content.tex 57.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
IGES is a file format supported by the Eclipse Advanced Visualization
Project (EAVP) for visualizing complex geometries.

\subsection{What is IGES}\label{what-is-iges}

The \href{https://en.wikipedia.org/wiki/IGES}{Initial Graphics Exchange
Specification} (IGES) outlines a file format for the transfer of
geometry data and CAD models. It is an older specification, and was most
recently published as version 6
\href{https://filemonger.com/specs/igs/devdept.com/version6.pdf}{here}.
It can be used to represent both Boundary-Representation (B-Rep) and
Constructive Solid Geometry (CSG) geometries, as well as two dimensional
CAD diagrams.

\subsection{File Format}\label{file-format}

The file is an ASCII text based format, having each line be exactly 80
characters long. As explained in the Wikipedia article on
\href{https://en.wikipedia.org/wiki/IGES}{IGES}, the file is split into
five sections, denoted by the specific upper case letter in the 73rd
column. Those sections are Start (S), Global (G), Data Entry (D),
Parameter Data (P), and Terminate (T) sections. The Data Entry and
Parameter Data sections are commonly abbreviated DE and PD,
respectively.

\subsubsection{File Header (Start and Global
Sections}\label{file-header-start-and-global-sections}

The Start and Global sections contain basic information about the name
of the file and its source, the delimiters for the Parameter Data
section, the author of the file, and other general information. The
start field contains human readable descriptions of the file, and my
have any characters in columns 1-72, with the line ending with the
section header and section line number. There must be at least 1 line of
the Start section. The global section contains preprocessor data. It
also must be present in the file and end with the G000000\# format. For
example, here is the Start and Global sections from the example document
on Wikipedia:

\texttt{~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~S~~~~~~1}\\\texttt{1H,,1H;,4HSLOT,37H\$1\$DUA2:{[}IGESLIB.BDRAFT.B2I{]}SLOT.IGS;,~~~~~~~~~~~~~~~~G~~~~~~1}\\\texttt{17HBravo3~BravoDRAFT,31HBravo3-\textgreater{}IGES~V3.002~(02-Oct-87),32,38,6,38,15,~~G~~~~~~2}\\\texttt{4HSLOT,1.,1,4HINCH,8,0.08,13H871006.192927,1.E-06,6.,~~~~~~~~~~~~~~~~~~~G~~~~~~3}\\\texttt{31HD.~A.~Harrod,~Tel.~313/995-6333,24HAPPLICON~-~Ann~Arbor,~MI,4,0;~~~~~G~~~~~~4}

Note that the strings are expressed in Hollerith format, meaning that
every string has the number of characters it contains followed by an H
directly preceding it. For example, the string IGES would be 4HIGES.

\subsubsection{File Data (DE and PD
Sections)}\label{file-data-de-and-pd-sections}

The Data Entry and Parameter Data sections contain the information on
the basic data of the IGES file format: it's entities. There are around
150 different defined entities in IGES (including differing `forms' of
some entity types). We will focus on the more common and geometry
centered entities. An entity is described in the Data Entry section as
shown here:

\texttt{~~~~~116~~~~~~~1~~~~~~~0~~~~~~~1~~~~~~~0~~~~~~~0~~~~~~~0~~~~~~~0~~~~~~~1D~~~~~~1}\\\texttt{~~~~~116~~~~~~~1~~~~~~~5~~~~~~~1~~~~~~~0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0D~~~~~~2}

First, the file lists all of the entities it contains in the Data entry
section. This section is specified by a D in the 73rd column and lists
properties about the entity it describes. Each line in this section is
split into 10 8 character fields, and each entity is given two lines of
the section. This indicates that every entity has 20 fields in the Data
Entry section, which are usually right justified. These fields map to
the following properties:

\begin{longtable}[c]{@{}llllllllll@{}}
\toprule
Col 1-8 & Col 9-16 & Col 17-24 & Col 25-32 & Col 33-40 & Col 41-48 & Col
49-56 & Col 57-64 & Col 65-72 & Col 73-80\tabularnewline
\midrule
\endhead
Entity Type & PD pointer & Structure & Line Font Pattern & Level & View
& Transformation matrix pointer & Label Display Associativity & Status
Number & Section Code and Sequence Number\tabularnewline
Entity Type & Line Weight Number & Color Number & Parameter Line Count &
Form Number & Reserved & Reserved & Entity Label & Entity Subscript
Number & Section Code and Sequence Number\tabularnewline
\bottomrule
\end{longtable}

These fields indicate the following properties about the entity being
declared:

