
User Guide for TITAN TTCN-3 Test
Executor

Jenő Balaskó

Version 1/198 17-CRL 113 200/6, Rev. PE1, 2018-06-18

Table of Contents
1. About the Document . 2

1.1. Purpose . 2

1.2. Target Groups . 2

1.3. Typographical Conventions . 2

2. Overview of TITAN. 3

2.1. Components . 3

2.2. General Workflow . 4

2.3. Building Test Suites . 4

2.4. Executing Test Suites . 4

3. Creating Executable Test Suites from the Command-line . 6

3.1. Using make . 6

3.2. Automatically Generated Makefile . 7

3.3. Manual Building . 18

4. Executing Test Suites . 21

4.1. The Run-time Configuration File . 21

4.2. Running Non-parallel Test Suites . 21

4.3. Configuration. 22

4.4. Running Parallel Test Suites . 23

4.5. Strange Behavior of the Executable . 31

5. Log Processing . 32

5.1. The logmerge Utility . 32

5.2. The logfilter Utility . 33

5.3. The logformat Utility . 34

5.4. The HTML Report Generator . 35

6. References . 39

Abstract

This document describes detailed information on using the TITAN TTCN-3 Toolset, creating,
compiling and executing test suites.

Copyright

Copyright (c) 2000-2018 Ericsson Telecom AB
All rights reserved. This program and the accompanying materials are made available under the
terms of the Eclipse Public License v2.0 that accompanies this distribution, and

https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html

Disclaimer

The contents of this document are subject to revision without notice due to continued progress in
methodology, design and manufacturing. Ericsson should have no liability for any error or damage
of any kind resulting from the use of this document.

Contents

1

https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html

Chapter 1. About the Document

1.1. Purpose
The purpose of this document is to provide detailed information on using the TITAN toolset, that is,
creating test suites from TTCN-3, ASN.1 modules, and test port files, by modifying a Makefile and
using make to build executables.

1.2. Target Groups
This document is intended for users of the TITAN TTCN–3 Test Toolset. In addition to this document,
readers requiring additional information on creating and building test suites or writing test ports
are referred to the TITAN Programmer’s Technical Reference for TITAN TTCN-3 Test Executor.

NOTE Test port writing requires a sound knowledge of C++ programming.

1.3. Typographical Conventions
This document uses the following typographical conventions:

• Bold is used to represent graphical user interface (GUI) components such as buttons, menus,
menu items, dialog box options, fields and keywords, as well as menu commands. Bold is also
used with '+' to represent key combinations. For example, Ctrl+Click

• The character '/' is used to denote a menu and sub-menu sequence. For example, File / Open.

• Monospaced font is used represent system elements such as command and parameter names,
program names, path names, URLs, directory names and code examples.

• Bold monospaced font is used for commands that must be entered at the Command Line Interface
(CLI).

2

https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide

Chapter 2. Overview of TITAN
This Test Executor is an implementation of the TTCN–3 Core Language standard with support of
ASN.1. There are limitations to supported TTCN–3 language constructs in the Test Executor. In
addition, there are some non-standard extensions to the TTCN–3 language implemented by TITAN.
Information on these limitations and extensions and also some clarifications of how the standard
has been implemented in TITAN, refer to the TITAN Programmer’s Technical Reference for TITAN
TTCN-3 Test Executor.

2.1. Components
The main components are the following:

• The Compiler, which translates TTCN–3 and ASN.1 modules [1: Compilation of ASN.1 modules is
necessary only if the test suite imports type definitions from ASN.1 modules.] into C++ program
code.

• The Base Library, written in C++ language, which contains important supplementary functions
for the generated code.

• The Test Port(s), which facilitate the communication between the TTCN–3 Test System and the
System Under Test (SUT).

The generated C++ modules as well as the Test Ports should be compiled to binary object code and
linked together with the Base Library using a traditional C++ compiler.

All parts, except the protocol specific Test Ports, are included in the binary package of the Test
Executor. The Test Executor is a protocol and platform independent tool that can be easily adapted
to any kind of protocols by writing the appropriate Test Port. The generated C++ code is exactly the
same on all platforms, provided that the pre-compiled Base Library that matches the operating
system and C++ compiler is used. The Test Port may use operating system calls or external library
functions for sending or receiving messages towards System Under Test so it may become platform
dependent.

Writing a Test Port is not an easy task for the first time, but the Compiler alleviates it by generating
an empty skeleton for each function to be written. This skeleton is also useful for checking the
correctness of an existing test suite because the Executable Test Program can be linked with this
empty Test Port. In this case the resulting program actually does nothing, but the successful linking
means that no modules or functions are missing from the test suite.

This document describes building and running test suites using the command line.

3

https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide
https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide

Figure 1. Titan structure

2.2. General Workflow
• Generating and editing a Makefile

• Building the executable

• Executing test suites

• Analyzing the execution log files.

2.3. Building Test Suites
Creating a TTCN–3 test suite involves building an executable from the initial modules (TTCN–3,
ASN.1 or both) and test port files. The process basically comprises creating and modifying a
Makefile and using the make command to build the executable.

For detailed information, refer to Creating Executable Test Suites from the Command-line.

2.4. Executing Test Suites
After the test suite has been created a suitable configuration file has been built, the executable is

4

ready to run.

The test executor can operate in single or parallel mode. The single mode—also called non-parallel
mode—is thought for TTCN–3 test suites built around a single test component. It is forbidden to
create parallel test components in single mode: the test suite is not supposed to contain any create
operation otherwise the test execution will fail. The parallel mode, on the other hand, offers full-
featured test execution including distributed and parallel execution. The goal of introducing the
single operating mode was to eliminate redundancies and thereby increase the speed of execution.
It is possible to execute non-parallel test suites in parallel mode, but doing so results in unnecessary
overhead. The C++ code generated by the compiler is suitable for both execution modes, there are
no command line switches to select mode. The only difference is that different Base Libraries must
be linked in single and parallel modes.

For detailed information on executing test suites in single or parallel mode, refer to Executing Test
Suites.

5

Chapter 3. Creating Executable Test Suites
from the Command-line
This section describes the elementary commands that comprise the build process. The primary
audience of this section is the group of users who want to integrate TTCN–3 to a new or an existing
build system.

3.1. Using make
This section gives an example about how to create a new Makefile or modify an existing one
manually to make it capable of handling TTCN–3 test suites. For example, if using many external
libraries and program modules with TTCN–3, it can be beneficial to write an own Makefile.

The generated skeleton is always a good starting point for a custom Makefile.

The following lines are mandatory in the Makefile:

TTCN3_MODULES = MyModule.ttcn

ASN1_MODULES =

GENERATED_SOURCES = MyModule.cc

GENERATED_HEADERS = MyModule.hh

$(GENERATED_SOURCES) $(GENERATED_HEADERS): $(TTCN3_MODULES) $(ASN1_MODULES)

$(TTCN3_DIR)/bin/compiler $(TTCN3_MODULES) $(ASN1_MODULES)

TTCN3_MODULES and ASN1_MODULES contain the names of the TTCN–3 and ASN.1 files, respectively.

The variables GENERATED_SOURCES and GENERATED_HEADERS store the name of the source and header
files that the compiler will generate. This rule calls the compiler with an argument list that contains
the name of all TTCN–3 and ASN.1 files. Beginning from version 1.2.pl0 the compiler does not
duplicate the underscore ("_") characters in output file names, so you may safely use such module
and file names that contain this character.

To compile the generated C++ code using make, the following rule in the Makefile is also needed:

.cc.o:

 g++ -c -I$(TTCN3_DIR)/include -Wall $<

In this case simply issue the command make MyModule.o and the two translation steps will be
performed automatically in a row.

6

3.1.1. Rules for Modular Test Suites

The compiler supports modular TTCN–3 test suites as well. Each module is translated to a separate
C++ header and source file. These source files can be compiled by the C++ compiler one-by-one
separately.

The importing mechanisms work in the following way. For example, two TTCN-3 modules are
present in files A.ttcn and B.ttcn, respectively. Definitions of module A may be used from module
B, so the import from A all; statement must be added to module B. The modules A and B must be
translated by the compiler in one step to A.cc, A.hh, B.cc and B.hh. During the compilation from
TTCN–3 to C++ of module B, the import statement will be translated to #include "A.hh". This
statement will be put to the beginning of B.hh, so you can refer to any definitions of A in module B.
But note that when compiling B.cc, A.hh must exist and it must be up to date.

Thus, additional rules are needed in the Makefile. It is recommended adding them automatically
using the utility makedepend [2: The makedepend utility is available on all supported platforms. It
usually can be found in the X11 development package.]. Run the following command:

makedepend -I$TTCN3_DIR/include A.cc B.cc

This will add the rules to the end of the Makefile and they will be updated upon re-running
makedepend. For further details please consult the manual page of makedepend.

Multiple imports of the same module are handled correctly. For example, if importing all
definitions of module C from both modules A and B in the previous example, all three C++ source
files will compile correctly.

3.2. Automatically Generated Makefile
This section describes the automatically generated Makefile, its structure, the supported commands
and the possibilities for customization.

