
Testplan
First Collection of Tasks

This document gives an overview of the required tasks for the security testing of the GAIA-X

Authentication & Authorization Service.

Security Testing Requirments
Regarding the required security testing the documentation “Specification of non-functional

Requirements for Gaia-X Federation Services Security and Privacy by Design NF.SPBD“

(GXFS_Nonfunctional_Requirements_SPBD.pdf) specifies the following:

Section 3.4.4 - Testing and Acceptance (Page 26)

Planning security tests

Policies and procedures are required to ensure the timely identification and addressing of

vulnerabilities.

The following aspects must be covered:

• frequency of tests (regular, continuous, event driven)

• scope of tests

o Code Testing

o Vulnerability Scanning

o Penetration Testing

o Compliance Testing

• test types, test environments and test tools (e.g. on- vs. offsite tests, tests in test vs.

production environments, integration of security tools into build processes)

• documentation of test results (e.g. automated generation and delivery of test reports

as required documents for the Compliance Documentation Service [6])

• remediation of test findings

Further on page 27 and 28 the required tests are described in detail:

Subsection Performing security tests (Section 3.4.4, page 27/28)

Development/build phase

• Human-based code review

o Peer review of code through different developers and code signoff shall be

performed.

• Tool based source code review.

o Automatic tests must be performed to detect secrets such as API keys,

private crypto keys etc. in the source code or packaged applications (e.g.

container).

o Software composition analysis (SCA) must be performed to ensure that

libraries, dependencies, and other 3rd party artifacts, is used to properly

identify, document and check (security & software license compliance) the

code base.

o Static source code testing (SAST) must be integrated into the development

cycle (ideally in the CI/CD pipeline) and code is mark non-compliant if it fails

automatic checks (build fail in case of non-compliance).

o Dynamic source code testing (DAST) tools shall be included into the

development process (or CI/CD pipeline) or may be executed as part of the

penetration test.

▪ Should most likely be run as part of the PenTest (Suggestion by

Wolfgang)

• Tool based vulnerability analysis

o Any software dependency that are necessary to run the code must be check

for vulnerabilities. This includes executables, library, container base images

and overlay files as well as other dependencies or artifacts.

• Configuration Compliance

o Configuration of software used must be hardened based on best practice

requirements (such as CIS). The correct implementation of these hardening

requirements needs to be (automatically) checked.

• Security (Unit) Tests

o Security function/controls used in the code (e.g. authentication) must be

verified with test cases. Tests should be integrated into automatic testing

wherever possible. New test cases are developed if new security controls are

integrated.

• Reporting

o The execution and results of all security tests must be documented and/or

logged. In case of follow up activities (e.g. in case of a failed security check),

these activities as well as the outcome is also documented. It is ensured, that

all security deviations are properly and timely addressed, this also includes

documentation of false positives or “won’t fix” items (incl. their justification).

Reports, test concepts and individual test descriptions are available to Gaia-X

on request (incl. auditing purposes to ensure good security practices).

Test phase

• Penetration tests must be performed as followed (see also [7] OPS-19.2 - 6) In

contrast to vulnerability scans, penetration tests are deeper and more specific.

Beside generic automated tests (used by vulnerability scanners) the penetration

tester must also take into consideration Federation Service specific test use cases.

Where vulnerability scans for e.g. missing patches, a penetration test tries to exploit

known vulnerabilities to start a deeper investigation with the aim to identify further

weaknesses of the service.

o Testing:

▪ A penetration test must be performed before the initial go live of the

Federation Service. This test is mandatory to get the service

approval.

▪ In case of major service updates further penetration tests shall be

performed.

▪ The penetration tests should focus on aspects not covered by

(automatic) testing during development, such as business logic flaws.

o Report

▪ The penetration test report must be delivered to the responsible

entity.

Security Testing Tasks & Tooling
Based on the requirements cited in the previous chapter following security testing tasks can be

derived:

Development/build phase

ID SECT-1

Name Static Code Analysis

Scope of Test Code Test

Frequency of Tests Event Driven – Triggered by pushing code to the repository

Integration integrated into the CI/CD pipeline

Test environment development environment

Tooling SonarQube

Objective Static source code testing (SAST) must be integrated into the development
cycle (ideally in the CI/CD pipeline) and code is mark non-compliant if it
fails automatic checks (build fail in case of non-compliance).

Remediation of Test
Findings

build process stops after findings, developer needs to fix issued before the
code can be released or merged into the master

Storage of Reports tbd

Process tbd

ID SECT-2

Name Software composition analysis - security

Scope of Test Vulnerability Scanning

Frequency of Tests Event Driven – Triggered by pushing code to the repository

Integration integrated into the CI/CD pipeline

Test environment development environment

Tooling Dependency Check

Objective Software composition analysis (SCA) must be performed to ensure that
libraries, dependencies, and other 3rd party artifacts, do not have any
currently known vulnerabilities.