\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item
  \textbf{Entity Type} This is the type of entity being described. For
  example, 116 describes a Point entity.
\item
  \textbf{PD pointer} This gives the location for this entities data in
  the Parameter Data section. This location is simply the line number
  inside the PD section that has the first line of this entity data.
\item
  \textbf{Structure} Zero or pointer to definition entity. Not
  applicable for most entities
\item
  \textbf{Line Font Pattern} Number or pointer to line font pattern
  entity. Number signifies:

  \begin{itemize}
  \itemsep1pt\parskip0pt\parsep0pt
  \item
    0 No pattern specified (default)
  \item
    1 Solid
  \item
    2 Dashed
  \item
    3 Phantom
  \item
    4 Centerline
  \item
    5 Dotted
  \end{itemize}
\item
  \textbf{Level} Specifies levels to be associated with this entity.
  Allows entity to appear on more than one level
\item
  \textbf{View} Specifies viewing options. These are:
\end{itemize}

0 Indicates equal visibility and characteristics in all views. Default
Pointer to the View entity (Type 410) that it can be viewed from
Reference a View Visible Associativity entity (Type 402, Form 3)

\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item
  \textbf{Transformation Matrix pointer} References a transformation
  matrix entity (Type 124) or is zero by default (no transformation)
\item
  '''Label Display Associativity''' References a Label Display
  Associativity (Type 402, Form 5) which defines how the entity label
  appears.
\item
  \textbf{Status Number} Contains four sections of two numbers. 1-2:
  Blank status. Either 00 for normal or 01 for blanked. 3-4: Subordinate
  entity switch: is 00 for independent, 01 for physically dependent, 02
  for logically dependent, and 03 for both. 5-6: Entity Use flag: is
  either 00 for Geometry, 01 for annotation, 02 for definition, 03 for
  Other, 04 for Logical, 05 for 2D parametric, and 06 for Construction
  geometry. Finally, 7-8 is the hierarchy, where 00 indicates global top
  down (use this entity's characteristics), 01 is global defer(do not
  use this entity's characteristics), and 02 is use hierarchy
  property(use Hierarchy Entity (Type 406, Form 10)to determine
  characteristics of hierarchical grouping).
\item
  \textbf{Sequence Number} Specified by D\#, where \# is the line number
  for this section (not from the top of the file). This is also used to
  point to this Data Entry entity.
\item
  \textbf{Entity Type} See above- it is specified twice per entity
  listing
\item
  \textbf{Line Weight Number} Specifies thickness when displaying
  entity. Smallest is 1, 0 is default
\item
  \textbf{Color Number} Specifies the entity color. Allowed integer
  values are:

  \begin{itemize}
  \itemsep1pt\parskip0pt\parsep0pt
  \item
    0 No color (default)
  \item
    1 Black
  \item
    2 Red
  \item
    3 Green
  \item
    4 Blue
  \item
    5 Yellow
  \item
    6 Magenta
  \item
    7 Cyan
  \item
    8 White
  \end{itemize}
\item
  \textbf{Parameter Line Count Number} Specifies the number of lines
  this entity takes up in the Parameter Data Section
\item
  \textbf{Form Number} Indicates the form, or the representation of this
  entity. Changes how the parameter data is interpreted. Default is 0
\item
  \textbf{Reserved Field} Not used
\item
  \textbf{Reserved Field} Not used
\item
  \textbf{Entity Label} Application specified identifier- right
  justified
\item
  \textbf{Subscript Number} Numeric qualifier for the entity label. Both
  together form a unique identifier for the entity
\item
  \textbf{Sequence Number} See above. This will be D\#+1, as each entity
  is specified on two lines.
\end{itemize}

\begin{center}\rule{0.5\linewidth}{\linethickness}\end{center}

The Parameter Data section comes right after the Data Entries, and lists
the data for each respective entry. A typical entry looks something like
this:

\texttt{126,1,1,1,0,1,0,-5.,-5.,5.,5.,1.,1.,10.,0.,0.,10.,10.,0.,-5.,5.,~~~~~~~3P~~~~~~3}\\\texttt{0.,0.,1.;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~3P~~~~~~4}

Note the corresponding Data Entry:

\texttt{~~~~~126~~~~~~~3~~~~~~~0~~~~~~~0~~~~~~~0~~~~~~~0~~~~~~~0~~~~~~~000010501D~~~~~~3}\\\texttt{~~~~~126~~~~~~~0~~~~~~~0~~~~~~~2~~~~~~~0~~~~~~~0~~~~~~~0~~~~~~~~~~~~~~~0D~~~~~~4}

The parameter data section uses the delimiters specified in the Global
section to list parameters for the entity. These delimiters are usually
commas to separate parameters and a semi-colon to end the listing. The
parameter data section listing starts with the entity type followed by
parameter data in columns 4-64. Columns 65 to 72 contain the Data Entry
pointer number, which gives the index of the data entry listing for this
entity (must be an odd number, as the even numbers contain the other
half of the Data Entry). The last columns, 73-80, contain the Sequence
Number, being P\#, similar to the Data Entry section.