3.2.1. Makefile Generation

The Makefile for a project can be generated using the generator tool ttcn3_Makefile gen [3: Up to
version 1.6pl4 Makefile generation was part of the compiler (using the -M option).]. A project
usually consists of some TTCN–3 and ASN.1 modules and at least one test port and results in an
executable test suite.

Makefile generation is performed with the following command syntax:

$TTCN3_DIR/bin/ttcn3_Makefilegen [options] <Main module> {Module}* {Test_Port}*
{Other_File}*

• [options] can be one or more of the options that are listed in the TITAN Programmer’s Technical
Reference for TITAN Programmer’s Technical Reference for TITAN TTCN-3 Test Executor.

• <Main module> is the main TTCN–3 Core Language module. The argument can be either a file

7

https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide

name (with or without path) or a module name. The name of the desired executable will be
derived from the name of this module unless the -e option is used.

• {Module}* are additional TTCN–3 or ASN.1 modules, which are directly or indirectly referenced
(imported) from the main module and thus required for building the executable test suite. Each
argument should be a file name (with or without path) or a module name.

• {Test Port}* specifies names of all test ports or other required C++ program modules. The
names can be given with or without suffix.

• {Other File}* specifies the names of other files (configuration files, shell scripts, and so on) that
are used in this project.

For detailed content of the generated Makefile, refer to Makefile Structure.

Makefile Generation Algorithm

Before generating the Makefile the Makefile generator tries to figure out the file name, module type
and module name for each argument automatically. It uses some heuristics which yield correct
results in most cases, but not always. Typically, the algorithm works perfectly with shell wildcards.
For example, if all source files reside in the same directory the following command will generate
the right Makefile:

$TTCN3_DIR/bin/ttcn3_Makefilegen *.ttcn *.asn *.c*

The Makefile generator looks for an existing file for each argument. It tries the given argument
without any suffix, then the following list of suffixes are tried in this order: .ttcn, .ttcn3, .3mp,
.ttcnpp, .ttcnin, .asn, .asn1, .cc, .c, .hh, .h, .cfg, .prj. Once a file is found, the Makefile generator
tries to guess its type as described below. If no suitable file is found for a given argument the
Makefile generator prints an error message and exits.

In the case of TTCN–3 preprocessing (using the -p command line argument) the TTCN–3 files with
special suffix .ttcnpp will be added to the list of TTCN–3 modules which need to be preprocessed
before compilation. Files with the .ttcnin suffix will be added to the list of TTCN–3 include files
(without the -p switch these will be added to the other files section of the Makefile).

Then the Makefile generator tries to classify the file in the following categories based on the
contents and/or the suffix:

• TTCN–3 modules (based on contents)

• ASN.1 modules (based on contents)

• TTCN–3 include files (based on suffix, only with -p)

• C/C++ source files (based on suffix)

• C/C++ header files (based on suffix)

• other files (the rest)

The Makefile generator has two built-in "light" parsers that can decide whether a file is a TTCN–3 or
ASN.1 module, respectively. Those parsers read only the first few lines of the input and do not check
the syntactical correctness of the modules. They are capable of retrieving the module name as well.

8

If the Makefile generator ensured that the file is neither a TTCN–3 nor an ASN.1 module then it
checks whether the file has .cc, .c, .hh or .h suffix. The content of the file is not examined anymore.

The remaining files (configuration files and so on) will be added to the other files’ section of the
Makefile. These files do not take part in the build process, but they are added to the archive files
created using the Makefile.

After the classification, the Makefile generator filters out the redundant generated C++ files. If a
given C/C++ file was found to be generated from one of the given TTCN–3 or ASN.1 modules, a
warning is printed and the file will be dropped from the list of C/C++ files. That is, the file will not
be added to the list of user source files since it is already a member of the generated sources. This
feature is useful if one wants to regenerate the Makefile using the shell wildcard *.cc while the
generated files from the previous compilation are still present.

In the next step the algorithm tries to complete the list of C/C++ files by checking the pairs of header
and source files. If a C/C++ source file was identified and a header file with the same name exists
(only the suffix differs) too, the Makefile generator will add the header file automatically. This step
is performed in the reverse direction too: the Makefile generator can find an existing source file
based on the header file given to it. Of course a C++ source file can exist without a header file or
vice versa.

The Makefile generator continuously checks the uniqueness of files and module names. If the same
file was given more than once in the command line the repeated argument is simply ignored and a
warning message is displayed. It is not allowed to use two or more different TTCN–3 or ASN.1 files
containing modules with the same name because the generated C++ files would clash. For similar
reasons the user C/C++ files cannot have identical names even if they are located in different
directories.

Finally the Makefile is generated based on the resulting data. If the Makefile generator finds an
existing Makefile in its working directory, it will not be overwritten unless the option -f is used.

It is always assumed that the working directory of the generated Makefile will be the same as the
current working directory of the Makefile generator even if the Makefile is placed into another
directory using the -o switch.

When a path name passed to the Makefile generator contains a directory part the Makefile
generator analyzes and canonizes the directory name by resolving relative directory references
(such as . or ..) and symbolic links pointing to directories [4: Symbolic links pointing to files will not
be resolved.]. If the path name does not contain any directory part or it turns out that the file is
located in the current working directory the generated Makefile will refer to the file using a simple
file name without any directory. Files located in other directories will be referenced in a uniform
way using either absolute or relative path names depending on whether the command line switch
-a was specified or not. Thus it is not relevant whether the file was given as relative or absolute
path name in the command line.

The Makefile is generated based on the following assumptions:

• Each object and if applicable, shared object file is located in the same directory as the C/C++
source file it is derived from. This allows the use of efficient wildcard rules.

9

• The TTCN–3 /ASN.1 compiler will place all generated C++ files in the current working directory.

Use of GNU make

If option -g is used, the resulting Makefile will be less redundant as it will use some suffix
substitution rules. These rules are supported only by GNU make, other versions of the make utility
will find such Makefiles erroneous.

The more of the file naming conventions below are fulfilled, the more suffix substitution rules can
be applied in the generated Makefile. If the rules are only partially fulfilled, the Makefile will be also
correct, but it will be more difficult to maintain. It is recommended to follow these rules especially
when starting a new project.

• Unless option -c is used, all TTCN–3, ASN.1 and C++ modules should reside in the current
working directory. If these files are stored in a different scheme (for example in a hierarchical
directory tree) symbolic links can be used to collect all input files into one build directory.

• The suffix should be .ttcn for TTCN–3 modules, .asn for ASN.1 modules and .cc for C/C++ files.

• The file name (without suffix) should be identical to the module name. If the name of the ASN.1
module contains a hyphen, the corresponding file name should contain an underscore
character instead. For example, the TTCN–3 module My_Module should be stored in
My_Module.ttcn and the file containing ASN.1 module My-ASN1-Module should be named as
My_ASN1_Module.asn.

• Each C/C++ module should have a header file with identical name, but with the suffix .hh.

Use of Central Storage

Option -c can be used to create a Makefile that can use pre-compiled files from one or more central
directories to save disk space and compilation time. Such Makefiles have different layout and more
complex build rules.

The central directories should contain those common modules that do not change frequently (type
definitions, test ports, external functions, test configurations, and so on). The central directories
should be updated and maintained by the project administrators while the individual testers are
developing their test cases in their working directory based on the common files. Moreover, it is
allowed to create a hierarchy of central directories, that is, to use a directory that takes files from
other central directories as a central directory of another project. In such cases the files of all
central directories should be passed to the compiler for Makefile generation.

In addition to the above mentioned ones the following assumptions are used in these Makefiles:

• The compiler will generate C++ files only for those TTCN–3 and ASN.1 modules that are located
in the current working directory. The generated C++ files of the remaining TTCN–3 and ASN.1
modules should be located in the same directory as the respective module. If a module is located
in a directory other than the current working directory and it does not have pre-compiled files a
symbolic link must be created in the current working directory, which should point to the file
containing the module.

• Object and if applicable, shared object files will be created only from those C/C++ source files
that are located in the current working directory. Object and if applicable, shared object files of

10

the remaining source files should be located in the same directory as the respective source file.

• The TTCN–3 and ASN.1 modules of central directories should not import definitions from the
modules of the current working directory. Importing in the reverse direction is allowed, of
course.

• C/C files of central directories should not include header files of the current working directory.
Local C/C files can include headers from other directories.

• The generated C++ files and object and if applicable, shared object files of all central directories
must be up-to-date before invoking make. Otherwise the build process will fail immediately with
an error message [5: If an object and if applicable, a shared object file of a central directory is
not up-to-date, but make is invoked it tries to build that file instead of printing an error
message. The build will usually fail due to missing access rights. This is a known limitation of
this Makefile system that cannot be easily solved in a generic way.]. In case of multi-level
hierarchy of central directories the re-compilation should be performed in bottom-up order in
the central directories.

• All directories must use the same environment, that is, same hardware platform, operating
system, version of TTCN–3 Executor and C++ compiler, command line switches, and so on, for
building. Otherwise compilation or run-time errors may occur.

Note that when a pre-compiled TTCN–3 or ASN.1 module is taken from a central directory the
following three files will be used from the central directory during the build process. Thus it is
essential to keep all these files always consistent and up-to-date.

• The module itself when performing the semantic analysis on the local modules importing it.

• The generated C++ header file when compiling the generated C++ files of the importing modules.

• The object and if applicable, the shared object file when linking the executable.

TTCN–3 Preprocessing

Preprocessing of TTCN–3 source code is supported with the use of the option -p. The TTCN–3 source
files to be preprocessed must have the suffix .ttcnpp; these files will be preprocessed with the C
preprocessor before being compiled. The compiler will detect all TTCN–3 files, including the ones
containing directives for the preprocessor, but only the ones with the suffix .ttcnpp will be
preprocessed. If any other suffix is used the user has to edit the Makefile manually to add the file to
the list of files which will be preprocessed. The output of the preprocessing will be an intermediate
file with the extension .ttcn. Do not use the extension .ttcn for any TTCN–3 file that will be
preprocessed; also avoid using the same name for different .ttcn and .ttcnpp files. Files included in
.ttcnpp files with C preprocessor directive #include should have suffix .ttcnin.

3.2.2. Makefile Structure

This section presents the internal structure of the generated Makefile.

For example, the following command will generate a Makefile for TTCN–3 test suite "Hello, world!",
which can be found in binary distribution:

$TTCN3_DIR/bin/ttcn3_`Makefile`gen -gs MyExample.ttcn PCOType.cc MyExample.cfg

11

The Makefile generator creates the Makefile with the following content:

This Makefile was generated by the Makefile Generator
of the TTCN-3 Test Executor version 1.6.pl5
for Adam Delic (edmdeli@ehubuux110)
on Tue Oct 10 13:53:04 2006

Copyright Ericsson Telecom AB 2000-2014

The following make commands are available:
- make, make all Builds the executable test suite.
- make archive Archives all source files.
- make check Checks the semantics of TTCN-3 and ASN.1
modules.
- make port Generates port skeletons.
- make clean Removes all generated files.
- make compile Translates TTCN-3 and ASN.1 modules to
C++.
- make dep Creates/updates dependency list.
- make objects Builds the object files without linking
the executable.
- make tags Creates/updates tags file using ctags.
WARNING! This Makefile can be used with GNU make only.
Other versions of make may report syntax errors in it.
#
Do NOT touch this line...
#
.PHONY: all archive check clean dep objects
#
Set these variables...
#
The path of your TTCN-3 Test Executor installation:
Uncomment this line to override the environment variable.
TTCN3_DIR =
Your platform: (SOLARIS, SOLARIS8, LINUX, FREEBSD or WIN32)
PLATFORM = SOLARIS8
Your C++ compiler:
CXX = g++
Flags for the C++ preprocessor (and makedepend as well):
CPPFLAGS = -D$(PLATFORM) -I$(TTCN3_DIR)/include
Flags for the C++ compiler:
CXXFLAGS = -Wall
Flags for the linker:
LDFLAGS =
Flags for the TTCN-3 and ASN.1 compiler:
COMPILER_FLAGS = -L
Execution mode: (either ttcn3 or ttcn3-parallel)
TTCN3_LIB = ttcn3
The path of your OpenSSL installation:
If you do not have your own one, leave it unchanged.

12

OPENSSL_DIR = $(TTCN3_DIR)
Directory to store the archived source files:
ARCHIVE_DIR = backup
#
You may change these variables. Add your files if necessary...
#
TTCN-3 modules of this project:
TTCN3_MODULES = MyExample.ttcn
ASN.1 modules of this project:
ASN1_MODULES =
C++ source & header files generated from the TTCN-3 & ASN.1
modules of this project:
GENERATED_SOURCES = $(TTCN3_MODULES:.ttcn=.cc) $(ASN1_MODULES:.asn=.cc)
GENERATED_HEADERS = $(GENERATED_SOURCES:.cc=.hh)
C/C++ Source & header files of Test Ports, external functions
and other modules:
USER_SOURCES = PCOType.cc
USER_HEADERS = $(USER_SOURCES:.cc=.hh)
Object files of this project that are needed for the executable
test suite:
OBJECTS = $(GENERATED_SOURCES:.cc=.o) $(USER_SOURCES:.cc=.o)
Other files of the project (Makefile, configuration files, and so on)
that will be added to the archived source files:
OTHER_FILES = Makefile MyExample.cfg
The name of the executable test suite:
TARGET = MyExample
#
Do not modify these unless you know what you are doing...
Platform specific additional libraries:
#
SOLARIS_LIBS = -lsocket -lnsl
SOLARIS8_LIBS = -lsocket -lnsl
LINUX_LIBS =
FREEBSD_LIBS =
WIN32_LIBS =
#
Rules for building the executable...
#
all: $(TARGET) ;
objects: $(OBJECTS) ;
$(TARGET): $(OBJECTS)
$(CXX) $(LDFLAGS) -o $@ $ˆ \
-L$(TTCN3_DIR)/lib -l$(TTCN3_LIB) \
-L$(OPENSSL_DIR)/lib -lcrypto $($(PLATFORM)_LIBS)
.cc.o .c.o:
$(CXX) -c $(CPPFLAGS) $(CXXFLAGS) -o $@ $<
$(GENERATED_SOURCES) $(GENERATED_HEADERS): compile
@if [! -f $@]; then $(RM) compile; $(MAKE) compile; fi
check: $(TTCN3_MODULES) $(ASN1_MODULES)
$(TTCN3_DIR)/bin/compiler -s $(COMPILER_FLAGS) $ˆ
port: $(TTCN3_MODULES) $(ASN1_MODULES)

13

$(TTCN3_DIR)/bin/compiler -t $(COMPILER_FLAGS) $ˆ
compile: $(TTCN3_MODULES) $(ASN1_MODULES)
$(TTCN3_DIR)/bin/compiler $(COMPILER_FLAGS) $ˆ - $?
touch $@
tags: $(TTCN3_MODULES) $(ASN1_MODULES) \
$(USER_HEADERS) $(USER_SOURCES)
$(TTCN3_DIR)/bin/ctags_ttcn3 --line-directives=yes $ˆ
clean:
-$(RM) $(TARGET) $(OBJECTS) $(GENERATED_HEADERS) \
$(GENERATED_SOURCES) compile \
tags *.log
dep: $(GENERATED_SOURCES) $(USER_SOURCES)
makedepend $(CPPFLAGS) $ˆ
archive:
mkdir -p $(ARCHIVE_DIR)
tar -cvhf - $(TTCN3_MODULES) $(ASN1_MODULES) \
$(USER_HEADERS) $(USER_SOURCES) $(OTHER_FILES) \
| gzip >$(ARCHIVE_DIR)/‘basename $(TARGET) .exe‘-\
‘date ’+%y%m%d-%H%M’‘.tgz
#
Add your rules here if necessary...
#

3.2.3. Editing the Generated Makefile

Assume that the TTCN–3 and ASN.1 modules together with the test ports have been written and a
Makefile skeleton has been generated. The Makefile generator recognizes the operating
environment and sets up some compiler/linker flags accordingly. The path to the TTCN–3 test
executor installation must be set in TTCN3_DIR before starting to use make. If OpenSSL is installed and
proprietary shared libraries will be used, the variable OPENSSL_DIR may be changed to point to the
directory of the proprietary OpenSSL installation. In the above "Hello, world!" example the user
also needs to change the execution mode (variable TTCN3_LIB) to non-parallel.

Always perform the following checklist before the first build of the executable test suite from the
generated Makefile:

• Verify that the variable TTCN3_DIR is set to point to the root directory of the TTCN–3 test executor
installation. If this variable is automatically set in the login script, this line can be removed from
the Makefile.

• Ensure that the variable PLATFORM is set to match the test execution platform [6: The test suite
must be translated on the same platform on which it will be executed.].

• Verify that the variable TTCN3_LIB contains the name of the appropriate Base Library for the
chosen operating mode, that is,` ttcn3` for single and ttcn3-parallel for parallel execution
mode!

• The variable CXX should point to the name or full path of the C++ compiler.

• The variables CPPFLAGS, CXXFLAGS and LDFLAGS should contain the extra command line switches to
be passed to the C\+ preprocessor, compiler and linker, respectivelyfootnote:[For the detailed
list and explanation of possible command line switches, refer to the manual page of the used C+

14

compiler]. For example, profiling or optimization is set here.

• Using the variable COMPILER_FLAGS you can pass additional command line options to the TTCN–3
/ASN.1 compiler.

• Ensure that the version of the TTCN–3 /ASN.1 compiler used is identical to the version of Base
Library it is linked with. In case of version mismatch the generated C++ source files will not
compile and an #error notification will be received. This means that changing to another
version of TTCN–3 Test Executor, a full re-build of all modules using make clean must be
performed.

• Make sure to always build test ports from their source distribution. A version mismatch
between the object and if applicable, shared object files may cause improper linkage or
unpredictable behavior. It is thus contra-indicated to link precompiled test port objects and if
applicable, shared objects into your executable (for example taken from a central repository). If
the Makefile was generated with the option -p check also:

• The variable CPP should point to the name or full path of the used C preprocessor.

• Command line options for the C preprocessor can be given using the CPPFLAGS TTCN3 variable.

