> T Get(std::string const &i_ParamName) const - { - assert(m_Params.find(i_ParamName) != m_Params.end()); - assert(m_Types.find(i_ParamName) != m_Types.end()); - assert(m_Params.at(i_ParamName) <= m_Size); - assert(typeid(T).name() == m_Types.at(i_ParamName)); - return *reinterpret_cast<T *>(m_Buffer + m_Params.at(i_ParamName)); - } - - ///\brief Add a parameter value, identified by its name - ///\tparam T expected parameter type - ///\param i_ParamName Parameter name - ///\param i_Value Parameter value - ///\todo Pass i_Value by ref if large or not trivial - ///\bug If parameter already exists, its value is changed but written in the - /// internal buffer in a new location (previous value is still in memory at its previous location) - template<class T> void Add(const std::string &i_ParamName, T&& i_Value) - { - const std::size_t addedSize = sizeof(T) / sizeof(std::uint8_t); - std::uint8_t *tmp = m_Buffer; - std::uint8_t *m_NewBuffer = static_cast<std::uint8_t *>(std::malloc((m_Size + addedSize)*sizeof(std::uint8_t))); - - for (std::size_t i = 0; i < m_Size; ++i) { - m_NewBuffer[i] = m_Buffer[i]; - } - free(tmp); - for (std::size_t i = 0; i < addedSize; ++i) { - m_NewBuffer[m_Size+i] = *(reinterpret_cast<const std::uint8_t *>(&i_Value) + i); - } - m_Buffer = m_NewBuffer; - - m_Params[i_ParamName] = m_Size; // Copy pointer offset - m_Size += addedSize; // Increment offset - m_Types[i_ParamName] = typeid(i_Value).name(); - } - - std::string getParamType(std::string const &i_ParamName){ - return m_Types[i_ParamName]; - } - - std::vector<std::string> getParametersName(){ - std::vector<std::string> parametersName; - for(auto const& it: m_Params) - parametersName.push_back(it.first); - return parametersName; - } - - - ~CParameter() { - free(m_Buffer); - } - -private: - /// @brief Number of elements in m_Buffer - std::size_t m_Size = 0; - - std::map<std::string, std::size_t> m_Params; // { Param name : offset } - - ///\brief Map to check type error - /* Note : i tried this : `std::map<std::string, std::type_info const *> m_Types;` - but looks like the type_ingo object was destroyed. - I am not a hugde fan of storing a string and making string comparison. - Maybe we can use a custom enum type (or is there a standard solution ?) - */ - std::map<std::string, std::string> m_Types; - - ///\brief All parameters values concatenated in raw binary form. - std::uint8_t *m_Buffer = static_cast<std::uint8_t *>(std::malloc(0)); -}; - -template<> void CParameter::Add<std::vector<float>>(const std::string &i_ParamName, std::vector<float>&& i_Value); - -} - -#endif /* __AIDGE_CPARAMETER_H__ */ diff --git a/aidge/include/aidge/utils/Parameter.hpp b/aidge/include/aidge/utils/Parameter.hpp deleted file mode 100644 index 6a8fcca41ff03951eeac80493cd9f86a2ea3586b..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/utils/Parameter.hpp +++ /dev/null @@ -1,197 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#ifndef __AIDGE_CORE_UTILS_PARAMETER_H__ -#define __AIDGE_CORE_UTILS_PARAMETER_H__ - -#ifdef PYBIND -#include <pybind11/pybind11.h> -#include <pybind11/stl.h> -#include <string> // Add this inclue to print error -#endif -#include <tuple> -#include <cassert> -#include <cstddef> - -#ifdef PYBIND -namespace py = pybind11; -#endif - -namespace { -// This is the type that will hold all the strings. Each enumerate type will -// declare its own specialization. -template <typename T> struct EnumStrings { - static const char* const data[]; -}; -} - -namespace Aidge { -template<class T, std::size_t N> -constexpr std::size_t size(T (&)[N]) { return N; } - -#ifdef PYBIND -/* This abstract class allows to avoid binding Parametrizable. -* Otherwise we would need to bind every template possible of Parametrizable. -* Every operators can access the methods of this class by inheriting from -* PyAbstractParametrizable in the binding code. -*/ -class PyAbstractParametrizable{ - public: - /* Bindable get function, does not recquire any templating. - * This is thanks to py::object which allow the function to - * be agnostic from its return type. - */ - virtual py::object getPy(const char* /*name*/) = 0; -}; -#endif - -template <class PARAM_ENUM, class ...T> -class Parameterizable -#ifdef PYBIND - : public PyAbstractParametrizable -#endif - { -public: - using Parameters = std::tuple<T...