\subsubsection{Entities}\label{entities}

The following entities are supported for import into ICE. Note that not
all IGES files contain only these entity specifications.

\paragraph{Circular Arc (Type 100)}\label{circular-arc-type-100}

Simple circular arc of constant radius. Usually defined with a
Transformation Matrix Entity (Type 124).

\begin{longtable}[c]{@{}llll@{}}
\caption{Parameter Data}\tabularnewline
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endfirsthead
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endhead
1 & REAL & Z & z displacement on XT,YT plane\tabularnewline
2 & REAL & X & x coordinate of center\tabularnewline
3 & REAL & Y & y coordinate of center\tabularnewline
4 & REAL & X1 & x coordinate of start\tabularnewline
5 & REAL & Y1 & y coordinate of start\tabularnewline
6 & REAL & X2 & x coordinate of end\tabularnewline
7 & REAL & Y2 & y coordinate of end\tabularnewline
\bottomrule
\end{longtable}

\paragraph{Composite Curve (Type 102)}\label{composite-curve-type-102}

Groups other curves to form a composite. Can use Ordered List, Point,
Connected Point, and Parameterized Curve entities.

\begin{longtable}[c]{@{}llll@{}}
\caption{Parameter Data}\tabularnewline
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endfirsthead
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endhead
1 & REAL & N & Number of curves comprising this entity\tabularnewline
2 & Pointer & DE(1) & Pointer to first curve\tabularnewline
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &\tabularnewline
1+N & Pointer & DE(N) & Pointer to last curve\tabularnewline
\bottomrule
\end{longtable}

\paragraph{Conic Arc (Type 104)}\label{conic-arc-type-104}

Arc defined by the equation: Axt\^{}2 + Bxtyt + Cyt\^{}2 + Dxt + Eyt + F
= 0, with a Transformation Matrix (Entity 124). Can define an ellipse,
parabola, or hyperbola.

The definitions of the terms ellipse, parabola, and hyperbola are given
in terms of the quantities Q1,Q2, andQ3. These quantities are:

\texttt{~~~~~~~~~~~\textbar{}~~A~~~B/2~~D/2~\textbar{}~~~~~~~~\textbar{}~~A~~~B/2~\textbar{}~}\\\texttt{~~~~~~~Q1=~\textbar{}~B/2~~~C~~~E/2~\textbar{}~~~Q2~=~\textbar{}~B/2~~~C~~\textbar{}~~~Q3~=~A~+~C~}\\\texttt{~~~~~~~~~~~\textbar{}~D/2~~E/2~~~F~~\textbar{}~}

A parent conic curve is:

\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item
  An ellipse if Q2 \textgreater{} 0 and Q1Q3 \textless{} 0.
\item
  A hyperbola if Q2 \textless{} 0 and Q1 != 0.
\item
  A parabola if Q2 = 0 and Q1 != 0.
\end{itemize}

\begin{longtable}[c]{@{}llll@{}}
\caption{Parameter Data}\tabularnewline
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endfirsthead
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endhead
1 & REAL & A & coefficient of xt\^{}2\tabularnewline
2 & REAL & B & coefficient of xtyt\tabularnewline
3 & REAL & C & coefficient of yt\^{}2\tabularnewline
4 & REAL & D & coefficient of xt\tabularnewline
5 & REAL & E & coefficient of yt\tabularnewline
6 & REAL & F & scalar coefficient\tabularnewline
7 & REAL & X1 & x coordinate of start point\tabularnewline
8 & REAL & Y1 & y coordinate of start point\tabularnewline
9 & REAL & Z1 & z coordinate of start point\tabularnewline
10 & REAL & X2 & x coordinate of end point\tabularnewline
11 & REAL & Y2 & y coordinate of end point\tabularnewline
12 & REAL & Z2 & z coordinate of end point\tabularnewline
\bottomrule
\end{longtable}

\paragraph{Copious Data (Type 106)}\label{copious-data-type-106}

The Copious Data entity defines a set of points. There are three
different interpretations, depending on first parameter. It is an INT,
and is either 1,2, or 3. 1 Indicates that the points are couples(x,y), 2
indicates the points are triples (x,y,z), and 3 indicates the points are
sextuplets(x,y,z,i,j,k). If the format is 1, then the first parameter
after gives the common Z value for the ordered xy pairs.

\begin{longtable}[c]{@{}llll@{}}
\caption{Parameter Data}\tabularnewline
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endfirsthead
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endhead
1 & INT & Type & Either 1,2, or 3\tabularnewline
2 & REAL & Z / XP1 & \vtop{\hbox{\strut If 1 is above, common
z}\hbox{\strut  if 2 or 3, first value}}\tabularnewline
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &\tabularnewline
N & REAL & YPN / ZPN / KPN & Last value for last point\tabularnewline
\bottomrule
\end{longtable}