WARNING
do not confuse it with the CPPFLAGS variable, which is used on the generated
C++ code.

• Specify additional files which are included (#include directive) into ttcnpp files with the variable
TTCN3_INCLUDES. These files will be checked (modification time) at every build to determine if any
dependent files need to be recompiled. Any file with extension .ttcnin will be added to
TTCN3_INCLUDES by the Makefile generator.

3.2.4. Available Commands

The generated Makefile supports the following:

• make all, make

Creates or updates the executable test suite. Performs only those steps of compilation that are
really necessary, that is, the output of which is outdated.

• make archive

Creates a backup copy of all source files and other files in a tar-gzip archive stored in directory
set by the variable ARCHIVE_DIR [7: The value archive should not be assigned to the variable
ARCHIVE_DIR otherwise the make archive command will work incorrectly. Choose other
directory name, like backup.]. The command can be applied periodically: to avoid overwriting
older versions, a time stamp containing the current date and time is included in the name of the
archive file. The output of this command can be attached to trouble reports submitted for the
TTCN–3 compiler or other parts of the TTCN–3 toolset.

• make check

Checks the syntax and semantics of the TTCN–3 and ASN.1 modules. This command does not
create or update any generated files.

15

• make clean

Removes all generated files (generated C++ files, object and TITAN generated shared object files
and the executable) and log files. This command is useful when changing to another version of
the test executor or simply for saving disk space.

• make compile

Translates the TTCN–3 and ASN.1 modules to C+. It is useful when the user wants to carry out
the compilation of the generated C+ code later. As a result, an empty file named compile is
created in the working directory. The attributes of this file contain the date and time of the last
compilation, which helps the compiler in selective code generation. It is not recommended to
change this file manually. The compiler will be invoked only if one or more of the TTCN–3 or
ASN.1 modules were modified after that timestamp, otherwise the generated C++ files are up to
date.

• make diag

Lists general information about the environment and the build. This information can be useful
to fix build problem by the developers or the support team. The output contains:
- the compiler related information (titan version, build date, C\+ version, license information,
see command `*"compiler –v"*`), + - main controller related information (titan version, C+
compiler version, build date, license information, see command "mctr_cli –v"),
- C++ compiler information (see command "g++ -v"),
- library creator info (see command "ar –v"),
- values of environment variables $TTCN3_DIR, `$ OPENSSL_DIR, $XML_DIR, $PLATFORM.

• make dep

Obsolete. Creates or updates the dependency list between the C++ header and source files by
invoking the utility makedepend. This command must be invoked before the first compilation or
when the list of modules or test ports has changed. It is also necessary to run make dep if an
import statement has been added or removed in a module. The command implies make compile
and after that it modifies the Makefile itself. Used only with older gcc versions.

• make objects

Creates or updates the object files created from the C++ source files. This command has the
same effect as make all except that the executable test suite is not linked in the final step.

• make port

Creates Test Port skeleton header and source files for all port types in the input TTCN-3
modules. Existing Test Port files will not be overwritten.

• make shared_objects Creates the shared object files from object files, compiled with -fPIC. This
target is present only when dynamic linking is enabled. For detailed information, refer to the
TITAN Programmer’s Reference.

• make run

Creates or updates the executable test suite and then runs it. This is only recommended for
simple test suites in single mode. Running requires a configuration file; its name by default is

16

https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide

config.cfg. This file has to be written by the user.

3.2.5. Building the Executable

Issue the command make dep when finished creating and editing the Makefile. This command will
translate all TTCN–3 and ASN.1 modules to C++ and will find the dependencies between them
automatically. The Makefile will be modified; many lines will be appended to it.

Finally, issue the make command, which will build the executable test suite. If any of the source files
(TTCN–3 or ASN.1 modules or test port source files) has been changed, issue the make command to
get an up-to-date binary.

If TTCN–3 or ASN.1 modules or test ports are need to be added or removed to or from the project,
regenerate the Makefile skeleton or change the variables TTCN3_MODULES, ASN1_MODULES,
GENERATED_HEADERS, GENERATED_SOURCES, OBJECTS or SHARED_OBJECTS accordingly. If a new test port or
other C/C++ module should be added, add it to the lines USER_HEADERS, USER_SOURCES and OBJECTS or
SHARED_OBJECTS.

WARNING

It is recommended to use the makedepend utility together with make. This
ensures that all dependencies are handled correctly. Therefore, make dep

command must be issued before the first use of make and whenever the module
hierarchy (imports) changes! If no make dep command is issued then in some
cases two make commands shall be issued for the successful compilation.

Use the command make clean to remove all generated files.

3.2.6. Modifying the Generated Makefile

NOTE
this is a deprecated feature; whenever possible, a .tpd (Titan project descriptor) file
should be used instead.

When there is a Makefile in a project, it should be updated each time a further file is added or
removed from the project.

However, some manual modifications were made to the originally created Makefile skeleton,
regeneration of the Makefile will cause the manually performed changes to be lost. To avoid this
situation, write a shell script containing the Makefile updates, and configure this shell script to be
automatically run after each instance of Makefile regeneration.

This way, there is no need to perform the same manual updates upon every Makefile generation
and file addition process.

The shell script example below can be used to automate the modification of the Makefile with the
updates every time it is regenerated.

17

Example Shell Script for Makefile Modification

#!/bin/sh
editcmd=’s/CPPFLAGS = -D$(PLATFORM) -I$(TTCN3_DIR)\
/include/CPPFLAGS = -D$(PLATFORM)
-I$(TTCN3_DIR)\/include -I$(ERLANG_DIR)\
/include -I$(OPENSSL_DIR)\/include/g
s/TTCN3_LIB = ttcn3-parallel/TTCN3_LIB = ttcn3/g
s/OPENSSL_DIR = $(TTCN3_DIR)/OPENSSL_DIR = \/mnt\/TTCN\/Tools\
/openssl-0.9.7d/g
s/ˆ makedepend/ \/mnt\/TTCN\/Tools\/makedepend-R6.6\
/bin\/makedepend/g
/ARCHIVE_DIR = ./ {
a\
a\
Directory for ERLANG:
a\
ERLANG_DIR = /OTP/LXA_11930_R9C_6/lib/erl_interface-3.4.2
}
s/-lcrypto $($(PLATFORM)_LIBS)/-lcrypto \\/g
/-lcrypto \\/ {
a\
-L$(ERLANG_DIR)/lib -lerl_interface -lei $($(PLATFORM)_LIBS)
}
’
if [‘uname‘ = SunOS]
then
case ‘uname -r‘ in
5.6) editcmd="$editcmd
s/CXX = g++/CXX = \/usr\/local\/gnu\/bin\/g++/g"
;;
5.7) editcmd="$editcmd
s/CXX = g++/CXX = \/mnt\/TTCN\/Tools\/gcc-3.0.4-sol7\/bin\/g++/g"
;;
5.8) editcmd="$editcmd
s/CXX = g++/CXX = \/usr\/local\/gnu\/gnu28\/gcc3.0.4_shared_sol8\
/bin\/g++/g"
;;
*) echo ’Unsupported Solaris version.’; exit 1
esac
else echo ’This script runs on Solaris only.’; exit 1
fi
sed -e "$editcmd" <$1 >$2

3.3. Manual Building
This section contains information useful for the experienced users who are using a build
framework other than make for TTCN–3 -based testing.

18

3.3.1. Compiling the Generated C++ Code

If the TTCN–3 test suite was successfully translated to C+, it’s a good idea to check if the generated
code contains any errors. The simplest way is to compile it using a C+ compiler. Since the generated
code refers to the base library, run the following command:

g++ -c -I$TTCN3_DIR/include -Wall MyModule.cc

In the following, using of an GNU C++ compiler is assumed. If the TTCN–3 /ASN.1 compiler did not
report any errors in the input test suite, the generated C++ code must be correct (that is, compile
without errors). After certain TTCN–3 warnings (such as unreachable statements) the generated
code may trigger similar warnings in the C++ compiler.

The generated code has been tested on various versions of GNU C++ and Sun Workshop C++
compilers. However, the code should work with any standard-compliant C++ compiler since it does
not depend on hardware or compiler specific features. If the generated code fails to compile on a
supported platform and C++ compiler the situation is considered as a compiler bug and a Trouble
Report can be issued [8: The Trouble Report must include the compiler error message(s), all input
files and command line switches of the TTCN–3 /ASN.1 compiler, the platform and the exact version
of TITAN TTCN–3 Test Executor and the C++ compiler. It is highly appreciated if the user could
minimize the input by dropping out irrelevant modules and definitions.].

The switch -c tells the GNU C++ compiler to compile only and not to build an executable because,
for example, the main function is missing from the generated code. The switch -I adds the
$TTCN3_DIR/include directory to the compiler’s standard include path. The optional argument, -Wall,
forces the compiler to report all warnings found in its input. This argument can be used in GCC
only.

The result after a successful compilation is an object file named MyModule.o and if applicable, a
shared object file named MyModule.so. If compilation fails, a lot of error messages may be generated.
For example, a misspelled type name in an included test port can totally confuse the C++ compiler.
That’s why it is recommended to analyze the reason of the first error message only.

