AI4EU EXPERIMENTS Al4EV

Al4EU Experiments Container
Format

(4 House-Price-Databrokerl #—v House-Prices-Prediction1 )

1. Introduction

This document specifies the docker container format for tools and models
that can be onboarded on the AI4EU Experiments platform so they can be
used in the visual composition editor as re-usable, highly interoperable
building blocks for Al pipelines.

In short, the container should define its public service methods using
protobuf v3 and expose these methods via gRPC. All these technologies are
open source and freely available. Here are the respective home pages for
documentation and reference:

https://docs.docker.com/reference/
https://developers.google.com/protocol-buffers/docs/overview
https://developers.google.com/protocol-buffers/docs/proto3
https://www.grpc.io/docs/

Because the goal is to have re-usable building blocks to comopse pipelines,
the main reason to choose the above technology stack is to achieve the
highest level of interoperability:

» docker is today the defacto standard for serverside software
distribution including all dependencies. It is possible to onboard
containers for different architectures (x86 64, GPU, ARM,
HPC/Singularity)



https://docs.docker.com/reference/
https://www.grpc.io/docs/
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/overview

AI4EU EXPERIMENTS Al4EV

* gRPC together with protobuf is a proven specification and
implementation for remote procecure calls supporting a broad range
of programming languages and it is optimized for performance and
high throughput.

Please note that the tools and models are not limited to deep
learning models. Any Al tool from any Al area like reasoning, semantic
web, symbolic Al and of course deep learning can be used for piplines as
long as it exposes a set of public methods via gRPC.

2. Define model.proto
The public service methods should be defined in a file called model.proto:

* |t should be self contained, thus contain the service definitions with all
input and output data structures and no imports can be used

* a container can define serveral rpc methods, but all in one .proto file
and in the same service { } block

+ package declarations in the context of pipelines can cause scoping
issues if a message in different protobufs belongs to different packages

//Define the used version of proto

syntax = "proto3";

//Define a message to hold the features input by the client

message Features {
float MSSubClass
float LotArea =

float YearBuilt
float BedroomAbvGr
float TotRmsAbvGrd

1
v A W N B
e

}

//Define a message to hold the predicted price
message Prediction {

float salePrice

1
=
e




AI4EU EXPERIMENTS Al4EV

//Define the service
service Predict {

rpc predict_sale_price(Features) returns (Prediction);

}

Important: The parser for .proto-files inside AI4EU Experiments is much less
flexible than the original protobuf compiler, so here are some rules. If the
rules are not followed, it prohibits the model from being usable inside the
visual editor AcuCompose.

Rule Good Bad

syntax spec must be in

double quotes syntax = "proto3"; syntax = '‘proto3’;

there must always be
a space before an service Predictor { service Predictor{
opening curly brace

the closing curly brace message Empty {

must be in a separate message Empty {}

line }

there must not be rpc predict rpc predict

curly braces after a (AggregateData) (AggregateData)

rpc line returns (Prediction); |returns (Prediction) {}

3. Create the gRPC docker container

Based on model.proto, you can generate the necessary gRPC stubs and
skeletons for the programming language of your choice using the protobuf
compiler protoc and the respective protoc-plugins. Then create a short main
executable that will read and initialize the model or tool and starts the gRPC
server. This executable will be the entrypoint for the docker container.

The gPRC server must listen on port 8061.

If the model also exposes a Web-UI for human interaction, which is optional,
it must listen on port 8062.

The filetree of the docker container should look like below. In the top level
folder of the container should be the files




AI4EU EXPERIMENTS Al4EV

* model.proto
* license.json

And also the folders for the microservice like app and data, or any
supplementary folders:

v (] docker_root
* ] 2PP
> (] data
license.json

model.proto

The license file is not mandatory and can be generated after onboarding with
the License Profile Editor in the AI4EU Experiments Web-UI:

https://docs.acumos.org/en/clio/submodules/license-manager/docs/user-
guide-license-profile-editor.html

There are several detailed tutorials on how to create a dockerized model in
this repository: https://github.com/ai4eu/tutorials

Important recommendation: for security reasons, the application in the
container should not run as root (which is the default). Instead an
unpriviledged user should be created that runs the application, here is an
example snippet from a Dockerfile:

RUN useradd app

USER app
CMD ["java", "-jar", "/app.jar"]

This will also allow the docker container to be converted into a Singularity
container for HPC deployment.

4. Status and Error Codes

The models should use gRPC status codes according to the spec:
https://grpc.github.io/grpc/core/md _doc statuscodes.html

For example if no more data is available, the model should return status 5
(NOT_FOUND) or 11 (OUT_OF_RANGE).



https://grpc.github.io/grpc/core/md_doc_statuscodes.html
https://github.com/ai4eu/tutorials
https://docs.acumos.org/en/clio/submodules/license-manager/docs/user-guide-license-profile-editor.html
https://docs.acumos.org/en/clio/submodules/license-manager/docs/user-guide-license-profile-editor.html

AI4EU EXPERIMENTS Al4EV

5. Onboarding

The final step is to onboard the model. There are several was to onboard a

model into AI4EU Experiments but currently the only recommended way is to

use “On-boarding dockerized model URI":
1. Upload your docker container to a public registry like Docker Hub
2. Start the onboarding process like in the screenshot below
3. Upload the protobuf file
4. Add license profile

