Py %
O‘I’ITAN

API Technical Reference for TITAN
TTCN-3 Test Executor

Jend Balasko

Version 6/198 17-CRL 113 200/6, Rev. PE1, 2018-06-18

Table of Contents

1. Introduction 2
1.1. Overview 2
1.2. Target Groups 2
1.3. Typographical Conventions 2

2. Test Ports 3
2.1. Generating the Skeleton 3
2.2. Message-based Example 4
2.3. Test Port Functions 11
2.4. Support of address Type 21
2.5. Provider Port Types 23
2.6. Tips and Tricks 27

3. Logger Plug-ins 30
3.1. Implementing Logger Plug-ins 30
3.2. Building Logger Plug-ins 31
3.3. Event Handling 32
3.4. Execution 32

4. Encoding and Decoding 33
4.1. The Common API 33
4.2. BER 37
4.3. RAW 40
4.4. TEXT 43
4.5. XML Encoding (XER) 44
4.6.JSON 47

5. Mapping TTCN-3 Data Types to C++ Constructs 51
5.1. Mapping of Names and Identifiers 51
5.2. Namespaces 52
5.3. Predefined TTCN-3 Data Types 52
5.4. Compound Data Types 90
5.5. Predefined Functions 103
5.6. Using the Signature Classes 109

6. Tips & Troubleshooting 113
6.1. Migrating Existing C++ Code to the Naming Rules of Version 1.7 113
6.2. Using External C++ Functions in TTCN-3 Test Suites 113
6.3. Logging in Test Ports or External Functions 115
6.4. Error Recovery during Test Execution 119
6.5. Using UNIX Signals 120
6.6. Mixing C and C++ Modules 120

7. References 122

8. Abbreviations

Abstract

This document describes detailed information on the TITAN Application Programming Interface
(API) on C++ level, advanced TTCN-3 programming, and background information on the TITAN
TTCN-3 Test Executor project.

Copyright

Copyright (c) 2000-2018 Ericsson Telecom AB
All rights reserved. This program and the accompanying materials are made available under the
terms of the Eclipse Public License v2.0 that accompanies this distribution, and is available at

https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html.
Disclaimer

The contents of this document are subject to revision without notice due to continued progress in
methodology, design and manufacturing. Ericsson shall have no liability for any error or damage of
any kind resulting from the use of this document.

Contents

https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html

Chapter 1. Introduction

1.1. Overview

This document describes the TITAN API on C++ level. It is intended for users who write test port
implementation, external function implementation in language C++ and want to use the available
resources of TITAN.

Detailed information can be found on the following topics:

* test ports, the communication link between the TITAN Executor and System Under Test (SUT);

* built-in encoding and decoding functions;

TTCN-3 data mapping to C++ constructs;

troubleshooting for common TTCN-3 related issues and problems.

1.2. Target Groups

This document is intended for advanced users of the TITAN API on C++ level.

1.3. Typographical Conventions
This document uses the following typographical conventions:

Bold is used to represent graphical user interface (GUI) components such as buttons, menus, menu
items, dialog box options, fields and keywords, as well as menu commands. Bold is also used with
’+” to represent key combinations. For example, Ctrl+Click

The '/' character is used to denote a menu and sub-menu sequence. For example, File / Open.

Monospaced font is used represent system elements such as command and parameter names,
program names, path names, URLs, directory names and code examples.

Bold monospaced font is used for commands that must be entered at the Command Line Interface
(CLD), For example, tten3_start

Chapter 2. Test Ports

The C++ source code generated by the Compiler is protocol independent, that is, it does not contain
any device specific operations. To provide the connection between the executable test suite and
SUT, that is, the physical interface of the test equipment [1: The test equipment not necessarily
requires a special hardware; it can even be a simple PC with an Ethernet interface.], a so-called Test
Port is needed.

The Test Port is a software library written in C++ language, which is linked to the executable test
program. It maps the device specific operations to function calls specified in an API. This chapter
describes the Test Port API in details.

2.1. Generating the Skeleton

The functions of Test Ports must be written by the user who knows the interface between the
executable test suite and the test equipment. In order to make this development easier, the
Compiler can generate Test Port skeletons. A Test Port belongs to one certain TTCN-3 port type, so
the skeleton is generated based on port type definitions.

A Test Port consists of two parts. One part is generated automatically by the Compiler, and it is put
into the generated C++ code. The user has nothing to do with this part.

The other part is a C++ class, which is written mainly by the user. This class can be found in a
separate C++ header and source file (their suffixes are .hh and .cc, respectively). The names of the
source files and the C++ class are identical to the name of the port type. Please note that the name
mapping rules described in Mapping of Names and Identifiers also apply to these class and file
names.

During the translation, when the Compiler encounters a port type definition and the -t command
line switch is used, it checks whether the header and source files of Test Port exist in its working
directory. If none of them can be found there, the compiler generates the skeleton header and
source files for the corresponding test port automatically. This means, once you have generated
(and possibly modified) a skeleton, it will never be overwritten. If you want to re-generate the
skeleton, you must rename or remove the existing one.

If the list of message types/signatures of a TTCN-3 port type changes, the list of the Test Port class
member functions also needs to change. If the Test Port skeleton has been generated, it will not be
modified, resulting in build errors (C++ compile errors like "cannot declare variable of abstract
type"/"virtual functions are pure", or linker errors). In this case, the Test Port skeleton files should
be renamed/moved, the skeleton generated, and any user-written code should be copied back into
the newly generated source files.

If you have defined a TTCN-3 port type that you intend to use for internal communication only
(that is, for sending and receiving messages between TTCN-3 test components), you do not need to
generate and compile an empty Test Port skeleton for that port type. Adding the attribute with
{extension "internal"} to the port type definition in the TTCN-3 module disables the generation
and use of a Test Port for the port type.

5-mapping_ttcn3_data_types_to_c+\+_constructs.pdf#mapping-of-names-and-identifiers

WARNING In this case you must not link the object file obtained from a previous Test Port
skeleton to your executable test suite.

In the following we introduce two port type definitions: one for a message based and another one

for a procedure based port. In our further examples we will refer to the test port skeletons

generated according to these definitions given within the module called MyModule.

2.2. Message-based Example

The definition of MyMessagePort:

type port MyMessagePort message
{

in octetstring;
out integer;
inout charstring;

+

That is, the types integer and charstring can be sent, and octetstring and charstring can be received
on port MyMessagePort.

The generated skeleton header file (that is, MyMessagePort.hh) will look as follows:

// This Test Port skeleton header file was generated by the
// TTCN-3 Compiler of the TTCN-3 Test Executor version 1.7.pre4 build 4
// for Csaba Feher (ecsafeh@ehubuux110) on Tue Jul 29 18:45:10 2008

// Copyright Ericsson Telecom AB 2000-2014

// You may modify this file. Add your attributes and prototypes of your
// member functions here.

#ifndef MyMessagePort_HH
#idefine MyMessagePort_HH

#include "MyModule.hh"
namespace MyModule {

class MyMessagePort : public MyMessagePort_BASE {
public:
MyMessagePort(const char *par_port_name = NULL);
~MyMessagePort();

void set_parameter(const char *parameter_name,
const char *parameter_value);

private:

/* void Handle_Fd_Event(int fd, boolean is_readable,

boolean is writable, boolean is_error); */

void Handle Fd_Event Error(int fd);

void Handle Fd _Event Writable(int fd);

void Handle Fd_Event_Readable(int fd);

/* void Handle_Timeout(double time_since_last call); */
protected:

void user_map(const char *system_port);

void user_unmap(const char *system_port);

void user_start();
void user_stop();

void outgoing_send(const INTEGER& send_par);
void outgoing_send(const CHARSTRING& send_par);
¥

} /* end of namespace */

flendif

And the generated skeleton source file, that is, MyMessagePort.cc, will be the following:

// This Test Port skeleton source file was generated by the

// TTCN-3 Compiler of the TTCN-3 Test Executor version 1.7.pre4 build 4
// for Csaba Feher (ecsafeh@ehubuux11@) on Tue Jul 29 18:45:10 2008

// Copyright Ericsson Telecom AB 2000-2014

// You may modify this file. Complete the body of empty functions and
// add your member functions here.

#include "MyMessagePort.hh"

namespace MyModule {

MyMessagePort: :MyMessagePort(const char *par_port_name)
: MyMessagePort_BASE(par_port_name)

{

}

MyMessagePort: :~MyMessagePort()
{

}

void MyMessagePort::set_parameter(const char *parameter_name,
const char *parameter_value)

{
}

/*void MyMessagePort::Handle_Fd_Event(int fd, boolean is_readable,
boolean is writable, boolean is error) {}*/

void MyMessagePort::Handle_Fd_Event_Error(int fd)
{

}

void MyMessagePort::Handle_Fd_Event_Writable(int fd)
{

}

void MyMessagePort::Handle_Fd_Event_Readable(int fd)
{

}
/*void MyMessagePort::Handle_Timeout(double time_since_last_call) {}*/

void MyMessagePort::user_map(const char *system_port)

{

}

void MyMessagePort::user_unmap(const char *system_port)

{
}

void MyMessagePort::user_start()

{
}

void MyMessagePort::user_stop()

{
}

void MyMessagePort::outgoing_send(const INTEGER& send_par)
{

}

void MyMessagePort::outgoing_send(const CHARSTRING& send_par)
{

}

} /* end of namespace */

2.2.1. Procedure-based Example

The definition of MyProcedurePort in module MyModule:

type port MyProcedurePort procedure
{

in inProc;
out outProc;
inout inoutProc;

+

The signature definitions are imported from a module called MyModule2, noblock is not used and
exceptions are used so that every member function of the port class is generated for this example.
If the keyword noblock is used the compiler will optimize code generation by not generating
outgoing reply, incoming reply member functions and their argument types. If the signature has no
exception outgoing raise, incoming exception member functions and related types will not be
generated.

The port type MyProcedurePort can handle call, getreply and catch operations referencing the

signatures outProc and inoutProc, and it can handle getcall, reply and raise operations referencing
the signatures inProc and inoutProc.

The generated skeleton header file (that is, MyProcedurePort.hh) will look as follows:

// This Test Port skeleton header file was generated by the
// TTCN-3 Compiler of the TTCN-3 Test Executor version 1.7.pre4 build 4
// for Csaba Feher (ecsafeh@ehubuux110) on Tue Jul 29 18:53:35 2008

// Copyright Ericsson Telecom AB 2000-2014

// You may modify this file. Add your attributes and prototypes of your
// member functions here.

#ifndef MyProcedurePort_HH
#define MyProcedurePort_HH

#include "MyModule.hh"
namespace MyModule {

class MyProcedurePort : public MyProcedurePort_BASE {
public:
MyProcedurePort(const char *par_port_name = NULL);
~MyProcedurePort();

void set_parameter(const char *parameter_name,
const char *parameter_value);

private:

/* void Handle_Fd_Event(int fd, boolean is_readable,

boolean is writable, boolean is_error); */

void Handle Fd_Event Error(int fd);

void Handle Fd _Event Writable(int fd);

void Handle Fd_Event_Readable(int fd);

/* void Handle_Timeout(double time_since_last call); */
protected:

void user_map(const char *system_port);

void user_unmap(const char *system_port);

void user_start();
void user_stop();

void outgoing_call(const outProc_call& call_par);

void outgoing_call(const inoutProc_call& call_par);

void outgoing_reply(const inProc_reply& reply_par);

void outgoing_reply(const inoutProc_reply& reply_par);
I

} /* end of namespace */

#tendif

The generated skeleton source file for MyProcedurePort (that is, MyProcedurePort.cc) will be the
following:

10

// This Test Port skeleton source file was generated by the

// TTCN-3 Compiler of the TTCN-3 Test Executor version 1.7.pre4 build 4
// for Csaba Feher (ecsafeh@ehubuux11@) on Tue Jul 29 18:53:35 2008

// Copyright Ericsson Telecom AB 2000-2014

// You may modify this file. Complete the body of empty functions and
// add your member functions here.

#include "MyProcedurePort.hh"
namespace MyModule {

MyProcedurePort: :MyProcedurePort(const char *par_port_name)
: MyProcedurePort_BASE(par_port_name)

{
}

MyProcedurePort: :~MyProcedurePort()
{

}

void MyProcedurePort::set_parameter(const char *parameter_name,
const char *parameter_value)

{
}

/*void MyProcedurePort::Handle_Fd_Event(int fd, boolean is_readable,
boolean is _writable, boolean is error) {}*/

void MyProcedurePort::Handle_Fd_Event_Error(int fd)
{

}

void MyProcedurePort::Handle_Fd_Event_Writable(int fd)
{

}

void MyProcedurePort::Handle_Fd_Event_Readable(int fd)
{

}

/*void MyProcedurePort::Handle_Timeout(double time_since_last_call) {}*/

void MyProcedurePort:

void MyProcedurePort:

void MyProcedurePort:

void MyProcedurePort:

void MyProcedurePort:

void MyProcedurePort:

void MyProcedurePort:

void MyProcedurePort:

:user_map(const char *system_port)

:user_unmap(const char *system_port)

:user_start()

:user_stop()

:outgoing_call(const outProc_call& call_par)

:outgoing_call(const inoutProc_call& call_par)

:outgoing_reply(const inProc_reply& reply_par)

:outgoing_reply(const inoutProc_reply& reply_par)

} /* end of namespace */

2.3. Test Port Functions

This section summarizes all possible member functions of the Test Port class. All of these functions
exist in the skeleton, but their bodies are empty.

The identical functions of both port types are:

e the constructor and the destructor

11

* the parameter setting function
* the map and unmap function
* the start and stop function
* descriptor event and timeout handler(s)
* some additional functions and attributes
The functions above will be described using an example of message based ports (MyMessagePort, also

introducing the functions specific to message based port types). Using these functions is identical
(or very similar) in procedure based Test Ports.

Functions specific to message based ports:

* send functions: outgoing send

* incoming functions: incoming message

» Functions specific to procedure based ports:

* outgoing functions: outgoing call, outgoing reply, outgoing raise

* incoming functions: incoming call, incoming reply, incoming exception

Both test port types can use the same logging and error handling mechanism, and the handling of
incoming operations on port MyProcedurePort is similar to receiving messages on port MyMessagePort
(regarding the event handler).

2.3.1. Constructor and Destructor

The Test Port class belongs to a TTCN-3 port type, and its instances implement the functions of the
port instances. That is, each Test Port instance belongs to the port of a TTCN-3 test component. The
number of TTCN-3 component types, port types and port instances is not limited; you may have
several Test Port classes and several instances of a given Test Port class in one test suite.

The Test Port instances are global and static objects. This means, their constructor and destructor is
called before and after the test execution (that is, before the main function starts and after the main
function finishes). The name of a Test Port object is composed of the name of the corresponding
component type and the name of the port instance within the component type.

In case of parallel test execution, each TTCN-3 test component process has its own Test Port
instances of all ports defined in all component types within the entire test suite. Of course, only the
Test Ports of the active component type are used, the member functions of other inactive Test Port
instances (except constructor and destructor) will never be called. Since all Test Port instances are
static, their constructor and destructor is called only once on each host and in the Host Controller
process (outside its main function). The test component processes (that is, the child processes of
Host Controller) will get a copy of the initialized Test Port instances and no constructor will be
called again.

The Test Port class is derived from an abstract base class which can be found in the generated code.
The base class implements, for instance, the queue of incoming messages.

The constructor takes one parameter containing the name of the port instance in a NUL character

12

terminated string. This string shall be passed further to the constructor of the base class as it can be
found in the skeleton code. The default argument for the test port name is a NULL pointer, which is
used when the test port object is a member of a port array.

In case of port arrays the name of the test port is set after the constructor is
completed. So the name of the test port should not be used in the constructor.
The port name is always set correctly when any other member function is
called.

WARNING

The destructor does nothing by default. If some dynamically allocated attributes are added to the
test port class, one should free the memory and release all resources in the destructor.

As the constructor and the destructor are called outside of main function, be
careful when writing them. For instance, there is no way for error recovery;
exit(3) call may result in a segmentation fault. If file descriptors are opened
(and kept opened) here, the fork(2) system call of Host Controller will only
multiply the file descriptors and not the kernel file structure. Therefore system
and library calls should be avoided here.

WARNING

2.3.2. Parameter Setting Function

Test Port parameters [2: Test Port parameters have been introduced in version 1.1.pl3] shall contain
information which is independent from the TTCN3 test suite. These values shall not be used in the
test suite at all. You can define them as TTCN-3 constants or module parameters, but these
definitions are useless and redundant, and they must always be present when the Test Port is used.

For instance, using Test Port parameters can be used to convey configuration data (that is, some
options or extra information that is necessary for correct operation) or lower protocol layer
addresses (for example, IP addresses).

Test Port parameters shall be specified by the user of executable tests in section
[TESTPORT_PARAMETERS] of the run-time configuration file (see section [TESTPORT_PARAMETERS] in
Programmer’s Technical Reference). The parameters are maintained for each test port instance
separately; wildcards can be used as well. In the latter case the parameter is passed to all Test Port
matching the wildcard.

Each Test Port parameter must have a name, which must be unique within the Test Port only. The
name must be a valid identifier, that is, it must begin with a letter and must contain
alphanumerical characters only.

All Test Port parameter values are interpreted by the test executor as character strings. Quotation
marks must be used when specifying the parameter values in the configuration file. The
interpretation of parameter values is up to you: you can use some of them as symbolic values,
numbers, IP addresses or anything that you want.

Before the test execution begins, all parameters belonging to the Test Port are passed to the Test
Port by the runtime environment of the test executor using the function set_parameter. It is a virtual
function, that is, this function may be removed from the header and source file if there are no
parameters. Its default ancestor does nothing and ignores all parameters.

13

https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide

Each parameter is passed to the Test Port one-by-one separately [3: If the same parameter of the
same port instance is specified several times in the configuration file, the function set_parameter
will also be called several times.], the two arguments of set_parameter contain the name and value
of the corresponding parameter, respectively, in NUL character terminated strings. If the parameter
values are needed in further operations, backup copies must be made of them because the string
will disappear after the calling function returns.

It is warmly recommended that the Test Port parameter handling functions be fool-proof. For
instance, the Test Port should produce a proper error message (for example by calling TTCN_error) if
a mandatory parameter is missing instead of causing segmentation fault. Repeated setting of the
same parameter should produce warnings for the user (for example by using the function
TTCN_warning) and not memory leaks.

On the MTC, in both single and parallel modes, the handling of Test Port parameters
is a bit different from that on PTCs. The parameters are passed only to active ports,
but the component type of MTC (thus the set of active ports) depends on the runs on
clause of the test case that is currently being executed. It would be difficult for the
runtime environment to check at the beginning of each test case whether the
corresponding MTC component type has already been active during a previous test
case run. Therefore all Test Port parameters belonging to the active ports of the
MTC are passed to the set_parameter function at the beginning of every test case.
The Test Ports of MTC shall be prepared to receive the same parameters several
times (with the same values, of course) if more than one test case is being executed.

NOTE

If system related Test Port parameters are used in the run-time configuration file (that is, the
keyword system is used as component identifier), the parameters are passed to your Test Port
during the execution of TTCN-3 map operations, but before calling your user_map function. Please
note that in this case the port identifier of the configuration file refers to the port of the test system
interface that your port is mapped to and not the name of your TTCN-3 port.

The name and exact meaning of all supported parameters must be specified in the user
documentation of the Test Port.

2.3.3. Map and Unmap Functions

The run-time environment of the TTCN-3 executor knows nothing about the communication
towards SUT, thus, it is the user’s responsibility to establish and terminate the connection with SUT.
The TTCN-3 language uses two operations to control these connections, map and unmap.

For this purpose, the Test Port class provides two member functions, user_map and user_unmap. These
functions are called by the test executor environment when performing TTCN-3 map and unmap
operations, respectively.

The map and unmap operations take two pairs of component references and ports as arguments.
These operations are correct only if one of the arguments refer to a port of a TTCN-3 test
component while the other port corresponds to SUT. This aspect of correctness is verified by the
run-time environment, but the existence of a system port is not checked.

The port names of the system are converted to NUL character terminated strings and passed to

14

functions user_map and user_unmap as parameters. Unlike other identifiers, the underscore
characters in these port names are not translated.

If these system port names should be reused later, the entire strings (and not only the pointers)
must be saved in the internal memory structures since the string values will disappear after the
user_map or user_unmap finishes.

in TTCN-3 it is not allowed to map a test component port to several system ports at
the same time. The run-time environment, however, is not so strict and allows this
to handle transient states during configuration changes. In this case messages can

NOTE not be sent to SUT even with explicit addressing, but the reception of messages is
permitted. When putting messages into the input queue of the port, it is not
important for the test executor (even for the TTCN-3 language) which port of the
system the message is received from.

The execution of TTCN-3 test component that requested the mapping or unmapping is suspended
until your user_map or user_unmap functions finish. Therefore it is not allowed to block unnecessarily
the test execution within these functions.

When the Test Port detects an error situation during the establishment or termination of the
physical connection towards the SUT, the function TTCN_error shall be used to indicate the failure. If
the error occurs within user_map the run-time environment will assume that the connection with
SUT is not established thus it will not call user_unmap to destroy the mapping during the error
recovery procedure. If user_map fails, it is the Test Port writer’s responsibility to release all allocated
resources and bring the object variables into a stable state before calling TTCN_error. Within
user_unmap the errors should be handled in a more robust way. After a minor failure it is better to
issue a warning and continue the connection termination instead of panicking. TTCN_error shall be
called only to indicate critical errors. If user_unmap is interrupted with an error the run-time
environment assumes that the mapping has been terminated, that is, user_unmap will not be called
again.

if either user_map or user_unmap fails, the error is indicated on the initiator test
NOTE component as well; that is, the respective map or unmap operation will also fail and
error recovery procedure will start on that component.

2.3.4. Start and Stop Functions

The Test Port class has two member functions: user_start and user_stop. These functions are called
when executing port start and port stop operations, respectively. The functions have no
parameters and return types.

These functions are called through a stub in the base class, which registers the current state of the
port (whether it is started or not). So user_start will never be called twice without calling user_stop
or vice versa.

15

From version 1.2.pl0 on (according to the latest TTCN-3 standard) all ports of
test components are started implicitly immediately after creation. Such
operations must not be put in a user_start function blocking the execution for
a longer period. This not only hangs the new PTC but the also component that
performed the create operation (usually the MTC). All ports are stopped at the
end of test cases or at PTC termination, even if stop statements are missing.

WARNING

In functions user_start and user_stop the device should be initialized or shut down towards SUT
(that is, the communications socket). Also the event handler should be installed or uninstalled (see
later).

2.3.5. Outgoing Operations

Outgoing operations are send (specific to message based ports); call, reply, and raise (specific to
procedure based ports).

Send Functions

The Test Port class has an overloaded function called outgoing_send for each outgoing message type.
This function will be called when a message is sent on the port and it should be routed to the
system (that is, SUT) according to the addressing semantics [4: That is, the port has exactly one
mapping and either the port has no connections or the message is explicitly addressed by a send (
~+) to system statement.] of TTCN-3. The messages (implicitly or explicitly) addressed to other test
components are handled inside the test executor; the Test Ports have nothing to do with them. The
function outgoing_send will be also called if the port has neither connections nor mappings, but a
message is sent on it.

The only parameter of outgoing_send contains a read-only reference to the message in the internal
data representation format of the test executor. The access methods for internal data types are
described in XML Encoding (XER). The test port writer should encode and send the message
towards SUT. For information on how to use the standard encoding functions like BER, please
consult Logger Plug-ins. Sending a message on a not started port causes a dynamic test case error.
In this case outgoing_send will not be called.

Call, Reply and Raise Functions

The procedure based Test Port class has overloaded functions called outgoing_call, outgoing_reply
and outgoing_raise for each call, reply and raise operations, respectively. One of these functions
will be called when a port-operation is addressing the system (that is, SUT using the to system
statement).

The only parameter of these functions is an internal representation of the signature parameters
(and possibly its return value) or the exceptions it may raise. The signature classes are described in
Using the Signature Classes.

2.3.6. Incoming Operations

Incoming operations are receive incoming messages (specific to message based ports); call, reply
and exception (specific to procedure based ports).

16

Descriptor Event and Timeout Handlers

The handling of incoming messages (or operations) is more difficult than sending. The executable
test program has two states. In the first state, it executes the operations one by one as specified in
the test suite (for example, it evaluates expressions, calls functions, sends messages, etc.). In the
other state it waits for the response from SUT or for a timer to expire. This happens when the
execution reaches a blocking statement, that is, one of a stand-alone receive, done, timeout
statements or an alt construct.