3.3.2. Linking the Executable

In order to get the executable test suite, the following files must be linked:

• The object and if applicable, shared object files generated from all used TTCN–3 modules.

• The object and if applicable, shared object files generated from all used ASN.1 modules.

• The object and if applicable, shared object files generated from all used test ports and any
libraries that are used in the test ports.

• The parallel ttcn3-parallel or the non-parallel ttcn3 version of the TTCN3 Base Library
depending on the chosen operating mode. They reside in $TTCN3_DIR/lib.

• The shared library of OpenSSL, that is $TTCN3_DIR/lib/libcrypto.so.

Assuming only one TTCN–3 module (called MyModule) and one test port (called MyTestPort), the
linking command will be the following for parallel operation mode:

19

g++ -o MyModule MyModule.o MyTestPort.o -L$TTCN3_DIR/lib-lttcn3-parallel -lcrypto

The linking command for single operation mode:

g++ -o MyModule MyModule.o MyTestPort.o -L$TTCN3_DIR/lib -lttcn3 -lcrypto

The name of the executable file will be MyModule in both cases.

3.3.3. Dynamic Linking

In order to save disk and memory space, the TTCN–3 Base Library may be dynamically linked to the
executable. In this case use the following command in single mode:

g++ -o MyModule MyModule.o MyTestPort.o -L$TTCN3_DIR/lib -lttcn3-dynamic -lcrypto

In parallel mode use -lttcn3-parallel-dynamic instead of -lttcn3-dynamic.

When running the executable, add the directory $TTCN3_DIR/lib to the system library path (which is
specified in /etc/ld.so.conf on most of UNIX systems) or simply add it to the environment variable
LD_LIBRARY_PATH.

From version 1.8pl2, ttcn3_Makefilegen supports the generation of (per module) shared objects. If
this option is enabled with the -l command line switch, the project’s working directory (together
with the central storage directories, if applicable) should be added to LD_LIBRARY_PATH in addition to
$TTCN3_DIR/lib. Otherwise, the resulting executable may not run. If moving the executable from one
machine to another, all the generated shared object (.so) files should be copied as well. For more
information about the –l command line switch, please consult the TITAN Programmer’s Technical
Reference for TITAN TTCN-3 Test Executor.

20

https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide
https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide

Chapter 4. Executing Test Suites
This chapter describes the modalities of test suite execution.

4.1. The Run-time Configuration File
The behavior of the executable test program is described in the run-time configuration file.

Each section of the configuration file begins with a section name within square brackets. Different
sections use different syntax, thus the section name determines the possible syntax of the members.

Refer to the TITAN Programmer’s Technical Reference for TITAN TTCN-3 Test Executor for details of
the runtime configuration file including descriptions of each of its sections and examples.

4.2. Running Non-parallel Test Suites
If an application is built for single operation mode the resulting executable contains the ETS itself.

It takes a single optional parameter (the name and path of its configuration file) and two optional
command line switches related to debugging:

• -h

Automatically halts execution at the beginning, when the first test case’s or control part’s
execution begins, and displays the debugger’s user interface (debugging must be activated).

• -b file Automatically executes the specified batch file (containing debugger commands) at the
beginning of the program’s execution.

The ETS also accepts the command line options -l and -v with the following semantics:

• -l

Lists the names of all control parts and individually executable test cases of the ETS to standard
output. The list is suitable as the [EXECUTE] section of a configuration file. Refer to TITAN
Programmer’s Technical Reference for TITAN TTCN-3 Test Executor for more details.

• -v

Prints the tool version, license information and the name, compilation time, checksum and (if
available) the version info of the participating modules.

If the ETS contains exactly one module with a control part, then a configuration file need not be
specified. In this case, running the ETS with no parameters will execute the control part. If more
than one control part is present (or none at all) then the configuration file is mandatory.

The ETS blocks until all test cases are executed as specified in the section [EXECUTE] of its
configuration file. Console log messages are displayed on the terminal, while the execution log is
written into LogFile.

21

https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide
https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide
https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide

ETSes built for single operation mode are unable to act as HCs thus these cannot be executed in the
parallel environment. The test suite should be re-linked with the parallel version of Base Library
instead if this was the intention (see Editing the Generated Makefile for information on editing the
Makefile).

4.3. Configuration
The TITAN runtime environment uses configuration files to control execution of the test suites. An
ordinary text editor can be used to create and modify configuration files. The configuration file
(with the default extension .cfg) is a simple text file consisting of the following sections:

• Module parameters

This section contains the value of each parameter that is defined in the TTCN-3 or ASN.1
modules of the project.

• Logging

This section indicates logging conditions: the name of the log file, category and component
based logging filters or the like.

• Testport parameters

This section specifies the parameters that are passed to the test ports during the execution of the
test suite.

• Define

This section contains definitions of macros that can be used in other configuration file sections
(except Include) for entry of recurring values.

• Include

Paths to additional configuration files may be listed in this section. The host controller takes into
account the values listed in those configuration files, too.

• External commands

This section contains shell scripts that are called whenever a control part or a test case is started
or terminated.

• Execute

This section indicates which parts of the test suite will be executed. This section is mandatory in
single execution mode. Only test cases without parameters, or test cases where every parameter
has a default value, can be started from this section.
Testcases with parameters can be started from the control part.

The following sections are used only in parallel mode:

• Groups

22

This section specifies a groups of hosts used in the Components section.

• Components

This section contains the rules that restrict the location of PTCs.

• Main controller

This section controls the behavior of the main controller when executing a test suite.

TITAN processes the configuration file sequentially. If a section occurs several times in the
configuration file, all sections will be processed without an error message.

Refer to the corresponding chapter of the TITAN Programmer’s Technical Reference for TITAN
TTCN-3 Test Executor for details of the runtime configuration file including descriptions of each of
its sections and examples.

4.4. Running Parallel Test Suites
The test execution in parallel mode comprises the following steps:

1. Start Main Controller. (See The TTCN-3 Main Controller)

2. Start Host Controllers, that is, the executable test suite, on all participating computers. (See The
TTCN–3 Host Controller)

3. Create MTC.

4. Start the control part or a selection of test cases of a TTCN–3 module on MTC.

5. View the verdicts of executed test cases on MC.

6. Terminate MTC after the end of execution.

7. Terminate HCs and MC.

8. Analyze the logs of each test component.

4.4.1. Parallel TTCN–3 Execution Architecture

The components of test environment form two main groups: the Test System and the SUT. As
TTCN–3 is used for black box testing, that is, the test suite does not assume anything about the
internal structure of the SUT, this section describes the internal structure of Test System only. The
Test System consists of one or more test components, whose behaviors are entirely described in a
TTCN–3 test suite. The test system has other components for special purposes, listed below.

Each component of the test system runs independently, they are different processes of the
operating system. Every component executes one single thread of control. The components can be
located on different machines and, of course, there can be more than one component running on
the same computer. In the latter case scheduling among them is provided by the scheduler of the
operating system. Regardless of their roles, all test components execute binary code generated from
the same C++ source code. Their code consists of three parts: the code generated from the test suite
by the TTCN–3 compiler, the Test Ports and the TTCN–3 Base Library.

23

https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide
https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide

The components communicate with each other using TCP connections with proprietary protocols
and platform independently encoded abstract messages. The components form three groups
according to their functionality.

Figure 2. Components of parallel test execution

• Main Controller (MC)

The Main Controller is a stand-alone application delivered with the distribution
($TTCN3_DIR/bin/mctr). It is started manually by the user and runs in one instance during the
entire test execution. MC provides the user with CLI to the test executor system. It arranges the
creation and termination of Main Test Component on user request and the execution of module
control part. It shows the user the verdicts of executed test cases. MC has many hidden tasks
that can only be performed in a centralized way, for example component reference assignment,
verdict collection, and so on. MC maintains a control connection with all other components.

• Host Controller (HC)

Host Controllers are instances (processes) of the executable test program, that is, the translated
test suite linked with Test Ports and Base Library. Exactly one HC should be run on each
computer that participates in (distributed) TTCN–3 test execution. HCs are started by the user
manually on all participating computers. They maintain a connection to MC and if MC wants a
new test component to be created on that host, HC duplicates itself and its child process will act
as the new test component.

• Test Component (TC)

24

Can be either the Main Test Component or a Parallel Test Component.

• Main Test Component (MTC)

The Main Test Component is an instance of the executable test program that is firstly created on
a user request. There is exactly one MTC in the Test System. It can execute the control part of a
TTCN–3 module if requested by the user. If a test case is executed MTC changes its component
type to the type specified in the runs on clause of the testcase. Note that MTC is the only one test
component that can change its component type. MTC maintains a control connection to MC.

• Parallel Test Component (PTC)

Parallel Test Components are also instances of the same executable test program. TCs execute
TTCN–3 functions written by the user in the same way as in non-parallel mode. They are
automatically created by HC when requested from the MTC or other PTCs. PTCs also maintain a
connection to MC.

