diff --git a/aidge_core/show_graphview.py b/aidge_core/show_graphview.py index ddf0fc4b4659a727c7879738ef5e3eb40186cac1..633298f10dbfdafe40022f88f741f82d2d35c681 100644 --- a/aidge_core/show_graphview.py +++ b/aidge_core/show_graphview.py @@ -4,24 +4,24 @@ import builtins import aidge_core import numpy as np from pathlib import Path - + def _retrieve_operator_attrs(node : aidge_core.Node) -> dict[str, int, float, bool, None]: """ Returns the dictionary containing the attributes of a given Node. - :param graph: A Node in the list of ordered nodes. + :param graph: A Node in the list of ordered nodes. :type graph: aidge_core.Node :return: A dictionary with the Node's attributes. :rtype: dict[str, int, float, bool, None] - """ + """ if node.get_operator().attr is not None: node_attr_dict = node.get_operator().attr.dict() for key,value in node_attr_dict.items(): if not type(value).__name__ in dir(builtins): node_attr_dict[key] = value.name - + else: node_attr_dict = {} @@ -29,49 +29,49 @@ def _retrieve_operator_attrs(node : aidge_core.Node) -> dict[str, int, float, bo def _create_dict(ordered_nodes : list[aidge_core.Node], write_trainable_params_embed : bool, write_trainable_params_ext : bool, path_trainable_params : Path, params_file_format : str) -> dict[str, int, float, bool, None]: """ - Creates a dictionary to store the information of a given ordered GraphView. + Creates a dictionary to store the information of a given ordered GraphView. :param ordered_nodes: A list with the GraphView's ordered nodes. :type graph: list - :param write_trainable_params_embed: Whether or not to write the eventual trainable parameters of the Nodes in the same file as the dict (embed). + :param write_trainable_params_embed: Whether or not to write the eventual trainable parameters of the Nodes in the same file as the dict (embed). :type write_trainable_params_embed: bool - :param write_trainable_params_ext: Whether or not to write the eventual trainable parameters of the Nodes in an external file. + :param write_trainable_params_ext: Whether or not to write the eventual trainable parameters of the Nodes in an external file. :type write_trainable_params_ext: bool :param path_trainable_params: Path of the external file used to store the Nodes' trainable parameters. :type path_trainable_params: Path :param params_file_format: Format of the external file used to store the Nodes' trainable parameters. Options: ``npz`` or ``json``. Default : ``json``. Requires ``write_trainable_params_ext``. :type params_file_format: str - + :return: A dictionary with the GraphView description. :rtype: dict[str, int, float, bool, None] - """ + """ graphview_dict = {'graph': []} for node in ordered_nodes: - + if node is not None: - node_dict = {'name' : node.name(), + node_dict = {'name' : node.name(), 'optype' : node.get_operator().type(), 'nb_inputs' : node.get_operator().nb_inputs(), 'nb_outputs' : node.get_operator().nb_outputs()} - + inputs = [] for input_idx in range(node.get_operator().nb_inputs()): input_dict = {'dims' : node.get_operator().get_input(input_idx).dims(), 'data_type' : str(node.get_operator().get_input(input_idx).dtype()), - 'data_format' : str(node.get_operator().get_input(input_idx).dformat())} - inputs.append(input_dict) - + 'data_format' : str(node.get_operator().get_input(input_idx).dformat())} + inputs.append(input_dict) + node_dict['inputs'] = inputs outputs = [] for output_idx in range(node.get_operator().nb_outputs()): output_dict = {'dims' : node.get_operator().get_output(output_idx).dims(), 'data_type' : str(node.get_operator().get_output(output_idx).dtype()), - 'data_format' : str(node.get_operator().get_output(output_idx).dformat())} - outputs.append(output_dict) - + 'data_format' : str(node.get_operator().get_output(output_idx).dformat())} + outputs.append(output_dict) + node_dict['outputs'] = outputs parents = node.get_parents() @@ -79,8 +79,8 @@ def _create_dict(ordered_nodes : list[aidge_core.Node], write_trainable_params_e if parents[0] is None: parents.append(parents.pop(0)) else: pass - - parents_inputs = [] + + parents_inputs = [] for parent in parents: if parent is not None: for output_idx in range(parent.get_operator().nb_outputs()): @@ -91,7 +91,7 @@ def _create_dict(ordered_nodes : list[aidge_core.Node], write_trainable_params_e elif parent is None: for input_idx in list(range(node.get_operator().nb_inputs())): if input_idx not in [item[1] for item in parents_inputs]: - parents_inputs.append((None, input_idx)) + parents_inputs.append((None, input_idx)) parents_inputs.sort(key=lambda x: x[1]) node_dict['parents'] = parents_inputs @@ -103,15 +103,15 @@ def _create_dict(ordered_nodes : list[aidge_core.Node], write_trainable_params_e if