Remediation of Test
Findings

build process stops after findings, developer needs to fix issued before the
code can be released or merged into the master

Storage of Reports Reports will be stored in the Gitlab repository

Process tbd

ID SECT-3

Name Software composition analysis - software license compliance

Scope of Test License Scanning

Frequency of Tests Regular – this test is run manually

Integration No integration

Test environment local development machines

Tooling LicencePlugin

Objective Software composition analysis (SCA) must be performed to ensure that
libraries, dependencies, and other 3rd party artifacts comply with the OSS
license in use.

Remediation of Test
Findings

If the license of a library, dependency, and other 3rd party artifact is
incompatible with the used OSS license the specific software can not be
used and needs to be replaced with an compliant solution.

Storage of Reports Reports will be stored in the Gitlab repository

Process tbd

ID SECT-4

Name Detect Secrets

Scope of Test Code Test

Frequency of Tests Event Driven – Triggered by pushing code to the repository

Integration integrated into the CI/CD pipeline

Test environment development environment

Tooling TruffleHog

Objective Automatic tests must be performed to detect secrets such as API keys,
private crypto keys etc. in the source code or packaged applications (e.g.
container).

Remediation of Test
Findings

build process stops after findings, developer needs to fix issued before the
code can be released or merged into the master

Storage of Reports tbd

Process tbd

ID SECT-5

Name Configuration Compliance

Scope of Test Compliance Testing

Frequency of Tests Event Driven – Triggered by pushing code to the repository

Integration integrated into the CI/CD pipeline

Test environment development environment

Tooling Checkov

Objective Configuration of software used must be hardened based on best practice
requirements (such as CIS). The correct implementation of these hardening
requirements needs to be (automatically) checked.

Remediation of Test
Findings

build process stops after findings, developer needs to fix issued before the
code can be released or merged into the master

Storage of Reports tbd

Process tbd

ID SECT-6

Name Security (Unit) Tests

Scope of Test Code Test

Frequency of Tests Event Driven – Triggered by pushing code to the repository or by building
locally

Integration integrated into the CI/CD pipeline and local build process

Test environment development environment and local development machines

Tooling Unit Testing Framework

Objective Security function/controls used in the code (e.g. authentication) must be
verified with test cases. Tests should be integrated into automatic testing
wherever possible. New test cases are developed if new security controls
are integrated.

Remediation of Test
Findings

build process stops after findings, developer needs to fix issued before the
code can be released or merged into the master

Storage of Reports Reports are automatically documented in the Gitlab for each push

Process tbd

ID SECT-7

Name Code Review – Before Merge

Scope of Test Code Test

Frequency of Tests Event Driven – Triggered by merge request

Integration No integration

Test environment -

Tooling Gitlab

Objective Peer review of code through different developers and code signoff shall be
performed.

Remediation of Test
Findings

A branch can be merged into the master only after a successful code
review.

Storage of Reports Reports will be stored in the Gitlab repository

Process tbd

ID SECT-8

Name Code Review – Security Review

Scope of Test Code Test

Frequency of Tests Regular – after change to used OIDC implementation

Integration No integration

Test environment -

Tooling -

Objective The used OIDC flows of the employed OIDC implementation must be
checked for compliance with the security measures proposed in the
“OAuth 2.0 Threat Model and Security Considerations”1 and the security
considerations of the “Self-Issued OpenID Provider v2”2 standard

Remediation of Test
Findings

tbd

Storage of Reports Report will be stored in the Gitlab repository

Process tbd

Test phase

ID SECT-9

Name Penetration Test

Scope of Test Penetration Test

Frequency of Tests A penetration test must be performed before the initial go live of the
Federation Service.

Integration No integration

Test environment Pre-production environment

Tooling -

Objective In contrast to vulnerability scans, penetration tests are deeper and more
specific. Beside generic automated tests (used by vulnerability scanners)
the penetration tester must also take into consideration Federation
Service specific test use cases. Where vulnerability scans for e.g. missing

1 https://datatracker.ietf.org/doc/html/rfc6819
2 https://openid.net/specs/openid-connect-self-issued-v2-1_0.html

patches, a penetration test tries to exploit known vulnerabilities to start a
deeper investigation with the aim to identify further weaknesses of the
service.

Remediation of Test
Findings

tbd

Storage of Reports Report will be stored in the Gitlab repository must be delivered to the
responsible GAIA-X entity

Process tbd

ID SECT-10

Name Penetration Test - Dynamic source code testing

Scope of Test Code Test

Frequency of Tests A penetration test must be performed before the initial go live of the
Federation Service.

Integration No integration

Test environment Pre-production environment

Tooling -

Objective Dynamic source code testing (DAST) tools shall be included into the
development process (or CI/CD pipeline) or may be executed as part of the
penetration test.

Remediation of Test
Findings

tbd

Storage of Reports Report will be stored in the Gitlab repository must be delivered to the
responsible GAIA-X entity

Process tbd