After reaching a blocking statement, the test executor evaluates the current snapshot of its timer
and port queues and tries to match it with the reached statements and templates. If the matching
fails, the executor sleeps until something happens to its timers or ports. After waking up, it re-
evaluates its snapshot and tries to match it again. The last two steps are repeated until the executor
finds the first matching statement. If the test executor realizes that its snapshot can never match
the reached TTCN-3 statements, it causes a dynamic test case error. This mechanism prevents it
from infinite blocking.

The test executor handles its timers itself, but it does not know anything about the communication
with SUT. So each Test Port instance should inform the snapshot handler of the executor what kind
of event the Test Port is waiting for. The event can be either the reception of data on one or more
file descriptors or a timeout (when polling is used) or both of them.

When the test executor reaches a blocking statement and any condition — for which the Test Port
waits — is fulfilled, the event handler will be called. First one has to get the incoming message or
operation from the operating system. After that, one has to decode it (and possibly decide its type).
Finally, if the internal data structure is built, one has to put it into the queue of the port. This can be
done using the member function incoming_message if it is a message, and using incoming_call,
incoming_reply or incoming_exception if it is an operation.

The execution must not be blocked in event handler functions; these must return immediately
when the message or operation processing is ready. In other words, always use non-blocking recv()
system calls. In the case when the messages are fragmented (for instance, when testing TCP based
application layer protocols, such as HTTP), intermediate buffering should be performed in the Test
Port class.

Event and timeout handling interface introduced in TITAN version 1.7.pl4

This descriptor event and timeout handling interface is the preferred interface for new Test Port
development.

There are two possibilities to be notified about available events:

 Either the Handle_Fd_Event function has to be implemented, or

* Handle _Fd_Event_Readable, Handle _Fd_Event _Writable, and Handle_Fd _Event Error.

Using Handle_Fd_Event allows receiving all events of a descripor in one function call. Using the other
three event handler functions allows creating a more structured code.

All these functions are virtual. The unused event handler functions have to be left un-overridden.
(When using the second alternative and the Test Port does not wait for all types of events (readable,

17

writable, error) the handlers of the events — for which the Test Port does not wait — can be left un-
overridden.)

The following functions can be used to add events to and remove events from the set of events for
which the Test Port waits:

void Handler_Add_Fd(int fd, Fd_Event_Type event_mask = EVENT_ALL);
void Handler_Add_Fd Read(int fd);

void Handler _Add Fd Write(int fd);

void Handler_Remove_Fd(int fd, Fd_Event_Type event_mask = EVENT_ALL);
void Handler_Remove Fd _Read(int fd);

void Handler_Remove Fd Write(int fd);

The first parameter in all of these functions is the file descriptor. Possible values of the event_mask
are EVENT_RD, EVENT_WR, EVENT_ERR and combinations of these using bitwise or: "|".

Timeout notification can be received with the Handle_Timeout function. The parameter of the
function indicates the time elapsed in seconds since its last call of this function or the latest
modification of the timer (whichever occurred later).

The timer can be set with the following function:

void Handler_Set Timer(double call_interval, boolean is_timeout = TRUE,
boolean call_anyway = TRUE, boolean is_periodic = TRUE);

call_interval is measured in seconds and specifies the time after which the Handle_Timeout function
will be called. To stop the timer call_interval value: 0.0 has to be given.

is_timeout specifies if the timer has to be stopped when event handler is called. call_anyway is
meaningful when is_timeout is set to TRUE. In this case call_anyway indicates if the Handle_Timeout
function has to be called when event handler is called before the timer would expire. If call_anyway
is TRUE the timeout handler will be called after the call of the event handlers and the timer will be
stopped. is_periodic indicates if the timer has to be restarted instead of stopping when timer
expires or event handler is called and is_timeout and call_anyway are both TRUE.

Event handler for Test Ports developed for 1.7pl3 and earlier versions of TITAN

There is only one event handler function in each Test Port class called Event_Handler, which is a
virtual member function. The run-time environment calls it when an incoming event arrives. You
can install or uninstall the event handler by calling the following inherited member functions:

void Install _Handler(const fd_set *read_fds, const fd_set *write_fds,
const fd_set *error_fds, double call interval);
void Uninstall_Handler();

Install_Handler installs the event handler according to its parameters. It takes four arguments,
three pointers pointing to bitmasks of file descriptors and a timeout value. Some of the parameters

18

can be ignored, but ignoring all at the same time is not permitted.

The bitmasks are interpreted in the same way as in the select system call. They can be set using the
macros FD_ZERO, FD_SET and FD_CLR. If the pointer is NULL, the bitmask is treated as zero. For further
details see the manual page of select(2) or select(3).

The call interval value is measured in seconds. It means that the event handler function will be
called when the time elapsed since its last call reaches the given value. This parameter is ignored
when its value is set to zero or negative.

If you want to change your event mask parameters, you may simply call the function
Install_Handler again (calling of Uninstall_Handler is not necessary).

Uninstall_Handler will uninstall your previously installed event handler. The stop port operation
also uninstalls the event handler automatically. The event handler may be installed or uninstalled
in any Test Port member function, even in the event handler itself.

The prototype of the event handler function is the following:

void Event Handler(const fd_set *r_fds, const fd_set *w_fds,
const fd_set *e_fds, double time_since_last call);

The function Event_Handler has four parameters. The first three of them are pointers to bitmasks of
file descriptors as described above. They are the bitwise AND combination of bitmasks you have
given to Install_Handler and the bitmasks given back by the last call of select. They can be useful
when waiting for data from many file descriptors, for example when handling more than one SUT
mappings simultaneously, because there is no need to issue a select call again within the event
handler.

the pointers can be never NULL, they point to a valid memory area even if there are
no file descriptors set in the bitmask. The last parameter contains the time elapsed
since the last call of the event handler measured in seconds. This value is always
calculated even if the call interval has not been set. If the Event_Handler is called the
NOTE first time since its last installation, the time is measured from the call of
Install_Handler. [6: In versions of Test Executor older than 1.1 the event handler
function had no parameters. If you want to upgrade a test port developed for older
versions, you should insert this formal parameter list to your event handler both in
Test Port header and source file. Otherwise the compilation of Test Port will fail.]

Receiving messages

The member function incoming_message of message based ports can be used to put an incoming
message in the queue of the port. There are different polymorphic functions for each incoming
message type. These functions are inherited from the base class. The received messages are logged
when they are put into the queue and not when they are processed by the test suite [7: Note that if
the port has connections as well, the messages coming from other test components will also be
inserted into the same queue independently from the event handler.].

19

In our example the class MyMessagePort_BASE has the following member functions:

incoming_message(const OCTETSTRING& incoming_par);
incoming_message(const CHARSTRING& incoming_par);

Receiving calls, replies and exceptions

Receiving operations on procedure based ports is similar to receiving messages on message based
ports. The difference is that there are different overloaded incoming functions for call, reply and
raise operations called incoming_call, incoming_reply and incoming_exception, respectively. The
event handler (when called) must recognize the type of operation on receiving and call one of these
functions accordingly with one of the internal representations of the signature (see Additional Non-
Standard Functions).

In the example [8: In the example the signatures were defined in a different TTCN-3 module named
MyModule2, as a consequence all types defined in that module must be prefixed with the C++
namespace name of that module.] the class MyProcedurePort_BASE has the following member
functions for incoming operations:

incoming_call(const MyModule2::inProc_call& incoming_par);
incoming_call(const MyModule2::inoutProc_call& incoming_par);
incoming_reply(const MyModule?2::outProc_reply& incoming_par);
incoming_reply(const MyModule2::inoutProc_reply& incoming_par);
incoming_exception(const MyModule2::outProc_exception& incoming_par);
incoming_exception(const MyModule2::inoutProc_exception& incoming_par);

For example, if the event handler receives a call operation that refers to the signature called
inoutProc, it has to fill the parameters of an instance of the class inoutProc_call with the received
data. Then it has to call the function incoming_call with this object to place the operation into the
queue of the port.

The following table shows the relation between the direction of the message type or signature in
the port type definition and the incoming/outgoing functions that can be used. MyPort in the table
header refers to MyMessagePort or MyProcedurePort in the example depending on the type of the port
(message based or procedure based).

Table 1. Outgoing and incoming operations

MyPort::outgoing_ MyPort BASE::incoming_
send call reply raise message call reply exceptio
n
in o o o o ° o o o
message out ° o) @) o o o e} o)
type
inout ° o o o ° o o o

20

5-mapping_ttcn3_data_types_to_c+\+_constructs.adoc #additional-non-standard-functions
5-mapping_ttcn3_data_types_to_c+\+_constructs.adoc #additional-non-standard-functions

MyPort::outgoing_ MyPort BASE::incoming_

in o o ° ° o ° o o

Slgnatur out) ® e} e} 0] 0] ® ®
e

inout o ° ° ° o ° ° °

e supported

o not supported

2.3.7. Additional Functions and Attributes

Any kind of attributes or member functions may be added to the Test Port. A file descriptor, which
you communicate on, is almost always necessary. Names not interfering with the identifiers
generated by the Compiler can be used in the header file (for example, the names containing one
underscore character). Avoid using global variables because you may get confused when more than
one instances of the Test Port run simultaneously. Any kind of software libraries may be used in the
Test Port as well, but included foreign header files may cause name clashes between the library and
the generated code.

In addition, the following protected attributes of ancestor classes are available:

Table 2. Protected attributes

Name Type Meaning
is_started Indicates whether the Test Port
boolean is started.
handler_installed Indicates whether the event
boolean handler is installed.
port_name Contains the name of the Test
const char* Port instance. (NUL character

terminated string)

Underscore characters are not duplicated in port name. In case of port array member instances the
name string looks like this: "Myport_array[5]".

2.4. Support of address Type

The special user-defined TTCN-3 type address can be used for addressing entities inside the SUT on
ports mapped to the system component. Since the majority of Test Ports does not need TTCN-3
addressing and in order to keep the Test Port API backward compatible the support of address type
is disabled by default. To enable addressing on a particular port type the extension attribute
"address" must be added to the TTCN-3 port type definition. In addition to component references
this extension will allow the usage address values or variables in the to or from clauses and sender
redirects of port operations.

In order to use addressing, a type named address shall be defined in the same TTCN-3 module as
the corresponding port type. Address types defined in other modules of the test suite do not affect
the operation of the port type. It is possible to link several Test Ports that use different types for

21

addressing SUT into the same executable test suite.

Test Ports that support SUT addressing have a slightly different API, which is considered when
generating Test Port skeleton. This section summarizes only the differences from the normal APIL

In the communication operations the test port author is responsible for handling the address
information associated with the message or the operation. In case of an incoming message or
operation the value of the received address will be stored in the port queue together with the
received message or operation.

The generated code for the port skeleton of message based ports will be the same, except
outgoing_send member function, which has an extra parameter pointing to an ADDRESS value. With
the example given in Test Port Functions:

void outgoing_send(const INTEGER& send_par,

const ADDRESS *destination_address);
void outgoing_send(const CHARSTRING& send_par,

const ADDRESS *destination_address);

If an address value was specified in the to clause of the corresponding TTCN-3 send operation the
second argument of outgoing_send points to that value. Otherwise it is set to the NULL pointer. The
Test Port code shall be prepared to handle both cases.

The outgoing operations of procedure based ports are also generated in the same way if the address
extension is specified. These functions will also have an extra parameter. Based on our example,
these will have the following form:

void outgoing_call(const MyModule?2::outProc_call& call_par,
const ADDRESS *destination_address);

void outgoing_call(const MyModule?2::inoutProc_call& call_par,
const ADDRESS *destination_address);

void outgoing_reply(const MyModule2::inProc_reply& reply_par,
const ADDRESS *destination_address);

void outgoing_reply(const MyModule2::inoutProc_reply& reply_par,
const ADDRESS *destination_address);

void outgoing_raise(const MyModule2::inProc_exception& raise_exception,
const ADDRESS *destination_address);

void outgoing_raise(const MyModule2::inoutProc_exception& raise_exception,
const ADDRESS *destination_address);

The other difference is in the incoming_message member function of class MyMessagePort_BASE, and in
the incoming member functions of class MyProcedurePort_BASE. These have an extra parameter,
which is a pointer to an ADDRESS value. The default value is set the NULL pointer. In our example of
MyMessagePort_BASE:

22

void incoming_call(const MyModule?2::inProc_call& incoming_par,
const ADDRESS *sender_address = NULL);
void incoming_call(const MyModule?2::inoutProc_call& incoming_par,
const ADDRESS *sender_address = NULL);
void incoming_reply(const MyModule2::outProc_reply& incoming_par,
const ADDRESS *sender_address = NULL);
void incoming_reply(const MyModule2::inoutProc_reply& incoming_par,
const ADDRESS *sender_address = NULL);
void incoming_exception(const MyModule?2::outProc_exception& incoming_par,
const ADDRESS *sender _address = NULL);
void incoming_exception(const MyModule2::inoutProc_exception& incoming_par,
const ADDRESS *sender_address = NULL);

If the event handler of the Test Port can determine the source address where the message or the
operation is coming from, it shall pass a pointer to the incoming function, which points to a
variable that stores the address value. The given address value is not modified by the run-time
environment and a copy of it is created when the message or the operation is appended to the port
queue. If the event handler is unable to determine the sender address the default NULL pointer shall
be passed as second argument.

The address value stored in the port queue is used in receive, trigger, getcall, getreply, catch and
check port operations: it is matched with the from clause and/or stored into the variable given in the
sender redirect. If the receiving operation wants to use the address information of the first element
in the port queue, but the Test Port has not supplied it a dynamic testcase error will occur.

2.5. Provider Port Types

Test Ports that belong to port types marked with extension attribute "provider"” have a slightly
different API. Such port types are used to realize dual-faced ports, the details of which can be found
in section "Dual-faced ports" in the Programmer’s Technical Reference.

The purpose of this API is to allow the re-use of the Test Port class with other port types marked
with attribute user or with ports with translation capability (Methods for Testing and Specification
(MTS); The Testing and Test Control Notation version 3; TTCN-3 Language Extensions: Configuration
and Deployment Support). The user port types may have different lists of incoming and outgoing
message types. The transformations between incoming and outgoing messages, which are specified
entirely by the attribute of the user port type, are done independently of the Test Port. The Test Port
needs to support the sending and reception of message types that are listed in the provider port

type.

The provider port can be accessed through the port which maps to the port with provider attribute.
The get_provider_port() is a member function of the PORT class:

PORT* get_provider_port();

This function is useful when a reference to the provider type is needed. It returns the provider port
type for user ports and ports with translation capability. Otherwise returns NULL. The function

23

https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide
https://www.etsi.org/deliver/etsi_es/202700_202799/202781/01.04.01_60/es_202781v010401p.pdf
https://www.etsi.org/deliver/etsi_es/202700_202799/202781/01.04.01_60/es_202781v010401p.pdf
https://www.etsi.org/deliver/etsi_es/202700_202799/202781/01.04.01_60/es_202781v010401p.pdf

Ca

uses dynamic testcase error when the port has more than one mapping, or the port has both

mappings and connections. The function’s return value must be manually cast to the correct

pr

ovider port type.

This section summarizes only the differences from the normal Test Port API:

* The name of the Test Port class is suffixed with the string _PROVIDER (for example

MyMessagePort_PROVIDER instead of MyMessagePort).

* The base class of the Test Port is class PORT, which is part of the Base Library. Please note that

normal Test Ports are also derived from class PORT, but indirectly through an intermediate class
with suffix BASE.

* The member functions that handle incoming messages and procedure-based operations (that is

incoming_message, incoming_call, incoming_reply and incoming_exception) must be defined in the
header file as pure virtual functions. These functions will be implemented in various
descendant classes differently.

* The Test Port header file must not include the generated header file of the corresponding

TTCN-3 module. The common header file of the Base Library called TTCN3.hh shall be included
instead. The source file of the Test Port may include any header file without restriction.

* The member functions of the Test Port may refer to C++ classes that are generated from user-

defined message types and signatures. To avoid compilation failures the declarations of the
referenced classes must be added to the beginning of the header file. At the moment the Test
Port skeleton generator has a limitation that it cannot collect the class declarations from the
port type, so they must be added manually. Please note that if a message type or signature is
imported from another module the corresponding class declaration must be put into the
appropriate namespace.

The following example shows the generated Test Port skeleton of a provider port type.

Port type definition in TTCN-3 :

type port MyProviderPort mixed {
inout MyMessage, MySignature;
} with { extension "provider" }

Header file MyMessagePort.hh:

24

// This Test Port skeleton header file was generated by the

// TTCN-3 Compiler of the TTCN-3 Test Executor version 1.7.pl0
// for Janos Zoltan Szabo (ejnosza@EG70E00202E46]R)

// on Wed Mar 7 18:14:33 2007

// Copyright Ericsson Telecom AB 2000-2014

// You may modify this file. Add your attributes and prototypes of your
// member functions here.

#ifndef MyProviderPort_HH
#define MyProviderPort_HH

#include <TTCN3.hh>

// Note: Header file MyModule.hh must not be included into this file!
// Class declarations were added manually

namespace MyOtherModule {
// type MyMessageType was imported from MyOtherModule
class MyMessageType;

by

namespace MyModule {

// signature MySignature was defined locally

class MySignature_call;

class MySignature_reply;

class MySignature_exception;

class MyProviderPort_PROVIDER : public PORT {

public:
MyProviderPort_PROVIDER(const char *par_port_name
~MyProviderPort_PROVIDER();

NULL);

void set_parameter(const char *parameter_name,
const char *parameter_value);

void Event_Handler(const fd_set *read fds,
const fd_set *write_fds, const fd_set *error_fds,
double time_since_last_call);

protected:
void user_map(const char *system_port);
void user_unmap(const char *system_port);

void user_start();
void user_stop();

void outgoing_send(const MyOtherModule::MyMessage& send_par);
void outgoing_call(const MySignature_call& call_par);
void outgoing_reply(const MySignature_reply& reply_par);
void outgoing_raise(const MySignature_exception& raise_exception);
virtual void incoming_message(

const MyOtherModule::MyMessage& incoming_par) = 0;
virtual void incoming_call(const MySignature_call& incoming_par) =
virtual void incoming_reply(const MySignature_reply& incoming_par)
virtual void incoming_exception(

const MySignature_exception& incoming_par) = 0;

0;
= @;

+

25

} /* end of namespace */

Source file MyMessagePort.cc:

26

// This Test Port skeleton source file was generated by the

// TTCN-3 Compiler of the TTCN-3 Test Executor version 1.7.pl0

// for Janos Zoltan Szabo (ejnosza@EG70E00202E46]R)

// on Wed Mar 7 18:14:33 2007

// Copyright Ericsson Telecom AB 2000-2014

// You may modify this file. Complete the body of empty functions and
// add your member functions here.

#include "MyProviderPort.hh"
#include "MyModule.hh"

namespace MyModule {

MyProviderPort_PROVIDER: :MyProviderPort_PROVIDER(const char *par_port_name)
: PORT(par_port_name)

{

}

MyProviderPort_PROVIDER: :~MyProviderPort_PROVIDER()
{
+

void MyProviderPort_PROVIDER::set_parameter(const char *parameter_name,
const char *parameter_value)

{

}

void MyProviderPort_PROVIDER::Event_Handler(const fd_set *read_fds,
const fd_set *write_fds, const fd_set *error_fds,
double time since last _call)

{

}

void MyProviderPort_PROVIDER::user_map(const char *system_port)
{
}

void MyProviderPort_PROVIDER::user_unmap(const char *system_port)
{
}

void MyProviderPort_PROVIDER::user_start()

{
}

void MyProviderPort_PROVIDER::user_stop()
{
}

void MyProviderPort_PROVIDER::outgoing_send(
const MyOtherModule: :MyMessage& send_par)

{

}

void MyProviderPort_PROVIDER::outgoing_call(
const MySignature_call& call_par)

{

}

void MyProviderPort_PROVIDER::outgoing_reply(
const MySignature_reply& reply_par)

{

}

void MyProviderPort_PROVIDER::outgoing_raise(
const MySignature_exception& raise_exception)

{
}

} /* end of namespace */

2.6. Tips and Tricks

The following sections deal with logging and error handling in Test Ports.

2.6.1. Logging

Test Ports may record important events in the Test Executor log during sending/receiving or
encoding/decoding messages. Such log messages are also good for debugging fresh code.

The Test Port member functions may call the functions of class TTCN_Logger. These functions are
detailed in Logging in Test Ports or External Functions.

If there are many points in the Test Port code that want to log something, it can be a good practice
to write a common log function in the Test Port class. We show here an example function, which
takes its arguments as the standard C function printf and forwards the message to the Test
Executor’s logger:

27

6-tips_&_troubleshooting.pdf#logging-in-test-ports-or-external-functions

#include <stdarg.h>

// using in other member functions:

// 1og("The value of i: %d", i);

void MyPortType::log(const char *fmt, ...)
{

// this flag can be a class member, which is configured through a
// test port parameter
if (logging_is_enabled) {
va_list ap;
va_start(ap, fmt);
TTCN_Logger::begin_event(TTCN_DEBUG);
TTCN_Logger::log_event("Example Test Port (%s): ", get_name());
TTCN_Logger::log_event_va_list(fmt, ap);
TTCN_Logger::end_event();
va_end(ap);

2.6.2. Error Handling

None of the Test Port member functions have return value like a status code. If a function returns
normally, the run-time environment assumes that it has performed its task successfully. The
handling of run-time errors is done in a special way, using C++ exceptions. This simplifies the
program code because the return values do not have to be checked everywhere and dynamically
created complex error messages can be used if necessary.

If any kind of fatal error is encountered anywhere in the Test Port, the following function should be
called:

void TTCN_error(const char *err_msg, **+);

Its parameter should contain the description of the error in a NUL terminated string in the format of
printf(3). You may pass further parameters to TTCN_error, if necessary. The function throws an
exception, so it never returns. The exception is usually caught at the end of the test case or PTC
function that is being executed. In case of error, the verdict of the component is set to error and the
execution of the test case or PTC function terminates immediately.

The exception class is called TC_Error. For performance reasons this is a trivial (empty) class, that is,
it does not contain the error message in a string. The error string is written into the log file by
TTCN_error immediately. Such type of exception should never be caught or thrown directly. If you
want to implement your own error handling and error recovery routines you had better use your
own classes as exceptions.

If you write your own error reporting function you can add automatically the name of the port
instance to all of your error messages. This makes the fault analysis for the end-users easier. In the
following example the error message will occupy two consecutive lines in the log since we can pass
only one format string to TTCN_error.

28

void MyPortType::error(const char *msg, ...)

{
va_list ap;
va_start(ap, msg);
TTCN_Logger::begin_event(TTCN_ERROR);
TTCN_Logger::1log_event("Example Test Port (%s): ", get_name());
TTCN_Logger::log_event_va_list(msg, ap);
TTCN_Logger::end_event();
va_end(ap);
TTCN_error("Fatal error in Example Test Port %s (see above).",

get_name());

There is another function for denoting warnings (that is, events that are not so critical) with the
same parameter list as TTCN_error:

void TTCN_warning(const char *warning_msg, *);

This function puts an entry in the executor’s log with severity TTCN_WARNING. In contrast to

TTCN_error, after logging the given message TTCN_warning returns and your test port can continue
running.

29

Chapter 3. Logger Plug-ins

3.1. Implementing Logger Plug-ins

All logger plug-ins must implement the ILoggerPlugin interface class in ILoggerPlugin.hh in
${TTCN3_DIR}/include. Each plug-in should provide some essential information on itself and should
implement some basic functions:

The name (name_, plugin_name()) of the plugin. To be able to reference the plugin (for example for
configuration). Additional information about the plug-in (help_, plugin_help()).

The minimum API version number the plug-in is compatible with (major_version_,
major_version(), minor_version_, minor_version()).

Each plug-in must have an initialization (init()) and deinitialization (fini()) routine, which are
called at the begin and end of the plug-in’s lifecycle. The same functionality can be implemented in
the plug-in’s constructor and destructor as well.

The plug-in could be asked, whether it’s configured or not (is_configured()). For example the file is
already opened, the database connection is set up etc. Depending on this information event
buffering can be enabled or disabled.

One plug-in should provide log2str() functionality. The is_log2str_capable() function should be
overridden to return true. At the moment it’s not possible to change the default behavior and
returning true will not have an effect except a warning.