>; - - // Helper class to pass to the constructor - template <PARAM_ENUM paramEnum> - class param { - public: - constexpr param(const typename std::tuple_element<static_cast<std::size_t>(paramEnum),std::tuple<T...>>::type& v) : value(v) {} - const typename std::tuple_element<static_cast<std::size_t>(paramEnum),std::tuple<T...>>::type value; - }; - -/* - // Direct tuple initialization - Parameterizable(T... params) : mParams({params...}) { - - } -*/ - - // Constructor for parameters initialization. - // Compile-time garantee that every parameter is initialized. - template <PARAM_ENUM ...paramEnum> // non-type parameter pack - constexpr Parameterizable(const param<paramEnum>&&... params) { - // Check number of params consistency - static_assert(sizeof...(params) == std::tuple_size<std::tuple<T...>>::value, "wrong number of parameters in constructor"); - // static_assert(size(EnumStrings<PARAM_ENUM>::data) == std::tuple_size<std::tuple<T...>>::value, "wrong number of parameters in enum string"); - - // Check no duplicates - constexpr std::array<PARAM_ENUM, std::tuple_size<std::tuple<T...>>::value> pe = { paramEnum... }; - static_assert(!hasDuplicates(pe), "duplicate parameter"); // requires C++14 - - // Init params with constructor arguments - const std::array<PARAM_ENUM, std::tuple_size<std::tuple<T...>>::value> p = { ((void)(get<paramEnum>() = params.value), paramEnum) ... }; - (void)p; // avoid unused warning - } - - // Compile-time access with enum - template <PARAM_ENUM paramEnum> - constexpr typename std::tuple_element<static_cast<std::size_t>(paramEnum),std::tuple<T...>>::type& get() { - return std::get<static_cast<std::size_t>(paramEnum)>(mParams); - } - - template <PARAM_ENUM paramEnum> - constexpr const typename std::tuple_element<static_cast<std::size_t>(paramEnum),std::tuple<T...>>::type& get() const { - return std::get<static_cast<std::size_t>(paramEnum)>(mParams); - } - - // Runtime access with enum - template <typename R> - constexpr R& get(PARAM_ENUM paramEnum) { - return get<R>(static_cast<std::size_t>(paramEnum)); - } - - template <typename R> - constexpr const R& get(PARAM_ENUM paramEnum) const { - return get<R>(static_cast<std::size_t>(paramEnum)); - } - - // Runtime existance check with name - constexpr bool isParam(const char* name) const { - for (std::size_t i = 0; i < size(EnumStrings<PARAM_ENUM>::data); ++i) { - if (strcmp(EnumStrings<PARAM_ENUM>::data[i], name) == 0) { - return true; - } - } - - return false; - } - - // Runtime access with name - template <typename R> - constexpr R& get(const char* name) { - for (std::size_t i = 0; i < size(EnumStrings<PARAM_ENUM>::data); ++i) { - if (strcmp(EnumStrings<PARAM_ENUM>::data[i], name) == 0) { - return get<R>(i); - } - } - - assert(false && "parameter not found"); - } - - template <typename R, std::size_t SIZE = std::tuple_size<std::tuple<T...>>::value-1> - constexpr typename std::enable_if<(SIZE > 0), R&>::type get(std::size_t i) { - if (i == SIZE) { - if (std::is_same<R, typename std::tuple_element<SIZE,std::tuple<T...>>::type>::value) { - return reinterpret_cast<R&>(std::get<SIZE>(mParams)); - } - else { - assert(false && "wrong parameter type"); - } - } - else { - return get<R, SIZE-1>(i); - } - } - - template <typename R, std::size_t SIZE = std::tuple_size<std::tuple<T...>>::value-1> - constexpr typename std::enable_if<(SIZE <= 0), R&>::type get(std::size_t i) { - assert(false && "parameter not found"); - } - - constexpr const std::tuple<T...>& getParams() const { - return mParams; - } - - #ifdef PYBIND - py::object getPy(const char* name){ - for (std::size_t i = 0; i < size(EnumStrings<PARAM_ENUM>::data); ++i) { - if (strcmp(EnumStrings<PARAM_ENUM>::data[i], name) == 0) { - // https://github.com/pybind/pybind11/blob/f3e0602802c7840992c97f4960515777cad6a5c7/include/pybind11/pytypes.h#L1119-L1138 - // Normal accessor would not work has we convert the tuple to a py::object which can be anything - return py::detail::accessor_policies::tuple_item::get(py::cast(mParams), static_cast<py::size_t>(i)); - } - } - throw py::value_error("Parameter : " + std::string(name) + " does not exist." ); - }; - #endif - -private: - template <typename V, std::size_t N> - static constexpr bool hasDuplicates(const std::array<V, N>& array) { - for (std::size_t i = 1; i < N; i++) { - for (std::size_t j = 0; j < i; j++) { - if (array[i] == array[j]) { - return true; - } - } - } - - return false; - } - - std::tuple<T...