diff --git a/aidge_export_cpp/operators.py b/aidge_export_cpp/operators.py index 7d2600fcec0bc255d5eb04fb723b193a91db31a3..a27923f56b4aba37d702ea6ceba301885e3acb81 100644 --- a/aidge_export_cpp/operators.py +++ b/aidge_export_cpp/operators.py @@ -126,7 +126,7 @@ class ReLUCPP(ExportNode): list_actions.append(generate_str( str(ROOT / "templates" / "kernel_forward" / "activation_forward.jinja"), name=self.name, - input_name=self.inputs[0].name() if self.inputs[0] else self.name + "_input", + input_name=f"{self.name}_input" if self.inputs[0] is None else self.inputs[0].name(), output_name=self.name )) return list_actions @@ -191,10 +191,10 @@ class ConvCPP(ExportNode): list_actions.append(generate_str( str(ROOT / "templates" / "kernel_forward" / "convolution_forward.jinja"), name=self.name, - input_name=self.inputs[0].name() if self.inputs[0] else self.name + "_input", + input_name=f"{self.name}_input_0" if self.inputs[0] is None else self.inputs[0].name(), output_name=self.name, - weights_name=self.inputs[1].name(), - biases_name=self.inputs[2].name() + weights_name=f"{self.name}_input_1" if self.inputs[1] is None else self.inputs[1].name(), + biases_name=f"{self.name}_input_2" if self.inputs[2] is None else self.inputs[2].name() )) return list_actions @@ -251,8 +251,8 @@ class AddCPP(ExportNode): list_actions.append(generate_str( str(ROOT / "templates" / "kernel_forward" / "elemwise_forward.jinja"), name=self.name, - inputs1_name=self.parents[0].name() if self.parents[0] else self.name + "_input1", - inputs2_name=self.parents[1].name() if self.parents[1] else self.name + "_input2", + inputs1_name=self.inputs[0].name() if self.inputs[0] else self.name + "_input1", + inputs2_name=self.inputs[1].name() if self.inputs[1] else self.name + "_input2", output_name=self.name )) return list_actions @@ -284,15 +284,15 @@ class SubCPP(ExportNode): list_actions.append(generate_str( str(ROOT / "templates" / "kernel_forward" / "elemwise_forward.jinja"), name=self.name, - inputs1_name=self.inputs[0].name() if self.inputs[0] else self.name + "_input1", - inputs2_name=self.inputs[1].name() if self.inputs[1] else self.name + "_input2", + inputs1_name=f"{self.name}_input_0" if self.inputs[0] is None else self.inputs[0].name(), + inputs2_name=f"{self.name}_input_1" if self.inputs[1] is None else self.inputs[1].name(), output_name=self.name )) return list_actions @operator_register("PaddedMaxPooling") -class MaxPoolCPP(ExportNode): +class PaddedMaxPoolCPP(ExportNode): def __init__(self, node): super().__init__(node) for n in self.operator.get_micro_graph().get_nodes(): @@ -342,9 +342,7 @@ class MaxPoolCPP(ExportNode): list_actions.append(generate_str( str(ROOT / "templates" / "kernel_forward" / "pooling_forward.jinja"), name=self.name, - input_name=f"{self.name}_0" if self.inputs[0] is None else self.inputs[0].name(), - inputs1_name=self.inputs[0].name() if self.inputs[0] else self.name + "_input1", - inputs2_name=self.inputs[1].name() if self.inputs[1] else self.name + "_input2", + input_name=f"{self.name}_input_0" if self.inputs[0] is None else self.inputs[0].name(), output_name=self.name )) return list_actions @@ -457,9 +455,9 @@ class FcCPP(ExportNode): list_actions.append(generate_str( str(ROOT / "templates" / "kernel_forward" / "fullyconnected_forward.jinja"), name=self.name, - inputs_name= self.inputs[0].name() if (self.inputs[0] is not None) else self.name + '_input', + inputs_name=f"{self.name}_input" if self.inputs[0] is None else self.inputs[0].name(), weights_name=self.inputs[1].name(), - biases_name=self.inputs[2].name(), + biases_name=self.inputs[2].name(), # TODO we should check if bias outputs_name=self.name )) return list_actions