/******************************************************************************** * Copyright (c) 2023 CEA-List * * This program and the accompanying materials are made available under the * terms of the Eclipse Public License 2.0 which is available at * http://www.eclipse.org/legal/epl-2.0. * * SPDX-License-Identifier: EPL-2.0 * ********************************************************************************/ #include "aidge/filler/Filler.hpp" #include <cstdint> // std::uint32_t #include <memory> #include <string> #include <vector> #include "aidge/data/Tensor.hpp" #include "aidge/utils/ErrorHandling.hpp" #include "aidge/utils/Types.h" void Aidge::calculateFanInFanOut(std::shared_ptr<Aidge::Tensor> tensor, std::uint32_t& fanIn, std::uint32_t& fanOut) { AIDGE_ASSERT( tensor->nbDims() == 4, "Tensor need to have 4 dimensions to compute FanIn and FanOut."); // Warning: This function suppose NCXX data layout. // Aidge currently only support NCHW but this maybe not be true in the // future. DimSize_t batchSize = tensor->dims()[0]; DimSize_t channelSize = tensor->dims()[1]; AIDGE_ASSERT(batchSize != 0, "Cannot calculate FanIn if tensor batch size is 0."); AIDGE_ASSERT(channelSize != 0, "Cannot calculate FanOut if tensor channel size is 0."); fanIn = static_cast<std::uint32_t>(tensor->size() / batchSize); fanOut = static_cast<std::uint32_t>(tensor->size() / channelSize); }