The logger plug-ins receive the log events via the log() function. The details about event handling
can be found in 3.3.

The generated, runtime specific (load-test or function-test) header file TitanLoggerApi.hh needs to be
included by every logger plug-in depending on the runtime it is compiled for. These header files can
be found in ${TTCN3_DIR}/include/{RT1/RT2}. An example to handle these include files in a logger
plug-in’s code:

#ifndef TITAN_RUNTIME_2

#include ‘‘RT1/TitanLoggerApi.hh"'
ftelse

#include ‘‘RT2/TitanLoggerApi.hh"'

#endif

Unfortunately, the dlopen() API is a C API, not a C++ API, but each logger plug-in is a class, which
needs to be instantiated. To resolve this, the logger plug-ins are always instantiated and destroyed
through C factory functions. These functions are mandatory for all logger plug-ins and they must
follow C-style linkage rules. Otherwise, the function names would be mangled by the C++ compiler,

30

using its own, implementation dependent mangling mechanism, and dlsym() and such functions
would not be able to locate the correct symbol in the SOs of the logger plug-ins. These functions
look pretty simple:

#ifdef __cplusplus
extern "C"

{
ILoggerPlugin *create_plugin()
{ return new MyPlugin(); }
void destroy_plugin(ILoggerPlugin *plugin)
{ delete plugin; plugin = NULL; }
}
#endif

3.2. Building Logger Plug-ins

The generated, runtime specific (load-test or function-test) header file TitanLoggerApi.hh needs to be
included by every logger plug-in depending on the runtime it is compiled for. These header files can
be found in ${TTCN3_DIR}/include/{RT1/RT2} and this directory must be present (for example as part
of CPPFLAGS in the Makefile) while compiling the logger plug-ins.

To make logger plug-ins dynamically loadable at runtime the logger plug-ins need to be built as
shared libraries. Physically SOs (.so) on Unix and Linux platforms, DLLs (.d11) on Cygwin and
Windows platforms. A HOWTO on building shared libraries can be found at David A. Wheeler,
Program Library HOWTO. A quick summary:

All the sources of the logger plug-ins need to be compiled with —fPIC, for example add CXXFLAGS +=
-fPIC into the Makefile or command line.

The linker should be instructed to create a shared library instead of an executable with the —shared
flag. —fPIC is necessary here as well, for example add LDFLAGS += -fPIC -shared in the Makefile or
command line.

Another thing to keep in mind is that logger plug-ins need to be linked with the dynamically linked
TITAN runtime libraries (for example libttcn3-dynamic.so/libttcn3-parallel-dynamic.so or
libtten3-rt2-dynamic.so/libttcn3-rt2-parallel-dynamic.so) instead of the static ones (for example
libtten3.a/libttcn3-parallel.a or libtten3-rt2.a/libtten3-rt2-parallel.a). So, if all possible
combinations need to be supported by a logger plug-in, all of the four versions need to be built,
additionally there are naming rules to simplify making a distinction between them:

 Single mode, load test runtime. File name must end with ".so".

+ Single mode, function test runtime. File name must end with "-rt2.so".

Parallel mode, load test runtime. File name must end with "-parallel.so".

Parallel mode, function test runtime. File name must end with "-parallel-rt2.so".

The runtime library linked with a logger plug-in must be selected to match the runtime linked with
the test executable that loads it: if the test executable is linked to libttcn3-dynamic.so, then any

31

http://tldp.org/HOWTO/Program-Library-HOWTO/index.html
http://tldp.org/HOWTO/Program-Library-HOWTO/index.html

logger plug-ins must also be linked to libttcn3-dynamic.so and not libttcn3-parallel-dynamic.so or
libtten3-rt2-dynamic.so. To ensure consistency, only a dynamic runtime library will load a logger
plug-in (because a plug-in is always linked to a dynamic runtime library). If a non-dynamic runtime
library is configured to load a logger plug-in, it will cause a runtime error.

Please note that linking a plug-in or any TTCN-3 project with the object files generated from the
TitanLoggerApi or TitanLoggerControl internal modules and using the dynamic libraries of TITAN at
the same time is not recommended and it can lead to various runtime errors.

3.3. Event Handling

The log events are distributed to all active logger plug-ins via a four-parameter callback function
with the following signature:

void log(const TitanLoggerApi::TitanLogEvent& event, bool
log_buffered, bool separate_file, bool use_emergency_mask);

The first parameter event is the event itself, the second parameter log_buffered indicates, whether
the event is coming from an internal buffer or not, separate_file and use_emergency_mask are
configuration options for emergency logging. The use_emergency_mask flag indicates that the given
event is an emergency event and should be handled in a special way by the plug-ins, the
separate_file flag indicates that all the emergency events should be handled separately (for
example written into a separate file). For more details on emergency logging please check
Programmer’s Technical Reference. In this function, the plug-in can handle the log events

individually depending on the event’s type (that is, the alternative selected in the union
event.logEvent().choice()).

TitanLoggerApi::TitanLogEvent is a generated type defined in TitanLoggerApi.xsd, which can be
found in ${TTCN3_DIR}/include. This file contains all the necessary type definitions a logger plug-in
should be aware of. The corresponding header files generated from this XSD file can be found in
${TTCN3_DIR}/include/{RT1/RT2}. The mapping between TTCN-3 types and C++ types is defined in
Mapping TTCN-3 Data Types to C++ Constructs.

3.4. Execution

When a logger plug-in is compiled (the SO is ready) it should be configured in the configuration file.
For details check Programmer’s Technical Reference. Additionally, LD_LIBRARY_PATH should contain
the directory of the plug-in and ${TTCN3_DIR}/1ib as well. If the runtime linker (the loader) is unable
to find any of the given logger plug-ins an error will be given.

32

https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide
5-mapping_ttcn3_data_types_to_c++_constructs.adoc
https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide

Chapter 4. Encoding and Decoding

This tool is equipped with several standard encoding/decoding mechanisms. A part of these
functions reside in the core library, but the type-dependent part must be generated by the compiler.
In order to reduce the code size and compilation time, the code generation for encoding functions
(separately for different encoders) can be switched off if they are not needed. For details, see
section "Command line syntax" in the Programmer’s Technical Reference.

To make it easier to use the encoding features, a unified common API was developed. With help of
this API the behaviour of the test executor in different error situations can be set during coding.
There is also a common buffer class. The details of the above mentioned API as well as the specific
features of the certain encoders are explained in the following sections.

4.1. The Common API

The common API for encoders consists of three main parts:

* A dummy class named TTCN_EncDec which encapsulates functions regarding error handling.

* A buffer class named TTCN_Buffer which is used by the encoders to put data in, decoders to get
data from.

e The functions needed to encode and decode values.

4.1.1. TTCN_EncDec

TTCN_EncDec implements error handling functions.

Setting Error Behavior

There are lot of error situations during encoding and decoding. The coding functions can be told
what to do if an error arises. To set the behaviour of test executor in a certain error situation the
following function is to be invoked:

void TTCN_EncDec::set_error_behavior(error_type_t, error_behavior_t);

As error_type_t and error_behavior_t are enums defined in TTCN_EncDec
WARNING class, they have to prefixed with the class name and the scope operator (that is
TTCN_EncDec::).

The possible values of error_type_t are detailed in the sections describing the different codings.
Some common error types are shown in the table below:

Table 3. Common error types

ET UNDEF Undefined/unknown error.
ET_UNBOUND Encoding of an unbound value.

33

https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide

ET_UNDEF
ET_REPR

ET_ENC_ENUM
ET_DEC_ENUM
ET_INCOMPL_MSG
ET_INVAL MSG
ET_CONSTRAINT
ET_INTERNAL
ET_ALL

ET_NONE

Undefined/unknown error.

Representation error (for example, internal representation of
integral numbers).

Encoding of an unknown enumerated value.

Decoding of an unknown enumerated value.

Decode error: incomplete message.

Decode error: invalid message.

The value breaks some constraint.

Internal error. Error behaviour cannot be set for this.
All error type. Usable only when setting error behaviour.

No error.

The possible values of error_behavior_t are shown in the table below:

Table 4. Possible values of error_behavior_t

EB_DEFAULT
EB_ERROR
EB_WARNING
EB_IGNORE

Getting Error Behavior

There are two functions: one for getting the current setting and one for getting the default setting

Sets the default error behaviour for the selected error type.
Raises an error if the selected error type occurs.
Gives a warning message but tries to continue the operation.

Like warning but without the message.

for a particular error situation.

error_behavior_t TTCN_EncDec::get_error_behavior(error_type_t);
error_behavior_t TTCN_EncDec::get_default_error_behavior(error_type_t);

The using of these functions are straightforward: giving a particular error_type_t the function

returns the current or default error_behavior_t for that error situation, respectively.

Checking if an Error Occurred

The last coding-related error and its textual description can be retrieved anytime. Before using a
coding function, it is advisable to clear the "last error". This can be achieved by the following

method:

void TTCN_EncDec::clear_error();

After using some coding functions, it can be checked if an error occurred with this function:

error_type_t TTCN_EncDec::get_last_error_type();

34

This returns the last error, or ET_NONE if there was no error. The string representation of the error
can be requested with the help of this:

const char* TTCN_EncDec::get_error_str();

WARNING The above two functions do not clear the "last error"” flag.

4.1.2. TTCN_Buffer

TTCN Buffer objects are used to store encoded values and to communicate with the coding
functions. If encoding a value, the result will be put in a buffer, from which can be get. In the other
hand, to decode a value, the encoded octet string must be put in a TTCN_Buffer object, and the
decoding functions get their input from that.

void TTCN Buffer::clear();

Resets the buffer, cleaning up its content, setting the pointers to the beginning of buffer.

void TTCN_Buffer::rewind();

Rewinds the buffer, that is, sets its reading pointer to the beginning of the buffer.

size_t TTCN_Buffer::get_pos() const;

Returns the (reading) position of the buffer.

void TTCN_Buffer::set_pos(size_t pos);

Sets the (reading) position to pos, or to the end of buffer, if pos > get_len().

size_t TTCN_Buffer::get_len() const;

Returns the amount of bytes in the buffer.

const unsigned char* TTCN_Buffer::get_data() const;

Returns a pointer that points to the beginning of the buffer. You can read out count bytes beginning
from this address, where count is the value returned by the get_len() member function.

size_t TTCN_Buffer::get_read_len() const;

35

Returns how many bytes are in the buffer to read.

const unsigned char* TTCN_Buffer::get_read_data() const;

Returns a pointer which points to the read position of data in the buffer. count bytes can be read out
beginning from this address, where count is the value returned by the get_read_len() member
function.

void TTCN_Buffer::put_c(const unsigned char c);

Appends the byte c to the end of buffer.

void TTCN_Buffer::put_s(const size_t len, const unsigned char *s);

Writes a string of bytes to the end of buffer, where len is the amount of bytes, s is a pointer to the
data to be written.

void TTCN_Buffer::put_os(const OCTETSTRING& os);

Appends the content of the octet string to the buffer.

Sometimes it is useful to copy data directly into a buffer. In this case, the buffer must be told the
maximum number of bytes to be written. So the buffer can resize its data area. This can be done
with the following function:

void TTCN_Buffer::get_end(unsigned char*& end_ptr, size_t& end_len);

Parameter end_len is an in-out parameter: you tell how many bytes you want to write, and the
returned value is equal to or greater than the requested. Parameter end_ptr is an out parameter. So
up to end_len bytes can be written beginning from end_ptr. After writing also increase_length()
must be called.

void TTCN_Buffer::increase_length(size_t count);

After writing bytes directly to the end of buffer using the pointer returned by get_end() method, the
buffer must be told how many bytes have been written. This can be done by this function.

void TTCN Buffer::cut();

Cuts (removes) the bytes between the beginning of the buffer and the read position. After calling
this, the read position will be the beginning of buffer. As this function manipulates the internal
data, pointers referencing to data inside the buffer will be invalid.

36

void TTCN Buffer::cut_end();

Cuts (removes) the bytes between the read position and the end of the buffer. After calling this, the
read position remains unchanged (that is, it will point to the end of the truncated buffer). As this
function manipulates the internal data, pointers referencing to data inside the buffer will be
invalid.

boolean TTCN_Buffer::contains_complete_TLV();

Returns TRUE if the buffer contains a complete TLV, otherwise it returns FALSE. Useful when
decoding BER streams, and the data is coming in chunks. With the help of this, you can check
before decoding whether the message is complete.

4.1.3. Invoking the Coding Functions

Every type class has members like these:

void encode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,
TTCN_EncDec::coding_t p_cod, ...) const;

void decode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,
TTCN_EncDec::coding_t p_cod, ...);

Parameter p_td is a special type descriptor. Each type has its own descriptor, which contains the
name of the type, and a lot of information used by the different encoding mechanisms. The names
of the descriptors come from the name of the types: the appropriate type descriptor for type XXX is
XXX_descr_.

Parameter p_buf contains the encoded value. For details about using it, please consult the previous
subsection.

Parameter p_cod is the desired coding mechanism. As coding_t is defined in TTCN_EncDec, its value
must be prefixed with TTCN_EncDec::. For the time being, this parameter may have one of the
following values:

CT_BER - BER coding

CT_RAW RAW - coding;

CT_TEXT TEXT - coding;

CT_XER XML - coding.

The optional ... parameter(s) are depending on the chosen coding.

4.2. BER

The encoding rules defined in Information TechnologyASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished can be used to encode

37

https://www.itu.int/rec/T-REC-X.690-200811-S
https://www.itu.int/rec/T-REC-X.690-200811-S

and/or decode the values of ASN.1 types. There are three methods defined in the referenced
document: BER, CER and DER (Basic, Canonical and Distinguished Encoding Rules). While the BER
gives a lot of options to the sender (that is, to the encoder), the CER and DER select just one
encoding from those allowed by the BER, eliminating all of the sender options. In other words, CER
(and also DER) is a subset of BER. Any value encoded by CER or DER can be decoded using BER, but
it is not true in the other direction.

In this section it is assumed that the reader has basic knowledge about BER, TLVs, tags, length forms
and other items defined in Information TechnologyASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished.

This tool is capable of encoding values in CER or DER, and uses the BER while decoding [9: Though
the decoder can be forced to accept only certain length forms (short, long, indefinite or any
combination of these.]. The tags are handled quite separated from the types, giving extra freedom
to the user when encoding only one component of a compound type. Let us suppose we have a
large SEQUENCE with automatic tags (that is, context-specific implicit tags 1, 2, ...), the third
component is " [3] Other-sequence". Then we have the possibility to encode only this field using
SEQUENCE-tag. (Implementation details and examples follow in next sections.)

4.2.1. Error Situations
In addition to error situations mentioned in The Common API, these can occur during BER-coding:

Table 5. BER-coding errors

ET INCOMPL_ANY Encoding of an ASN ANY value which does not contain a valid BER
TLV.

ET_LEN_FORM During decoding: the received message has a non-acceptable length
form.

ET_TAG During decoding: unexpected tag.

ET_SUPERFL During decoding: superfluous part detected. This can be superfluous
TLV at the end of a constructed TLV.

ET_EXTENSION During decoding: there was something in the extension (for
example: in ASN.1 ellipsis). This is not supported in the current
version.

ET_DEC_DUPFLD While decoding a SET: duplicated field (value for the given field
already received).

ET_DEC_MISSFLD While decoding a SET: missing field (value for the given field not
received).

ET_DEC_OPENTYPE Cannot decode an opentype (broken component relation constraint).

ET_DEC_UCSTR While decoding a universal charstring: Malformed sequence.

4.2.2. API

The Application Programming Interface for ASN.1 type encoding and decoding is described in the
following.

38

https://www.itu.int/rec/T-REC-X.690-200811-S
https://www.itu.int/rec/T-REC-X.690-200811-S

Encoding

void encode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,
TTCN_EncDec::coding_t p_cod, unsigned int p_BER_coding) const;

The parameter p_cod must be set to TTCN_EncDec::CT_BER. The parameter p_BER_coding is used to
choose between CER and DER.
BER_ENCODE_CER = CER coding.

BER_ENCODE_DER = DER coding.

Decoding

void decode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,
TTCN_EncDec::coding_t p_cod, unsigned int p_len_form);

The parameter p_cod must be set to TTCN_EncDec::CT_BER. The parameter p_len_form determines
which length forms are accepted.
o BER_ACCEPT_SHORT
Short form.
« BER_ACCEPT_LONG
Long form.
o BER_ACCEPT_INDEFINITE
Indefinite form.
o BER_ACCEPT_DEFINITE
Short and long form.
o BER_ACCEPT_ALL

All form.

4.2.3. Example

Let us assume that we have an ASN.1 module named MyASN which contains a type named
ErrorReturn, and we have a TTCN-3 module which imports this type. This module contains also two
ports:

type port MyPortl message

39

type port MyPort1 message
{

out ErrorReturn;
in octetstring;

}

type port MyPort2 message
{

out octetstring;
in ErrorReturn;

}

Then we can complete the port skeleton generated by the compiler:

void MyPort1::outgoing_send(const MyASN::ErrorReturn& send_par)
{
TTCN Buffer buf;
send_par.encode(MyASN: :ErrorReturn_descr_, buf,
TTCN_EncDec::CT_BER, BER_ENCODE_DER);
OCTETSTRING encodeddata(buf.get_len(), buf.get_data());
incoming_message(encodeddata);

}

void MyPort2::outgoing_send(const OCTETSTRING& send_par)
{
TTCN_EncDec::set_error_behavior (TTCN EncDec::ET _ALL,
TTCN_EncDec: :EB_WARNING);
TTCN_Buffer buf;
buf.put_os(send_par);
MyASN: :ErrorReturn pdu;
pdu.decode(MyASN: :ErrorReturn_descr_, buf, TTCN_EncDec::CT_BER,
BER_ACCEPT_ALL);
incoming_message(pdu);

4.3. RAW

You can use the encoding rules defined in the section "RAW encoder and decoder" in the
Programmer’s Technical Reference to encode and decode the following TTCN-3 types:

* boolean

* integer

» float

bitstring

octetstring

40

https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide

* charstring

* hexstring

* enumerated

* record

* set

* union

* record of

* setof
The compiler will produce code capable of RAW encoding/decoding for compound types if they
have at least one variant attribute.
When a compound type is only used internally or it is never RAW encoded/decoded then the

attribute variant has to be omitted.
When a type can be RAW encoded/decoded but with default specification then the empty variant

specification can be used: variant "".

4.3.1. Error Situations

Table 6. RAW-coding errors

ET_LEN_ERR During encoding: Not enough length specified in FIELDLENGTH to
encode the value. During decoding: the received message is shorter
than expected.

ET_SIGN_ERR Unsigned encoding of a negative number.

ET FLOAT NAN Not a Number float value has been received.

ET_FLOAT_TR The float value will be truncated during double to single precision
conversion.

4.3.2. API

The C++ Application Programming Interface for RAW encoding and decoding is described in the
following. It can be used for example in test port implementation, in external function
implementation.

Encoding

void encode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,
TTCN_EncDec::coding_t p_cod) const;

The parameter p_cod must be set to TTCN_EncDec: :CT_RAW.

Decoding

41

void decode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,
TTCN_EncDec::coding_t p_cod);

The parameter p_cod must be set to TTCN_EncDec: :CT_RAW.

4.3.3. Example

Let us assume that we have a TTCN-3 module which contains a type named ProtocolPdu, and this
module contains also two ports:

type port MyPort1 message

{
out ProtocolPdu;

in octetstring;

}

type port MyPort2 message
{

out octetstring;

in ProtocolPdu;

}

Then we can complete the port skeleton generated by the compiler as follows:

void MyPort1::outgoing_send(const ProtocolPdu& send_par)
{
TTCN_Buffer buf;
send_par.encode(ProtocolPdu_descr_, buf,
TTCN_EncDec::CT_RAW);
OCTETSTRING encodeddata(buf.get_len(), buf.get_data());

incoming_message(encodeddata);

}

void MyPort2::outgoing_send(const OCTETSTRING& send_par)
{
TTCN_EncDec::set_error_behavior (TTCN EncDec::ET_ALL,
TTCN_EncDec: :EB_WARNING);
TTCN_Buffer buf;
buf.put_os(send_par);
ProtocolPdu pdu;
pdu.decode(ProtocolPdu_descr_, buf, TTCN_EncDec::CT_RAW);

incoming_message(pdu);

42

4.4. TEXT

You can use the encoding rules defined in the section "TEXT encoder, decoder" in the Programmer’s
Technical Reference to encode and decode the following TTCN-3 types:

* boolean

* integer

* charstring

* enumerated

* record

* set

* union

* record of

* set of
The compiler will produce code capable of TEXT encoding/decoding for compound types if they
have at least one variant attribute or it is used within a compound type which has a TEXT attribute.
If you need a compound type that is only used internally or it is never RAW encoded/decoded then
you have to omit the variant attribute. If you need a type which can be TEXT encoded/decoded but

with default specification then the empty variant specification can be wused: variant
"TEXT_CODING()".

4.4.1. Error Situations

ET_TOKEN_ERR - The specified token is not found during decoding

4.4.2. API

The Application Programming Interface for TEXT encoding and decoding is described in the
following.

Encoding

void encode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,
TTCN_EncDec::coding_t p_cod) const;

The parameter p_cod must be set to TTCN_EncDec: :CT_TEXT.

Decoding

void decode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,
TTCN_EncDec::coding_t p_cod);

The parameter p_cod must be set to TTCN_EncDec: :CT_TEXT.

43

https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide
https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide

4.4.3. Example

Let us assume that we have a TTCN-3 module which contains a type named ProtocolPdu, and this
module contains also two ports:

type port MyPort1 message
{

out ProtocolPdu;
in charstring;

}

type port MyPort2 message
{

out charstring;
in ProtocolPdu;

}

Then we can complete the port skeleton generated by the compiler:

void MyPort1::outgoing_send(const ProtocolPdu& send_par)
{
TTCN_Buffer buf;
send_par.encode(ProtocolPdu_descr_, buf,
TTCN_EncDec: :CT_TEXT);
CHARSTRING encodeddata(buf.get_len(), buf.get_data());

incoming_message(encodeddata);

}

void MyPort2::outgoing_send(const CHARSTRING& send_par)
{
TTCN_EncDec::set_error_behavior (TTCN _EncDec::ET_ALL,
TTCN_EncDec::EB_WARNING);
TTCN_Buffer buf;
buf.put_cs(send_par);
ProtocolPdu pdu;
pdu.decode(ProtocolPdu_descr_, buf, TTCN_EncDec::CT_TEXT);

incoming_message(pdu);

4.5. XML Encoding (XER)

The encoding rules defined by Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3. Part 9: Using XML Schema with TTCN-3 European can be used to
encode and/or decode values of ASN.1 and TTCN-3 types. This tool is capable of encoding and
decoding Basic XER (BXER), Canonical XER (CXER) and Extended XER (EXER). Values of all ASN.1

44

https://www.etsi.org/deliver/etsi_ES/201800_201899/20187309/04.05.01_60/es_20187309v040501p.pdf
https://www.etsi.org/deliver/etsi_ES/201800_201899/20187309/04.05.01_60/es_20187309v040501p.pdf

types can be encoded, but only BXER and CXER are available for them because parsing XML
Encoding Instructions in ASN.1 files is not implemented.

The following built-in TTCN-3 types can be encoded in XML:

* boolean

* integer

* float

* bitstring

* octetstring

* hexstring

* objid

* charstring

* universal charstring

* verdicttype
The following user-defined types can be encoded in XML:

* enumerated types

* record, set and union types, if all components can be encoded.

» record of and set of types, if the type of the element can be encoded.
The encoder and the decoder are working with XML data encoded in UTF-8 (described in UTF-8, a
transformation format of ISO 10646), stored in an object of type TTCN_buffer. Although the contents
of this object can be retrieved (using the overloads of the get_string function) as an instance of
OCTETSTRING, CHARSTRING or UNIVERSAL_CHARSTRING, it is recommended to use only the OCTETSTRING
representation. CHARSTRING is not recommended, because UTF-8 is an 8-bit encoding so the buffer
may contain bytes with values over 127, which are not valid characters for a TTCN-3 charstring

(which is implemented by CHARSTRING, see Charstring). UNIVERSAL_CHARSTRING must not be used
because its internal representation is not UTF-8.

4.5.1. Error Situations

In addition to error situations mentioned in The Common API, the following can occur during
XMLcoding:

Table 7. XER coding errors

ET_TAG Incorrect (unexpected) XML tag found during
decoding

4.5.2. API

The Application Programming Interface for XML encoding and decoding is described in the
following.

45

https://tools.ietf.org/html/rfc3629
https://tools.ietf.org/html/rfc3629
5-mapping_ttcn3_data_types_to_c+\+_constructs.pdf#Charstring

Encoding

void encode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,
TTCN_EncDec::coding_t p_cod, unsigned int p_XER_coding) const;

The parameter p_cod must be set to TTCN_EncDec::CT_XER. The parameter p_XER_coding is used to
choose between BXER, CXER and EXER:

XER_BASIC = Basic XER (BXER)
XER_CANONICAL = Canonical XER (CXER)

XER_EXTENDED = Extended XER (EXER)

Decoding

void decode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,
TTCN_EncDec::coding_t p_cod, unsigned int p_XER_coding);

The parameter p_cod must be set to TTCN_EncDec::CT_XER. The parameter p_XER_coding is used to
choose between BXER, CXER and EXER:
XER_BASIC = Basic XER (BXER)

XER_CANONICAL = Canonical XER (CXER)

XER_EXTENDED = Extended XER (EXER)

4.5.3. Example

Let us assume that we have a TTCN-3 module which contains a type named ProtocolPdu, and this
module contains also two ports:

46

void MyPort1::outgoing_send(const ProtocolPdu& send_par)

{
TTCN _Buffer buf;
send_par.encode(ProtocolPdu_descr_, buf,

TTCN_EncDec::CT_XER, XER_EXTENDED);

OCTETSTRING encodeddata(buf.get_len(), buf.get_data());
incoming_message(encodeddata);

}

void MyPort2::outgoing_send(const OCTETSTRING& send_par)

{
TTCN_EncDec::set_error_behavior (TTCN _EncDec::ET_ALL,

TTCN_EncDec::EB_WARNING);

TTCN _Buffer buf;
buf.put_os(send_par);
ProtocolPdu pdu;
pdu.decode(ProtocolPdu_descr_, buf, TTCN_EncDec::CT_XER, XER_EXTENDED);
incoming_message(pdu);

}

4.6. JSON

The encoding rules defined in the section "JSON Encoder and Decoder" of the Programmer’s
Technical Reference can be used to encode and decode the following TTCN-3 types:

* anytype

* array

* bitstring

* boolean

* charstring

* enumerated
* float

* hexstring

* integer

* objid

* octetstring
* record’, set
e record of ', set of
* union

* universal charstring

47

https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide
https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide

* verdicttype
The rules also apply to the following ASN.1 types (if imported to a TTCN-3 module):

« ANY

o BIT STRING

* BOOLEAN

* BMPString

* CHOICE, open type (in instances of parameterized types)

e ENUMERATED

* GeneralString

* GraphicString

» JA5String

* INTEGER

* NULL

* NumericString

* OBJECT IDENTIFIER

* OCTET STRING

* PrintableString

* RELATIVE "-OID

* SEQUENCE, SET

* SEQUENCE OF, SET OF

* TeletexString

* UniversalString

» UTF8String

* VideotexString

* VisibleString
The compiler will produce code capable of JSON encoding/decoding for compound types if they
have at least one JSON variant attribute or the encode "JSON" attribute (and, for compound types, all

fields and elements of compound types also have a JSON variant attribute or the encode "JSON"
attribute).

The encoder and the decoder work with JSON data encoded in UTF-8 (described in UTF-8, a
transformation format of ISO 10646), stored in an object of type TTCN_buffer. Although the contents
of this object can be retrieved (using the overloads of the get_string function) as an instance of
OCTETSTRING, CHARSTRING or UNIVERSAL_CHARSTRING, it is recommended to use only the OCTETSTRING
representation. CHARSTRING is not recommended, because UTF-8 is an 8-bit encoding so the buffer
may contain bytes with values over 127, which are not valid characters for a TTCN-3 charstring
(which is implemented by CHARSTRING, see Charstring). UNIVERSAL_CHARSTRING must not be used

48

https://tools.ietf.org/html/rfc3629
https://tools.ietf.org/html/rfc3629
5-mapping_ttcn3_data_types_to_c+\+_constructs.pdf#Charstring

because its internal representation is not UTF-8.

4.6.1. Error Situations

There are no extra error situations apart from the ones in The Common API.

4.6.2. API

The Application Programming Interface for JSON encoding and decoding is described in the
following.

Encoding

void encode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,
TTCN_EncDec::coding_t p_cod) const;

The parameter p_cod must be set to TTCN_EncDec: :CT_JSON.

Decoding

void decode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,
TTCN_EncDec::coding_t p_cod);

The parameter p_cod must be set to TTCN_EncDec: : CT_JSON.

4.6.3. Example

Let us assume that we have a TTCN-3 module which contains a type named ProtocolPdu, and this
module also contains two ports:

type port MyPort1 message
{

out ProtocolPdu;
in octetstring;

}

type port MyPort2 message
{

out octetstring;
in ProtocolPdu;

}

Then we can complete the port skeleton generated by the compiler:

49

50

void MyPort1::outgoing_send(const ProtocolPdu& send_par)

{
TTCN _Buffer buf;

send_par.encode(ProtocolPdu_descr_, buf,
TTCN_EncDec::CT_JSON);
OCTETSTRING encodeddata(buf.get_len(), buf.get_data());

incoming_message(encodeddata);

}

void MyPort2::outgoing_send(const OCTETSTRING& send_par)
{
TTCN_EncDec::set_error_behavior (TTCN _EncDec::ET_ALL,
TTCN_EncDec::EB_WARNING);
TTCN _Buffer buf;
buf.put_os(send_par);
ProtocolPdu pdu;
pdu.decode(ProtocolPdu_descr_, buf, TTCN_EncDec::CT_JSON);

incoming_message(pdu);

Chapter 5. Mapping TTCN-3 Data Types to
C++ Constructs

The TTCN-3 language elements of the test suite are individually mapped into more or less
equivalent C++ constructs. The data types are mapped to C++ classes, the test cases become C
functions, and so on. In order to write a Test Port, it is inevitable to be familiar with the internal
representation format of TTCN-3 data types and values. This section gives an overview about the
data types and their equivalent C constructs.

5.1. Mapping of Names and Identifiers

In order to identify the TTCN-3 language elements in the generated C++ program properly, the
names of test suite are translated to C++ identifiers according to the following simple rules.

If the TTCN-3 identifier does not contain any underscore () character, its equivalent C++ identifier
will be the same. For example, the TTCN-3 variable MyVar will be translated to a C++ variable called
MyVar.

If the TTCN-3 identifier contains one or more underscore characters, each underscore character
will be duplicated in the C++ identifier. So the TTCN-3 identifier My_Long_Name will be mapped to a
C++ identifier called My__Long__Name.

The idea behind this name mapping is that we may freely use the C++ identifiers containing one
underscore character in the generated code and in the Test Ports as well. Otherwise name clashes
can always happen because the name space of TTCN-3 and C++ is identical. Furthermore, the
generated C++ language elements fulfill the condition that the scope of a translated C++ identifier is
identical as the scope of the original TTCN-3 identifier.

The identifiers that are keywords of C or C++ but not keywords in TTCN-3 are mapped to
themselves, but a single underscore character is appended at the end (for example typedef becomes
typedef_). The same rule applies to the all-uppercase identifiers that are used in the Base Library:
identifier INTEGER in TTCN-3 becomes INTEGER_in C++, TRUE [10: The built-in verdict and boolean
constants in TTCN-3 shall be written with all lowercase letters, such as true or pass. Although
previous compiler versions have accepted TRUE or PASS as well, these words are treated by the
compiler as regular identifiers as specified in the standard.] is mapped to TRUE_, etc.

Here is the complete list (in alphabetical order) of the identifiers that are handled in such special
way:asm, auto, bitand, bitor, bool, break, case, class, compl, continue, delete, double, enum, explicit,
export, friend, inline, int, ischosen, long, main, mutable, namespace, new, operator, private,
protected, public, register, short, signed, static, stderr, stdin, stdout, struct, switch, this, throw, try,
typedef, typeid, typename, unsigned, using, virtual, void, volatile, ADDRESS, BITSTRING, BOOLEAN,
CHAR, CHARSTRING, COMPONENT, DEFAULT, ERROR, FAIL, FALSE, FLOAT, HEXSTRING, INCONC,
INTEGER, NONE, OBJID, OCTETSTRING, PASS, PORT, TIMER, TRUE, VERDICTTYPE.

The identifiers that are the names of common preprocessor macros of the C library (such as
putchar, errno or NULL) should be avoided in TTCN-3 modules. The name clashes with macros can
cause mysterious compilation error messages.

51

Note that these name mapping rules apply to all TTCN-3 identifiers, including module, Test Port,
type, field, variable and function names.

By default, from version 1.2.pl0 the compiler does NOT duplicate the
WARNING underscores in output file names and file references (for example when
handling imports).

5.2. Namespaces

The compiler generates a C namespace for every TTCN-3 and ASN.1 module. All C definitions that
belong to the module (including Test Port classes and external functions) are placed in that
namespace. The name of the namespace is derived from the module identifier according to the
rules described in Mapping of Names and Identifiers.

The definitions of the TTCN-3 Base Library do not use any namespace.

When accessing a C++ entity that belongs to a different module than the referring Test Port or
external function is in the reference has to be prefixed with the namespace of the referenced
module. For example, to access the C++ class that realizes type MyType defined in MyModulel from a
Test Port that belongs to module MyModule? the reference shall be written as MyModule1: :MyType.

5.3. Predefined TTCN-3 Data Types

There are some basic data types in TTCN-3 that have no equivalent data types in language C/C++
(for example bitstring, verdicttype). Other types have C++ equivalent, but the TTCN-3 executor must
know whether a variable has a valid value or not because sending an unbound value must result in
a dynamic test case error. Thus, in the TTCN-3 Base Library all basic data types of TTCN-3 were
implemented as C++ classes. This section describes the member functions of these classes.

5.3.1. Integer

The TTCN-3 type integer is implemented in class INTEGER.
The class INTEGER has the following public member functions:

Table 8. Public member functions of the class INTEGER

Member functions Notes
INTEGER() Initializes to unbound value.
INTEGER(int) Initializes to a given value.
Constructors INTEGER(const INTEGER&) Copy constructor.

explicit INTEGER(const char *) [nitializes with the (NUL
terminated) string
representation of an integer.

Destructor "INTEGER()
INTEGER() Initializes to unbound value.
Assignment operators
< P INTEGER() Initializes to unbound value.

52

Comparison operators

Arithmetic operators

Casting operator

boolean operator==(int) const

boolean operator==(const
INTEGER&) const

boolean operator!=(int) const

boolean operator!=(const
INTEGER&) const

boolean operator<(int) const

boolean operator<(const
INTEGER&) const

boolean operator « (int) const

boolean operator < (const
INTEGER&) const

boolean operator>(int) const

boolean operator>(const
INTEGER&) const

boolean operator>=(int) const

boolean operator>=(const
INTEGER&) const

INTEGER operator+() const
INTEGER operator-() const
INTEGER operator+(int) const

INTEGER operator+(const
INTEGER&) const

INTEGER operator-(int) const

INTEGER operator-(const
INTEGER&) const

INTEGER operator*(int) const

INTEGER operator*(const
INTEGER&) const

INTEGER operator/(int) const

INTEGER operator/(const
INTEGER&) const

INTEGER& operator++()
INTEGER& operator—()

operator int() const

Returns TRUE if equals
and FALSE otherwise.

Unary plus.
Unary minus.

Addition.

Subtraction.

Multiplication.

Integer division.

Incrementation (prefix).
Decrementation (prefix).

Returns the value.

53

void log() const Puts the value into log.

boolean is_bound() const Returns whether the value is
bound.

void clean_up() Deletes the value, setting it to
Other member functions unbound.

long long int Returns the value as a long long

get_long_long_val() const S

void set_long_long_val(long Sets the given long long int

long int) value.

The comparison, arithmetic and shifting operators are also available as global functions for that
case when the left side is int and the right side is INTEGER. Using the value of an unbound variable
for anything will cause dynamic test case error.

The casting operator int() is applicable only to INTEGER objects holding a signed value with at most
31 useful bits, since in C/C++ the native int type is 32-bit large including the sign bit. Casting an
INTEGER object holding a bigger (for example a 32-bit unsigned) value will result in run-time error.

Please note that if the value stored in an INTEGER object is too big (that is, it cannot be represented as
a long long int) the value returned by get_long_long_val() will contain only the lowest sizeof(long
long int) bytes of the original value. Another way to obtain a value of a number having more
useful bits than 31 is to convert the INTEGER object to its string representation using the int2str()
predefined function. Then the string value can be converted to any native integer type using the
sscanf() library function or such. The following example demonstrates a common scenario:

unsigned int get_unsigned_int_val(const INTEGER& other_value)
{
unsigned int ret_val = 0;
sscanf((const char *)int2str(),
return ret_val;

}

n"

%u”, &ret val);

In addition, the following global functions are available for modulo division. These functions return
the result of mod and rem operations according to TTCN-3 semantics.

INTEGER mod(const INTEGER& left_operand, const INTEGER& right_operand);
INTEGER mod(const INTEGER& left_operand, int right_operand);

INTEGER mod(int left_operand, const INTEGER& right_operand);

INTEGER mod(int left_operand, int right_operand);

INTEGER rem(const INTEGER& left_operand, const INTEGER& right_operand);
INTEGER rem(const INTEGER& left_operand, int right_operand);

INTEGER rem(int left_operand, const INTEGER& right_operand);
INTEGER rem(int left_operand, int right_operand);

Other operators (global functions):

54

INTEGER operator+(int int_value, const INTEGER& other_value); // Add
INTEGER operator-(int int_value, const INTEGER& other_value); // Subtract
INTEGER operator*(int int_value, const INTEGER& other_value); // Multiply
INTEGER operator/(int int_value, const INTEGER& other_value); // Divide
boolean operator==(int int_value, const INTEGER& other_value); // Equal
boolean operator!=(int int_value, const INTEGER& other_value); // Not equal
boolean operator<(int int_value, const INTEGER& other_value); // Less than
boolean operator>(int int_value, const INTEGER& other_value); // More than

5.3.2. Float

The TTCN-3 type float is implemented in class FLOAT.
The class FLOAT has the following public member functions:

Table 9. Public member functions of the class FLOAT

Member functions Notes
FLOAT() Initializes to unbound value.
Constructors FLOAT(double) Initializes to a given value.
FLOAT(const FLOAT&) Copy constructor.
Destructor “FLOAT()
FLOAT& operator=(double) Assigns the given value

ESRIITEIT ORI FLOAT& operator=(const FLOAT&) and sets the bound flag.

55

56

Comparison operators

Arithmetic operators

Casting operator

boolean operator==(double)
const

boolean operator==(const
FLOAT&) const

boolean operator!=(double)
const

boolean operator!=(const
FLOAT&) const

boolean operator<(double)
const

boolean operator<(const
FLOAT&) const

boolean operator < (double)
const

boolean operator < (const
FLOAT&) const

boolean operator>(double)
const

boolean operator>(const
FLOAT&) const

boolean operator>=(double)
const

boolean operator>=(const
FLOAT&) const

double operator+() const

double operator-() const

Returns TRUE if equals

and FALSE otherwise.

Unary plus.

Unary minus.

double operator+(double) const Addition.

double operator+(const
FLOAT&) const

double operator-(double) const

double operator-(const
FLOAT&) const

double operator*(double) const

double operator*(const
FLOAT&) const

double operator/(double) const

double operator/(const
FLOAT&) const

operator double() const

Subtraction.

Multiplication.

Division.

Returns the value.

void log() const

Other member functions boolean is_bound() const

void clean_up()

Puts the value into log, either in
exponential or decimal dot
notation.

Returns whether the value is
bound.

Deletes the value, setting it to
unbound.

The comparison and arithmetic operators are also available as global functions for that case when
the left side is double and the right side is FLOAT. Using the value of an unbound variable for

anything will cause dynamic test case error.

Other operators (global functions):

FLOAT operator+(double double_value, const FLOAT& other_value); // Add

FLOAT operator-(double double_value, const FLOAT& other_value); // Subtract
FLOAT operator*(double double_value, const FLOAT& other_value); // Multiply
FLOAT operator/(double double_value, const FLOAT& other_value); // Divide
boolean operator==(double double_value, const FLOAT& other_value); // Equal
boolean operator!=(double double_value, const FLOAT& other_value); // Not equal
boolean operator<(double double_value, const FLOAT& other_value); // Less than
boolean operator>(double double_value, const FLOAT& other_value); // More than

5.3.3. Boolean

The TTCN-3 type boolean is implemented in class BOOLEAN.We have introduced an ancillary C
enumerated type called boolean to set and get values. It may have two predefined values: TRUE or
FALSE. You may use boolean values in C conditions since FALSE equals to zero and TRUE is not zero.

The class BOOLEAN has the following public member functions:

Table 10. Public member functions of the class BOOLEAN

Member functions
BOOLEAN()
BOOLEAN(boolean)
BOOLEAN(const BOOLEAN&)
“BOOLEAN()
BOOLEAN& operator=(boolean)

Assignment operators BOOLEAN& operator=(const
BOOLEAN&)

Constructors

Destructor

Notes
Initializes to unbound value.
Initializes to a given value.

Copy constructor.

Assigns the given value

and sets the bound flag.

57

Comparison operators

Logical operators

Casting operator

Other member functions

boolean operator==(boolean)
const

boolean operator==(const
BOOLEAN&) const

boolean operator!=(boolean)
const

boolean operator!=(const
BOOLEAN&) const

boolean operator!() const

boolean operator&&(boolean)
const

boolean operator&&(const
BOOLEAN&) const

boolean operator
Logical OR.
(const BOOLEAN&) const

boolean operator”(boolean)
const

boolean operator”(const
BOOLEAN&) const

operator boolean() const
void log() const

boolean is_bound() const

void clean_up()

Returns TRUE if equals

and FALSE otherwise.

Same as XOR.

Negation (NOT).
Logical AND.

(boolean) const

boolean operator

Exclusive or (XOR).

Returns the value.

Puts the value into log. Like
“TRUE” or “FALSE”.

Returns whether the value is
bound

Deletes the value, setting it to
unbound.

The comparison and logical operators are also available as global functions for that case when the
left side is boolean and the right side is BOOLEAN. Using the value of an unbound variable for anything
will cause dynamic test case error.

Other operators (global functions):

BOOLEAN operator&&(boolean bool_value, const BOOLEAN& other_value); // And

BOOLEAN operator”(boolean bool_value, const BOOLEAN& other_value);

// Not

BOOLEAN operator | |(boolean bool_value, const BOOLEAN& other_value); // Or
boolean operator==(boolean bool_value, const BOOLEAN& other_value); // Equal
boolean operator!=(boolean bool_value, const BOOLEAN& other_value);// Not equal

5.3.4. Verdicttype

The TTCN-3 type verdicttype is implemented in class VERDICTTYPE. We have introduced an ancillary
C enumerated type called verdicttype to set and get values. It may have five predefined values:

58

NONE, PASS, INCONC, FAIL or ERROR. The order of these values is NONE < PASS < INCONC < FAIL < ERROR.
The class VERDICTTYPE has the following public member functions:

Table 11. Public member functions of the class VERDICTTYPE

Member functions Notes
VERDICTTYPE() Initializes to unbound value.
VERDICTTYPE(verdicttype) Initializes to a given value.
Constructors
VERDICTTYPE(const Copy constructor.
VERDICTTYPE&)
Destructor “VERDICTTYPE()
VERDICTTYPE& Assigns the given value

operator=(verdicttype)

VERDICTTYPE& operator= (const and sets the bound flag.
VERDICTTYPE®)

boolean Returns TRUE if equals
operator==(verdicttype) const

Assignment operators

boolean operator==(const and FALSE otherwise.

VERDICTTYPE&) const

Comparison operators)
P p boolean operator!=(verdicttype)

const

boolean operator!=(const
VERDICTTYPE&) const

Casting operator Returns the value. operator verdicttype() const
Returns the value. Puts the value into log.
void log() const Other member functions Puts the value into log.
Like “pass” or “fail”. boolean is_bound() const
Returns whether the value is void clean_up() Deletes the value, setting it to
bound. unbound.

The comparison operators are also available as global functions for that case when the left side is
verdicttype and the right side is VERDICTTYPE. Using the value of an unbound VERDICTTYPE variable
for anything will cause dynamic test case error.

From version 1.2.pl0 there are the following three static member functions in class TTCN_Runtime
defined in the Base Library for getting or modifying the local verdict of the current test
components:

void TTCN_Runtime::setverdict(verdicttype);
void TTCN _Runtime::setverdict(const VERDICTTYPE&);
verdicttype TTCN_Runtime::getverdict();

These functions are the C++ equivalents of TTCN-3 setverdict and getverdict operations. Use them
only if your Test Port or C++ function encounters a low-level failure, but it can continue its normal
operation (that is, error recovery is not necessary).

59

Other operators (global functions):

boolean operator==(verdicttype par_value,

const VERDICTTYPE& other_value); // Equal
boolean operator!=(verdicttype par_value,

const VERDICTTYPE& other_value); // Not equal

5.3.5. Bitstring

The equivalent C++ class of TTCN-3 type bitstring is called BITSTRING. The bits of the bit string are
stored in an array of unsigned characters. In order to reduce the wasted memory space the bits are
packed together, so each character contains eight bits. The first character contains the first eight
bits of the bit string; the second byte contains the bits from the 9th up to the 16th, and so on. The
first bit of the bit string is the LSB of the first character; the second bit is the second least significant
bit of the first character, and so on. The character array is not terminated with a NUL character and
if the length of the bit string is not a multiple of eight, the unused bits of the last character can
contain any value. So the length of the bit string must be always given.

The class BITSTRING has the following public member functions:

Table 12. Public member functions of the class BITSTRING

Member functions Notes

60

Constructors

Destructor

Assignment operators

Comparison operators

BITSTRING()

BITSTRING(int n_bits, unsigned
char *bits_ptr)

BITSTRING(const BITSTRING&)

BITSTRING(const
BITSTRING_ELEMENT&)

“BITSTRING()

BITSTRING& operator=(const
BITSTRING&)

BITSTRING& operator=(const
BITSTRING_ELEMENT&)

boolean operator==(const
BITSTRING&) const

boolean operator==(const
BITSTRING_ELEMENT®&) const

boolean operator!=(const
BITSTRING&) const

boolean operator!=(const
BITSTRING_ELEMENT®&) const

Initializes to unbound value.

Initializes from a given length
and pointer to character array.

Copy constructor.

Initializes from a single
bitstring element.

Assigns the given value and sets
the bound flag.

Assigns the given single
bitstring element.

Returns TRUE if equals

and FALSE otherwise.

Concatenation operator

Index operator

Bitwise operators

BITSTRING operator+(const
BITSTRING&) const

BITSTRING operator+(const
BITSTRING_ELEMENT®&) const

BITSTRING_ELEMENT
operator[](int)

BITSTRING_ELEMENT
operator[](const INTEGER&)

const BITSTRING_ELEMENT
operator[](int) const

const BITSTRING_ELEMENT
operator[](const INTEGER&)
const

BITSTRING operator~() const

BITSTRING operator&(const
BITSTRING&) const

BITSTRING operator&(const
BITSTRING_ELEMENT®&) const

BITSTRING operator

C++ equivalent of operator
or4b. (bitwise or)

(const BITSTRING_ELEMENT&)
const

BITSTRING operator”(const
BITSTRING&) const

BITSTRING operator”(const
BITSTRING_ELEMENT®&) const

Concatenates two bitstrings.

Concatenates a bitstring and a
bitstring element.

Gives access to the given
element. Indexing begins from
zero. Index overflow causes
dynamic test case error.

Gives read-only access to the
given element.

C++ equivalent of operator
not4b. (bitwise negation)

C++ equivalent of operator
and4b. (bitwise and)

(const BITSTRING&) const
BITSTRING operator

C++ equivalent of operator
xor4b. (bitwise xor)

61

BITSTRING operator<<(int) C++ equivalent of operator
const

BITSTRING operator<<(const <<.(shift left)
INTEGER&) const

BITSTRING operator>>(int) C++ equivalent of operator
const

BITSTRING operator>>(const >>. (shift right)

INTEGER&) const

Shifting and rotating operators))
BITSTRING operator< < (int) C++ equivalent of operator

const

BITSTRING operator<<(const < @. (rotate left)
INTEGER&) const

BITSTRING operator>>=(int) C++ equivalent of operator
const

BITSTRING operator>>=(const @ >. (rotate right)
INTEGER&) const

. operator const unsigned char*() Returns a pointer to the
Casting operator

const character array.
int lengthof() const Returns the length measured in
bits.
void log() const Puts the value into log.
Other member functions Example: "100011’B.
boolean is_bound() const Deletes the value, setting it to
unbound

void clean_up()
Using the value of an unbound BITSTRING variable for anything will cause dynamic test case error.