\paragraph{Plane (Type 108)}\label{plane-type-108}

Defines a plane by Ax + By +Cz = D, and a curve pointer that gives the
plane its bounds. Also gives a display symbol at a specified vertex and
with a specified size.

\begin{longtable}[c]{@{}llll@{}}
\caption{Parameter Data}\tabularnewline
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endfirsthead
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endhead
1 & REAL & A & coefficient of x\tabularnewline
2 & REAL & B & coefficient of y\tabularnewline
3 & REAL & C & coefficient of z\tabularnewline
4 & REAL & D & scalar coefficient\tabularnewline
5 & Pointer & Bounds & Pointer to bounding curve\tabularnewline
6 & REAL & X & x coordinate of display symbol\tabularnewline
7 & REAL & Y & y coordinate of display symbol\tabularnewline
8 & REAL & Z & z coordinate of display symbol\tabularnewline
11 & REAL & Size & size of display symbol\tabularnewline
\bottomrule
\end{longtable}

\paragraph{Line (Type 110)}\label{line-type-110}

Defines a line using an end point and a start point

\begin{longtable}[c]{@{}llll@{}}
\caption{Parameter Data}\tabularnewline
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endfirsthead
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endhead
1 & REAL & X1 & x coordinate of start point\tabularnewline
2 & REAL & Y1 & y coordinate of start point\tabularnewline
3 & REAL & Z1 & z coordinate of start point\tabularnewline
4 & REAL & X2 & x coordinate of end point\tabularnewline
5 & REAL & Y2 & y coordinate of end point\tabularnewline
6 & REAL & Z2 & z coordinate of end point\tabularnewline
\bottomrule
\end{longtable}

\paragraph{Parametric Spline Curve (Type
112)}\label{parametric-spline-curve-type-112}

Defines a curve as a series of parametric polynomials, given as Ax(i) +
sBx(i) + s\^{}2 Cx(i) + s\^{}3 Dx(i), for the x component in the i'th
section. The same function is used for y and z.

\begin{longtable}[c]{@{}llll@{}}
\caption{Parameter Data}\tabularnewline
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endfirsthead
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endhead
1 & INT & Type & \vtop{\hbox{\strut Spline type:}\hbox{\strut 
1=Linear}\hbox{\strut  2=Quadratic}\hbox{\strut  3=Cubic}\hbox{\strut 
4=Wilson-Fowler}\hbox{\strut  5=Modified Wilson-Fowler}\hbox{\strut 
6=B-spline}}\tabularnewline
2 & INT & K & \vtop{\hbox{\strut Degree of continuity}\hbox{\strut 
0=Curvature}\hbox{\strut  1=Slope}\hbox{\strut  2=Both}}\tabularnewline
3 & INT & Dim & Dimensions (3 or 2)\tabularnewline
4 & INT & N & Number of segments\tabularnewline
5 & REAL & T1 & First break point\tabularnewline
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &\tabularnewline
5+N & REAL & TN & Last break point\tabularnewline
6+N & REAL & AX1 & X coordinate polynomial\tabularnewline
7+N & REAL & BX1 &\tabularnewline
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &\tabularnewline
5+13N & REAL & DZN & Last z coordinate polynomial\tabularnewline
6+13N & REAL & XN & Last x coordinate\tabularnewline
7+13N & REAL & XN' & Last n curve x derivative\tabularnewline
8+13N & REAL & XN''/2! & Second xn derivative\tabularnewline
9+13N & REAL & XN'''/3! & Third xn derivative\tabularnewline
10+13N & REAL & YN & Last y coordinate\tabularnewline
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &\tabularnewline
17+13N & REAL & ZN'''/3! & Third zn derivative\tabularnewline
\bottomrule
\end{longtable}

\paragraph{Parametric Spline Surface (Type
114)}\label{parametric-spline-surface-type-114}

Defines a surface as a series of parametric surfaces, splitting them
into a grid (i by j). They are described by the equation Ax(i,j) +
sBx(i,j) + s\^{}2 Cx(i,j) + s\^{}3 Dx(i,j) + tEx(i,j) + tsEx(i,j) +
ts\^{}2 Fx(i,j) + ts\^{}3 Gx(i,j) + t\^{}2 Kx(i,j) + t\^{}2 s Lx(i,j) +
t\^{}2 s\^{}2 Mx(i,j) + t\^{}2 s\^{}3 Nx(i,j) + t\^{}3 Px(i,j) + t\^{}3
s Qx(i,j) + t\^{}3 s\^{}2 Rx(i,j) + t\^{}3 s\^{}2 Sx(i,j). Note that
that equation is the description of the X element in the i,j section of
the spline surface.

\begin{longtable}[c]{@{}llll@{}}
\caption{Parameter Data}\tabularnewline
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endfirsthead
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endhead
1 & INT & Type & \vtop{\hbox{\strut Spline type:}\hbox{\strut 
1=Linear}\hbox{\strut  2=Quadratic}\hbox{\strut  3=Cubic}\hbox{\strut 
4=Wilson-Fowler}\hbox{\strut  5=Modified Wilson-Fowler}\hbox{\strut 
6=B-spline}}\tabularnewline
2 & INT & K & \vtop{\hbox{\strut Patch type}\hbox{\strut 
0=Unspecified}\hbox{\strut  1=Cartesian Product}}\tabularnewline
3 & INT & M & Number of u segments\tabularnewline
4 & INT & N & Number of v segments\tabularnewline
5 & REAL & TU1 & First break point in u\tabularnewline
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &\tabularnewline
5+M & REAL & TUM & Last break point in u\tabularnewline
6+M & REAL & TV1 & First break point in v\tabularnewline
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &\tabularnewline
5+M+N & REAL & TVN & Last break point in v\tabularnewline
7+M+N & REAL & Ax(1,1) & First coefficient for i,j = 1,1\tabularnewline
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &\tabularnewline
... & REAL & Sz(M,N) & Last coefficient for i,j = M,N\tabularnewline
\bottomrule
\end{longtable}

\paragraph{Point (Type 116)}\label{point-type-116}

Defines a point in 3D space.

\begin{longtable}[c]{@{}llll@{}}
\caption{Parameter Data}\tabularnewline
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endfirsthead
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endhead
1 & REAL & X & x coordinate of point\tabularnewline
2 & REAL & Y & y coordinate of point\tabularnewline
3 & REAL & Z & z coordinate of point\tabularnewline
4 & Pointer & P & Pointer to sub-figure entity, specifies display
symbol\tabularnewline
\bottomrule
\end{longtable}

\paragraph{Ruled Surface (Type 118)}\label{ruled-surface-type-118}

This is a surface formed by sweeping over an area between defined
curves. The sweep can be done by lines connecting points of equal arc
length (Form 0) or equal parametric values (Form1). Valid curves would
be points, lines, circles, conics, parametric splines, rational
B-splines, composite curves, or any parametric curves.

\begin{longtable}[c]{@{}llll@{}}
\caption{Parameter Data}\tabularnewline
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endfirsthead
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endhead
1 & Pointer & P1 & pointer to first curve\tabularnewline
2 & Pointer & P2 & pointer to second curve\tabularnewline
3 & INT & DirFlag & \vtop{\hbox{\strut Direction. 0=First to first, last
to last}\hbox{\strut  1=First to last, last to first}}\tabularnewline
4 & INT & DevFlag & \vtop{\hbox{\strut Developable: 0=Possibly
not}\hbox{\strut  1=Yes}}\tabularnewline
\bottomrule
\end{longtable}

\paragraph{Surface of Revolution (Type
120)}\label{surface-of-revolution-type-120}

This solid is formed by rotating a bounded surface on a specified axis
and recording the area it passes through.

\begin{longtable}[c]{@{}llll@{}}
\caption{Parameter Data}\tabularnewline
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endfirsthead
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endhead
1 & Pointer & Axis & Pointer to Line describing axis of
rotation\tabularnewline
2 & Pointer & Surface & Pointer to generatrix entity\tabularnewline
3 & REAL & SA & Start angle (Rad)\tabularnewline
4 & REAL & EA & End angle (Rad)\tabularnewline
\bottomrule
\end{longtable}

\paragraph{Tabulated Cylinder (Type
122)}\label{tabulated-cylinder-type-122}

Formed by moving a line segment parallel to itself along a curve called
the directrix. Curve may be any of: a line, a circular arc, a conic arc,
a parametric spline curve, or a rational B-spline curve.

\begin{longtable}[c]{@{}llll@{}}
\caption{Parameter Data}\tabularnewline
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endfirsthead
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endhead
1 & Pointer & Curve & Pointer to directrix\tabularnewline
2 & REAL & Lx & x coordinate of line end\tabularnewline
3 & REAL & Ly & y coordinate of line end\tabularnewline
4 & REAL & Lz & z coordinate of line end\tabularnewline
\bottomrule
\end{longtable}

\paragraph{Direction (Type 123)}\label{direction-type-123}

Gives a direction in 3 Dimensions, where x\^{}2 + y\^{}2 + z\^{}2
\textgreater{} 0

\begin{longtable}[c]{@{}llll@{}}
\caption{Parameter Data}\tabularnewline
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endfirsthead
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endhead
1 & REAL & X1 & x component\tabularnewline
2 & REAL & Y1 & y component\tabularnewline
3 & REAL & Z1 & z component\tabularnewline
\bottomrule
\end{longtable}

\paragraph{Transformation Matrix (Type
124)}\label{transformation-matrix-type-124}

Transforms entities by matrix multiplication and vector addition to give
a translation, as shown below:

