diff --git a/aidge_export_cpp/kernels/convolution.hpp b/aidge_export_cpp/kernels/convolution.hpp index 6ea9f0579b84dd5a28a5ea66a778326fcd9c84ce..38c8ad7f6142947bff0d0c9c9766933b3c02a3c4 100644 --- a/aidge_export_cpp/kernels/convolution.hpp +++ b/aidge_export_cpp/kernels/convolution.hpp @@ -62,7 +62,7 @@ void convolution_forward( const int ix = (ox * STRIDE_X) - PADDING_X; const int oPos = (ox + OUTPUTS_WIDTH * oy); - int oOffset = NB_OUTPUTS * oPos; + const int oOffset = NB_OUTPUTS * oPos; // <-- // Check if the biases are defined @@ -77,7 +77,7 @@ void convolution_forward( } const int iPos = ix + CHANNELS_WIDTH * (iy + sy*DILATION_Y); - int iOffset = NB_CHANNELS * iPos; + const int iOffset = NB_CHANNELS * iPos; const int wOffset = (output*KERNEL_HEIGHT + sy) * KERNEL_WIDTH * NB_CHANNELS; @@ -98,7 +98,7 @@ void convolution_forward( continue; } - int iOffsetInRange = iOffset + const int iOffsetInRange = iOffset + sx * DILATION_X * NB_CHANNELS; macsOnRange<NB_CHANNELS>( @@ -157,4 +157,114 @@ void convolution_forward( (inputs, outputs, weights, b, rescaling); } +template<int NB_CHANNELS, + int CHANNELS_HEIGHT, int CHANNELS_WIDTH, + int NB_OUTPUTS, + int OUTPUTS_HEIGHT, int OUTPUTS_WIDTH, + int PADDING_Y, int PADDING_X, + int STRIDE_Y, int STRIDE_X, + int DILATION_Y, int DILATION_X, + int KERNEL_HEIGHT, int KERNEL_WIDTH, + ActivationFunction_T ACTIVATION, + typename Input_T, typename Output_T, + typename Weight_T, typename Bias_T, + typename Rescaling_T> +__attribute__((always_inline)) inline +void convolution_depthwise_forward( + const Input_T* __restrict inputs, + Output_T* __restrict outputs, + const Weight_T* __restrict weights, + const Bias_T* __restrict biases, + const Rescaling_T& __restrict rescaling) +{ + static_assert(NB_OUTPUTS % NB_CHANNELS == 0, + "NB_OUTPUTS should be a multiple of NB_CHANNELS."); + static_assert(DILATION_Y == 1, + "DILATION_Y != 1 not supported."); + static_assert(DILATION_X == 1, + "DILATION_X != 1 not supported."); + + constexpr int OUTPUTS_HEIGHT_NOPAD + = (CHANNELS_HEIGHT - KERNEL_HEIGHT + STRIDE_Y) / STRIDE_Y; + constexpr int OUTPUTS_WIDTH_NOPAD + = (CHANNELS_WIDTH - KERNEL_WIDTH + STRIDE_X) / STRIDE_X; + + for (int oy = 0; oy < OUTPUTS_HEIGHT; ++oy) { + const int syMin = (PADDING_Y == 0) ? 0 + : max(PADDING_Y - (oy * STRIDE_Y), 0); + const int syMax = (PADDING_Y == 0 + && OUTPUTS_HEIGHT == OUTPUTS_HEIGHT_NOPAD) ? KERNEL_HEIGHT + : clamp(CHANNELS_HEIGHT + PADDING_Y - (oy * STRIDE_Y), + 0, KERNEL_HEIGHT); + const int iy = (oy * STRIDE_Y) - PADDING_Y; + +#pragma omp parallel for collapse(2) + for (int ox = 0; ox < OUTPUTS_WIDTH; ++ox) { + for (int output = 0; output < NB_OUTPUTS; ++output) { + // moved to inner loop for collapsing --> + const int sxMin = (PADDING_X == 0) ? 0 + : max(PADDING_X - (ox * STRIDE_X), 0); + const int sxMax = (PADDING_X == 0 + && OUTPUTS_WIDTH == OUTPUTS_WIDTH_NOPAD) + ? KERNEL_WIDTH + : clamp(CHANNELS_WIDTH + PADDING_X - (ox * STRIDE_X), + 0, KERNEL_WIDTH); + const int ix = (ox * STRIDE_X) - PADDING_X; + + const int oPos = (ox + OUTPUTS_WIDTH * oy); + const int oOffset = NB_OUTPUTS * oPos; + // <-- + + const int channel = (output * NB_CHANNELS) / NB_OUTPUTS; + + Bias_T weightedSum = biases ? biases[output] : 0; + + for (int sy = 0; sy < KERNEL_HEIGHT; ++sy) { + if ((PADDING_Y != 0 + || OUTPUTS_HEIGHT != OUTPUTS_HEIGHT_NOPAD) + && sy >= syMax - syMin) + { + break; + } + + const int iPos = ((sxMin + ix) + + CHANNELS_WIDTH * (iy + syMin + sy)); + int iOffset = NB_CHANNELS * iPos; + + const int wOffset = (sxMin + + KERNEL_WIDTH * (syMin + sy + KERNEL_HEIGHT * output)); + + if ((PADDING_X == 0 + && OUTPUTS_WIDTH == OUTPUTS_WIDTH_NOPAD) + || sxMax - sxMin == KERNEL_WIDTH) + { + macsOnRange<KERNEL_WIDTH, NB_CHANNELS>( + inputs + iOffset + channel, + weights + wOffset, + weightedSum); + } + else { + for (int sx = 0; sx < KERNEL_WIDTH; ++sx) { + if ((PADDING_X != 0 + || OUTPUTS_WIDTH != OUTPUTS_WIDTH_NOPAD) + && sx >= sxMax - sxMin) + { + break; + } + + const int iOffsetInRange = iOffset + + sx * NB_CHANNELS; + + weightedSum += inputs[iOffsetInRange + channel] + * weights[wOffset + sx]; + } + } + } + + outputs[oOffset + output] = activation_forward_value<Output_T>(weightedSum, output, ACTIVATION, rescaling); + } + } + } +} + #endif // __AIDGE_EXPORT_CPP_KERNELS_CONVOLUTION__ diff --git a/aidge_export_cpp/operators.py b/aidge_export_cpp/operators.py index 26ca62155401707573d9625ad91a9b63cb1b4d2b..b6121e4a8ca5666e2c449ee821d7119b40934362 100644 --- a/aidge_export_cpp/operators.py +++ b/aidge_export_cpp/operators.py @@ -187,6 +187,39 @@ class PaddedConvCPP(ExportNodeCpp): _setup_conv2D(self) +@ExportLibCpp.register("ConvDepthWise2D", aidge_core.ImplSpec(aidge_core.IOSpec(aidge_core.dtype.float32))) +class ConvCPP(ExportNodeCpp): + def __init__(self, node, mem_info): + super().__init__(node, mem_info) + self.attributes["depthwise"] = True + + # No padding with Conv + # Use PaddedConv to add padding attribute + self.attributes["padding"] = [0, 0] + + _setup_conv2D(self) + +@ExportLibCpp.register_metaop("PaddedConvDepthWise2D", aidge_core.ImplSpec(aidge_core.IOSpec(aidge_core.dtype.float32))) +class PaddedConvCPP(ExportNodeCpp): + def __init__(self, node, mem_info): + super().__init__(node, mem_info) + self.attributes["depthwise"] = True + + # TODO find a way to retrive attr for meta op + for n in self.operator.get_micro_graph().get_nodes(): + if n.type() == "Pad2D": + self.attributes["padding"] = n.get_operator( + ).attr.begin_end_borders + if n.type() == "ConvDepthWise2D": + self.attributes["kernel_dims"] = n.get_operator( + ).attr.kernel_dims + self.attributes["stride_dims"] = n.get_operator( + ).attr.stride_dims + self.attributes["dilation_dims"] = n.get_operator( + ).attr.dilation_dims + + _setup_conv2D(self) + def _setup_elemwise_op(elemwise, op): """Common code (template and kernel setup) shared across all the different elementWise operator (Add, Sub,...).""" diff --git a/aidge_export_cpp/templates/kernel_forward/convolution_forward.jinja b/aidge_export_cpp/templates/kernel_forward/convolution_forward.jinja index 421013b9590dabe6ee0ac12f969494913414a530..7d0af8c6f75df47825e67a8b47258c3f8469fc6a 100644 --- a/aidge_export_cpp/templates/kernel_forward/convolution_forward.jinja +++ b/aidge_export_cpp/templates/kernel_forward/convolution_forward.jinja @@ -1,6 +1,6 @@ {% filter indent(width=4, first=False) %} {% include "./_mem_offset.jinja" %} -convolution_forward<{{ in_name[0]|upper }}_NB_CHANNELS, +convolution{{ "_depthwise" if depthwise is defined else "" }}_forward<{{ in_name[0]|upper }}_NB_CHANNELS, {{ in_name[0]|upper }}_IN_HEIGHT, {{ in_name[0]|upper }}_IN_WIDTH, {{ out_name[0]|upper }}_NB_OUTPUTS, diff --git a/aidge_export_cpp/unit_tests/test_export.py b/aidge_export_cpp/unit_tests/test_export.py index 607778d23deda862db73f5908fd1caa6ccc1d95b..387c59519b3c41294444267a23c24e4ec704ee22 100644 --- a/aidge_export_cpp/unit_tests/test_export.py +++ b/aidge_export_cpp/unit_tests/test_export.py @@ -410,6 +410,14 @@ class test_operator_export(unittest.TestCase): self.unit_test_export(model, "Conv2D", [[1, 3, 12, 12]], False, False) + def test_export_convDepthWise2D(self): + print("Conv2D") + model = aidge_core.sequential([ + aidge_core.ConvDepthWise2D(nb_channels=3, kernel_dims=(3, 3), name="conv") + ]) + + self.unit_test_export(model, "ConvDepthWise2D", [[1, 3, 12, 12]], False, False) + def test_export_max_pooling(self): print("MaxPooling2D") model = aidge_core.sequential([