Bitstring element

The C++ class BITSTRING_ELEMENT is the equivalent of the TTCN-3 bitstring’s element type (the result
of indexing a bitstring value). The class does not store the actual bit, only a reference to the
original BITSTRING object, an index value and a bound flag.

Note: changing the value of the BITSTRING_ELEMENT (through the assignment operator) changes the
referenced bit in the original bitstring object.

The class BITSTRING_ELEMENT has the following public member functions:

Table 13. Public member functions of the class BITSTRING_ELEMENT

Member functions Notes
Constructor BITSTRING_ELEMENT(boolean Initializes the object with an
par_bound_flag, BITSTRING& unbound value or a reference
par_str_val, int par_bit_pos) to a bit in an existring
BITSTRING object.

62

Assignment operators

Comparison operators

Concatenation operator

Bitwise operators

Other member functions

BITSTRING_ELEMENT&
operator=(const BITSTRING&)

BITSTRING_ELEMENT&
operator=(const
BITSTRING_ELEMENT&)

boolean operator==(const
BITSTRING&) const

boolean operator==(const
BITSTRING_ELEMENT®&) const

boolean operator!=(const
BITSTRING&) const

boolean operator!=(const
BITSTRING_ELEMENT®&) const

BITSTRING operator+(const
BITSTRING&) const

BITSTRING operator+(const
BITSTRING_ELEMENT®&) const

BITSTRING operator~() const

BITSTRING operator&(const
BITSTRING&) const

BITSTRING operator&(const
BITSTRING_ELEMENT®&) const

BITSTRING operator

C++ equivalent of operator
or4b. (bitwise or)

(const BITSTRING_ELEMENT&)
const

BITSTRING operator”(const
BITSTRING&) const

BITSTRING operator”(const
BITSTRING_ELEMENT®&) const

boolean get_bit() const
void log() const

boolean is_bound() const

Sets the referenced bit to the
given bitstring of length 1.

Sets the referenced bit to the
given bitstring element.

Comparison with a bitstring or

a bitstring element (the value of
the referenced bits is compared,
not the references and indexes).

Concatenates a bitstring
element with a bitstring, or two
bitstring elements.

C++ equivalent of operator
not4b. (bitwise negation)

C++ equivalent of operator
and4b. (bitwise and)

(const BITSTRING&) const
BITSTRING operator

C++ equivalent of operator
xor4b. (bitwise xor)

Returns the referenced bit.

Puts the value into log.
Example: '1’B.

Returns whether the value is
bound.

Using the value of an unbound BITSTRING_ELEMENT variable for anything will cause dynamic test case

error.

63

5.3.6. Hexstring

The equivalent C++ class of TTCN-3 type hexstring is called HEXSTRING. The hexadecimal digits
(nibbles) are stored in an array of unsigned characters. In order to reduce the wasted memory
space two nibbles are packed into one character. The first character contains the first two nibbles
of the hexstring, the second byte contains the third and fourth nibbles, and so on. The hexadecimal
digits at odd (first, third, fifth, etc.) positions occupy the lower 4 bits in the characters; the even ones
use the upper 4 bits. The character array is never terminated with a NUL character, so the length
must be always given with the pointer. If the hexstring has odd length the unused upper 4 bits of
the last character may contain any value.

The class HEXSTRING has the following public member functions:

Table 14. Public member functions of the class HEXSTRING

Member functions Notes
HEXSTRING() Initializes to unbound value.

HEXSTRING(int n_nibbles, const [Initializes from a given length
unsigned char *nibbles_ptr) 54 pointer to the character

Constructors array.
HEXSTRING(const HEXSTRING&)

HEXSTRING(const
HEXSTRING_ELEMENT&)

Destructor "HEXSTRING()

HEXSTRING& operator:(const Assigns the given value
HEXSTRING&)

HEXSTRING& operator=(const
HEXSTRING_ELEMENT&)

Assignment operators

boolean operator==(const Returns TRUE if equals and
HEXSTRING&) const FALSE otherwise.

boolean operator==(const

HEXSTRING_ELEMENT&) const

Comparison operators
boolean operator!=(const

HEXSTRING&) const

boolean operator!=(const
HEXSTRING_ELEMENT&) const

HEXSTRING operator+(const Concatenates two hexstrings.

HEXSTRING&) const

Concatenation operator)
HEXSTRING operator+(const Concatenates a hexstring and a

HEXSTRING_ELEMENT&) const hexstring element.

64

Member functions

Index operator

Bitwise operators

Shifting and rotating operators

HEXSTRING_ELEMENT
operator[](int)

HEXSTRING_ELEMENT

operator[](const INTEGER&)
const HEXSTRING_ELEMENT

operator[](int) const

const HEXSTRING_ELEMENT
operator[](const INTEGER&)

const

HEXSTRING operator~() const

HEXSTRING operator&(const

HEXSTRING&) const

HEXSTRING operator&(const
HEXSTRING_ELEMENT&) const

HEXSTRING operator

C++ equivalent of operator
or4b. (bitwise or)

(const HEXSTRING_ELEMENT&)

const

HEXSTRING operator”(const

HEXSTRING&) const

HEXSTRING operator~(const
HEXSTRING_ELEMENT&) const

HEXSTRING operator<<(int)
const

HEXSTRING operator<<(const

INTEGER&) const

HEXSTRING operator>>(int)
const

HEXSTRING operator>>(const

INTEGER&) const

HEXSTRING operator< < (int)

const

HEXSTRING operator< < (const

INTEGER&) const

HEXSTRING operator>>=(int)

const

HEXSTRING operator>>=(const

INTEGER&) const

Notes

Gives access to the given

element. Indexing begins from

zero. Index overflow causes
dynamic test case error.

C++ equivalent of operator
not4b. (bitwise negation)

C++ equivalent of operator
and4b. (bitwise and)

(const HEXSTRING&) const
HEXSTRING operator

C++ equivalent of operator

xor4b. (bitwise xor)

C++ equivalent of operator

<< (shift left)

C++ equivalent of operator

>>_ (shift right)

C++ equivalent of operator

< @. (rotate left)

C++ equivalent of operator

@ >. (rotate right)

65

Member functions

Casting operator

Other member functions

operator const unsigned char*()
const

int lengthof() const

void log() const

boolean is_bound() const

void clean_up()

Notes

Returns a pointer to the
character array. The pointer
might be NULL if the length is 0.

Returns the length measured in
nibbles.

Puts the value into log.
Example: ’5A7’H.

Returns whether the value is
bound.

Deletes the value, setting it to
unbound.

Using the value of an unbound HEXSTRING variable for anything will cause a dynamic test case error.

Hexstring element

The C++ class HEXSTRING_ELEMENT is the equivalent of the TTCN-3 hexstring’s element type (the result
of indexing a hexstring value). The class does not store the actual hexadecimal digit (nibble), only a
reference to the original HEXSTRING object, an index value and a bound flag.

Note: changing the value of the HEXSTRING_ELEMENT (through the assignment operator) changes the
referenced nibble in the original hexstring object.

The class HEXSTRING_ELEMENT has the following public member functions:

Table 15. Public member functions of the class HEXSTRING_ELEMENT

66

Member functions

Constructor

Assignment operators

HEXSTRING_ELEMENT(boolean
par_bound_flag, HEXSTRING&
par_str_val, int
par_nibble_pos)

HEXSTRING_ELEMENT&
operator=(const HEXSTRING&)

HEXSTRING_ELEMENT&
operator=(const
HEXSTRING_ELEMENT&)

Notes

Initializes the object with an
unbound value or a reference
to a nibble in an existring
HEXSTRING object.

Sets the referenced nibble to
the given hexstring of length 1.

Sets the referenced nibble to
the given hexstring element.

Comparison operators

Concatenation operator

Bitwise operators

Other member functions

5.3.7. Octetstring

boolean operator==(const
HEXSTRING&) const

boolean operator==(const
HEXSTRING_ELEMENT&) const

boolean operator!=(const
HEXSTRING&) const

boolean operator!=(const
HEXSTRING_ELEMENT&) const

HEXSTRING operator+(const
HEXSTRING&) const

HEXSTRING operator+(const
HEXSTRING_ELEMENT&) const

HEXSTRING operator~() const

HEXSTRING operator&(const
HEXSTRING&) const

HEXSTRING operator&(const
HEXSTRING_ELEMENT&) const

HEXSTRING operator

C++ equivalent of operator
or4b. (bitwise or)

(const HEXSTRING_ELEMENT&)
const

HEXSTRING operator”(const
HEXSTRING&) const

HEXSTRING operator”(const
HEXSTRING_ELEMENT&) const

unsigned char get_nibble()
const

void log() const

boolean is_bound() const

Comparison with a hexstring or
a hexstring element (the value
of the referenced nibbles is
compared, not the references
and indexes).

Concatenates a hexstring
element with a hexstring, or
two hexstring elements.

C++ equivalent of operator
not4b. (bitwise negation)

C++ equivalent of operator
and4b. (bitwise and)

(const HEXSTRING&) const
HEXSTRING operator

C++ equivalent of operator
xor4b. (bitwise xor)

Returns the referenced nibble
(stored in the lower 4 bits of the
returned character).

Puts the value into log.
Example: '8’H.

Returns whether the value is
bound.

Using the value of an unbound HEXSTRING_ELEMENT variable for anything will cause dynamic test case
error.

The equivalent C++ class of TTCN-3 type octetstring is called OCTETSTRING. The octets are stored in

67

an array of unsigned characters. Each character contains one octet; the first character is the first
octet of the string. The character array is not terminated by a NUL character, so the length of the
octet string must be always given.

The class OCTETSTRING has the following public member functions:

Table 16. Public member functions of the class OCTETSTRING

Member functions Notes
OCTETSTRING() Initializes to unbound value.
OCTETSTRING(int n_octets, Initializes from a given length

const unsigned char

*octets_ptr) and pointer to character array.

Constructors OCTETSTRING(const Copy constructor.
OCTETSTRING&)
OCTETSTRING(const Initializes from a single

OCTETSTRING_ELEMENT&) octetstring element.

Destructor “OCTETSTRING()

OCTETSTRING& operator=(const Assigns the given value and sets
OCTETSTRING&) the bound flag

OCTETSTRING& operator=(const Assigns the given octetstring
OCTETSTRING_ELEMENT&)

Assignment operators

element.
boolean operator==(const Returns TRUE if equals
OCTETSTRING&) const
boolean operator==(const and FALSE otherwise.
OCTETSTRING_ELEMENT&)
const

Comparison operators
boolean operator!=(const

OCTETSTRING&) const

boolean operator!=(const
OCTETSTRING_ELEMENT®&)
const

OCTETSTRING operator+(const Concatenates two octetstrings.
OCTETSTRING&) const

OCTETSTRING operator+(const Concatenates an octetstring and
OCTETSTRING_ELEMENT&) an octetstring element.

const
. OCTETSTRING& Appends an octetstring to this
Concatenation operator
operator+=(const one.
OCTETSTRING&) const
OCTETSTRING& Appends an octetstring element
operator+=(const to this octetstring.
OCTETSTRING_ELEMENT®&)
const

68

Member functions

Index operator

Bitwise operators

OCTETSTRING_ELEMENT
operator[](int)

OCTETSTRING_ELEMENT
operator[](const INTEGER&)

const OCTETSTRING_ELEMENT
operator[](int) const

const OCTETSTRING_ELEMENT
operator[](const INTEGER&)
const

OCTETSTRING operator™() const

OCTETSTRING operator&(const
OCTETSTRING&) const

OCTETSTRING operator&(const
OCTETSTRING_ELEMENT&)
const

OCTETSTRING operator

C++ equivalent of operator
or4b. (bitwise or)

(const
OCTETSTRING_ELEMENT&)
const

OCTETSTRING operator”(const
OCTETSTRING&) const

OCTETSTRING operator”(const
OCTETSTRING_ELEMENT&)
const

Notes

Gives access to the given
element. Indexing begins from
zero. Index overflow causes
dynamic test case error.

Gives read-only access to the
given element.

C++ equivalent of operator
not4b.(bitwise negation)

C++ equivalent of operator
and4b. (bitwise and)

(const OCTETSTRING&) const
OCTETSTRING operator

C++ equivalent of operator
xor4b. (bitwise xor)

69

Member functions Notes

OCTETSTRING operator<<(int) C++ equivalent of operator <<.
const

OCTETSTRING operator<<(const (shift left)
INTEGER&) const

OCTETSTRING operator>>(int) C++ equivalent of operator >>.
const

OCTETSTRING operator>>(const (shift right)
INTEGER&) const

OCTETSTRING operator< < (int) C++ equivalent of operator < @.
const

OCTETSTRING (rotate left)
operator< < (const INTEGER&)
const

Shifting and rotating operators

OCTETSTRING operator>>=(int) C++ equivalent of operator @ >.
const

OCTETSTRING (rotate right)
operator>>=(const INTEGER&)
const

operator const unsigned char*() Returns a pointer to the

Casting operator const character array. The pointer
might be NULL if the length is 0.
int lengthof() const Returns the length measured in
octets.
void log() const Puts the value into log. Like
’073CF0’0.
Other member functions 3
f boolean is_bound() const Returns whether the value is
bound.
void clean_up() Deletes the value, setting it to
unbound.

Using the value of an unbound OCTETSTRING variable for anything will cause dynamic test case error.

Octetstring element

The C++ class OCTETSTRING_ELEMENT is the equivalent of the TTCN-3 octetstring’s element type (the
result of indexing an octetstring value). The class does not store the actual octet, only a reference
to the original OCTETSTRING object, an index value and a bound flag.

Note: changing the value of the OCTETSTRING_ELEMENT (through the assignment operator)
changes the referenced octet in the original octetstring object.

The class OCTETSTRING_ELEMENT has the following public member functions:

Table 17. Public member functions of the class OCTETSTRING_ELEMENT

70

Member functions

Constructor

Assignment operators

Comparison operators

Concatenation operator

OCTETSTRING_ELEMENT(boolean
par_bound_flag, OCTETSTRING&
par_str_val, int par_octet_pos)

OCTETSTRING_ELEMENT&
operator=(const OCTETSTRING&)

OCTETSTRING_ELEMENT&
operator=(const
OCTETSTRING_ELEMENT&)

boolean operator==(const
OCTETSTRING&) const

boolean operator==(const
OCTETSTRING_ELEMENT&)
const

boolean operator!=(const
OCTETSTRING&) const

boolean operator!=(const
OCTETSTRING_ELEMENT®&)
const

OCTETSTRING operator+(const
OCTETSTRING&) const

OCTETSTRING operator+(const
OCTETSTRING_ELEMENT&)
const

Notes

Initializes the object with an
unbound value or a reference
to an octet in an existring
OCTETSTRING object.

Sets the referenced octet to the
given octetstring of length 1.

Sets the referenced octet to the
given octetstring element.

Comparison with an octetstring
or an octetstring element (the
value of the referenced octets is
compared, not the references
and indexes).

Concatenates an octetstring
element with an octetstring, or
two octetstring elements.

71

Member functions Notes

OCTETSTRING operator~() const C++ equivalent of operator
(bitwise negation)

OCTETSTRING operator&(const C++ equivalent of operator
OCTETSTRING&) const and4b. (bitwise and)

OCTETSTRING operator&(const
OCTETSTRING_ELEMENT&)

const
HEXSTRING operator (const OCTETSTRING&) const
C++ equivalent of operator OCTETSTRING operator

Bitwise operators o
p or4b. (bitwise or)

(const
OCTETSTRING_ELEMENT&)
const

OCTETSTRING operator”(const C++ equivalent of operator
OCTETSTRING&) const xor4b. (bitwise xor)

OCTETSTRING operator”(const
OCTETSTRING_ELEMENT&)

const
unsigned char get_octet() Returns the referenced octet.
const
void Tog() const Puts the value into log.
Other member functions Example: '3CO.
boolean is_bound() const Returns whether the value is

bound.

Using the value of an unbound OCTETSTRING_ELEMENT variable for anything will cause dynamic test
case error.

5.3.8. Char

The char type, which has been removed from the TTCN-3 standard, is no longer supported by the
run-time environment. The compiler substitutes all occurrences of char type with type charstring
automatically.

To provide partial backward compatibility for older Test Ports that might have used the type char,
CHAR is a typedef alias to class CHARSTRING in C++.

5.3.9. Charstring

The equivalent C++ class of TTCN-3 type charstring is called CHARSTRING. The characters are stored
in a NUL character terminated array; thus, giving the length in the constructor and other operations
is optional.

The class CHARSTRING has the following public member functions:

Table 18. Public member functions of the class CHARSTRING

72

Member functions

Constructors

Destructor

Assignment operators

Comparison operators

CHARSTRING()
CHARSTRING(char)

CHARSTRING(int n_chars, const
char *chars_ptr)

CHARSTRING(const char
*chars_ptr)

CHARSTRING(const CHARSTRING&)

CHARSTRING(const
CHARSTRING_ELEMENT&)

“CHARSTRING()

CHARSTRING& operator=(const
CHARSTRING&)

CHARSTRING& operator=(const
char *)

CHARSTRING& operator=(const
CHARSTRING_ELEMENT&)

CHARSTRING& operator=(const
UNIVERSAL CHARSTRING&)

boolean operator==(const
CHARSTRING&) const

boolean operator==(const char
*) const

boolean operator==(const
CHARSTRING_ELEMENT&)
const

boolean operator==(const
UNIVERSAL_CHARSTRING&)
const

boolean operator==(const
UNIVERSAL_CHARSTRING_ELE
MENT&) const

boolean operator!=(const
CHARSTRING&) const

boolean operator!=(const char
*) const

boolean operator!=(const
CHARSTRING_ELEMENT&)
const

Notes
Initializes to unbound value.

Initializes from a single
character.

Initializes from a given length
and pointer to character array.

Initializes from a given
character array. The end is
noted by a NUL character.

Copy constructor.

Initializes from a charstring
element.

Assigns the given value and sets

the bound flag.

Assigns the NUL terminated
string.

Assigns the given charstring
element.

Assigns the given universal
charstring value.

Returns TRUE if equals and
FALSE otherwise.

Compares to the NUL
terminated string.

Comparison with a charstring
element.

Comparison with a universal
charstring.

Comparison with a universal
charstring element.

73

74

Concatenation operator

Index operator

Rotating operators

Casting operator

CHARSTRING operator+(const
CHARSTRING&) const

CHARSTRING operator+(const
char *) const

CHARSTRING operator+(const
CHARSTRING_ELEMENT) const

UNIVERSAL_CHARSTRING
operator+(const
UNIVERSAL_CHARSTRING&)
const

UNIVERSAL_CHARSTRING
operator+(const
UNIVERSAL_CHARSTRING_ELE
MENT&) const

CHARSTRING operator+=(char)

CHARSTRING operator+=(const
char *)

CHARSTRING operator+=(const
CHARSTRING&)

CHARSTRING operator+=(const
CHARSTRING_ELEMENT&)

CHARSTRING_ELEMENT
operator[](int)

CHARSTRING_ELEMENT
operator[](const INTEGER&)

const CHARSTRING_ELEMENT
operator[](int) const

const CHARSTRING_ELEMENT
operator[](const INTEGER&)
const

CHARSTRING operator< < (int)
const

CHARSTRING operator< < (const
INTEGER&) const

CHARSTRING operator>>=(int)
const

CHARSTRING operator>>=(const
INTEGER&) const

operator const char*() const

Concatenates two charstrings.

Concatenates with a NUL
terminated string.

Concatenates with a charstring
element.

Concatenates with a universal
charstring.

Concatenates with a universal
charstring element.

Appends a character.
Appends a NUL terminated
string.

Appends a charstring.

Appends a charstring element.

Gives access to the given
element. Indexing begins from
zero. Index overflow causes
dynamic test case error.

Gives read-only access to the
given element.

C++ equivalent of operator <
@.(rotate left)

C++ equivalent of operator @ >.
(rotate right)

Returns a pointer to the
character array. The string is
always terminated by NUL.

int lengthof() const Returns the length measured in
characters not including the
terminator NUL.

Other member functions void log() const Puts the value into log.
Example: "abc”.
boolean is_bound() const Returns whether the value is
bound.

The comparison, concatenation and rotating operators are also available as global functions for
that case when the left side is const char* and the right side is CHARSTRING.

The log() member function uses single character output for regular characters, but special
characters (such as the quotation mark, backslash or newline characters) are printed using the
escape sequences of the C language. Non-printable control characters are printed in TTCN-3
quadruple notation, where the first three octets are always zero. The concatenation operator (&) is
used between the fragments when necessary. Note that the output does not always conform to
TTCN-3 Core Language syntax, but it is always recognized by both our compiler and the
configuration file parser.

Using the value of an unbound CHARSTRING variable for anything will cause dynamic test case error.

Other operators (global functions):

boolean operator==(const char* string_value,
const CHARSTRING& other _value); // Equal
boolean operator==(const char* string_value,
const CHARSTRING_ELEMENT& other_value); // Equal
boolean operator!=(const char* string_value,
const CHARSTRING& other value); // Not equal
boolean operator!=(const char* string_value,
const CHARSTRING ELEMENT& other value); // Not equal
CHARSTRING operator+(const char* string_value,
const CHARSTRING& other value); // Concatenation
CHARSTRING operator+(const char* string_value,
const CHARSTRING_ELEMENT& other _value); // Concatenation

Charstring element

The C++ class CHARSTRING_ELEMENT is the equivalent of the TTCN-3 charstring’s element type (the
result of indexing a charstring value). The class does not store the actual character, only a reference
to the original CHARSTRING object, an index value and a bound flag.

Note: changing the value of the CHARSTRING_ELEMENT (through the assignment operator) changes the
referenced character in the original charstring object.

The class CHARSTRING_ELEMENT has the following public member functions:

Table 19. Public member functions of the class CHARSTRING_ELEMENT

75

76

Member functions

Constructor

Assignment operators

Comparison operators

CHARSTRING_ELEMENT (boolean
par_bound_flag, CHARSTRING&
par_str_val, int par_char_pos)

CHARSTRING_ELEMENT&
operator=(const char¥*)

CHARSTRING_ELEMENT&
operator=(const CHARSTRING&)

CHARSTRING_ELEMENT&
operator=(const
CHARSTRING_ELEMENT&)
boolean operator==(const
char®*) const

boolean operator==(const
CHARSTRING&) const

boolean operator==(const
CHARSTRING_ELEMENT&)
const

boolean operator==(const
UNIVERSAL_CHARSTRING&)
const

boolean operator==(const

UNIVERSAL_CHARSTRING_ELE

MENT&) const

boolean operator!=(const char*)

const

boolean operator!=(const
CHARSTRING&) const

boolean operator!=(const
CHARSTRING_ELEMENT&)
const

Notes

Initializes the object with an
unbound value or a reference
to a character in an existring
CHARSTRING object.

Sets the referenced character to
the given null-terminated string
of length 1.

Sets the referenced character to
the given charstring of length 1.

Sets the referenced character to
the given charstring element.

Comparison with a null-
terminated string, a charstring,
a universal charstring, a
charstring element or a
universal charstring element
(when comparing element
types, the value of the
referenced characters is
compared, not the references
and indexes).

CHARSTRING operator+(const Concatenates this object with a

char*) const null-terminated string, a
charstring, a charstring
element, a universal charstring
or a universal charstring
element.

CHARSTRING operator+(const
CHARSTRING&) const

CHARSTRING operator+(const
Concatenation operator CHARSTRING_ELEMENT&)
const

UNIVERSAL_CHARSTRING
operator+(const
UNIVERSAL_CHARSTRING&)
const

UNIVERSAL_CHARSTRING
operator+(const
UNIVERSAL_CHARSTRING_ELE
MENT&) const

char get_char() const Returns the referenced
character.

void Tog() const Puts the value into log.
Example: “a”.

boolean is_bound() const Returns whether the value is
bound.

Other member functions

Using the value of an unbound CHARSTRING_ELEMENT variable for anything will cause dynamic test
case error.

5.3.10. Universal char

This obsolete TTCN-3 type is converted automatically to universal charstringin the parser.