4.4.2. The TTCN–3 Main Controller

The binary executable of Main Controller is $TTCN3_DIR/bin/mctr_cli. It takes the optional
configuration file (The Run-time Configuration File) as its single argument. The variables in the
section [MAIN CONTROLLER] of the configuration file determine important MC properties, for detailed
information refer to the TITAN Programmer’s Technical Reference for TITAN TTCN-3 Test Executor.

The Main Controller has two operation modes: interactive and batch mode. In interactive mode the
user can control and monitor the test execution from a CLI. Batch mode is useful for automated and
unattended execution of parallel and distributed tests. The actual operation mode depends on the
configuration file and is determined at program startup. If the option NumHCs is set in the [MAIN
CONTROLLER] section, the MC starts in batch mode, otherwise interactive mode is selected.

Interactive Mode

After starting MC in interactive mode a welcome screen and command prompt appear.

**
* TTCN-3 Test Executor - Main Controller 2 *
* Version: 1.3.pl0 *
**
MC2>

The MC command line interface uses the editline library which is compatible with the GNU
readline editing functionality. In addition to its powerful line editing functions it provides
command completion, line history and help function.

Command completion is activated using the tabulator key. It presents the list of applicable
commands according to the typed prefix. The typing of the command is concluded when a single
alternative remains (for example pressing key c followed by the tabulator puts the cmtc command
onto the command line).

25

https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide

The last couple of entered command lines are stored in the history buffer. The implementation is
based on GNU history library. The buffer elements can be browsed with the cursor keys or an
incremental search backward can be performed following a <CTRL>-r keystroke and a lot more.
History buffer contents are automatically saved and loaded when the mctr cli is started or stopped
into a file named .ttcn3 history located in the home directory. Note that console log messages as
well as notifications of HC connection establishments are printed on the MC’s screen and may
disrupt its contents.

The following commands are accepted by the MC:

• help [command] displays the list of available commands or a short use information about the
command submitted as parameter.

• cmtc [hostname] creates the MTC on the given host. If the optional hostname is omitted, the MTC
will be created on the host whose HC has connected first. Once an MTC is created, this command
cannot be used before terminating the MTC via emtc.

• smtc [module name[.control|.testcase name|.*]] is used to start test execution. smtc has a single
optional parameter defining the name of the module or test case to start. The MTC must exist
and it must be in idle state when using this command. smtc is a non-blocking command, there is
a prompt and it is possible to issue other commands while the test case execution is proceeding.
When the module name argument is used (with or without the .control suffix) then smtc starts
executing the control part of that module. [9: TTCN–3 assumes to have a single control part
within an ETS. Our Test Executor, however, removed this limitation and permits multiple
module control parts within the ETS. The smtc command can be used to select between the
available control parts, which one needs to be executed. Moreover, it can be specified to execute
a number of different control parts, too.] When it is intended to select a single test case for
execution, smtc is told using the format module name.testcase name. Only those test cases can be
executed individually that have no formal parameters, or every formal parameter has a default
value. It is also possible to execute all individually startable test cases defined inside a module
by specifying the module name.* as smtc parameter. In case the optional parameter is omitted,
the contents of the [EXECUTE] section of the configuration file are run after each other if that
section was specified.

• emtc terminates MTC. When using this command MTC must be in idle state, that is, it cannot be
killed.

• info prints statistics and status information of the currently connected HCs and test
components.

• reconf instructs MC to re-read and re-distribute its configuration file to the connected HCs. This
feature is useful when restarting a test campaign involving multiple HCs, because the tester
configuration can be altered eliminating the drawback of restarting and reconnecting all
elements of the test set-up manually.

• stop terminates test execution. The verdict of the actual test case will not be considered in the
statistics of the test suite.

• pause [on|off] sets whether to interrupt test execution after each test case. For setting the state
of the pause function on or off values can be used. If the state of the pause function is on and
the actual test case is finished, the execution is stopped until the continue command is issued. If
pause is in off state and the actual test case is finished, the execution is continued with the next

26

test case. Using pause without these options it simply prints the state of the pause function.

• continue resumes interrupted test execution.

• log [on|off] enables/disables console logging. It can be set using on or off. If log is in off state no
log messages will be printed to MC’s console. Using log without these options it simply prints the
state of logging.

• ! prefix is used to execute command line contents in a subshell.

• exit terminates all HCs and MC itself. This command can be used when test execution is not in
progress. If MTC still exists it will be terminated gracefully, like with emtc.

• quit is an alias to exit to provide backward compatibility.

Batch Mode

If MC is started in batch mode no command prompt is given. In order to monitor the actual state of
execution the console messages are printed to the standard output.

In batch mode, the MC performs the following actions sequentially:

• MC waits until the specified number of HCs, that is given in configuration option NumHCs, are
connected.

• MTC is created on the host of firstly connected HC. Equivalent command: cmtc

• The items of the [EXECUTE] section are launched sequentially. Equivalent command: smtc

• After all items are finished the MTC is terminated. Equivalent command: emtc

• The session and all HCs are shut down and MC exits. Equivalent command: exit

If the [EXECUTE] section of the configuration file is empty or it is missing the MC stops in batch mode
immediately with an error message.

If a fatal error is encountered during initialization, for example due to an error in the configuration
file, no MTC is created and the session stops immediately. If an error happens within a test case the
normal error recovery routines are activated and the execution continues with the next test case.

Performance Hints

NOTE

if performance tests are executed with a large number of test components, MC can
be a performance bottleneck in the test executor system. If performance problems
occur around the test executor, the first thing that should be checked is the
operating environment of MC. Running MC on a dedicated computer with a
powerful CPU can help in the most cases.

MC maintains a control TCP connection with all other components (HCs, MTC and PTCs). Each of
these connections use an open file descriptor, which is a limited resource in the operating system. If
many test components should be run simultaneously, this limitation can be a bottleneck. However,
the number of open files per process can be increased up to a so called hard limit (for example 1024
on Solaris and unlimited [10: The total number of open files can also be a bottleneck on Linux
kernel, which can be changed through the /proc file system.] on Linux). The limit can be increased
by a built-in shell command [11: Called limit on tcsh and ulimit on bash. For more details please

27

consult the manual page of the used shell.], of course, before starting MC. On the other hand, the
license key also limits the number of simultaneously active PTCs, which is considered in MC when
processing TTCN–3 create operations.

Displaying ASCII Art on Startup

The command line main controller displays an ASCII art file that is located in the
$TTCN3_DIR/etc/asciiart directory. There can be any number of ASCII art text files in that directory,
a random file will be chosen from those. The file name can contain special filtering instructions, if
such instructions are detected in the file name then the file is grouped into the special files group,
all other files are in the normal group. If there is at least one file in the special group that was not
filtered out by the condition(s) given in the file name then the file to be displayed will be chosen
randomly from the list of special files. If there are no such special files or all of these were filtered
out by their filtering instructions then a normal file will be displayed. The filtering instructions in
the file name are separated by dots, one instruction consists of a name and a value which are
separated by a dash. If the value is of numerical type then it can be a single number or an interval,
an interval consists of 2 numbers separated by an underscore. Currently the following filtering
condition name and value pairs can be used:

Filter condition name Value, type of value Example

user User name, string user-edmdeli

weekday Number/interval, 1-7 weekday-6_7

day Number/interval, 1-31 day-1

month Number/interval, 1-12 month-12

year Number/interval year-2013

hour Number/interval, 0-23 hour-18_23

minute Number/interval, 0-59 minute-30

second Number/interval, 0-61 second-0_30

Example file names:
xmasparty.month-12.day-24_26.txt

weekendwork.weekday-6_7.txt

Displaying ASCII art can be prevented by deleting all files from the directory. Adding some filtering
conditions can be done by renaming the file according to the above described naming rules.

4.4.3. The TTCN–3 Host Controller

The ETS built for parallel operation mode will act as Host Controller. After starting up it establishes
a TCP connection to MC (which must be started prior to HC) and waits for requests. The executable
takes two mandatory arguments, the host name or IP address and the TCP port number that MC
listens on [12: If MC and HC runs on the same computer and you run Host Controllers on other
computers as well, never use localhost or 127.0.0.1 as host name argument to HC. The IP address
that the HC’s connection comes from may be transferred by MC to TCs running on other hosts.
Giving out the local IP address may result in incorrect behavior.].

28

The optional command line switch -s can be used to specify the source address of control
connections towards MC. Either an IP address or a DNS name can be given after the switch. Only
such IP address is accepted that is assigned to one of the local network interfaces. This option can
be useful on multi-homed hosts, that is, computers with more than one network interfaces, in order
to route all traffic of control connections to a separate network path to avoid disturbances in the
communication with SUT. If the option is omitted the local IP address is chosen automatically based
on MC’s IP address and the kernel routing table. The test components, child processes of HC, will
use the same local IP address for their connections as the HC independent if it was set manually or
automatically.

The command line synopsis for HC is the following:

<executable_program_name> [-s <local_address>] <MC_host> <MC_port>

NOTE

In earlier versions, the HCs accepted an optional third command line argument
specifying the configuration file name. From version 1.3 (MC version 2), the MC
distributes configuration data to all participating HCs. Consequently, the
configuration file became a command line argument of the MC.