\texttt{~~~~~~~~~~~\textbar{}~R11~~R12~~R13~\textbar{}~~~~~~~~~~\textbar{}~T1~\textbar{}~~~~~~~~~~~~~~}\\\texttt{~~~~~~~R=~~\textbar{}~R21~~R22~~R23~\textbar{}~~~~~T~=~~\textbar{}~T2~\textbar{}~~~~~~~~ET~=~RE~+~T,~where~E~is~the~entity~coordinate~}\\\texttt{~~~~~~~~~~~\textbar{}~R31~~R32~~R33~\textbar{}~~~~~~~~~~\textbar{}~T3~\textbar{}~~~~~~~~~~~}

\begin{longtable}[c]{@{}llll@{}}
\caption{Parameter Data}\tabularnewline
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endfirsthead
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endhead
1 & REAL & R11 & First row\tabularnewline
2 & REAL & R12 & ..\tabularnewline
3 & REAL & R13 & ..\tabularnewline
4 & REAL & T1 & First T vector value\tabularnewline
5 & REAL & R21 & Second row..\tabularnewline
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &\tabularnewline
12 & REAL & T3 & Third T vector value\tabularnewline
\bottomrule
\end{longtable}

\paragraph{Rational B-Spline Curve (Type
126)}\label{rational-b-spline-curve-type-126}

Composes analytic curves. Form: 0=Determined by data 1=Line 2=Circular
arc 3=Elliptical arc 4=Parabolic arc 5=Hyperbolic arc

\begin{longtable}[c]{@{}llll@{}}
\caption{Parameter Data}\tabularnewline
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endfirsthead
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endhead
1 & INT & K & Upper index of sum\tabularnewline
2 & INT & M & Degree of basis functions\tabularnewline
3 & INT & Flag1 & 0=nonplanar, 1=planar\tabularnewline
4 & INT & Flag2 & 0=open curve, 1=closed curve\tabularnewline
5 & INT & Flag3 & 0=rational, 1=polynomial\tabularnewline
6 & INT & Flag4 & 0=nonperiodic , 1=periodic\tabularnewline
7 & REAL & T1 & First value of knot sequence\tabularnewline
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &\tabularnewline
8+K+M & REAL & T(1+K+M) & Last value of knot sequence\tabularnewline
9+K+M & REAL & W0 & First weight\tabularnewline
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &\tabularnewline
9+2K+M & REAL & WK & Last weight\tabularnewline
10+2K+M & REAL & X0 & x of first control point\tabularnewline
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &\tabularnewline
12+5*K+M & REAL & ZK & z of last control point\tabularnewline
13+5*K+M & REAL & V0 & Start parameter value\tabularnewline
14+5*K+M & REAL & V1 & End parameter value\tabularnewline
14+5*K+M & REAL & XN & Unit normal x (if planar) \textbar{}-Composes a
series of curves\tabularnewline
16+5*K+M & REAL & ZN & Unit normal z (if planar)\tabularnewline
\tabularnewline
\bottomrule
\end{longtable}

\paragraph{Rational B-Spline Surface (Type
128)}\label{rational-b-spline-surface-type-128}

This is a surface entity defined by multiple surfaces. The form number
describes the general type: 0=determined from data, 1=Plane, 2=Right
circular cylinder, 3=Cone, 4=Sphere, 5=Torus, 6=Surface of revolution,
7=Tabulated cylinder, 8=Ruled surface, 9=General quadratic surface.

\begin{longtable}[c]{@{}llll@{}}
\caption{Parameter Data}\tabularnewline
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endfirsthead
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endhead
1 & INT & K2 & Upper index of first sum\tabularnewline
2 & INT & K1 & Upper index of second sum\tabularnewline
3 & INT & M1 & Degree of first basis functions\tabularnewline
4 & INT & M2 & Degree of second basis functions\tabularnewline
5 & INT & Flag1 & 0=closed in first direction, 1=not
closed\tabularnewline
6 & INT & Flag2 & 0=closed in second direction, 1=not
closed\tabularnewline
7 & INT & Flag3 & 0=rational, 1=polynomial\tabularnewline
8 & INT & Flag4 & 0=nonperiodic in first direction ,
1=periodic\tabularnewline
9 & INT & Flag5 & 0=nonperiodic in second direction ,
1=periodic\tabularnewline
10 & REAL & T1(0) & First value of first knot sequence\tabularnewline
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &\tabularnewline
11+K1+M1 & REAL & T1(1+K1+M1) & Last value of first knot
sequence\tabularnewline
12+K1+M1 & REAL & T2(0) & First value of second knot
sequence\tabularnewline
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &\tabularnewline
13+K1+M1+K2+M2 & REAL & T2(1+K2+M2) & Last value of second knot
sequence\tabularnewline
14+K1+M1+K2+M2 & REAL & W(0,0) & First weight\tabularnewline
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &\tabularnewline
14+K1+K2+M1+M2+(1+K1)(1+K2) & REAL & W(K1,K2) & Last
weight\tabularnewline
\^{}+1 & REAL & X(0,0) & x of first control point\tabularnewline
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &\tabularnewline
\^{}+9+3(1+K1)(1+K2) & REAL & K(K1)(K2) & z of last control
point\tabularnewline
\^{}+1 & REAL & U0 & Start first parameter value\tabularnewline
\^{}+1 & REAL & U1 & End first parameter value\tabularnewline
\^{}+1 & REAL & V0 & Start second parameter value\tabularnewline
\^{}+1 & REAL & V1 & End second parameter value\tabularnewline
\bottomrule
\end{longtable}

\paragraph{Offset Curve (Type 130)}\label{offset-curve-type-130}

Contains the data to determine curve offsets

\begin{longtable}[c]{@{}llll@{}}
\caption{Parameter Data}\tabularnewline
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endfirsthead
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endhead
1 & Pointer & Curve & Curve to be offset\tabularnewline
2 & INT & Flag1 & \vtop{\hbox{\strut Offset distance}\hbox{\strut 
1=Single value offset}\hbox{\strut  2=Offset distance varying
linearly}\hbox{\strut  3=Offset distance as a function}}\tabularnewline
3 & Pointer & Offset & Pointer to curve describing offset
(Flag1=3)\tabularnewline
4 & INT & Dim & Coordinate of offset curve to use
(Flag1=3)\tabularnewline
5 & INT & Flag2 & \vtop{\hbox{\strut Tapered offset type:}\hbox{\strut 
1=Function of arc length}\hbox{\strut  2=Function of parameter (Flag1=2,
3)}}\tabularnewline
6 & REAL & D1 & First offset distance(Flag1=1, 2)\tabularnewline
7 & REAL & TD1 & Arc length/parameter value (Flag1=2)\tabularnewline
8 & REAL & D2 & Second offset distance\tabularnewline
9 & REAL & TD2 & Second arc length/parameter value
(Flag1=2)\tabularnewline
10 & REAL & X & X value of normal vector\tabularnewline
11 & REAL & Y & Y value of normal vector\tabularnewline
12 & REAL & Z & Z value of normal vector\tabularnewline
13 & REAL & TT1 & Offset curve start parameter value\tabularnewline
14 & REAL & TT2 & Offset curve end parameter value\tabularnewline
\bottomrule
\end{longtable}

\paragraph{Offset Surface (Type 140)}\label{offset-surface-type-140}

Gives the data necessary to calculate the offset surface from a
particular surface.

\begin{longtable}[c]{@{}llll@{}}
\caption{Parameter Data}\tabularnewline
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endfirsthead
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endhead
1 & REAL & NX & X coordinate of offset indicator\tabularnewline
2 & REAL & NY & Y coordinate of offset indicator\tabularnewline
3 & REAL & Nz & z coordinate of offset indicator\tabularnewline
4 & REAL & D & \vtop{\hbox{\strut Distance by which surface is
offset}\hbox{\strut  from indicator}}\tabularnewline
5 & Pointer & Surface & Pointer to surface to be offset\tabularnewline
\bottomrule
\end{longtable}

\paragraph{Boundary (Type 141)}\label{boundary-type-141}

Identifies a surface boundary consisting of curves lying on a surface.

\begin{longtable}[c]{@{}llll@{}}
\caption{Parameter Data}\tabularnewline
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endfirsthead
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endhead
1 & INT & Type & \vtop{\hbox{\strut The type of boundary being
represented}\hbox{\strut  0=Entities reference model space
curves}\hbox{\strut  1=Entities reference model space curves
and}\hbox{\strut  associated parameter space curves}}\tabularnewline
2 & INT & Pref & \vtop{\hbox{\strut Preferred representation of trimming
curves.}\hbox{\strut  0 = Unspecified}\hbox{\strut  1 = Model
Space}\hbox{\strut  2 = Parameter Space}\hbox{\strut  3 =
Equal}}\tabularnewline
3 & Pointer & Surface & The untrimmed surface to be
bounded\tabularnewline
4 & INT & N & Number of curves in boundary\tabularnewline
5 & Pointer & MC1 & Pointer to first model space curve\tabularnewline
6 & INT & Flag 1 & \vtop{\hbox{\strut Orientation flag: 0 = No
reversal}\hbox{\strut  1 = Reversal needed}}\tabularnewline
7 & INT & K1 & How many parameter curves for this model
curve\tabularnewline
8 & Pointer & PC(1,1) & First parameter curve for model curve
1\tabularnewline
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &\tabularnewline
7+K1 & Pointer & PC(1,K1) & Last parameter curve for model curve
1\tabularnewline
8+K1 & Pointer & MC2 & Model curve 2\tabularnewline
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &\tabularnewline
11+3N+Sum(K(N)) & Pointer & PC(N,KN) & Last parameter curve for model
curve N\tabularnewline
\bottomrule
\end{longtable}