> mParams; -}; -} - -#endif /* AIDGE_CORE_UTILS_PARAMETER_H__ */ diff --git a/aidge/include/aidge/utils/Recipies.hpp b/aidge/include/aidge/utils/Recipies.hpp deleted file mode 100644 index d6104c56ce288d260ac78c5eb9d1e83d75ca34c8..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/utils/Recipies.hpp +++ /dev/null @@ -1,27 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#ifndef __AIDGE_CORE_UTILS_RECIPIES_H__ -#define __AIDGE_CORE_UTILS_RECIPIES_H__ - -#include "aidge/graph/Node.hpp" -#include "aidge/graph/GraphView.hpp" - -namespace Aidge{ - -void fuseMulAdd(std::set<std::shared_ptr<Node>> nodes); -void removeFlatten(std::set<std::shared_ptr<Node>> nodes); - - -} - - -#endif /* __AIDGE_CORE_UTILS_RECIPIES_H__ */ \ No newline at end of file diff --git a/aidge/include/aidge/utils/Registrar.hpp b/aidge/include/aidge/utils/Registrar.hpp deleted file mode 100644 index 8348eb98d3f3ab4da0873c8b3f4a476a9f8e1afc..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/utils/Registrar.hpp +++ /dev/null @@ -1,75 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#ifndef __AIDGE_CORE_UTILS_REGISTRAR_H__ -#define __AIDGE_CORE_UTILS_REGISTRAR_H__ - -#ifdef PYBIND -#include <pybind11/pybind11.h> -#endif - -#include <functional> -#include <map> -#include <cassert> - -namespace Aidge { -#ifdef PYBIND -namespace py = pybind11; -#endif - -template <class DerivedClass, class Key, class Func> // curiously rucurring template pattern -class Registrable { -public: - typedef Key registrar_key; - typedef std::function<Func> registrar_type; - - static std::map<Key, std::function<Func>>& registry() - { - #ifdef PYBIND - if (std::getenv("AIDGE_CORE_WITH_PYBIND")){ - std::string name = std::string("registrar_")+typeid(Registrable<DerivedClass, Key, Func>).name(); - static auto shared_data = reinterpret_cast<std::map<Key, std::function<Func>> *>(py::get_shared_data(name)); - if (!shared_data) - shared_data = static_cast<std::map<Key, std::function<Func>> *>(py::set_shared_data(name, new std::map<Key, std::function<Func>>())); - return *shared_data; - } - #endif // PYBIND - static std::map<Key, std::function<Func>> rMap; - return rMap; - } - -}; - -template <class C> -struct Registrar { - Registrar(const typename C::registrar_key& key, typename C::registrar_type func) { - //printf("REGISTRAR: %s\n", key.c_str()); - bool newInsert; - std::tie(std::ignore, newInsert) = C::registry().insert(std::make_pair(key, func)); - //assert(newInsert && "registrar already exists"); - } - - static auto create(const typename C::registrar_key& key){ - const auto it = C::registry().find(key); - assert(it != C::registry().end() && "invalid registrar key"); - - return (*it).second; - } - static std::vector<typename C::registrar_key> getKeys(){ - std::vector<typename C::registrar_key> keys; - for(auto keyValue : C::registry()) - keys.push_back(keyValue.first); - return keys; - } -}; -} - -#endif // __AIDGE_CORE_UTILS_REGISTRAR_H__ \ No newline at end of file diff --git a/aidge/include/aidge/utils/Types.h b/aidge/include/aidge/utils/Types.h deleted file mode 100644 index d05c64ead0e147a8d66c7f40dbd978283401683a..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/utils/Types.h +++ /dev/null @@ -1,62 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - - -#ifndef __AIDGE_TYPES_H__ -#define __AIDGE_TYPES_H__ - -#include <limits> -#include <type_traits> -#include <cstddef> -#include <cstdint> - -namespace Aidge -{ -////////////////////////////////////// -/// Tensor -////////////////////////////////////// - -/// @brief Number of elements used for scheduling -using NbElts_t = std::size_t; -constexpr NbElts_t MaxElts = std::numeric_limits<NbElts_t>::max(); - -///\brief Signed dimension size for Tensor (allow for negative coordinates). -using Coord_t = std::make_signed<std::size_t>::type; -constexpr Coord_t MaxCoord = std::numeric_limits<Coord_t>::max(); - -///\brief Unsigned value for the size of each dimension for a Tensor. -using DimSize_t = std::size_t; -constexpr DimSize_t MaxDimSize = std::numeric_limits<DimSize_t>::max(); - -///\brief Unsigned index for a Tensor's number of dimension. -using DimIdx_t = std::uint8_t; -constexpr DimIdx_t MaxDim = std::numeric_limits<DimIdx_t>::max(); - -////////////////////////////////////// -/// Operator/Nodes -////////////////////////////////////// - -///\brief Signed integral type to hold an IO index. -///\details <0 values reserved -///\todo Change it for an unsigned value with default to numeric_limit and max to numeric_limit-1 -using IOIndex_t = std::uint16_t; -/// @brief Default for absence of connection -constexpr IOIndex_t gk_IODefaultIndex = std::numeric_limits<IOIndex_t>::max(); -constexpr IOIndex_t gk_IOMaxIndex = std::numeric_limits<IOIndex_t>::max() - 1; - -// ///\brief Number of input/output connections for a Node/Operator -// using IOIndex_t = std::uint16_t; -// constexpr IOIndex_t gk_IOMaxNb = std::numeric_limits<IOIndex_t>::max(); - - -} // namespace Aidge - -#endif // __AIDGE_TYPES_H__ \ No newline at end of file diff --git a/aidge/include/aidge/utilsParsing/AstNode.hpp b/aidge/include/aidge/utilsParsing/AstNode.hpp deleted file mode 100644 index 1158ae148a22993476adb00ecbf8ebd24101830c..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/utilsParsing/AstNode.hpp +++ /dev/null @@ -1,69 +0,0 @@ - - -#ifndef _AIDGE_AST_NODE_H_ -#define _AIDGE_AST_NODE_H_ - -#include <string> -#include <type_traits> -#include <vector> -#include <memory> -#include "aidge/utilsParsing/ParsingToken.hpp" - -namespace Aidge{ - - template <typename EnumType> - class AstNode: public std::enable_shared_from_this<AstNode> - { - static_assert(std::is_enum<EnumType>::value, "AstNode EnumType must be an enum type"); - public: - AstNode(std::shared_ptr<ParsingToken<EnumType>> token,std::vector<std::shared_ptr<AstNode>> child ={}):mToken(token),mChild(child){} - /** - * @brief get the type of the token - * @return the type - */ - EnumType getType() const{ - return mToken->getType(); - } - - /** - * @brief get the lexeme of the token - * @return the lexeme - */ - std::string getValue() const{ - return mToken->getLexeme(); - } - /** - * @brief get the child of the node - * @return child - */ - const std::vector<std::shared_ptr<AstNode>>& getChilds() const { - return mChild; - } - /** - * @brief test if the node is a leaf in the tree - * @return true if a leaf - */ - bool isLeaf() const { - return mChild.size() == 0; - } - - /** - * @brief get the number of child - * @return the number of child - */ - std::size_t nbChild() const{ - return mChild.size(); - } - private: - /** - * @brief the token of the node - */ - const std::shared_ptr<ParsingToken<EnumType>> mToken; - /** - * @brief list of child - */ - const std::vector<std::shared_ptr<AstNode>> mChild; - }; -} - -#endif //_AIDGE_AST_NODE_H_ diff --git a/aidge/include/aidge/utilsParsing/ParsingToken.hpp b/aidge/include/aidge/utilsParsing/ParsingToken.hpp deleted file mode 100644 index 78045cf3085a18bfd0565354fd34aef02ef395bd..0000000000000000000000000000000000000000 --- a/aidge/include/aidge/utilsParsing/ParsingToken.hpp +++ /dev/null @@ -1,66 +0,0 @@ - -#ifndef _AIDGE_PARSING_TOKEN_H_ -#define _AIDGE_PARSING_TOKEN_H_ - -#include <string> -#include <type_traits> - -namespace Aidge{ - template <typename EnumType> - class ParsingToken: public std::enable_shared_from_this<ParsingToken> - { - static_assert(std::is_enum<EnumType>::value, "ParsingToken EnumType must be an enum type"); - public: - /** - * @brief Token container - * @param type one of the token type - * @param lexeme String representing aditional information of the token - */ - ParsingToken(const EnumType type , const std::string lexeme )mLexeme(lexeme),mType(type){} - - /** - * @brief get the lexeme - * @return std::string - */ - const std::string getLexeme(void){ - return mLexeme; - } - - /** - * @brief get the token type - * - * @return ParsingToken - */ - const EnumType getType(void){ - return mType; - } - - /** - * @brief copy the token - * @return deep copy of the token - */ - std::shared_ptr<Aidge::ParsingToken> copy(); - - //TODO - std::ostringstream rep(void){ - std::ostringstream out; - out << " Token (" << mLexeme <<")" << "\n"; - return out; - } - private: - - /** - * @brief additional information of the token - */ - const std::string mLexeme; - - /** - * @brief type of the token - * @see ConditionalTokenTypes - */ - const EnumType mType; - - }; -} - -#endif //_AIDGE_PARSING_TOKEN_H_ \ No newline at end of file