The ETS linked in parallel mode accepts the command line switches -l and -v like in single mode
(see Running Non-parallel Test Suites). If the test execution is performed in a distributed
environment and file synchronization between computers is not automatic (for example you use
FTP instead of a shared NFS directory), it is useful to check the module checksums and versions
with flag -v on each computer before starting the HCs.

From version 1.3.pl0 the MC checks the version of each connected HC automatically in order to
ensure the consistency of the distributed test system. If the ETSes used in the same test campaign
contain different TTCN–3 modules or different versions of the same TTCN–3 modules the HC
connections, except the firstly connected one, will be refused by the MC.

4.4.4. Logging in Parallel Mode

During test execution all test components create separate log files. Each log file has the same format
as presented in non-parallel mode. Logging into the same, NFS shared directory makes the log
analysis easier.

The name of log files can be explicitly set in the configuration file using a metacharacter
substitution mechanism. If the file names are not set, the backward compatible default naming
convention is used. It is important to ensure that every component has its own unique log file
name. Refer to the TITAN Programmer’s Technical Reference for TITAN TTCN-3 Test Executor for
more details.

In parallel mode the log messages sent to the console are transmitted through the network and
printed on the user interface of MC in normal cases. Thus it is an unwise thing to log all messages to
the console without filtering when the test suite is used for load generation. If the control
connection from a TC or HC to MC is broken due to any error, the console log messages are written
to the standard error of the ETS locally.

29

https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide

4.4.5. Automation of Testing in Parallel Mode

The starting procedure of TTCN–3 tests in parallel mode can be a tiring task if it has to be repeated
the tests several times. We have developed a small script that can do this work for you. It is based
on the expect command, which is an extension of the TCL scripting language. The script is called
ttcn3_start and is located in $TTCN3_DIR/bin. In order to use it a working expect interpreter must be
in the $PATH.

The script itself is very simple, it takes one mandatory and one or more optional arguments. The
first mandatory argument is the name of the ETS that is launched. The second argument can be the
name of the configuration file that will be passed to MC during execution. If this argument is
omitted or the second argument does not resemble to a file name, the script will look for file <ETS
name>.cfg in its current working directory. If such file exists, it will be used as configuration file.
Otherwise MC will be launched without configuration file.

Additionally, the IP address of the interface used for communication between the MC and the ETS
can be specified. The syntax is –ip followed by the IP address in dotted decimal format, for example
192.168.0.1. If not specified explicitly, the address defaults to the IP address of the local machine.

The rest of arguments are the list of test cases to be executed in format <modulename>.<testcase
name>. They are passed to MC command smtc sequentially, see The TTCN–3 Main Controller for
details. If these arguments are missing and a configuration file is present the items of section
[EXECUTE] will be executed, that is, smtc will be called without arguments. If neither configuration
file nor test cases are specified the control part of the main TTCN–3 module, that is, the module that
has the same name as the ETS, is executed.

The script works the following way: first it launches the MC. If the environment variable TTCN3_DIR
is set the MC is started from directory $TTCN3_DIR/bin (to find the right one multiple versions are
present), otherwise the command mctr cli is invoked using your search path. If the configuration
file is present it is passed to MC as a command line argument. After that ttcn3_start launches the
ETS, that is, the HC, locally with the appropriate arguments. That is, the script guesses the host
name and extracts the TCP port number from the output of MC automatically. Then the script issues
the cmtc and the appropriate smtc commands in the MC command prompt and waits until test
execution is finished. Finally it terminates the programs by issuing emtc and quit. It also takes care
of MC’s answers and issues the commands in the right state.

The messages coming from the standard output or standard error of MC, HC and the test
components are continuously displayed in the output of ttcn3_start.

Note that this script does not support distributed test execution when more than one HC has to be
started.

Examples for the invocation of ttcn3_start:

30

$ ttcn3_start Main_Control
$ ttcn3_start Main_Control multi.cfg
$ ttcn3_start Main_Control –ip 10.10.10.10 multi.cfg
$ ttcn3_start Main_Control SNMP_Testcases.tc_110 SNMP_Testcases.tc_113
 SNMP_Testcases.tc_114
$ ttcn3_start Main_Control multi.cfg SNMP_Testcases.tc_110 _Testcases.tc_113
SNMP_Testcases.tc_114

The script returns different exit codes which can be used by user written software which invokes it.
In case of success the return code is 0, in error cases the return codes are the following:

Return code Error description

1 The expect tool was not found.

2 Parameters are missing.

3 Cannot find the given executable.

4 The script cannot be used when MC is run in
batch mode.

5 The MC has terminated unexpectedly.

6 The given executable is not a TTCN-3 executable
in parallel mode.

7 The executable could not connect to the MC.

8 The MTC cannot be created.

9 The MTC cannot be created on an unknown host.

10 The MTC terminated unexpectedly.

4.5. Strange Behavior of the Executable
If modular test suites are executed, sometimes the executable test program can do strange things,
for example, the execution terminates without any reason or the send functions of the Test Port is
not called, and so on. This is because out-of-date C++ header files are used for translating the C++
modules, that is, there is a wrong Makefile.

This may happen when the Test Port files are renamed, so the compiler regenerates them. Thus the
C source files generated by the compiler see an empty Test Port header file, but the fully functional
Test Port object file is linked to the executable. In this case, the linking will be successful, but during
the execution strange things can happen. The reason behind this phenomenon is that the modules
consider the raw binary structure of the same C class different, for example they fetch the virtual
function pointer from a wrong place.

Avoid these situations and re-compile all C++ files before reporting such bugs, and the use of
makedepend utility is strongly recommended.

31

Chapter 5. Log Processing
The logs generated by the test executor, although they are ASCII text files, are perfect for machine
processing, but not for analyzing by humans. To make these log files more readable log formatting
tools are provided. All of these programs require the same license feature, LOGFORMAT. The programs
are designed so that they can be used either individually or bundled together with UNIX pipelines.

• Logmerge is useful for test suites that are run in parallel mode. It can merge the logs of different
PTC into one single file based on the timestamps.

• Logfilter can be used for post filtering large log files based on the kind of logged events. It can
be specified to keep or remove the event type(s).

• Logformat breaks the sent and received data structures into lines and indents the fields
according to their hierarchy. Moreover, if the test suite was executed in single mode, the log
formatter splits the logs of each test case into separate files.

• Repgen can present not only the formatted log files but the description and TTCN–3 source code
of test cases as well as the output of other network monitor programs, like tcpdump, in HTML
format. The test results can be easily viewed by any JavaScript capable Web browser.

5.1. The logmerge Utility
The logmerge utility, which can be found in $TTCN3_DIR/bin, merges all files given in the command
argument into a single output file. The output of logmerge is sorted based on the timestamps found
in the log files.

The command line syntax is:

ttcn3_logmerge [-o outfile] [file.log] …

or

ttcn3_logmerge -v

Available command line switches are:

• -o outfile

Merges all input log files into outfile. If the outfile exists its contents will be overwritten. This
switch is optional, if it is omitted, merged logs will be printed to standard output.

• -v

Prints version and license key information and exits. Each line of the input files should contain
an event in the following format:
<timestamp> <rest of the event>

Merging log files with different types of timestamps, for example with timestamp format Time and

32

DateTime, results in warning message(s), and only files with same format are merged. Merging log
files with timestamp format Seconds is not. If a file contains one or more timestamp(s) that is in
wrong order, the resulting order will be incorrect too. In this case a warning message will be
printed to the standard error.

The output of the utility is the following:

<timestamp> <component id> <rest of the event>

where <component id> is taken from the name of the respective input file. If the name of the input
file is not in the format <ets name>.<host>-<component id>.log, the whole input file name will be
used as <component id>. Events spreading over multiple lines are also handled properly.

5.2. The logfilter Utility
The logfilter utility, which can be found in $TTCN3_DIR/bin, filters the input log file given in the
command line argument based on the event types in the file, and filter parameters given in the
program argument. The output is then written to an output file if specified, or to the standard
output. The program is useful only if the variable LogEventTypes is set to yes in section [LOGGING] of
the configuration file.

The command line syntax is:

ttcn3_logfilter [-o outfile] {eventtype(+|-)}[input.log]

or

ttcn3_logfilter -v | -h | -l

Available command line switches are:

• -h

Prints help on using the utility.

• -l

Prints the list of supported event types.

• -o outfile

Puts its output into outfile. If the outfile exists, its contents will be overwritten. This switch is
optional, if it is omitted, the output will be printed to standard output.

• -v

Prints version and license key information and exits.

33

The utility can handle one file at a time, giving more input files results an error. If no input file is
given, it reads the log from standard input. Logfilter can be efficiently used as the middle stage of a
pipeline, combined with logmerge and logformat.

Event types to be included or excluded should be given without the TTCN prefix, that is, as they
appear in the log file. Undefined event type(s), that are not listed in the TITAN Programmer’s
Technical Reference for TITAN TTCN-3 Test Executor, specified as filter parameters will cause
warning message(s), but will not cause the utility to quit. If there are parameters specified both to
include and to exclude one or more event types, the program will quit with an error message,
because in this case it is not well defined how to handle other event types. All possible error and
warning messages will be printed to standard error.