Q‘ HOME ON-BOARDING BY COMMAND LINE ON-BOARDING BY WEB ON-BOARDING DOCKERIZED MODEL URI ON-BOARDING DOCKERIZED MODEL

5 MARKETPLACE

- (‘) [f:é')
&4 MY MODELS
Create Add Artifacts
CATALOGS
Solution
ON-BOARDING MODEL
E_‘_‘f DESIGN STUDIO BETA ON-BOARD DOCKERIZED MODEL URI
2 PUBLISH REQUEST Instruction for dockerized model URI
ng 2 on-boarding
Model Name *
®“A7 QANDA On-board a dockerized model URI
ML LEARNING PATH Host * Port *
Image * Tag

Upload Protobuf File

Supported files type: .proto

Add License Profile

6. First Node Parameters (e.g. for
Databrokers)

Genereally speaking, the orchestrator dispatches the output of the previous
node to the following node. A special case is the first node, where obviously
no output from the previous node exists. In order to be able to implement a

5



AI4EU EXPERIMENTS Al4EV

general orchestrator, the first node must define its services with an Empty
message type. Typically this concerns nodes of type Databroker as the usual
starting point of a pipeline.

syntax = "proto3";

message NewsText {

string text = 1;

service NewsDatabroker {

rpc pullData( ) returns(NewsText);

}

To indicate the end of data, a Databroker should return status code 5 or 11
(see chapter 4)

7. Scalability, GPU Support and Training

The potential execution environments range from Minikube on a Laptop over
small Kubenetes clusters to big Kubernetes clusters and even HPC and
optional GPU acceleration. It is possible to support all those
environments with a single container image taking into account some
recommendations:

+ let the model be flexible with memory usage: use more memory only if
available

* let the model be scalable if more cpu cores are available (allow for
concurrency):

https://en.wikipedia.org/wiki/Concurrency (computer_science)

* Some Al frameworks like PyTorch or Tensorflow can be used in a way
to work with or without GPU with the same code. Here is an example

with PyTorch: https://stackoverflow.com/a/56975325



https://stackoverflow.com/a/56975325
https://en.wikipedia.org/wiki/Concurrency_(computer_science

AI4EU EXPERIMENTS Al4EV

* even training is possible, if the model exposes the corresponding
methods in the protobuf interface

8. Shared Folders for Pipeline Nodes

to be compatible with the upcoming shared folder concept of AI4EU
Experiments, please use an environment variable to pass the absolute path
of the shared folder to the processes running inside the container: so it
should be the path from the inside the container point of view. Let's assume
the shared folder is mapped as "/data/shared" into the container, then the
container could be started like

docker run --env SHARED_FOLDER_PATH=/data/shared ...

How this shared folder is actually set up, depends your container runtime
and is different for docker, docker-compose or kubernetes. For AI4EU
Experiments, the kubernetes deployment client will take care of it.

9. Streaming Support for gRPC Services
The “stream” keyword is supported for both RPC input and output.

That means a RPC can have the following forms, assuming Input and Output
are Protobuf message types:

« Each RPC call consumes one input message and returns one output
message:

rpc call(Input) returning (Output);

+ Each RPC call gets at least one input message, decides by itself when
to stop consuming the input stream, after which it returns a single
output message:

rpc call(stream Input) returning (Output);

* Each RPC call gets at one input message and decides by itself how
many output messages to produce before closing the stream:




AI4EU EXPERIMENTS Al4EV

rpc call(Input) returning (stream Output);

« Each RPC call gets at least one input message, decides by itself how
many output messages to produce and when to stop consuming input
before closing input and output streams:

rpc call(stream Input) returning (stream Output);

Special cases of the above are the following, where is @ message type
without any fields.

* RPC is called immediately when orchestration starts and is restarted
whenever it closes the output stream:

rpc call( ) returning (stream Output);

This pattern is useful for GUIs, with one RPC call for each type of User
Event that should trigger a computation in other components.

This pattern is useful for sensors, with one RPC call for each type of
sensor reading that should trigger a computation in other components.

+ RPC is consuming messages only:
rpc call(stream Input) returning ( );

This pattern is useful for GUIs, with one RPC call for each type of input
to display.

Some notes about how streaming works:

+ Connecting “stream” outputs with “non-stream” inputs and vice versa
is allowed.

» Orchestrator creates a Queue for each connection between two ports.

* Orchestrator creates a Thread for each RPC call. Essentially
orchestration is parallel.

» A RPC is started as soon as there is a message in the input queue, or
immediately for the message called

+ Cycles among components are possible.

For example a cycle from a GUI that returns User Events as streaming
output to a computation component with a simple non-streaming RPC
which feeds back into the GUI into a RPC that displays the result.

GUI RPC1 ( input, stream output) - Computation RPC - GUI RPC2 (stream
input)




AI4EU EXPERIMENTS Al4EV

The Sudoku Tutorial streaming branch contains such a GUI (a
webinterface), see
https://github.com/peschue/ai4deu-sudoku/blob/streaming/qui/sudoku-gui.proto .



https://github.com/peschue/ai4eu-sudoku/blob/streaming/gui/sudoku-gui.proto

	1. Introduction
	2. Define model.proto
	3. Create the gRPC docker container
	5. Onboarding
	6. First Node Parameters (e.g. for Databrokers)
	7. Scalability, GPU Support and Training
	8. Shared Folders for Pipeline Nodes
	9. Streaming Support for gRPC Services

