diff --git a/include/aidge/operator/Stack.hpp b/include/aidge/operator/Stack.hpp new file mode 100644 index 0000000000000000000000000000000000000000..9644620d71276c5e35fc9daaf634f4d4cdb28405 --- /dev/null +++ b/include/aidge/operator/Stack.hpp @@ -0,0 +1,106 @@ +#ifndef AIDGE_CORE_OPERATOR_STACK_H_ +#define AIDGE_CORE_OPERATOR_STACK_H_ + +#include <memory> +#include <string> + +#include "aidge/backend/OperatorImpl.hpp" +#include "aidge/graph/Node.hpp" +#include "aidge/operator/OperatorTensor.hpp" +#include "aidge/utils/Registrar.hpp" +#include "aidge/utils/StaticAttributes.hpp" +#include "aidge/utils/Types.h" + +namespace Aidge { +class StackProdConso : public ProdConso { + public: + StackProdConso(const Operator &op) : ProdConso(op) {} + Elts_t getRequiredMemory( + const IOIndex_t outputIdx, + const std::vector<DimSize_t> &inputsSize) const override final; + void resetConsummerProducer() override; +}; + +class StackOpImpl : public OperatorImpl { + public: + StackOpImpl(const Operator &op, const std::string &backend = "") + : OperatorImpl(op, backend) {} + + std::shared_ptr<ProdConso> getProdConso() const override { + return std::make_shared<StackProdConso>(mOp); + }; + void forward() override; +}; + +enum class StackAttr { ForwardStep, MaxElements }; + +class StackOp + : public OperatorTensor, + public Registrable< + StackOp, + std::string, + std::function<std::unique_ptr<OperatorImpl>(const StackOp &)>> { + + private: + using Attributes_ = + StaticAttributes<StackAttr, std::uint32_t, std::uint32_t>; + template <StackAttr e> using attr = typename Attributes_::template attr<e>; + const std::shared_ptr<Attributes_> mAttributes; + + public: + static const std::string s_type; + + StackOp(std::uint32_t maxElements); + + /** + * @brief Copy-constructor. Copy the operator attributes and its output + * tensor(s), but not its input tensors (the new operator has no input + * associated). + * @param op Operator to copy. + */ + StackOp(const StackOp &op); + + /** + * @brief Clone the operator using its copy-constructor. + * @see Operator::StackOp + */ + std::shared_ptr<Operator> clone() const override; + + void setBackend(const std::string &name, + DeviceIdx_t device = 0) override final; + + std::set<std::string> getAvailableBackends() const override; + + bool forwardDims(bool allowDataDependency = false) override final; + void forward() override; + + inline std::shared_ptr<Attributes> attributes() const override { + return mAttributes; + } + + inline std::uint32_t &maxElements() const { + return mAttributes->template getAttr<StackAttr::MaxElements>(); + } + + inline std::uint32_t &forwardStep() const { + return mAttributes->template getAttr<StackAttr::ForwardStep>(); + } + + static const std::vector<std::string> getInputsName() { + return {"data_input"}; + } + static const std::vector<std::string> getOutputsName() { + return {"data_output"}; + } +}; + +std::shared_ptr<Node> stack(std::uint32_t maxElements, + const std::string &name = ""); +} // namespace Aidge + +namespace { +template <> +const char *const EnumStrings<Aidge::StackAttr>::data[] = {"max_elements"}; +} + +#endif diff --git a/python_binding/operator/pybind_Stack.cpp b/python_binding/operator/pybind_Stack.cpp new file mode 100644 index 0000000000000000000000000000000000000000..2328892108d724438a39cc37eaf97b856caa3a8a --- /dev/null +++ b/python_binding/operator/pybind_Stack.cpp @@ -0,0 +1,41 @@ +/******************************************************************************** + * Copyright (c) 2024 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <pybind11/pybind11.h> + +#include "aidge/data/Tensor.hpp" +#include "aidge/operator/OperatorTensor.hpp" +#include "aidge/operator/Stack.hpp" + +namespace py = pybind11; +namespace Aidge { +void init_Stack(py::module &m) { + py::class_<StackOp, std::shared_ptr<StackOp>, OperatorTensor>( + m, + "StackOp", + py::multiple_inheritance(), + R"mydelimiter(Initialize a Stack operator.)mydelimiter") + .def(py::init<const std::uint32_t>(), py::arg("max_elements")) + .def_static("get_inputs_name", &StackOp::getInputsName) + .def_static("get_outputs_name", &StackOp::getOutputsName) + .def_readonly_static("Type", &StackOp::s_type); + + m.def("Stack", + &stack, + py::arg("max_elements"), + py::arg("name") = "", + R"mydelimiter( + Initialize a node containing a Stack operator. + :param max_elements : the maximum number of tensors to be stacked. + :param name: name of the node. + )mydelimiter"); +} +} // namespace Aidge diff --git a/python_binding/pybind_core.cpp b/python_binding/pybind_core.cpp index 7a88f61f518777e9b2e359f9c89eb1f3ebcd53d0..4f7ffea5fefe299a2670fd7bcb816c86070bf315 100644 --- a/python_binding/pybind_core.cpp +++ b/python_binding/pybind_core.cpp @@ -77,6 +77,7 @@ void init_Softmax(py::module&); void init_Split(py::module&); void init_Sqrt(py::module&); void init_Squeeze(py::module&); +void init_Stack(py::module&); void init_Sub(py::module&); void init_Tanh(py::module&); void init_Transpose(py::module&); @@ -169,6 +170,7 @@ void init_Aidge(py::module& m) { init_Split(m); init_Sqrt(m); init_Squeeze(m); + init_Stack(m); init_Sub(m); init_Tanh(m); init_Transpose(m); diff --git a/src/operator/Stack.cpp b/src/operator/Stack.cpp new file mode 100644 index 0000000000000000000000000000000000000000..efe6296a351f69ef3a11d4e1bc04bd0b52d46a06 --- /dev/null +++ b/src/operator/Stack.cpp @@ -0,0 +1,124 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include "aidge/operator/Stack.hpp" + +#include <memory> +#include <string> + +#include "aidge/data/Tensor.hpp" +#include "aidge/utils/ErrorHandling.hpp" +#include "aidge/utils/Registrar.hpp" +#include "aidge/utils/StaticAttributes.hpp" +#include "aidge/utils/Types.h" + +namespace Aidge { + +// TODO: Check why getRequiredMemory is always called with empty vector as +// inputSize +Elts_t StackProdConso::getRequiredMemory( + const Aidge::IOIndex_t inputIdx, + const std::vector<DimSize_t> &inputsSize) const { + assert(mOp.getRawInput(inputIdx) && "requires valid input"); + + const StackOp &op = dynamic_cast<const StackOp &>(mOp); + // The produced data after one forward pass is simply the input size, + // we do not produce the whole output tensor everytime. + if (op.forwardStep() <= op.maxElements()) { + return Elts_t::DataElts(op.getInput(inputIdx)->size()); + } else { + return Elts_t::NoneElts(); + } +} + +void StackProdConso::resetConsummerProducer() { + ProdConso::resetConsummerProducer(); + + const StackOp &op = dynamic_cast<const StackOp &>(mOp); + op.forwardStep() = 0; +} + +const std::string StackOp::s_type = "Stack"; + +void StackOpImpl::forward() { + const StackOp &op = dynamic_cast<const StackOp &>(mOp); + AIDGE_ASSERT(op.getInput(0), "missing input #0"); + AIDGE_ASSERT((op.forwardStep() < op.maxElements()), + "cannot forward anymore, maximum number of elements to stack " + "exceeded"); + + op.getOutput(0)->getImpl()->copy( + op.getInput(0)->getImpl()->rawPtr(), + op.getInput(0)->size(), + op.forwardStep() * op.getInput(0)->size()); +} + +StackOp::StackOp(std::uint32_t maxElements) + : OperatorTensor(s_type, {InputCategory::Data}, 1), + mAttributes(std::make_shared<Attributes_>( + attr<StackAttr::MaxElements>(maxElements), + attr<StackAttr::ForwardStep>(0))) { + if (maxElements == 0) { + AIDGE_THROW_OR_ABORT( + std::invalid_argument, + "StackOp creation failed: maxElements must be greater than 0."); + } + mImpl = std::make_shared<StackOpImpl>(*this); +} + +StackOp::StackOp(const Aidge::StackOp &op) + : OperatorTensor(op), mAttributes(op.mAttributes) { + if (!op.backend().empty()) { + SET_IMPL_MACRO(StackOp, *this, op.backend()); + } else { + mImpl = std::make_shared<StackOpImpl>(*this); + } +} + +std::shared_ptr<Aidge::Operator> Aidge::StackOp::clone() const { + return std::make_shared<StackOp>(*this); +} + +bool Aidge::StackOp::forwardDims(bool /*allowDataDependency*/) { + if (inputsAssociated()) { + auto inputDims = getInput(0)->dims(); + inputDims.insert(inputDims.begin(), maxElements()); + getOutput(0)->resize(inputDims); + return true; + } + + return false; +} + +void StackOp::setBackend(const std::string &name, DeviceIdx_t device) { + if (Registrar<StackOp>::exists({name})) { + SET_IMPL_MACRO(StackOp, *this, name); + } else { + mImpl = std::make_shared<StackOpImpl>(*this); + } + mOutputs[0]->setBackend(name, device); +} + +std::set<std::string> StackOp::getAvailableBackends() const { + return Registrar<StackOp>::getKeys(); +} + +void StackOp::forward() { + Operator::forward(); + ++forwardStep(); +} + +std::shared_ptr<Node> stack(std::uint32_t maxElements, + const std::string &name) { + return std::make_shared<Node>(std::make_shared<StackOp>(maxElements), + name); +} +} // namespace Aidge diff --git a/unit_tests/operator/Test_PopImpl.cpp b/unit_tests/operator/Test_PopImpl.cpp new file mode 100644 index 0000000000000000000000000000000000000000..f46131ed8c324f38874eb433f97d13977b4253a4 --- /dev/null +++ b/unit_tests/operator/Test_PopImpl.cpp @@ -0,0 +1,36 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <catch2/catch_test_macros.hpp> +#include <memory> + +#include "aidge/data/Tensor.hpp" +#include "aidge/operator/Pop.hpp" +#include "aidge/utils/TensorUtils.hpp" + +using Aidge::Tensor; +using Aidge::Pop; + +TEST_CASE("[cpu/operator] Pop(forward)", "[Pop][CPU]") { + std::shared_ptr<Tensor> pop1 = std::make_shared<Tensor>(Aidge::Array1D<int,3>{{4,5,6}}); + std::shared_ptr<Tensor> pop2 = std::make_shared<Tensor>(Aidge::Array1D<int,3>{{1,2,3}}); + std::shared_ptr<Tensor> input = std::make_shared<Tensor>(Aidge::Array2D<int,2,3>{{{1,2,3}, {4,5,6}}}); + + auto pop = Aidge::Pop("pop"); + pop->getOperator()->associateInput(0, input); + pop->getOperator()->setBackend("cpu"); + pop->getOperator()->setDataType(Aidge::DataType::Int32); + + REQUIRE_NOTHROW(pop->forward()); + REQUIRE(*std::static_pointer_cast<Aidge::OperatorTensor>(pop->getOperator())->getOutput(0) == *pop2); + REQUIRE_NOTHROW(pop->forward()); + REQUIRE(*std::static_pointer_cast<Aidge::OperatorTensor>(pop->getOperator())->getOutput(0) == *pop1); +} diff --git a/unit_tests/operator/Test_StackImpl.cpp b/unit_tests/operator/Test_StackImpl.cpp new file mode 100644 index 0000000000000000000000000000000000000000..d853a1ba27fea0a071c1c2373bbd7ef7f4eacd11 --- /dev/null +++ b/unit_tests/operator/Test_StackImpl.cpp @@ -0,0 +1,172 @@ +/******************************************************************************** + * Copyright (c) 2024 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <catch2/catch_test_macros.hpp> +#include <catch2/generators/catch_generators_random.hpp> +#include <catch2/matchers/catch_matchers_string.hpp> +#include <cstddef> +#include <memory> +#include <numeric> +#include <random> +#include <stdexcept> +#include <vector> + +#include "aidge/data/Tensor.hpp" +#include "aidge/operator/Stack.hpp" +#include "aidge/utils/TensorUtils.hpp" + +using Catch::Matchers::Equals; + +namespace Aidge { + +TEST_CASE("[core/operator] Stack(forward)", "[Stack]") { + constexpr auto nbTrials = 10; + auto rd = Catch::Generators::Detail::getSeed; + std::mt19937 gen(rd()); + std::uniform_int_distribution<std::size_t> nbDist(1, 100); + std::uniform_int_distribution<std::size_t> dimsDist(1, 10); + std::uniform_int_distribution<std::size_t> nbDimsDist(2, 5); + std::uniform_real_distribution<float> valueDist(0.1f, 1.1f); + // std::uniform_int_distribution<std::size_t> tensorNbDimsDist(2U, 