5.3.11. Universal charstring
Each character of a universal charstring value is represented in the following C structure defined

in the Base Library:

struct universal_char {
unsigned char uc_group, uc_plane, uc_row, uc_cell;

+

The four components of the quadruple (that is, group, plane, row and cell) are stored in fields
uc_group, uc_plane, uc_row and uc_cell, respectively. All fields are 8bit unsigned numeric values with
the possible value range 0 .. 255.

In case of single-octet characters, which can be also given in TTCN-3 charstring notation (between

77

quotation marks), the fields uc_group, uc_plane, uc_row are set to zero. If tuple notation was used for
an ASN.1 string value fields uc_row and uc_cell carry the tuple and the others are set to zero.

Except when performing encoding or decoding, the run-time environment does not check whether
the quadruples used in the following API represent valid character positions according to [8].
Moreover, if ASN.1 multi-octet character string values are used, it is not verified whether the
elements of such strings are permitted characters of the corresponding string type.

The C++ equivalent of TTCN-3 type universal charstring is implemented in class
UNIVERSAL_CHARSTRING. The characters of the string are stored in an array of structure
universal_char. The array returned by the casting operator is not terminated with a special
character, thus, the length of the string must be always considered when doing operations with the
array. The length of the string, which can be obtained by using member function lengthof(), is
measured in characters (quadruples) and not bytes.

For the more convenient usage the strings containing only single-octet characters can also be used
with class UNIVERSAL_CHARSTRING. Therefore some polymorphic member functions and operators
have variants that take const char* as argument. In these member functions the characters of the
NUL character terminated string are implicitly converted to quadruples with group, plane and row
fields set to zero. NULL pointer as argument means the empty string for these functions.

The class UNIVERSAL_CHARSTRING has the following public member functions:

Table 20. Public member functions of the class UNIVERSAL_CHARSTRING

Member functions Notes

78

Constructors

Destructor

Assignment operators

UNIVERSAL_CHARSTRING()

UNIVERSAL_CHARSTRING (unsigned
char group, unsigned char
plane, unsigned char row,
unsigned char cell)

UNIVERSAL CHARSTRING (const
universal_char&)

UNIVERSAL _CHARSTRING (int
n_uchars, const universal_char
*uchars_ptr)

UNIVERSAL CHARSTRING (const
char *chars_ptr)

UNIVERSAL_CHARSTRING (int
n_chars, const char
*chars_ptr)

UNIVERSAL_CHARSTRING (const
CHARSTRING&)

UNIVERSAL_CHARSTRING (const
CHARSTRING_ELEMENT&)

UNIVERSAL_CHARSTRING (const
UNIVERSAL_CHARSTRING&)

UNIVERSAL_CHARSTRING (const
UNIVERSAL_CHARSTRING_ELEMENT&)

“UNIVERSAL_CHARSTRING()

UNIVERSAL_CHARSTRING&
operator= (const
UNIVERSAL CHARSTRING&)

UNIVERSAL_CHARSTRING&
operator= (const
universal_char&)

UNIVERSAL _CHARSTRING&
operator= (const char¥)

UNIVERSAL_CHARSTRING&
operator= (const CHARSTRING&)

UNIVERSAL CHARSTRING&
operator= (const
CHARSTRING_ELEMENT&)

UNIVERSAL CHARSTRING&
operator= (const
UNIVERSAL_CHARSTRING_ELEMENT&)

Initializes to unbound value.

Constructs a string containing
one character formed from the
given quadruple.

Constructs a string containing
the given single character.

Constructs a string from an
array by taking the given
number of single-octet
characters.

Constructs a string from a NUL
terminated array of single-octet
characters.

Constructs a string from a given
number of single-octet
characters.

Constructs a universal
charstring from a charstring
value.

Constructs a string containing
the given singe charstring
element.

Copy constructor.
Constructs a string containing

the given singe universal
charstring element.

Assigns another string.

Assigns a single character.

Assigns a NUL terminated
single-octet string.

Assigns a charstring.

Assigns a single charstring
element.

Assigns a single universal
charstring element.

79

80

Comparison operators

boolean operator==(const Returns TRUE if the strings are
UNIVERSAL_CHARSTRING&) identical or FALSE otherwise.
const

boolean operator==(const Compares to a single character.
universal_char&) const

boolean operator==(const Compares to a NUL terminated
char*) const printable string.

boolean operator==(const Compares to a charstring.
CHARSTRING&) const

boolean operator==(const Compares to a charstring
CHARSTRING_ELEMENT&) element.

const

boolean operator==(const Compares to a universal

UNIVERSAL_CHARSTRING_ELE charstring element.
MENT&) const

boolean operator!=(const
UNIVERSAL_CHARSTRING&)
const

boolean operator!= (const
universal_char&) const

boolean operator!=(const char®)
const

boolean operator!=(const
CHARSTRING&)

boolean operator!=(const
CHARSTRING_ELEMENT&)
const

boolean operator!=(const
UNIVERSAL_CHARSTRING_ELE
MENT&) const

Concatenation operator

Index operator

Rotating operators

UNIVERSAL_CHARSTRING
operator+(const
UNIVERSAL_CHARSTRING&)
const

UNIVERSAL_CHARSTRING
operator+(const
universal_char&) const

UNIVERSAL_CHARSTRING
operator+(const char*) const

UNIVERSAL_CHARSTRING

operator+(const CHARSTRING&)

const

UNIVERSAL_CHARSTRING
operator+(const
CHARSTRING_ELEMENT&)
const

UNIVERSAL_CHARSTRING
operator+(const
UNIVERSAL_CHARSTRING_ELE
MENT&) const

UNIVERSAL_CHARSTRING_ELE
MENT operator[](int)

UNIVERSAL_CHARSTRING_ELE
MENT operator[](const
INTEGER&)

const
UNIVERSAL_CHARSTRING_ELE
MENT operator[](int) const

const
UNIVERSAL_CHARSTRING_ELE
MENT operator[](const
INTEGER&) const

UNIVERSAL_CHARSTRING
operator< < (int) const

UNIVERSAL_CHARSTRING
operator< < (const INTEGER&)
const

UNIVERSAL_CHARSTRING
operator>>=(int) const

UNIVERSAL_CHARSTRING
operator>>=(const INTEGER&)
const

Concatenates two strings.

Concatenates a single character.

Concatenates a NUL terminated
single-octet string.

Concatenates a charstring.

Concatenates a charstring
element.

Concatenates a universal
charstring element.

Gives access to the given
element. Indexing begins from
zero. Index overflow causes
dynamic test case error.

Gives read-only access to the
given element.

C++ equivalent of operator <
@(rotate left).

C++ equivalent of operator @ >
(rotate right).

81

operator const Returns a pointer to the array of
Casting operator universal_char*() const characters. There is no
terminator character at the end.

void encode_utf8(TTCN_Buffer& Appends the UTF-8
buf) const representation of the string to

UTF-8 encoding and decoding the given bufer

void decode_utf8(int n_octets,
const unsigned char *octets_ptr)

int lengthof() const Returns the length measured in
characters.

“boolean is_bound() const ° Returns whether the value is
bound.

Other member functions .
f void log() const Puts the value into log. See

below.

void clean_up() Deletes the value, setting it to
unbound.

The comparison and concatenation operators are also available as global functions for that case
when the left operand is a single-octet string (const char*) or a single character (const
universal_char&) and the right side is UNIVERSAL_CHARSTRING value. Using the value of an unbound
UNIVERSAL_CHARSTRING variable for anything causes dynamic test case error.

The UNIVERSAL_CHARSTRING variable used with the decode_utf8() method must be newly constructed
(unbound) or clean_up() must have been called, otherwise a memory leak will occur.

The logged printout of universal charstring values is compatible with the TTCN-3 notation for such
strings. The format to be used depends on the contents of the string. Each character (quadruple) is
classified whether it is directly printable or not. The string is fragmented based on this
classification. Each fragment consists of either a single non-printable character or a maximal length
contiguous sequence of printable characters. The fragments are logged one after another separated
by an & character (concatenation operator). The printable fragments use the normal charstring
notation; the non-printable characters are logged in the TTCN-3 quadruple notation. An empty
universal charstring value is represented by a pair of quotation marks (like in case of empty
charstring values).

An example printout in the log can be the following. The string consists of two fragments of
printable characters and a non-printable quadruple, which stands for Hungarian letter "4":

"Character " & char(@, @, 1, 113) & " is a letter of Hungarian alphabet"

Other operators (global functions):

82

boolean operator==(const universal_char& left_value,

const universal_char& right_value); // Equal
boolean operator==(const universal_char& uchar_value,

const UNIVERSAL_CHARSTRING& other_value); // Equal
boolean operator==(const char* string_value,

const UNIVERSAL_CHARSTRING& other_value); // Equal

boolean operator==(const universal_char& uchar_value,

const UNIVERSAL_CHARSTRING_ELEMENT& other_value); // Equal
boolean operator==(const char* string_value,

const UNIVERSAL_CHARSTRING_ELEMENT& other_value); // Equal
boolean operator!=(const universal_char& left_value,

const universal_char& right_value); // Not equal
boolean operator!=(const universal_char& uchar_value,
const UNIVERSAL_CHARSTRING& other_value); // Not equal
boolean operator!=(const char* string_value,
const UNIVERSAL_CHARSTRING& other_value); // Not equal
boolean operator!=(const universal_char& uchar_value,
const UNIVERSAL_CHARSTRING_ELEMENT& other_value); // Not equal
boolean operator!=(const char* string_value,
const UNIVERSAL_CHARSTRING_ELEMENT& other_value); // Not equal

boolean operator<(const universal_char& left_value,
const universal_char& right_value& other_value); // Character comparison
UNIVERSAL_CHARSTRING operator+(const universal_char& uchar_value,

const UNIVERSAL CHARSTRING& other value); // Concatenation
UNIVERSAL_CHARSTRING operator+(const char* string_value,
const UNIVERSAL_CHARSTRING& other_value); // Concatenation

UNIVERSAL_CHARSTRING operator+(const universal_char& uchar_value,

const UNIVERSAL CHARSTRING_ELEMENT& other _value); // Concatenation
UNIVERSAL_CHARSTRING operator+(const char* string_value,

const UNIVERSAL CHARSTRING_ELEMENT& other_value); // Concatenation

Universal charstring element

The C++ class UNIVERSAL_CHARSTRING_ELEMENT is the equivalent of the TTCN-3 universal charstring’s
element type (the result of indexing a universal charstring value). The class does not store the
actual character, only a reference to the original UNIVERSAL_CHARSTRING object, an index value and a
bound flag.

Note: changing the value of the UNIVERSAL_CHARSTRING_ELEMENT (through the assignment operator)
changes the referenced character in the original universal charstring object.

The class UNIVERSAL_CHARSTRING_ELEMENT has the following public member functions:

Table 21. Public member functions of the class UNIVERSAL_CHARSTRING_ELEMENT

Member functions Notes

83

84

Constructor

Assignment operators

UNIVERSAL_CHARSTRING_ELEMENT(b

oolean par_bound_flag,
UNIVERSAL_CHARSTRING&
par_str_val, int
par_uchar_pos)

UNIVERSAL_CHARSTRING_ELEMENT&
operator=(const
universal_char&)

UNIVERSAL_CHARSTRING_ELEMENT&
operator=(const char¥*)

UNIVERSAL _CHARSTRING _ELEMENT&
operator=(const CHARSTRING&)

UNIVERSAL_CHARSTRING_ELEMENT&
operator=(const
CHARSTRING_ELEMENT&)

UNIVERSAL_CHARSTRING_ELEMENT&
operator=(const
UNIVERSAL_CHARSTRING&)

UNIVERSAL_CHARSTRING_ELEMENT&
operator=(const
UNIVERSAL_CHARSTRING_ELEMENT&)

Initializes the object with an
unbound value or a reference
to a character in an existring
UNIVERSAL_CHARSTRING
object.

Sets the referenced character to
the given universal character.

Comparison operators

boolean operator==(const Comparison with a universal

universal_char&) const character, a null-terminated
string, a charstring, a universal
charstring, a charstring element
or a universal charstring
element (when comparing
element types, the value of the
referenced characters is
compared, not the references
and indexes).

boolean operator==(const
char*) const

boolean operator==(const
CHARSTRING&) const

boolean operator==(const
CHARSTRING_ELEMENT&)
const

boolean operator==(const
UNIVERSAL_CHARSTRING&)
const

boolean operator==(const
UNIVERSAL_CHARSTRING_ELE
MENT&) const

boolean operator!=(const
universal_char&) const

boolean operator!=(const char*)
const

boolean operator!=(const
CHARSTRING&) const

boolean operator!=(const
CHARSTRING_ELEMENT&)
const

boolean operator!=(const
UNIVERSAL_CHARSTRING&)
const

boolean operator!=(const
UNIVERSAL_CHARSTRING_ELE
MENT&) const

85

Concatenation operator

Other member functions

CHARSTRING operator+(const
universal_char&) const

CHARSTRING operator+(const
char*) const

CHARSTRING operator+(const
CHARSTRING&) const

CHARSTRING operator+(const
CHARSTRING_ELEMENT&)
const

UNIVERSAL_CHARSTRING
operator+(const
UNIVERSAL_CHARSTRING&)
const

UNIVERSAL_CHARSTRING
operator+(const
UNIVERSAL_CHARSTRING_ELE
MENT&) const

const universal_char&
get_char() const

void log() const

boolean is_bound() const

Concatenates this object with a
universal character, a null-
terminated string, a charstring,
a charstring element, a
universal charstring or a
universal charstring element.

Returns the referenced
character.

Puts the value into log.
Example: “a” or char(0, 0, 1,
113).

Returns whether the value is
bound.

Using the value of an unbound UNIVERSAL_CHARSTRING_ELEMENT variable for anything will cause
dynamic test case error.

5.3.12. Object Identifier Type

The object identifier type of TTCN-3 (objid) is implemented in class OBJID. In the run-time
environment the components of object identifier values are represented in NumberForm, that is, in
integer values. The values of components are stored in an array with a given length. The type of the
components is specified with a typedef, objid_element. Class OBJID has the following member
functions.

Table 22. Public member functions of the class 0BJID

86

Member functions Notes

0BJID() Initializes to unbound value.

0BJID(int n_components, const [nitializes the number of

objid_element *components_ptr) components to n components
and copies all components from
an array of integers starting at
components_ptr.

0BJID(int n_components, -+) Initializes the number of
components to n_components.
The components themselves
shall be given as additional
integer arguments after each
other, starting with the first
one.

Constructors

OBJID(const OBJID&) Copy constructor.

Destructor "0BJID()

, 0BJID& operator=(const OBJID&) Assigns the given value and sets
Assignment operator

the bound flag.
boolean operator==(const Returns TRUE if the two values
OBJID&) const are equal and FALSE otherwise.

Comparison operators
boolean operator!=(const

OBJID&) const

objid_element& operator[](int i) Returns a reference to the ith

component.
Indexing operators ..
£0p const objid_element & Returns a read-only reference
operator[](int i) const to the ith component.
) operator const objid_element Returns a pointer to the read-
Casting operator *() const only array of components.
Other member functions int lengthof() const Returns the number of
components.
void log() const Puts the value into log in boolean is_bound() const
NumberForm. Like this: “objid 0
407,
Returns whether the value is void clean_up() Deletes the value, setting it to
bound. unbound.
NOTE The constructor with variable number of arguments is useful in situations when the

number of components is constant and known at compile time.

Using the value of an unbound 0BJID variable for anything will cause dynamic test case error.

5.3.13. Component References

TTCN-3 variables the types of which are defined as component types are used for storing
component references to PTCs. The internal representation of component references are test tool

87

dependent, our test executor handles them as small integer numbers.

All TTCN-3 component types are mapped to the same C++ class, which is called COMPONENT, using
typedef aliases. We also use an ancillary C type called component, which is defined as an alias for int:

typedef int component;

There are some predefined constants of component references in TTCN-3. These are defined as C
preprocessor macros in the following way:

Table 23. Predefined component references

TTCN-3 constant

null

mtc

system

Preprocessor symbol
NULL

MTC

SYSTEM

The class COMPONENT has the following public member functions:

Table 24. Public member functions of the class COMPONENT

88

Member functions

Constructors

Destructor

Assignment operators

Comparison operators

Casting operator

COMPONENT ()

COMPONENT (component)
COMPONENT (const COMPONENT&)
COMPONENT()

COMPONENT&
operator=(component)

COMPONENT& operator=(const
COMPONENT&)

boolean
operator==(component) const

boolean operator==(const
COMPONENT&) const

boolean operator!=(component)
const

boolean operator!=(const
COMPONENT&) const

operator component() const

Numeric value
COMPREF 0
COMPREF 1
COMPREF 2

Notes
Initializes to unbound value.
Initializes to a given value.

Copy constructor.

Assigns the given value
and sets the bound flag.

Returns TRUE if equals

and FALSE otherwise.

Returns the value.

void log() const Puts the value into log in
decimal form or in symbolic
format for special constants.
Like 3 or mtc.

Other member functions phoglean is_bound() const Returns whether the value is
bound.
void clean_up() Deletes the value, setting it to
unbound.

Component references are managed by MC. All new test components are given a unique reference
that was never used in the test campaign before (not even in a previous test case). The new
numbers are increasing monotonously. The reference of the firstly created component is 3; the next
one will be 4, and so on.

Using the value of an unbound component reference for anything will cause dynamic test case
error.

Other operators (global functions):

boolean operator==(component component_value,

const COMPONENT& other_value); // Equal
boolean operator!=(component component_value,

const COMPONENT& other_value); // Not equal

5.3.14. Empty Types

Empty record and set types are not real built-in types in TTCN-3, but the C++ realization of these
types also differs from regular records or sets. The empty types are almost identical to each other,
only their names are different. That is why we treat them as predefined types.

Each empty type is defined in a C++ class, which is generated by the compiler. Using separate
classes enables us to differentiate among them in C++ type polymorphism. For example, several
empty types can be defined as incoming or outgoing types on the same TTCN-3 port type.

Let us consider the following TTCN-3 type definition as an example:

type record Dummy {};

The generated class will rely on an enumerated C type null_type, which is defined as follows:

enum null type {NULL VALUE };

The only possible value stands for the TTCN-3 empty record or array value (that is for "{}"), which
is the only possible value of TTCN-3 type Dummy. Note that this type and value is also used in the
definition of record of and set of type construct.

89

The generated C++ class Dummy will have the following member functions:

Table 25. Public member functions of the class Dummy

Member functions Notes
Dummy () Initializes to unbound value.
Dummy (null type) Initializes to the only possible
Constructors —
Dummy (const Dummyé&) Copy constructor.
Destructor “Dummy ()

Dummy& operator=(null type) Assigns the only possible value
Assignment operators and sets the bound flag.

Dummy& operator=(const Dummy&)

boolean operator==(Dummy) Returns TRUE if both
const arguments are bound.

boolean operator==(const

Dummy&) const

Comparison operators
P P boolean operator!=(address) Returns FALSE if both

const arguments are bound.

boolean operator!=(const
Dummy&) const

void log() const Puts the value, that is, {}, into
log.
' boolean is_bound() const Returns whether the value is
Other member functions bound
void clean_up() Deletes the value, setting it to
unbound.

Setting the only possible value is important, because using the value of an unbound variable for
anything will cause dynamic test case error.

Other operators (global functions):

boolean operator==(null_type null_value, const Dummy& other_value);// Equal
boolean operator!=(null_type null_value, const Dummy& other_value);// Not equal

5.4. Compound Data Types

The user-defined compound data types are implemented in C++ classes. These classes are generated
by the compiler according to type definitions. In contrast with the basic types, these classes can be
found in the generated code.

5.4.1. Record and Set Type Constructs

The TTCN-3 type constructs record and set are mapped in an identical way to C+. There will be a C+

90

class for each record type in the generated code. This class builds up the record from its fields. [11:
This section deals with the record and set types that have at least one field. See Empty Types for the
C++ mapping of empty record and set types.] The fields can be either basic or compound types.

Let us consider the following example type definition. The types t1 and t2 can be arbitrary.

type record t3 {
t1 f1,
t2 f2

The generated class t3 will have the following public member functions:

Table 26. Public member functions of the class t3

Member functions

Constructors

Destructor

Assignment operator

Comparison operators

Field access functions

Other member functions

t30)

t3(const t1& par_f1, const t2&
par_f2)

t3(const t3&)
“t3()
t3& operator=(const t3&)

boolean operator==(const t3&)
const

boolean operator!=(const t3&)
const
t1& f10); 12& £20;

const t1& f1() const; const t2&
f2() const;

int size_of() const

void log() const

boolean is_bound() const

void clean_up()

Notes

Initializes all fields to unbound
value.

Initializes from given field
values. The number of
arguments equals to the
number of fields.

Copy constructor.

Assigns the given value and
setsthe bound flag for each
field.

Returns TRUE if all fields are
equal and FALSE otherwise.

Gives access to the first/second
field.

The same, but it gives read-only
access.

Returns the size (number of
fields).

Puts the value into log. Like { f1
=5, f2 :=”abc”}.

Returns whether the value is
bound.

Deletes the value, setting it to
unbound.

The record value is unbound if one or more fields of it are unbound. Using the value of an unbound
variable for anything (even for comparison) will cause dynamic test case error.

91

Optional Fields in Records and Sets

TTCN-3 permits optional fields in record and set type definitions. An optional field does not have to
be always present, it can be omitted. But the omission must be explicitly denoted. Let us change our
last example to this.

type record t3 {
t1 f1,
t2 f2 optional
}

The optional fields are implemented using a C++ template class called OPTIONAL that creates an
optional value from any type. In the definition of the generated class t3 the type t2 will be replaced
by OPTIONAL<t2> everywhere and anything else will not be changed.

The instantiated template class OPTIONAL<t2> will have the following member functions:

Table 27. Table Public member functions of the class OPTIONAL<t2>

Member functions Notes

OPTIONAL() Initializes to unbound value.

OPTIONAL(template_sel Initializes to omit value, if the

init_val) argument is OMIT VALUE.

OPTIONAL(const t2& init_val) [nitializes to given value.

OPTIONAL(const OPTIONAL& Copy constructor.

init_val)

el TS “template <typename T_tmp> = Initializes to given value of

different (compatible) type.

OPTIONAL(const

OPTIONAL<T_tmp>&)

template <typename T_tmp> Initializes to given optional
value of different (compatible)
type.

OPTIONAL(const T_tmp&)

Destructor “OPTIONAL()

OPTIONALG Assigns omit value, if the right

operator=(template_sel) value is OMIT VALUE.

OPTIONAL& operator=(const Assigns the given optional

OPTIONAL&) e

template <typename T_tmp> Assigns the given optional value

Assignment operators of different (compatible) type.

OPTIONAL& operator=(const
OPTIONAL<T_tmp>&)

template <typename T_tmp> Assigns the given value of
different (compatible) type.

OPTIONAL& operator=(const
T_tmp&)

92

Comparison operators

Casting operators

Function call operators

Other member functions

boolean
operator==(template_sel) const

boolean operator==(const

OPTIONAL&) const

template <typename T_tmp>

boolean
operator!=(template_sel) const

boolean operator!=(const
OPTIONAL&) const

template <typename T_tmp>

boolean operator!=(const
OPTIONAL<T_tmp>&) const

operator t2&()

operator const t2&() const

t2& operator()()

const t2& operator()() const

boolean ispresent() const

void log() const

boolean is_bound() const

void clean_up()

Returns TRUE if the value is
omit and the right side is OMIT
VALUE or FALSE otherwise.

Returns TRUE if the two values
are equal or FALSE otherwise.

Returns TRUE if the two values
of different (compatible) types
are equal or FALSE otherwise.

Gives read-write access to the
value. If the value was not
previously present, sets the
bound flag true and the value
will be initialized to unbound.

Gives read-only access to the
value. If the value is not
present, causes a dynamic test
case error.

Gives read-write access to the
value. If the value was not
previously present, sets the
bound flag true and the value
will be initialized to unbound.

Gives read-only access to the
value. If the value is not
present, causes a dynamic test
case error.

Returns TRUE if the value is
present, FALSE if the value is
omit or causes dynamic test
case error if the value is
unbound.

Puts the optional value into log.
Either omit” or the value of t2.

Returns whether the value is
bound.

Deletes the value, setting it to
unbound.

In some member functions of the template class OPTIONAL the enumerated C type template_sel is

93

used. It has many possible values, but in the optional class only OMIT_VALUE can be used, which
stands for the TTCN-3 omit. Usage of other predefined values of template_sel will cause dynamic
test case error.

