/******************************************************************************** * Copyright (c) 2023 CEA-List * * This program and the accompanying materials are made available under the * terms of the Eclipse Public License 2.0 which is available at * http://www.eclipse.org/legal/epl-2.0. * * SPDX-License-Identifier: EPL-2.0 * ********************************************************************************/ #include "aidge/operator/AvgPooling.hpp" #include <cmath> // std::floor #include <cstddef> // std::size_t #include <stdexcept> // std::runtime_error #include <string> #include <utility> // std::pair #include <vector> #include "aidge/data/Tensor.hpp" #include "aidge/utils/ErrorHandling.hpp" #include "aidge/utils/Registrar.hpp" #include "aidge/utils/Types.h" template <Aidge::DimIdx_t DIM> const std::string Aidge::AvgPooling_Op<DIM>::Type = "AvgPooling"; template <Aidge::DimIdx_t DIM> Aidge::AvgPooling_Op<DIM>::AvgPooling_Op(const AvgPooling_Op<DIM>& op): OperatorTensor(op), Attributes_(op) { if (op.mImpl) { SET_IMPL_MACRO(AvgPooling_Op<DIM>, *this, op.backend()); } else { mImpl = nullptr; } } template <Aidge::DimIdx_t DIM> void Aidge::AvgPooling_Op<DIM>::computeOutputDims() { // check inputs have been associated if (!getInput(0)) { AIDGE_THROW_OR_ABORT(std::runtime_error, "{}: input #0 should be associated with a Tensor", type()); } if (!(getInput(0)->empty())) { std::array<DimSize_t, DIM + 2> outputDims; const std::array<DimSize_t, DIM + 2> inputDims(getInput(0)->template dims<DIM+2>()); outputDims[0] = inputDims[0]; outputDims[1] = inputDims[1]; for (std::size_t dim = 0; dim < this->template getAttr<AvgPoolingAttr::KernelDims>().size() ; ++dim) { outputDims[dim+2] = 1 + static_cast<DimSize_t>( std::floor(static_cast<float>(inputDims[dim+2] - this->template getAttr<AvgPoolingAttr::KernelDims>()[dim]) / static_cast<float>(this->template getAttr<AvgPoolingAttr::StrideDims>()[dim]))); } getOutput(0)->resize(outputDims); } } template <Aidge::DimIdx_t DIM> std::vector<std::pair<std::vector<Aidge::DimSize_t>, std::vector<Aidge::DimSize_t>>> Aidge::AvgPooling_Op<DIM>::computeReceptiveField(const std::vector<Aidge::DimSize_t>& firstEltDims, const std::vector<Aidge::DimSize_t>& outputDims, const Aidge::IOIndex_t outputIdx) const { if (outputIdx != 0) { AIDGE_THROW_OR_ABORT(std::runtime_error, "Conv_Op Operator has got only one output Tensor."); } if (firstEltDims.size() != outputDims.size()) { AIDGE_THROW_OR_ABORT(std::runtime_error, "outputDims and firstEltDims should have the size of the output Tensor dimensions."); } if ((outputDims.size() == (DIM+2)) && outputDimsForwarded()) { // Offset std::vector<DimSize_t> inputIdxDims = firstEltDims; for (DimIdx_t i = 0; i < (DIM+2); ++i) { if (((outputDims[i] + firstEltDims[i]) > mOutputs[0]->template dims<DIM+2>()[i]) || (outputDims[i] == 0)) { AIDGE_THROW_OR_ABORT(std::runtime_error, "Given outputDim out of range for dimension {} ({} + {})", static_cast<std::size_t>(i), firstEltDims[i], outputDims[i]); } } // padding is not a parameter of Conv_Op. It is handled in Pad_Op Operator // Width std::vector<DimSize_t> inputDims; inputDims.push_back(outputDims[0]); // same batch value inputDims.push_back(outputDims[1]); // same channel value for (DimIdx_t i = 0; i < DIM; ++i) { inputDims.push_back((outputDims[2+static_cast<std::size_t>(i)] - 1) * this->template getAttr<AvgPoolingAttr::StrideDims>()[static_cast<std::size_t>(i)] + 1 + (this->template getAttr<AvgPoolingAttr::KernelDims>()[static_cast<std::size_t>(i)] - 1)); inputIdxDims[2+i] *= this->template getAttr<AvgPoolingAttr::StrideDims>()[static_cast<std::size_t>(i)]; } std::vector<std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>> res; res.push_back(std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>(inputIdxDims, inputDims)); return res; } AIDGE_THROW_OR_ABORT(std::runtime_error, "Given outputDim out of range or output dim not forwarded yet."); } template <Aidge::DimIdx_t DIM> void Aidge::AvgPooling_Op<DIM>::setBackend(const std::string &name, Aidge::DeviceIdx_t device) { SET_IMPL_MACRO(AvgPooling_Op<DIM>, *this, name); mOutputs[0]->setBackend(name, device); } template class Aidge::AvgPooling_Op<1>; template class Aidge::AvgPooling_Op<2>; template class Aidge::AvgPooling_Op<3>; template class Aidge::AvgPooling_Op<4>;