5U); + + const std::size_t nbDimsTensor = nbDimsDist(gen); + std::vector<std::size_t> dimsIn(nbDimsTensor); + std::shared_ptr<Tensor> t1 = std::make_shared<Tensor>(); + + SECTION("Constructors") { + // Valid arguments + for (auto i = 0; i < nbTrials; ++i) { + auto maxElements = nbDist(gen); + REQUIRE_NOTHROW(StackOp(maxElements)); + + auto op1 = StackOp(maxElements); + REQUIRE(op1.maxElements() == maxElements); + REQUIRE(op1.forwardStep() == 0); + + // Copy Constructor + auto op2 = op1; + REQUIRE(op2.maxElements() == maxElements); + REQUIRE(op2.forwardStep() == 0); + } + + // Invalid arguments + REQUIRE_THROWS_AS(StackOp(0), std::invalid_argument); + } + + SECTION("forwardDims") { + for (auto i = 0; i < nbTrials; ++i) { + auto maxElements = nbDist(gen); + auto op = StackOp(maxElements); + + const std::size_t nbDims = nbDimsDist(gen); + std::vector<std::size_t> dims(nbDims); + for (std::size_t i = 0; i < nbDims; ++i) { + dims[i] = dimsDist(gen); + } + t1->resize(dims); + + REQUIRE_THROWS_WITH( + op.forwardDims(), + Equals("Stack: input #0 should be associated with a Tensor")); + op.associateInput(0, t1); + REQUIRE_NOTHROW(op.forwardDims()); + REQUIRE(op.getOutput(0)->dims()[0] == maxElements); + } + } + + SECTION("forward") { + + std::generate(dimsIn.begin(), dimsIn.end(), [&gen, &dimsDist]() { + return dimsDist(gen); + }); + const std::size_t nbElems = + std::accumulate(dimsIn.cbegin(), + dimsIn.cend(), + 1u, + std::multiplies<std::size_t>()); + + std::uniform_int_distribution<std::size_t> numTensorsDist(2, 10); + const std::size_t numTensors = numTensorsDist(gen); + + std::vector<std::shared_ptr<Tensor>> tensors(numTensors); + std::vector<float *> arrays(numTensors); + + for (std::size_t i = 0; i < numTensors; ++i) { + arrays[i] = new float[nbElems]; + for (std::size_t j = 0; j < nbElems; ++j) { + arrays[i][j] = valueDist(gen); + } + tensors[i] = std::make_shared<Tensor>(); + tensors[i]->resize(dimsIn); + tensors[i]->setBackend("cpu"); + tensors[i]->setDataType(DataType::Float32); + tensors[i]->getImpl()->setRawPtr(arrays[i], nbElems); + } + + auto myStack = stack(numTensors); + myStack->getOperator()->setBackend("cpu"); + myStack->getOperator()->setDataType(DataType::Float32); + auto op = + std::static_pointer_cast<OperatorTensor>(myStack->getOperator()); + + op->associateInput(0, tensors[0]); + op->forwardDims(); + op->getOutput(0)->zeros(); + + // Perform forward passes for each tensor + for (std::size_t i = 0; i < numTensors; ++i) { + if (i > 0) { + op->associateInput(0, tensors[i]); + } + op->forward(); + } + + auto output = op->getOutput(0); + + std::vector<DimSize_t> expectedDims = dimsIn; + expectedDims.insert(expectedDims.begin(), numTensors); + + REQUIRE(output->dims() == expectedDims); + + // Compare output slices with input tensors + for (std::size_t i = 0; i < numTensors; ++i) { + Tensor outputTensor = output->extract( + {static_cast<std::uint64_t>(static_cast<int>(i))}); + Tensor inputTensor(DataType::Float32); + inputTensor.resize(dimsIn); + inputTensor.setBackend("cpu"); + inputTensor.getImpl()->setRawPtr(arrays[i], nbElems); + + REQUIRE(approxEq<float>(outputTensor, inputTensor)); + } + + // Attempt to exceed maxElements + std::shared_ptr<Tensor> extraTensor = std::make_shared<Tensor>(); + extraTensor->resize(dimsIn); + extraTensor->setBackend("cpu"); + extraTensor->setDataType(DataType::Float32); + float *extraArray = new float[nbElems]; + for (std::size_t j = 0; j < nbElems; ++j) { + extraArray[j] = valueDist(gen); + } + extraTensor->getImpl()->setRawPtr(extraArray, nbElems); + + REQUIRE_THROWS_AS((op->associateInput(0, extraTensor), op->forward()), + std::runtime_error); + + // Clean up + delete[] extraArray; + for (std::size_t i = 0; i < numTensors; ++i) { + delete[] arrays[i]; + } + } +} +} // namespace Aidge