Using the value of an unbound optional field for anything will also cause dynamic test case error.

5.4.2. Union Type Construct

The TTCN-3 type construct union is implemented in a C++ class for each union type in the
generated code. This class may contain any, but exactly one of its fields. The fields can be either
basic or compound types or even identical types.

Let us consider the following example type definition. The types t1 and t2 can be arbitrary.

type union t3 {
t1 f1,
t2 f2

An ancillary enumerated type is created in the generated class t3, which represents the selection:
enum union_selection_type { UNBOUND_VALUE = @, ALT_f1 =1, ALT_f2 =2 };

The type t3::union_selection_type is used to distinguish the fields of the union. The predefined
constant values are generated as t3::ALT_<field name>.

The generated class t3 will have the following public member functions:

Table 28. Public member functions of the class t3

Member functions Notes
t3() Initializes to unbound value.
Constructors t3(const t38&) Copy constructor.
Destructor 30
Assignment operator t3& operator=(const t3&) Assigns the given value.

boolean operator==(const t3&) Returns TRUE if the selections
const and field values are equal and

Comparison operators FALSE otherwise.

boolean operator!=(const t3&)
const

94

Member functions
const t1& f1() const

t1& 10

Field access functions

12& £2()
const t2& f2() const

union_selection_type
get_selection() const

void log() const
Other member functions

boolean is_bound() const

void clean_up()

Notes

Selects and gives access to the
first field. If other field was
previously selected, its value
will be destroyed.

Gives read-only access to the
first field. If other field is
selected, this function will
cause a dynamic test case error.
So use get_selection() first.

Returns the current selection. It
will return t3::UNBOUND
VALUE if the value is unbound,
t3::ALT f1 if the first field was
selected, and so on.

Puts the value into log.
Example: {f1:=5} or { f2 :=
llabcll }-

Returns whether the value is
bound.

Deletes the value, setting it to
unbound.

Using the value of an unbound union variable for anything will cause dynamic test case error.

The anytype

The TTCN-3 anytype is implemented as a C++ class named anytype. The class is generated only if an
actual anytype access is present in the module. It has the same interface as any other C++ class

generated for a union, with a few differences:

If a field is a built-in type or the address type, the name used in union_selection_type is the name of
the runtime class implementing the type (usually the name of the type in all uppercase).

If a field is a user-defined type, the mapping rules in Mapping of Names and Identifiers above

apply.

The names of field accessor functions are prefixed with AT_. This is necessary, because otherwise

the accessor function looks like a constructor to C++.

For example, for the following module

95

module anyuser {
type record myrec {}

control {
var anytype v_at;
}
¥
with {
extension “anytype integer, myrec, charstring”

}

The generated class name will be "anytype". The union_selection_type enumerated type will be:

enum union_selection_type { UNBOUND_VALUE = @, ALT_INTEGER = 1, ALT_myrec = 2,
ALT_CHARSTRING = 3 };

The field accessor methods will be:

INTEGER& AT_INTEGER();
myrecé AT_myrec();
CHARSTRING& AT_CHARSTRING();

5.4.3. Record of Type Construct

The TTCN-3 type construct record of makes a variable length sequence from one given type. This
construct is implemented as a C++ class.

Let us consider the following example type definition. The type t1 can be arbitrary.
type record of t1 t2;

This definition will be translated to a C++ class that will be called t2.

There is an enum type called null_type defined in the Base Library that has only one possible value.
NULL_VALUE stands for the empty "record of" value, that is, for {}.

Class t2 will have the following public member functions:

Table 29. Public member functions of the class t2

Member functions Notes
t2() Initializes to unbound value.
Constructors t2(null type) Initializes to the empty value.
t2(const t28) Copy constructor.
Destructor "t20)

96

Assignment operator

Comparison operators

Index operators

Rotating operators

Concatenation operator

t2& operator=(null type)
t2& operator=(const t2&)

boolean operator==(null type)
const

boolean operator==(const t2&)
const

boolean operator!=(null type)
const

boolean operator!=(const t2&)
const

t1& operator[](int)

t1& opetator[](const INTEGER&)

const t1& operator[](int) const

const t1& opetator[](const
INTEGER&) const

t2 operator< < (int)

t2 operator< < (const
INTEGER&)

t2 operator>>=(int)

t2 operator>>=(const
INTEGER&)

t2 operator+(const t2&) const

Assigns the empty value.
Assigns the given value.

Returns TRUE if the two values
are equal and FALSE otherwise.

Gives access to the given
element. Indexing begins from
zero. If this element of the
variable was never used before,
new (unbound) elements will
be allocated up to (and
including) this index.

Gives read-only access to the
given element. Index overflow
causes dynamic test case error.

C++ equivalent of operator <@.
(rotate left)

C++ equivalent of operator @>.
(rotate right)

Concatenates two arrays.

97

int size_of() const Returns the number of
elements, that is, the largest
used index plus one and zero
for the empty value.

void set_size(int new_size) Sets the number of elements to
the given value. If the value has
fewer elements new (unbound)
elements are allocated at the
end. The excess elements at the
end are erased if the value has
more elements than necessary.

t2 substr(int index, int Returns the section of the array
returncount) const specified by the given start
index and length.

t2 replace(int index, int len, Returns a copy of the array,

const t2& repl) const where the section indicated by
the given start index and length
is replaced by the given array.

Other member functions

void log() const Puts the value into log. Like {1,
2,3}

boolean is_bound() const Returns whether the value is
bound.

void clean_up() Deletes the value, setting it to
unbound.

A record of value is unbound if no value has been assigned to it or it has at least one unbound
element. Using the value of an unbound record of variable for anything will cause dynamic test
case error.

Starting with the largest index improves performance when filling a record of value.

Other operators (global functions):

boolean operator==(null_type null_value, const t2& other_value); // Equal
boolean operator!=(null_type null_value, const t2& other_value); // Not equal

Pre-generated record of and set of constructs

The C++ classes for the record of and set of constructs of most predefined TTCN-3 types are pre-
generated and part of the TITAN runtime. Only a type alias (C++ typedef) is generated for instances
of these types declared in TTCN-3 and ASN.1 modules. There is a class with regular memory
allocation and one with optimized memory allocation pre-generated for each type. These classes
are located in the PreGenRecordOf namespace.

Table 30. Pre-generated classes for record of/set of predefined types

C++ class name Equivalent type in TTCN-3
PREGEN__RECORD__OF __BOOLEAN record of boolean

98

C++ class name
PREGEN__RECORD__OF__INTEGER
PREGEN__RECORD__OF __FLOAT
PREGEN__RECORD__OF__BITSTRING
PREGEN__RECORD__OF __HEXSTRING
PREGEN__RECORD__OF __OCTETSTRING
PREGEN__RECORD__OF__CHARSTRING
PREGEN__RECORD__OF __UNIVERSAL__CHARSTRING
PREGEN__RECORD__OF __BOOLEAN__OPTIMIZED

PREGEN__RECORD__OF __INTEGER__OPTIMIZED
PREGEN__RECORD__OF __FLOAT__OPTIMIZED
PREGEN__RECORD__OF __BITSTRING__OPTIMIZED
PREGEN__RECORD__OF __HEXSTRING__OPTIMIZED
PREGEN__RECORD__OF __OCTETSTRING__OPTIMIZED
PREGEN__RECORD__OF __CHARSTRING__OPTIMIZED
PREGEN__RECORD__OF __UNIVERSAL__CHARSTRING__OPT
IMIZED

PREGEN__SET__OF __BOOLEAN
PREGEN__SET__OF__INTEGER

PREGEN__SET__OF __FLOAT

PREGEN__SET__OF __BITSTRING

PREGEN__SET__OF __HEXSTRING

PREGEN__SET__OF __OCTETSTRING
PREGEN__SET__OF __CHARSTRING

PREGEN__SET__OF __UNIVERSAL__CHARSTRING
PREGEN__SET__OF__BOOLEAN__OPTIMIZED

PREGEN__SET__OF __INTEGER__OPTIMIZED

PREGEN__SET__OF __FLOAT__OPTIMIZED

PREGEN__SET__OF__BITSTRING__OPTIMIZED

PREGEN__SET__OF __HEXSTRING__OPTIMIZED

PREGEN__SET__OF __OCTETSTRING__OPTIMIZED

PREGEN__SET__OF __CHARSTRING__OPTIMIZED

PREGEN__SET__OF __UNIVERSAL__CHARSTRING__OPTIMI
ZED

Equivalent type in TTCN-3
of
of
of
of
of
of
of

record of
"optimize

record integer
float

bitstring

record
record
record hexstring
record octetstring
record charstring
record universal charstring

boolean with { extension
:memalloc" }

record of
"optimize

integer with { extension
:memalloc" }

float with { extension
:memalloc” }

record of
"optimize

record of
"optimize

bitstring with { extension
:memalloc" }

record of
"optimize

hexstring with { extension
:memalloc" }

record of
"optimize

octetstring with { extension
:memalloc" }

record of
"optimize

charstring with { extension
:memalloc" }

record of
extension

of
of
of
of
of
of
of
of

set of boolean with { extension
"optimize:memalloc" }

universal charstring with {
"optimize:memalloc" }

set boolean
set integer
float

bitstring

set
set
set hexstring
set octetstring
set charstring

set universal charstring

set of integer with { extension
"optimize:memalloc" }

set of float with { extension
"optimize:memalloc" }

set of bitstring with { extension
"optimize:memalloc" }

set of hexstring with { extension
"optimize:memalloc" }

set of octetstring with { extension
"optimize:memalloc" }

set of charstring with { extension
"optimize:memalloc" }

set OF\ universal charstring with { extension
"optimize:memalloc" }

99

5.4.4. Set of Type Construct

The set of construct of TTCN-3 is implemented similarly to record of. The external interface of this
class is exactly the same as in case of record of. For more details please see the previous section.

In the internal implementation only the equality operator differs. Unlike in record of, it considers
the unordered property of the set of type construct, that is, it returns TRUE if it is able to find
exactly one pair for each element.

The index is a unique identifier for a set of element because the C++ class does not reorder the
elements when a new element is added or an element is modified. The copy constructor also keeps
the original order of elements.

5.4.5. Enumerated Types

The TTCN-3 enumerated type construct is implemented as a C++ class with an embedded enum type.
type enumerated Day { Monday (1), Tuesday, Wednesday (3) };

The example above will result in the following, very similar C enum type definition which is
embedded in the C++ class Day:

enum enum_type { Monday = 1, Tuesday = @, Wednesday = 3,
UNKNOWN_VALUE = 2, UNBOUND_VALUE = 4 };

The automatic assignment of numeric values is done according to the standard. Note that there are
two extra enumerated values in C, which stand for the unknown and unbound values. They are
used in the conversion functions described below. The compiler assigns the smallest two non-
negative integer numbers that are not used by the user-defined enumerated values to the unknown
and unbound values.

When using the C enum type and its values from user code the names must be prefixed with the C++
class name. The enum type in the above example can be referenced with Day::enum_type, its values
can be accessed as Day: :Monday, Day::Tuesday, and so on.

The class Day will have the following public member functions:

Table 31. Public member functions of the class Day

Member functions Notes
Day() Initializes to unbound value.
Day(int) Converts the given numeric

value to Day::enum_type and
initializes to it. Only valid

Constructors
values are accepted.
Day(enum_type) Initializes to a given value.
Day(const Dayé&) Copy constructor.

100

Destructor

Assignment operator

Comparison operators

Casting operator

Static conversion functions

"Day()
Day& operator=(int)

Day& operator=(enum_type)
Day& operator=(const Dayé&)

boolean operator==(enum_type)
const

boolean operator==(const
Day&) const

boolean operator!=(enum_type)
const

boolean operator!=(const Day&)
const

boolean operator<(enum_type)
const

boolean operator<(const Day&)
const

boolean operator < (enum_type)
const

boolean operator « (const Day&)
const

boolean operator>(enum_type)
const

boolean operator>(const Day&)
const

boolean operator>=(enum_type)
const

boolean operator>=(const
Day&) const

operator enum_type() const

static const char
*enum_to_str(enum_type)

static enum_type
str_to_enum(const char *)

static boolean
is_valid_enum(int)

static int enum2int(enum_type);

static int enum2int(const Day&);

Converts the given numeric

value to Day::enum_type and

assigns it. Only valid values are
accepted.

Assigns the given value.

Returns TRUE if the two values
are equal and FALSE otherwise.

Returns the enum_value.

See below.

101

int as_int() const; See below

Non-static conversion functions Vvoid from_int(int);

void int2enum(int);

void Tog() const Puts the value into log. Like
this: Monday
' boolean is_bound() const Returns whether the value is
Other member functions bound
void clean_up() Deletes the value, setting it to
unbound.

The static member function Day::enum_to_str converts the given parameter of type Day::enum_type
to a NULL terminated C character string. It returns the string "<unknown>", if the input is not a
valid value of the TTCN-3 enumerated type. The returned string is read-only, it must not be
modified.

The function Day::str_to_enum does the conversion in the reverse direction. It converts the symbolic
enumerated identifier represented by a C character string back to the Day: :enum_type equivalent. It
returns the value Day: :UNKNOWN_VALUE if the input string is not the equivalent of any of the possible
values in the enumerated type. The behavior of this function is undefined if the input parameter
does not point to an addressable memory area.

In the above two functions the strings are treated case sensitive and they shall not contain any
whitespace or other characters that are not part of the enumerated value. In case of ASN.1
ENUMERATED types the strings used by enum_to_str, str_to_enum and log represent the TTCN-3 view of
the enumerated value, that is, the hyphenation characters are mapped to a single underscore
character. For example, if an ASN.1 enumerated type has a value with name my-enum-value and
numeric value 2, the function enum_to_str will return the string "my_enum_value" if the input
parameter equals to 2. Of course, its C++ equivalent will be my_enum_value with numeric value 2.

Static member function Day::is_valid_enum returns the Boolean value TRUE if there is a defined
enumerated value having numeric value equal to the int parameter and FALSE otherwise.

The static member function Day::enum_to_int converts the given parameter of type Day or
Day::enum_type to its numeric value. The member function as_int does the same thing for the
enumerated instance.

The member function int_to_enum initializes the enumerated instance with the enumerated value
having numeric value equal to the given int parameter. A dynamic test case error is displayed if
there is no such enumerated value. The member function from_int does the same thing.

If a value of type int is passed to the constructor or assignment operator the value is accepted only
if it is a numerical representation of a valid enumerated value, that is, the function is_valid_enum
returns TRUE. A dynamic test case error occurs otherwise.

To avoid run-time errors at the decoding of invalid messages the Test Port writer should use the
constructor or assignment operator in this way:

102

Day myDayVar;

int myIntVar = buffer[position];

if (Day::is_valid_enum(myIntVar)) myDayVar = myIntVar;
else myDayVar = Day::UNKNOWN_VALUE;

Using the value of an unbound enumerated variable for anything will cause dynamic test case
error.

5.4.6. The address Type

The special TTCN-3 data type address is represented in C++ as if it was a regular data type. The
name of the equivalent C++ class is ADDRESS. If it is an alias to another (either built-in or user-
defined) type then a C++ typedef is used.

5.5. Predefined Functions

Annex C of Methods for Testing and Specification (MTS); The Testing and Test Control Notation
version 3. Part 1: Core Language European Telecommunications Standards and Annex B of Methods
for Testing and Specification (MTS); The Testing and Test Control Notation version 3. Part 7: Using
ASN.1 with TTCN-3 European Telecommunications define a couple of predefined functions. Most of
them perform conversion between the built-in types of TTCN-3. In our test executor these functions
are implemented in the Base Library in C++ language. They are available not only in TTCN-3, but
they can be called directly from Test Ports as well.

The prototypes for these functions can be found in $TTCN3_DIR/include/Addfunc.hh, but for easier
navigation we list them also in the present document.

The majority of these functions have more than one polymorphic version: when appropriate, one
of them takes literal (built-in) C++ types as arguments instead of the objects of equivalent C++
classes. For instance, if the incoming argument is stored in an int variable in your C++ code, you
should not construct a temporary object of class INTEGER because passing an int is faster and
produces smaller binary code. Similarly, the returned type is also literal when it is possible.

5.5.1. Integer to character

extern CHARSTRING int2char(int value);
extern CHARSTRING int2char(const INTEGER& value);

5.5.2. Character to integer

extern int char2int(char value);
extern int char2int(const char *value);
extern int char2int(const CHARSTRING& value);

103

https://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.05.01_60/es_20187301v040501p.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.05.01_60/es_20187301v040501p.pdf
https://pdfs.semanticscholar.org/33b5/877c85f7fd4f35c7f58c39121358c3652966.pdf
https://pdfs.semanticscholar.org/33b5/877c85f7fd4f35c7f58c39121358c3652966.pdf
https://pdfs.semanticscholar.org/33b5/877c85f7fd4f35c7f58c39121358c3652966.pdf

5.5.3. Integer to universal character

extern UNIVERSAL CHARSTRING int2unichar(int value);
extern UNIVERSAL_CHARSTRING int2unichar(const INTEGER& value);

5.5.4. Universal character to integer

extern int unichar2int(const universal char& value);
extern int unichar2int(const UNIVERSAL CHARSTRING& value);

5.5.5.Bitstring to integer

extern INTEGER bit2int(const BITSTRING& value);

5.5.6. Hexstring to integer

extern INTEGER hex2int(const HEXSTRING& value);

5.5.7.0ctetstring to integer

extern INTEGER oct2int(const OCTETSTRING& value);

5.5.8. Charstring to integer

extern INTEGER str2int(const char *value);
extern INTEGER str2int(const CHARSTRING& value);

5.5.9. Integer to bitstring

extern BITSTRING int2bit(const INTEGER& value, const INTEGER& length);

5.5.10. Integer to hexstring

extern HEXSTRING int2hex(const INTEGER& value, const INTEGER& length);

5.5.11. Integer to octetstring

104

extern OCTETSTRING int2oct(const INTEGER& value, const INTEGER& length);

5.5.12. Integer to charstring

extern CHARSTRING int2str(int value);
extern CHARSTRING int2str(const INTEGER& value);

5.5.13. Length of string Type

This function is built into the equivalent C++ classes of all TTCN-3 string types:

int <any_string_type>::lengthof() const;

5.5.14. Number of elements in a structured type

This function is built into the C++ template classes of record of and set of types:
int <any_record_of_or_set_of_type>::size_of() const;

This function is currently not implemented for record and set types.

5.5.15. The IsPresent Function

This function is built into the wrapper C++ template class OPTIONAL:

boolean <any_optional_field>::ispresent() const;

5.5.16. The IsChosen Function

These functions are built into the equivalent C++ classes of TTCN-3 union types:

boolean <union_type>::ischosen(
<union_type>::union_selection_type checked_selection) const;

5.5.17. The regexp Function

extern CHARSTRING regexp(const CHARSTRING& instr,
const CHARSTRING& expression, const INTEGER& groupno);

105

5.5.18. Bitstring to charstring

extern CHARSTRING bit2str(const BITSTRING& value);

5.5.19. Hexstring to charstring

extern CHARSTRING hex2str(const HEXSTRING& value);

5.5.20. Octetstring to character string

extern CHARSTRING oct2str(const OCTETSTRING& value);

5.5.21. Character string to octetstring

extern OCTETSTRING str2oct(const char *value);
extern OCTETSTRING str2oct(const CHARSTRING& value);

5.5.22. Bitstring to hexstring

extern HEXSTRING bit2hex(const BITSTRING& value);

5.5.23. Hexstring to octetstring

extern OCTETSTRING hex2oct(const HEXSTRING& value);

5.5.24. Bitstring to octetstring

extern OCTETSTRING bit2oct(const BITSTRING& value);

5.5.25. Hexstring to bitstring

extern BITSTRING hex2bit(const HEXSTRING& value);

5.5.26. Octetstring to hexstring

extern HEXSTRING oct2hex(const OCTETSTRING& value);

106

5.5.27. 0ctetstring to bitstring

extern BITSTRING oct2bit(const OCTETSTRING& value);

5.5.28. Integer to float

extern double int2float(int value);
extern double int2float(const INTEGER& value);

5.5.29. Float to integer

extern INTEGER float2int(double value);
extern INTEGER float2int(const FLOAT& value);

5.5.30. The Random Number Generator Function

The implementation is based on functions srand48 and drand48 of libc.

extern double rnd();
extern double rnd(double seed);
extern double rnd(const FLOAT& seed);

5.5.31. The Substring Function

Implemented for all string types.

extern BITSTRING substr(const BITSTRING& value, const INTEGER& index,
const INTEGER& returncount);

extern HEXSTRING substr(const HEXSTRING& value, const INTEGER& index,
const INTEGER& returncount);

extern OCTETSTRING substr(const OCTETSTRING& value, const INTEGER& index,
const INTEGER& returncount);

extern CHARSTRING substr(const CHARSTRING& value, const INTEGER& index,
const INTEGER& returncount);

extern UNIVERSAL_CHARSTRING substr(const UNIVERSAL_CHARSTRING& value,
const INTEGER& index, const INTEGER& returncount);

5.5.32. Character string to float

extern double str2float(const char *value);
extern double str2float(const CHARSTRING& value);

107

5.5.33. The Replace Function
Implemented for all string types.
extern BITSTRING replace(const BITSTRING& value, const INTEGER& index,
const INTEGER& len, const BITSTRING& repl);
extern HEXSTRING replace(const HEXSTRING& value, const INTEGER& index,
const INTEGER& len, const HEXSTRING& repl);
extern OCTETSTRING replace(const OCTETSTRING& value, const INTEGER& index,
const INTEGER& len, const OCTETSTRING& repl);
extern CHARSTRING replace(const CHARSTRING& value, const INTEGER& index,
const INTEGER& len, const CHARSTRING& repl);

extern UNIVERSAL_CHARSTRING replace(const UNIVERSAL_CHARSTRING& value,
const INTEGER& index, const INTEGER& len, const UNIVERSAL_CHARSTRING& repl);

5.5.34. Octetstring to character string

extern CHARSTRING oct2char(const OCTETSTRING& value);

5.5.35. Character string to octetstring

extern OCTETSTRING char2oct(const char *value);
extern OCTETSTRING char2oct(const CHARSTRING& value);

5.5.36. The Decompose Function

Not implemented yet.

5.5.37. Additional Non-Standard Functions

108

extern BITSTRING str2bit(const char *value);
extern BITSTRING str2bit(const CHARSTRING& value);
extern HEXSTRING str2hex(const char *value);
extern HEXSTRING str2hex(const CHARSTRING& value);
extern CHARSTRING float2str(double value);

extern CHARSTRING float2str(const FLOAT& value);

template<typename TTCN_TYPE>
CHARSTRING ttcn_to_string(const TTCN_TYPE& ttcn_data)

template<typename TTCN_TYPE>
void string_to_ttcn(const CHARSTRING& ttcn_string, TTCN_TYPE& ttcn_value)

extern UNIVERSAL _CHARSTRING oct2unichar(const OCTETSTRING& invalue);
extern UNIVERSAL CHARSTRING oct2unichar(const OCTETSTRING& invalue,
const CHARSTRING& string_encoding);

extern OCTETSTRING unichar2oct(const UNIVERSAL CHARSTRING& invalue);
extern OCTETSTRING unichar2oct(const UNIVERSAL CHARSTRING& invalue,
const CHARSTRING& string_encoding);

extern CHARSTRING get_stringencoding(const OCTETSTRING& encoded__value);
extern OCTETSTRING remove_bom(const OCTETSTRING& encoded_ _value);

extern CHARSTRING encode_baseb4(const OCTETSTRING& msg, bool use_linebreaks);
extern CHARSTRING encode_base64(const OCTETSTRING& msg);
extern OCTETSTRING decode base64(const CHARSTRING& b64);

See the section "Additional predefined functions" in the Programmer"s Technical Reference for
more details.

5.6. Using the Signature Classes

A Test Port has three outgoing and three incoming types of operation that require the usage of
signatures. These are call (getcall), reply (getreply) and raise (catch). Because of this, there are
three representation formats (classes generated by the compiler) of a signature the Test Port writer
should be familiar with. This section describes these classes using an example.

Let us suppose the following signature definition:
signature MyProc(in integer inPar, out float outPar,
inout bitstring inoutPar)

return hexstring
exception(charstring, integer, boolean);

The classes generated and needed to write a Test Port using this signature are MyProc_call,
MyProc_reply and MyProc_exception. These represent the parameters, the return value and the

109

https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide

exception type and value of the signature needed by a call, reply or raise.

For example, if a port uses the signature MyProc as an output remote procedure, the Test Port gets
the outgoing parameters for a call operation towards the system in an instance of the class
MyProc_call. In this case the classes MyProc_reply and MyProc_exception are used for placing an
incoming reply or raise operation in the queue of the port (using the functions incoming_reply and
incoming_exception of the port class).

5.6.1. The Representation of the Input Parameters

The class MyProc_call (using the above example) represents all incoming parameters of the
signature MyProc. It temporary stores the parameters inPar and inoutPar.

The generated class MyProc_call will have the following public member functions:

Table 32. Public member functions of the class MyProc_call

Member functions Notes
INTEGER& inPar() Gives access to parameter
inPar.

const INTEGER& inPar() const

Parameter access functions BITSTRING& inoutPar() The same, but it gives read-only
access.

const BITSTRING& inoutPar()
const

Other member functions void log() const Puts the parameters into log.

The parameters can be accessed via their access functions that have the same names as the
parameters (name mapping also applies to these functions).

5.6.2. The Output Parameters and Return Value

The output parameters and return value (if defined) are represented by the class MyProc_reply that
has the following public member functions:

Table 33. Public member functions of the class MyProc_reply

Member functions Notes
FLOAT& outPar()const FLOAT& Gives access to parameter
outPar() const outPar.

Parameter access functions . L
BITSTRING& inoutPar() const The same, but it gives read-only

BITSTRING& inoutPar() const access.
HEXSTRING& return value() Gives access to the return value.

Access function for return value const HEXSTRING& return
value() const

Other member functions void log() const Puts the parameters into log.

The parameters can be accessed by their access functions, and the return value can be accessed via

110

the function return_value().

5.6.3. Representation of Signature Exceptions

The class representing the exceptions of a signature (remote procedure) is similar to the
representation of the union data type. Using the above example this class is called MyProc_exception.
This class is generated only if the signature has at least one exception type.

Table 34. Public member functions of the class MyProc_exception

Member functions

Constructors

Destructor

Assignment operator

Field access functions

Other member functions

MyProc_exception()

MyProc_exception(const
MyProc_exception&)

“MyProc_exception()

MyProc_exception&
operator=(const
MyProc_exception&)
CHARSTRING&
CHARSTRING_field()

const
CHARSTRING&CHARSTRING fie
1d() cons

INTEGER& INTEGER _field()
const INTEGER&
INTEGER_field() const

BOOLEAN&
BOOLEAN'_field()const
BOOLEAN& BOOLEAN_field()
const
MyProc_exception::exception_se

lection_type get_selection()
const

void log() const

Notes
Initializes to unbound value.

Copy constructor.

Assigns the given value.

Selects and gives access to the
CHARSTRING field. If other field
was previously selected, its
value will be destroyed.

Gives read-only access to the
CHARSTRING field. If other field
is selected, this function will
cause dynamic test case error.
So use get selection() first.

Returns the current selection. It
will return MyProc
exception::UNBOUND VALUE if
the exception is unbound,
MyProc exception::ALT
CHARSTRING if a charstring
value is present in the
exception, and so on.

Puts the contents of the
exception into the log.

If an exception type is a user-defined type the field name will be constructed from the C++
namespace name of the module that the exception type resides in and the name of the C++ class
that realizes the exception type. The two identifiers are glued together using a single underscore
character. Please note that the namespace name is always present in the identifiers, even if the

111

exception type is defined in the same module as the signature.

For example, if exception type My_Record is defined in module My_Module the respective field access
functions will be named as My__Module_My__Record_field and the associated enum value will be
MyProc_exception: :ALT_MyModule_MyRecord.

112

Chapter 6. Tips & Troubleshooting

Information not fitting in any of the previous chapters is given in this chapter.

6.1. Migrating Existing C++ Code to the Naming Rules
of Version 1.7

When using the new naming rules [12: The new naming rules are used by default; the naming rules
can be changed using the compiler command line switch -N.] the compiler generates a C++
namespace for each TTCN-3 and ASN.1 module. The name of the namespace corresponds to the
module. The generated C++ entities of a module are all placed in its namespace; therefore all the
test port or protocol module code must use these namespaces.

Rules to follow when writing C++ code:
* When referencing an entity located in a different module its C++ name has to be prefixed with
the namespace name of that module.

* A test port class must be placed into the namespace of its module.

* Encoding and decoding functions must be placed into the namespace of the TTCN-3 module in
which the external function was defined.

» All C++ entities have to be placed into namespace. An exception to this may be C++ entities used
only locally; these are defined with the keyword static.

» For convenience the using namespace directive can be used in C++ source files. It is forbidden to
use this directive in header files!

* C enum types are placed in the scope of their value class; enum types have to be prefixed by the
C name of the value class. [13: The enum hack option has become obsolete with the new naming
rules.]

6.2. Using External C++ Functions in TTCN-3 Test
Suites

Sometimes standard library functions [14: C language functions cannot be called directly from
TTCN-3; you need at least a wrapper function for them.] are called in the test suite or there is a
need for efficiently implemented "bit-crunching” functions in the TTCN-3 ATS. In these cases
functions to be called from the test suite can be developed in C++.

There are the standard library functions as well as other libraries in the C++ functions. The logging
and error handling facilities of the run-time environment are also available as in case of Test Ports.

Since version 1.4.pl1 the semantic analyzer of the compiler checks the import statements
thoroughly. Therefore one cannot use the virtual C modules as before: C functions must be defined
as external functions to be accessible from TTCN-3 modules.

For example, the following definitions make two C++ functions accessible from TTCN-3 module
MyModule and from any other module that imports MyModule.

113

6.2.1. Example TTCN-3 Module (MyModule.ttcn)

module MyModule {
[...]
external function MyFunction(integer par1, in octetstring par2)
return bitstring;
external function MyAnotherFunction(inout My_Type parT,
out MyAnotherType par2);
[...]
}

The compiler will translate those external function definitions to C++ function prototypes in the
generated header file MyModule.hh:

[...]
extern BITSTRING MyFunction(const INTEGER& par1, const OCTETSTRING& par2);
extern void MyAnotherFunction(My__Type& par1, MyAnotherType& par2);

[...]

Both pre-defined and user-defined TTCN-3 data types can be used as parameters and/or return
types of the C++ functions. The detailed description of the equivalent C++ classes as well as the
name mapping rules are described in chapter XML Encoding (XER).

Using templates as formal parameters in external functions is possible, but not recommended
because the API of the classes realizing templates is not documented and subject to change without
notice.

The formal parameters of external TTCN-3 functions are mapped to C++ function parameters
according to the following table:

Table 35. TTCN-3 formal parameters and their C++ equivalents

TTCN-3 formal parameter Its C++ equivalent
[in] MyType myPar const MyType& myPar
out MyType myPar MyType& myPar

inout MyType myPar MyType& myPar

[in] template MyType myPar Not recommended.

In versions 1.6.pl3 and earlier the in keyword had an extra meaning in formal
parameter lists. According to the TTCN-3 standard the parameter definitions MyType
myPar and in MyType myPar are totally equivalent, but the earlier versions of the

NOTE compiler distinguished them. Unless the keyword in was present the compiler
passed the parameter by value (involving a copy constructor call) instead of using a
const reference. That is why it was recommended to use an explicit in keyword in
parameter lists of external functions.

Due to the strictness of the TTCN-3 semantic analyzer one cannot use C/C++ data types with

114

external functions as formal parameters or return types, only TTCN-3 and ASN.1 data types are
allowed. Similarly, one cannot use pointers as parameters or return values because they have no
equivalents in TTCN-3.

The external functions can be implemented in one or more C++ source files. The generated header
file that contains the prototypes of the external functions shall be included into each C++ source
file. This file makes accessible all built-in data types, the user-defined types of the corresponding
TTCN-3 module and all available services of the run-time environment (logging, error handling,
etc.).

The name, return type and the parameters of the implemented C++ functions must match exactly
the generated function prototypes or the compilation will fail. The generated function prototype is
in the namespace of the module, therefore the implementation of the function has to be placed in
that namespace, too.

6.3. Logging in Test Ports or External Functions

When developing Test Ports or external functions the need may arise for debug messages. Instead
of using printf or fprintf, there is a simple way to put these messages into the log file of test
executor. This feature can be also useful in case when an error or warning situation is encountered
in the Test Port, especially when decoding an incoming message.

There is a class called TTCN_Logger in the Base Library, which takes care of logging. For historical
reasons it has a static instance (object), which is called TTCN_logger. Since all member functions of
TTCN_Logger are static, they can be and should be called without the logger object. The usage of
object TTCN_logger should be avoided in newly written code.

The class TTCN_Logger provides some public member functions. Using them any kind of message can
be put into the log file. There are two ways to log a single message, the unbuffered and the buffered
mode.

6.3.1. Unbuffered Mode

In unbuffered mode the message will be put into log immediately as a separate line together with a
time stamp. Thus, the entire message must be passed to the logger class at one function call. The log
member function of the logger class should be used. Its prototype is:

static void TTCN_Logger::log(int severity, const char *fmt, -:+);

The parameter severity is used for filtering the log messages. The allowed values of the parameter
are listed in table "First level (coarse) log filtering" in the Programmer’s Technical Reference. We
recommend using in Test Ports only TTCN_WARNING, TTCN_ERROR and TTCN_DEBUG. The parameter fmt is a
pointer to a format string, which is interpreted as in printf(3). The dots represent the optional
additional parameters that are referred in format string. There is no need to put a newline
character at the end of format string; otherwise the log file will contain an empty line after your
entry.

Here is an example, which logs an integer value:

115

https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide

int myVar = 5;
TTCN_Logger::1og(TTCN_WARNING, ‘‘myVar = %d'', myVar);

Sometimes the string to be logged is static. In such cases there is no need for printf-style argument
processing, which may introduce extra risks if the string contains the character %. The logger class
offers a function for logging a static (or previously assembled) string:

static void TTCN_Logger::log_str(int severity, const char *str);

The function log_str runs significantly faster than log because it bypasses the interpretation of the
argument string.

There is another special function for unbuffered mode:

static void TTCN_Logger::log_va_list(int severity, const char *fmt,
va_list ap);

The function log_va list resembles to log, but it takes the additional printf arguments in one va_list
structure; va_list is defined in the standard C header file stdarg.h and used in functions with
variable number of arguments.

This function (and especially its buffered mode version, log_event_va_list) is useful if there is a
need for a wrapper function with printf-like syntax, but the message should be passed further to
TTCN_Logger. With these functions one can avoid the handling of temporary buffers, which could be
a significant performance penalty.

6.3.2. Buffered Mode

As opposite to the unbuffered operation, in buffered mode the logger class stores the message
fragments in a temporary buffer. New fragments can be added after the existing ones. When
finished, the fragments can be flushed after each other to the log file as a simple message. This
mode is useful when assembling the message in many functions since the buffer management of
logger class is more efficient than passing the fragments as parameters between the functions.

In buffered mode, the following member functions are available.

begin_event

begin_event creates a new empty event buffer within the logger. You have to pass the severity value,
which will be valid for all fragments (the list of possible values can be found in the table "First level
(coarse) log filtering" in the Technical Reference. If the logger already has an unfinished event
when begin event is called the pending event will be pushed onto an internal stack of the logger.
That event can be continued and completed after finishing the newly created event.

static void TTCN_Logger::begin_event(int severity);

116

https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide

log_event

log_event appends a new fragment at the end of current buffer. The parameter fmt contains a
printf format string like in unbuffered mode. If you try to add a fragment without initializing the
buffer by calling begin event, your fragment will be discarded and a warning message will be
logged.

static void TTCN_Logger::log_event(const char *fmt, :-+);

log_char

log_char appends the character c at the end of current buffer. Its operation is very fast compared to
log_event.

static void TTCN_Logger::log_char(char c);

log_event_str and log_event_va_list

The functions log_str and log_va_list also have the buffered versions called log_event_str and
log_event_va_list, respectively. Those interpret the parameters as described in case of unbuffered
mode.

static void TTCN_Logger::log_event_str(const char *str);
static void TTCN_Logger::log_event_va_list(const char *fmt, va_list ap);

OS_error

The function 0S_error appends the textual description of the error code stored in global variable
errno at the end of current buffer. Thereafter that variable errno will be set to zero. The function
does nothing if the value of errno is already zero. For further information about possible error
codes and their textual descriptions please consult the manual page of errno(3) and strerror(3).

static void TTCN_Logger::0S_error();

log

The C++ classes of predefined and compound data types are equipped with a member function
called log. This function puts the actual value of the variable at the end of current buffer. Unbound
variables and fields are denoted by the symbol <unbound>. The contents of TTCN-3 value objects can
be logged only in buffered mode.

void <any TTCN-3 type>::log() const;

117

end_event

The function end_event flushes the current buffer into the log file as a simple message, then it
destroys the current buffer. If the stack of pending events is not empty the topmost event is popped
from the stack and becomes active. The time stamp of each log entry is generated at the end and not
at the beginning. If there is no active buffer when end_event is called, a warning message will be
logged.

static void TTCN_Logger::end_event();

If an unbuffered message is sent to the logger while the buffer contains a pending event the
unbuffered message will be printed to the log immediately and the buffer remains unchanged.

6.3.3. Logging Format of TTCN-3 Values and Templates

TTCN-3 values and templates can be logged in the following formats:

TITAN legacy logger format: this is the default format which has always been used in TITAN
TTCN-3 format: this format has ttcn-3 syntax, thus it can be copied into TTCN-3 source files.

Differences between the formats:

Value/template Legacy format output TTCN-3 format output
Unbound value "<unbound>"

Uninitialized template "<uninitialized template>"

Enumerated value name (number) name

The "-" symbol is the NotUsedSymbol which can be used inside compound values, but when logging
an unbound value which is not inside a record or record of the TTCN-3 output format of the logger
is actually not a legal TTCN-3 value/template because a value or template cannot be set to be
unbound. Thus this output format can be copy-pasted from a log file into a ttcn-3 file or to a module
parameter value in a configuration file only if it semantically makes sense.

The C++ API extensions to change the logging format:

A new enum type for the format in TTCN_Logger class:+ enum data_log_format_t { LF_LEGACY,
LF_TTCN };

Static functions to get/set the format globally:

data_log_format_t TTCN_Logger::get_log_format();void
TTCN_Logger::set_log_format(data_log_format_t p_data_log_format);

A helper class to use a format until the end of the scope, when used as local variable. This can be
used as follows:

Logger_Format_Scope 1fs(TTCN_Logger::LF_TTCN); // sets TTCN-3 log format
<log some values and templates>
} // end of scope -> the original format is restored

118

It is recommended to use this helper class because using directly the format setting functions of
TTCN_Logger is more error prone, if the globally used logging format is not restored properly then
log files might contain values/templates in a mixed/unexpected format.

6.3.4. Examples

The example below demonstrates the combined usage of buffered and unbuffered modes as well as
the working mechanism of the event stack:

TTCN_Logger::begin_event(TTCN_DEBUG);
TTCN_Logger::log_event_str("first ");
TTCN_Logger::begin_event(TTCN_DEBUG);
TTCN_Logger::log_event_str("second ");
TTCN_Logger::log_str(TTCN_DEBUG, "third message");
TTCN_Logger::log_event_str("message");
TTCN_Logger::end_event();
TTCN_Logger::log_event_str("message");
TTCN_Logger::end_event();

The above code fragment will produce three lines in the log in the following order:
third message second message first message

If the code calls a C++ function that might throw an exception while the logger has an active event
buffer care must be taken that event is properly finished during stack unwinding. Otherwise the
stack of the logger and the call stack of the program will get out of sync. The following example
illustrates the proper usage of buffered mode with exceptions:

TTCN_Logger::begin_event(TTCN_DEBUG);

try {
TTCN_Logger::log_event_str("something");
// a function is called from here
// that might throw an exception (for example TTCN_error())
TTCN_Logger::log_event_str("something else");
TTCN_Logger::end_event();

} catch (...) {
// don’t forget about the pending event
TTCN_Logger::end_event();
throw;

}

6.4. Error Recovery during Test Execution

If a fatal error is encountered in the Test Port, you should call the function TTCN_error must be
called to do the error handling. It has the following prototype in the Base Library:

119

void TTCN_error(const char *fmt, :-+);

The parameter fmt contains the reason of the error in a NUL terminated character string in the
format of a printf format string. If necessary, additional values should be passed to TTCN_error as
specified in the format string. The error handling in the executable test program is implemented
using C++ exceptions so the function TTCN_error never returns; instead, it throws an exception. The
exception value contains an instance of the empty class called TC_Error. This exception is normally
caught at the end of each test case and module control part. After logging the reason
TTCN_Logger::0S error() is called. Finally, the verdict is set to error and the test executor performs
an error recovery, so it continues the execution with the next test case.

It is not recommended to use own error recovery combined with the default method (that is,
catching this exception).

6.5. Using UNIX Signals

The UNIX signals may interrupt the normal execution of programs. This may happen when the
program executes system calls. In this case, when the signal handler is finished the system call will
fail and return immediately with an error code.

In the executable test program there are system calls not only in the Base Library, but in Test Ports
as well. Since the other Test Ports that you are using may have been written by many developers,
one cannot be sure that they are prepared to the effects of signals. So it is recommended to avoid
using signals in Test Ports.

6.6. Mixing C and C++ Modules

Modules written in C language may be used in the Test Ports. In this case the C header files must be
included into the Test Port source code and the object files of the C module must be linked to the
executable. Using a C compiler to compile the C modules may lead to errors when linking the
modules together. This is because the C and C++ compilers use different rules for mapping function
names to symbol names of the object file to avoid name clashes caused by the C++ polymorphism.
There are two possible solutions to solve this problem:

1. Use the same C++ compiler to compile all of your source code (including C modules).

2. If the first one is impossible (when using a third party software that is available in binary
format only), the definitions of the C header file must be put into an extern "C" block like this.

120

#ifdef __cplusplus

extern "C" {

fendif

<... your C definitions ...>
#ifdef __cplusplus

+
flendif

The latter solution does not work with all C++ compilers; it was tested on GNU C++ compiler only.

121

Chapter 7. References

1.

10.
11.
12.
13.
14.
15.

122

Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3.
Part 1: Core Language European Telecommunications Standards Institute ES 201 873-1 Version
4.5.1, April 2013

Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3.
Part 4: TTCN-3 Operational SemanticsEuropean Telecommunications Standards Institute. ES
201 873-4 Version 4.4.1, April 2012

Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3.
Part 7: Using ASN.1 with TTCN-3 European Telecommunications Standards Institute. ES 201 873-
7 Version 4.5.1, April 2013

Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3.
Part 9: Using XML Schema with TTCN-3 European Telecommunications Standards Institute. ES
201 873-9 Version 4.5.1, April 2013

ITU-T, X.690, Information TechnologyASN.1 encoding rules: Specification of Basic Encoding
Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules
(DER)International Telecommunication Union, November 2008

ITU-T, X.693, Information TechnologyASN.1 encoding rules: XML Encoding Rules (XER),
November 2008

ITU-T, X.693 amendment 1, Information TechnologyASN.1 encoding rules: XER encoding
instructions and EXTENDED-XER, November 2008

ISO/IEC 10646-1, Information technology — Universal Multiple-Octet Coded Character Set (UCS) —
Part 1: Architecture and Basic Multilingual Plane, Second edition, 200009-15

RFC3629: UTF-8, a transformation format of ISO 10646
User Guide for TITAN TTCN-3 Test Executor
Installation guide for TITAN TTCN-3 Test Executor
Release Notes for TITAN TTCN-3 Test Executor
Technical Reference for TITAN TTCN-3 Test Executor
David A. Wheeler, Program Library HOWTO

ETSI ES 202 781 V1.4.1. (2015-06 Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; TTCN-3 Language Extensions: Configuration and Deployment
Support)

https://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.05.01_60/es_20187301v040501p.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.05.01_60/es_20187301v040501p.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.05.01_60/es_20187301v040501p.pdf
https://pdfs.semanticscholar.org/33b5/877c85f7fd4f35c7f58c39121358c3652966.pdf
https://pdfs.semanticscholar.org/33b5/877c85f7fd4f35c7f58c39121358c3652966.pdf
https://pdfs.semanticscholar.org/33b5/877c85f7fd4f35c7f58c39121358c3652966.pdf
https://www.etsi.org/deliver/etsi_ES/201800_201899/20187309/04.05.01_60/es_20187309v040501p.pdf
https://www.etsi.org/deliver/etsi_ES/201800_201899/20187309/04.05.01_60/es_20187309v040501p.pdf
https://www.etsi.org/deliver/etsi_ES/201800_201899/20187309/04.05.01_60/es_20187309v040501p.pdf
https://www.itu.int/rec/T-REC-X.690-200811-S
https://www.itu.int/rec/T-REC-X.690-200811-S
https://www.itu.int/rec/T-REC-X.690-200811-S
https://tools.ietf.org/html/rfc3629
https://github.com/eclipse/titan.core/blob/master/usrguide/userguide/
https://github.com/eclipse/titan.core/blob/master/usrguide/installationguide/
https://github.com/eclipse/titan.core/blob/master/usrguide/releasenotes/
https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide
http://tldp.org/HOWTO/Program-Library-HOWTO/index.html
https://www.etsi.org/deliver/etsi_es/202700_202799/202781/01.04.01_60/es_202781v010401p.pdf
https://www.etsi.org/deliver/etsi_es/202700_202799/202781/01.04.01_60/es_202781v010401p.pdf
https://www.etsi.org/deliver/etsi_es/202700_202799/202781/01.04.01_60/es_202781v010401p.pdf

Chapter 8. Abbreviations

API

Application Programming Interface

ASN.1
Abstract Syntax Notation One

ATS
Abstract Test Suite

BER
Basic Encoding Rules (of ASN.1)

BXER
Basic XER

BNF

Backus-Naur Formalism

CER
Canonical Encoding Rules (of ASN.1)

CXER
Canonical XER

DER
Distinguished Encoding Rules (of ASN.1)

ETS

Executable Test Suite

ETSI

European Telecommunications Standards Institute

EXER
Extended XER

GUI

Graphical User Interface

HC

Host Controller

HTML
Hypertext Markup Language

123

HTTP

HyperText Transfer Protocol

IP

Internet Protocol

LSB
Least Significant Byte

MC

Main Controller

MTC

Main (or Master) Test Component

PDU

Protocol Data Unit

pl
Patch Level

PTC

Parallel Test Component

PT
Port Type

SO
Shared Object

SUT
System Under Test

TC
Test Component (either MTC or PTC)

TCC

Test Competence Center

TCP

Transmission Control Protocol

TLV
Tag, Length, Value

TTCN

Tree and Tabular Combined Notation

124

TTCN-2

Tree and Tabular Combined Notation

TTCN-3

Tree and Tabular Combined Notation version 3 (formerly)
Testing and Test Control Notation (new resolution)

URL

Universal Resource Locator

XER
XML Encoding Rules for ASN.1

XML
Extensible Markup Language

125

	API Technical Reference for TITAN TTCN-3 Test Executor
	Table of Contents
	Chapter 1. Introduction
	1.1. Overview
	1.2. Target Groups
	1.3. Typographical Conventions

	Chapter 2. Test Ports
	2.1. Generating the Skeleton
	2.2. Message-based Example
	2.3. Test Port Functions
	2.4. Support of address Type
	2.5. Provider Port Types
	2.6. Tips and Tricks

	Chapter 3. Logger Plug-ins
	3.1. Implementing Logger Plug-ins
	3.2. Building Logger Plug-ins
	3.3. Event Handling
	3.4. Execution

	Chapter 4. Encoding and Decoding
	4.1. The Common API
	4.2. BER
	4.3. RAW
	4.4. TEXT
	4.5. XML Encoding (XER)
	4.6. JSON

	Chapter 5. Mapping TTCN–3 Data Types to C++ Constructs
	5.1. Mapping of Names and Identifiers
	5.2. Namespaces
	5.3. Predefined TTCN–3 Data Types
	5.4. Compound Data Types
	5.5. Predefined Functions
	5.6. Using the Signature Classes

	Chapter 6. Tips & Troubleshooting
	6.1. Migrating Existing C++ Code to the Naming Rules of Version 1.7
	6.2. Using External C++ Functions in TTCN–3 Test Suites
	6.3. Logging in Test Ports or External Functions
	6.4. Error Recovery during Test Execution
	6.5. Using UNIX Signals
	6.6. Mixing C and C++ Modules

	Chapter 7. References
	Chapter 8. Abbreviations