\paragraph{Curve on a Parametric Surface (Type
142)}\label{curve-on-a-parametric-surface-type-142}

Associates a curve and a surface, gives how a curve lies on the
specified surface.

\begin{longtable}[c]{@{}llll@{}}
\caption{Parameter Data}\tabularnewline
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endfirsthead
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endhead
1 & INT & Flag1 & \vtop{\hbox{\strut Indicates how curve was
created:}\hbox{\strut  0 = Unspecified}\hbox{\strut  1 =
Projection}\hbox{\strut  2 = Intersection of surfaces}\hbox{\strut  3 =
Isoparametric curve}}\tabularnewline
2 & Pointer & Surface & Points to surface curve lies on\tabularnewline
3 & Pointer & Curve & Definition of curve\tabularnewline
4 & Pointer & Mapping & Entity that provides mapping from curve to
surface\tabularnewline
5 & INT & Representation & \vtop{\hbox{\strut Preferred representation
of curve:}\hbox{\strut  0 = Unspecified}\hbox{\strut  1 =
S(B(t))}\hbox{\strut  2 = C(t)}\hbox{\strut  3 = Both
equal}}\tabularnewline
\bottomrule
\end{longtable}

\paragraph{Bounded Surface (Type 143)}\label{bounded-surface-type-143}

Represents a surface bounded by Boundary Entities.

\begin{longtable}[c]{@{}llll@{}}
\caption{Parameter Data}\tabularnewline
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endfirsthead
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endhead
1 & INT & Type & \vtop{\hbox{\strut The type of boundary being
represented}\hbox{\strut  0=Entities reference model space
curves}\hbox{\strut  1=Entities reference model space curves
and}\hbox{\strut  associated parameter space curves}}\tabularnewline
2 & Pointer & Surface & Points to unbounded surface\tabularnewline
3 & INT & N & Number of Boundary entities\tabularnewline
4 & Pointer & B1 & Pointer to first boundary entity\tabularnewline
3+N & Pointer & BN & Pointer to last boundary entity\tabularnewline
\bottomrule
\end{longtable}

\paragraph{Trimmed Surface (Type 144)}\label{trimmed-surface-type-144}

Describes a surface trimmed by a boundary consisting of boundary Curves.

\begin{longtable}[c]{@{}llll@{}}
\caption{Parameter Data}\tabularnewline
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endfirsthead
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endhead
1 & Pointer & Surface & Entity to be trimmed\tabularnewline
2 & INT & Flag & 0=Boundary is boundary of surface,
1=otherwise\tabularnewline
3 & INT & N & Number of closed curves that make up inner
boundary\tabularnewline
4 & Pointer & OuterBound & \vtop{\hbox{\strut Pointer to Curve on
Parametric Surface}\hbox{\strut  (Type 142) entity that is outer
bound}}\tabularnewline
5 & Pointer & Inner1 & Pointer to first inner curve
boundary\tabularnewline
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &
\vtop{\hbox{\strut .}\hbox{\strut .}} &\tabularnewline
5+N & Pointer & InnerN & Pointer to last inner curve
boundary\tabularnewline
\bottomrule
\end{longtable}

\paragraph{Block (Type 150)}\label{block-type-150}

Defines a CSG Block object.

\begin{longtable}[c]{@{}llll@{}}
\caption{Parameter Data}\tabularnewline
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endfirsthead
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endhead
1 & REAL & LX & Side length along x axis\tabularnewline
2 & REAL & LY & Side length along y axis\tabularnewline
3 & REAL & LZ & Side length along z axis\tabularnewline
4 & REAL & X & Corner x coordinate\tabularnewline
5 & REAL & Y & Corner y coordinate\tabularnewline
6 & REAL & Z & Corner z coordinate\tabularnewline
7 & REAL & Xi & Unit vector along x direction\tabularnewline
8 & REAL & Xj &\tabularnewline
9 & REAL & Xk &\tabularnewline
10 & REAL & Zi & Unit vector along z direction\tabularnewline
11 & REAL & Zj &\tabularnewline
12 & REAL & Zk &\tabularnewline
\bottomrule
\end{longtable}

\paragraph{Right Angular Wedge (Type
152)}\label{right-angular-wedge-type-152}

Defines a CSG Wedge

\begin{longtable}[c]{@{}llll@{}}
\caption{Parameter Data}\tabularnewline
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endfirsthead
\toprule
Index in list & Type of data & Name & Description\tabularnewline
\midrule
\endhead
1 & REAL & LX & Size along x axis\tabularnewline
For faster browsing, not all history is shown. View entire blame