Commit 865a7f7f authored by Albert Hofkamp's avatar Albert Hofkamp
Browse files

#344 Use DSM extension for dsm data files.

parent 6f2fc93f
Pipeline #3833 failed with stage
in 0 seconds
......@@ -33,7 +33,7 @@ indexterm:[DSM clustering,start]
The clustering tool can be started in the following ways:
* In Eclipse, right click a `.csv` file in the _Project Explorer_ tab or _Package Explorer_ tab and choose menu:Cluster a DSM... .
* In Eclipse, right click a `.dsm` file in the _Project Explorer_ tab or _Package Explorer_ tab and choose menu:Cluster a DSM... .
* Use the `dsmclustering` tool in a ToolDef script.
See the <<tools-scripting-chapter-intro,scripting documentation>> and <<tools-scripting-chapter-tools,tools overview>> page for details.
......@@ -46,10 +46,10 @@ indexterm:[DSM clustering,options]
Besides the general application options, this application has the following options:
* _Input file path_: The absolute or relative file system path to the input CSV input file.
* _Input file path_: The absolute or relative file system path to the input DSM input file.
* _Output file path_: The absolute or relative file system path for writing the generated CSV output file.
By default, the output file path is the same as the input file path, but with the `.csv` extension removed (if it exists), and the `_output.csv` extension added.
* _Output file path_: The absolute or relative file system path for writing the generated DSM output file.
By default, the output file path is the same as the input file path, but with the `.dsm` extension removed (if it exists), and the `_output.dsm` extension added.
By setting this option, the default is overridden by the given value.
* _Evaporation factor_: Factor that influences when a node is considered to be part of a cluster.
......
......@@ -22,8 +22,8 @@ from "lib:common" import *;
// Wilschut T. System specification and design structuring methods for a
// lock product platform. Eindhoven: Technische Universiteit Eindhoven, 2018. 178 p.
dsm_clustering("pimmler.csv",
"-o pimmler1_out.csv",
dsm_clustering("pimmler.dsm",
"-o pimmler1_out.dsm",
"-m debug",
"--evaporation=1.5",
"--inflation=2",
......@@ -31,8 +31,8 @@ dsm_clustering("pimmler.csv",
"--convergence=1e-10",
"--stepcount=2");
dsm_clustering("pimmler.csv",
"-o pimmler2_out.csv",
dsm_clustering("pimmler.dsm",
"-o pimmler2_out.dsm",
"-m debug",
"--evaporation=2.5",
"--inflation=2.5",
......@@ -40,8 +40,8 @@ dsm_clustering("pimmler.csv",
"--convergence=1e-10",
"--stepcount=2");
dsm_clustering("pimmler.csv",
"-o pimmler3_out.csv",
dsm_clustering("pimmler.dsm",
"-o pimmler3_out.dsm",
"-m debug",
"--evaporation=1.5",
"--inflation=2",
......@@ -49,8 +49,8 @@ dsm_clustering("pimmler.csv",
"--convergence=1e-10",
"--stepcount=2");
dsm_clustering("pimmler.csv",
"-o pimmler4_out.csv",
dsm_clustering("pimmler.dsm",
"-o pimmler4_out.dsm",
"-m debug",
"--evaporation=1.5",
"--inflation=2",
......@@ -58,8 +58,8 @@ dsm_clustering("pimmler.csv",
"--convergence=1e-10",
"--stepcount=2");
dsm_clustering("pimmler.csv",
"-o pimmler5_out.csv",
dsm_clustering("pimmler.dsm",
"-o pimmler5_out.dsm",
"-m debug",
"--evaporation=1.5",
"--inflation=1.5",
......
......@@ -13,7 +13,7 @@
from "lib:common" import *;
dsm_clustering("themePark.csv",
dsm_clustering("theme_park.dsm",
"-m debug",
"--evaporation=2",
"--inflation=1.5",
......
......@@ -30,7 +30,7 @@
<iterate>
<adapt type="org.eclipse.core.resources.IFile">
<test property="org.eclipse.core.resources.name"
value="*.csv"/>
value="*.dsm"/>
</adapt>
</iterate>
<count value="1"/>
......
......@@ -82,7 +82,7 @@ public class DsmApplication extends Application<IOutputComponent> {
inputData.stepCount = DsmStepCountOption.getStepCountValue();
Dsm dsm = flowBasedMarkovClustering(inputData);
String outPath = Paths.resolve(OutputFileOption.getDerivedPath(".csv", "_out.csv"));
String outPath = Paths.resolve(OutputFileOption.getDerivedPath(".dsm", "_out.dsm"));
try (FileAppStream stream = new FileAppStream(outPath)) {
Label[] labels = shuffleArray(inputData.labels, dsm.nodeShuffle);
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment