diff --git a/src/loss/classification/BCE.cpp b/src/loss/classification/BCE.cpp index d80dd2749ae8e4128e9fc5b07740647854d7f5bb..722184eb5d1aa860d06d4e09e10e6c80dcf1e242 100644 --- a/src/loss/classification/BCE.cpp +++ b/src/loss/classification/BCE.cpp @@ -123,7 +123,7 @@ Aidge::Tensor Aidge::loss::BCE(std::shared_ptr<Tensor>& prediction, // Define node: gradient const std::shared_ptr<Node> gradient_node = Mul("gradient"); div1_node->addChild(gradient_node, 0, 0); - Producer(std::make_shared<Tensor>(Array1D<float, 1>{{-1.0f/float(target->dims()[0])}})) + Producer(std::make_shared<Tensor>(Array1D<float, 1>{{-1.0f/float(target->size())}})) ->addChild(gradient_node, 0, 1); // Create GraphView diff --git a/src/loss/regression/MSE.cpp b/src/loss/regression/MSE.cpp index f6ad9cfa2fa67e84494c5566f986902e8073b569..b82eab83209cc06e6cecd812093052dac7647969 100644 --- a/src/loss/regression/MSE.cpp +++ b/src/loss/regression/MSE.cpp @@ -83,7 +83,7 @@ Aidge::Tensor Aidge::loss::MSE(std::shared_ptr<Tensor>& prediction, // Note: this assume target is [nbBatch, nbChan] Producer(std::make_shared<Tensor>( - Array1D<float, 1>{{2 / float(target->dims()[0])}})) + Array1D<float, 1>{{2 / float(target->size())}})) ->addChild(mul_node, 0, 1); sub_node->addChild(mul_node, 0, 0); // Error computation branch !