5.3. The logformat Utility
The logformat utility, which can be found in $TTCN3_DIR/bin, reads the unformatted log file
generated by test executor from its standard input. It can split up the log into several files based on
the lines that are automatically logged at the beginning or end of each test case. Furthermore,
logformat formats the sent and received messages in the log file. The structured values are indented
and each field is put into a new line according to the braces and commas.

The command line syntax is:

ttcn3 logformat [-i n] [-o outfile] [-s] [-n][file.log] …

or

ttcn3 logformat -v

The switches denoted by square brackets are optional. The following command line options are
available (listed in alphabetical order):

• -i n

Sets the depth of each indentation level to n characters. The default value is 4. If the sent or
received PDU is too complex and has too deeply nested fields, this number can be decreased to
get more readable output.

• -o outfile

Places the output into file outfile. If the -s flag is also set, only those parts of the log files will be
written into this file that were logged outside the test cases, that is, in control part or on PTCs. If
this option is omitted, the formatted log will be printed to standard output.

• -s

If this option is set, the entries that were recorded during the execution of a particular test case
will be saved in a separate file in logformat’s working directory. The name of this file will be
identical to the name of the test case. If the same test case is executed several times after each

34

https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide
https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide

other, the results of repeated test runs will be collected after each other. If the output file
contained some data before logformat was started, for example the results of previous test run,
the output file will be emptied and the old logs will be destroyed.
logformat recognizes any types of timestamps that can be set in the [LOGGING] section of the
configuration file.

WARNING
This option is useless when formatting the log files of PTCs, because these logs
do not contain the name of the testcase the PTC belongs to.

• -n

If this option is set, newline and tab control characters are not modified, they are printed as \n
and \t.

• -v

Prints version and license key information and exits.

logformat formats all files that are given as arguments and concatenates them after each other. If
no files are given, it reads the log from standard input.

5.4. The HTML Report Generator
The HTML report generator called repgen can be found in $TTCN3_DIR/bin. The program requires one
command line argument that contains the name of its configuration file. The behavior of repgen can
be configured only through this file. If the switch -h is given instead of the name of the
configuration file, repgen prints a sample configuration file to its standard output.

The configuration file of repgen is a simple text file which contains a sequence of directives. Its
usual suffix is .ts. Each directive starts with a special keyword beginning with a hash mark (#)
character. The first part of configuration file should contain global settings, the description of test
cases can be added after that.

The following table summarizes all global settings:

Keyword Meaning

#Title The name of the ETS. This string will be used as title in the resulting
HTML pages.

#Tab length The report generator replaces all tabulator characters with spaces in
the TTCN–3 test cases and log files. This parameter sets how many
spaces a single tab character should be replaced with. The default
value is 8.

#Column width The report generator breaks the long lines of the ATS and the
external monitor logs. The resulting lines in HTML output will not be
longer than this limit. The default value is 80 characters.

35

Keyword Meaning

#TTCN-3 code The name of the directory that contains the TTCN–3 source files of
the test suite. All files will be searched in this directory whose name
ends with .ttcn. repgen collects the source code of test cases that are
listed in the remainder of this configuration file. The referenced
functions, templates and other definitions are not collected. An
absolute or a relative path may be entered, the starting point is
always the repgen’s working directory, for this and the following
three parameters. The same directory may be used for many
purposes because the file names do not clash.

#TTCN-3 log The name of the directory that contains the log file(s) of the test
executor. The report generator splits and formats the log files using
the log formatter logformat. All files will be formatted in this
directory whose name ends with .log. If the log of one test case can
be found more than once in the log file(s), for example, because of
repeated test execution, the resulting HTML page will contain the log
of one execution. The others will be lost.

#Other log The name of the directory that contains the log files of the external
monitor programs, for example tcpdump. Each file should contain the
messages (network packets) recorded during the execution of one
test case. The log files in this directory must be named as <testcase
name>.dump where <testcase name> stands for the name of the
corresponding test case. All files must be in ASCII format. logformat
will simply copy them into the destination directory and will not
change their content.

#Destination The name of the destination directory where the files of the
resulting HTML report should be stored by repgen. The starting page
will be <title>-report.html in this directory and the other files will
be stored under sub-directory <title>-report, where <title> stands
for the string set as the value of parameter #Title. Note that each
space and dash in this name will be replaced by an underscore
character.

After the global settings, the name and description of all test cases after each other (in arbitrary
order) can be listed.

NOTE
repgen processes the source code and logs only for those test cases that are listed in
the configuration file. The TTCN–3 code and logs of other test cases will be silently
ignored. A test case can be specified using the following keywords:

Keyword Meaning

#Testcase The name of the test case. It must be the same as in the TTCN–3 code.

#Purpose A short summary of the test case describing in one sentence what it
does. It must not be longer than one line. These short descriptions
will be listed on the HTML page that lists the results of all test cases
in one table.

36

Keyword Meaning

#Description This section should contain the detailed description of the test case.
It may continue through several lines, until the next #Testcase
directive. Figures or message sequence charts can be drawn using
ASCII characters, but images cannot be embedded.

For browsing the HTML reports the only thing needed is to open the starting page, the file <title>-
report.html in the destination directory, with a JavaScript capable web browser. The reports should
work with any versions of Netscape and Microsoft Internet Explorer on any platforms. The reports
can be viewed locally or remotely using any web server.

The starting page consists of two list boxes and four buttons (in addition to the title and the
Ericsson logo). The test case can be selected in the left list box. After selecting a test case the
available descriptions and logs will be shown on the right list box. The following items can be
selected:

• Detailed description

• TTCN–3 code

• TTCN–3 executor’s log

• Other type of log

If one or more items for the test case are missing from input files, the missing option will not be
shown. Select or unselect the available descriptions and logs one-by-one independently by clicking
on them.

After selecting a test case and its items the ”Show” button at bottom should be pressed to view the
selected logs and descriptions. A new browser window will be opened for each test case and the
selected items will be shown in vertically split frames. The text in each frame can be scrolled
independently. Of course, the logformat tool is unable to figure out the relation between the TTCN–3
source code and the produced log events.

In the root window, it is possible to walk through the available test cases step-by-step using the
buttons Previous and Next. The button Summary will bring up another window that lists all test
cases, their short descriptions and verdicts in a single table to get a quick overview about the test
results.

37

Example: In the following is an example configuration file of logformat. We included the descriptions of the
first three test cases only.

#Title ROHC
#Tab length 8
#Column width 80
#TTCN-3 code /home/ethpkr/ROHC
#TTCN-3 log /home/ethpkr/ROHC/log
#Other log ./
#Destination ./
#Testcase CTC01
#Purpose Mode transition from Unidirectional to Optimistic mode.
#Description
Comp->IRs, Comp->IR_DYNs, Comp->UO-0s, Decomp->Feedback(mode
transition u->o), Comp->UO-0s
#Testcase CTC02
#Purpose Feedback processing in Unidirectional mode.
#Description
Testing the compressor’s feedback processing capabilities in U
mode.
#Testcase CTC03
#Purpose Operation in Optimistic mode (NACK).
#Description
Testing the compressor’s operation in Bidirectional Optimistic
mode. Preamble: taking the compressor to SO state and O mode.
After that a NACK is sent as an answer to a received compressed
packet. The answer for that should be an IR with dynamic chain
or UOR-2 or an IR-DYN packet.
[...]

NOTE
repgen was designed to present the results of non-parallel test cases. In case of
parallel test execution, the logs of PTCs cannot be browsed, only the MTC log.

WARNING
During its run repgen will start the other log formatter program logformat. That
is why repgen works correctly only if the directory $TTCN3_DIR/bin is included
to the path.

38

Chapter 6. References
1. Installation guide for TITAN TTCN-3 Test Executor

2. Programmers Technical Reference for TITAN TTCN-3 Test Executor

3. Release Notes for TITAN TTCN-3 Test Executor

4. TTCN–3 Style Guide 1/0113-FCPCA 101 35

5. TTCN–3 Naming Convention ETH/R-04:000010

39

https://github.com/eclipse/titan.core/blob/master/usrguide/installationguide/
https://github.com/eclipse/titan.core/blob/master/usrguide/referenceguide/
https://github.com/eclipse/titan.core/blob/master/usrguide/releasenotes/

	User Guide for TITAN TTCN-3 Test Executor
	Table of Contents
	Chapter 1. About the Document
	1.1. Purpose
	1.2. Target Groups
	1.3. Typographical Conventions

	Chapter 2. Overview of TITAN
	2.1. Components
	2.2. General Workflow
	2.3. Building Test Suites
	2.4. Executing Test Suites

	Chapter 3. Creating Executable Test Suites from the Command-line
	3.1. Using make
	3.2. Automatically Generated Makefile
	3.3. Manual Building

	Chapter 4. Executing Test Suites
	4.1. The Run-time Configuration File
	4.2. Running Non-parallel Test Suites
	4.3. Configuration
	4.4. Running Parallel Test Suites
	4.5. Strange Behavior of the Executable

	Chapter 5. Log Processing
	5.1. The logmerge Utility
	5.2. The logfilter Utility
	5.3. The logformat Utility
	5.4. The HTML Report Generator

	Chapter 6. References