child.get_operator().get_input(input_idx).dims() == node.get_operator().get_output(output_idx).dims(): children_outputs.append((child.name(), output_idx)) node_dict['children'] = children_outputs - + # Check if my node is a metaop attributes_dict = {} - if isinstance(node.get_operator(), aidge_core.MetaOperator_Op): + if isinstance(node.get_operator(), aidge_core.MetaOperatorOp): attributes_dict['micro_graph'] = [] for micro_node in node.get_operator().get_micro_graph().get_nodes(): - micro_node_dict = {'name' : micro_node.name(), + micro_node_dict = {'name' : micro_node.name(), 'optype' : micro_node.type()} - + micro_node_attr_dict = _retrieve_operator_attrs(micro_node) micro_node_dict['attributes'] = micro_node_attr_dict attributes_dict['micro_graph'].append(micro_node_dict) @@ -124,7 +124,7 @@ def _create_dict(ordered_nodes : list[aidge_core.Node], write_trainable_params_e if node.type() == 'Producer': if write_trainable_params_ext: - + params_file_format.casefold() if params_file_format=='npz': @@ -134,14 +134,14 @@ def _create_dict(ordered_nodes : list[aidge_core.Node], write_trainable_params_e elif params_file_format=='json': tensor = np.array(node.get_operator().get_output(0)) tensor_dict = { - node.name() : + node.name() : { 'dims' : tensor.shape, 'data_type' : str(tensor.dtype), 'tensor_data' : tensor.tolist() - } + } } - + with open(Path(path_trainable_params, node.name() + '.json'), 'w') as fp: json.dump(tensor_dict, fp, indent=4) @@ -150,10 +150,10 @@ def _create_dict(ordered_nodes : list[aidge_core.Node], write_trainable_params_e else: raise Exception("File format to write trainable parameters not recognized.") - + elif write_trainable_params_embed: node_dict['tensor_data'] = np.array(node.get_operator().get_output(0)).tolist() - + else: pass @@ -161,13 +161,13 @@ def _create_dict(ordered_nodes : list[aidge_core.Node], write_trainable_params_e else: # node is None pass - + return graphview_dict def _write_dict_json(graphview_dict : dict[str, int, float, bool, None], json_path : str) -> None: """ Writes dictionary containing GraphView description to a JSON file. - + :param graphview_dict: A dictionary with the GraphView description. :type graphview_dict: dict[str, int, float, bool, None] :param json_path: Path to write JSON file. @@ -178,18 +178,18 @@ def _write_dict_json(graphview_dict : dict[str, int, float, bool, None], json_pa json.dump(graphview_dict, fp, indent=4) return None - -def gview_to_json(gview : aidge_core.GraphView, json_path : Path, write_trainable_params_embed : bool = False, write_trainable_params_ext : bool = False, params_file_format : str = 'json') -> None: + +def gview_to_json(gview : aidge_core.GraphView, json_path : Path, write_trainable_params_embed : bool = False, write_trainable_params_ext : bool = False, params_file_format : str = 'json') -> None: """ Generates the description for a GraphView in the JSON format. - + :param graph: A GraphView of Aidge. :type graph: aidge_core.GraphView :param json_path: Path to write JSON file. :type json_path: Path - :param write_trainable_params_embed: Whether or not to write the eventual trainable parameters of the Nodes in the same file as the dict (embed). + :param write_trainable_params_embed: Whether or not to write the eventual trainable parameters of the Nodes in the same file as the dict (embed). :type write_trainable_params_embed: bool, optional - :param write_trainable_params_ext: Whether or not to write the eventual trainable parameters of the Nodes in an external file. + :param write_trainable_params_ext: Whether or not to write the eventual trainable parameters of the Nodes in an external file. :type write_trainable_params_ext: bool, optional :param params_file_format: Format of the external file used to store the Nodes' trainable parameters. Options: ``npz`` or ``json``. Default : ``json``. Requires ``write_trainable_params_ext``. :type params_file_format: str, optional @@ -201,7 +201,7 @@ def gview_to_json(gview : aidge_core.GraphView, json_path : Path, write_trainabl elif not json_path.is_dir(): if json_path.suffix == '.json': pass - else: + else: raise Exception('If ``json_path`` contains a filename it must be of JSON format.') if write_trainable_params_ext: @@ -212,14 +212,14 @@ def gview_to_json(gview : aidge_core.GraphView, json_path : Path, write_trainabl if isinstance(gview, aidge_core.GraphView): # Sort GraphView in topological order ordered_nodes = gview.get_ordered_nodes() - - # Create dict from GraphView + + # Create dict from GraphView graphview_dict = _create_dict(ordered_nodes, write_trainable_params_embed, write_trainable_params_ext, path_trainable_params, params_file_format) - + # Write dict to JSON _write_dict_json(graphview_dict, json_path) else: raise Exception("Graph must be an instance of aidge_core.GraphView.") - + return None \ No newline at end of file diff --git a/python_binding/operator/pybind_MetaOperatorDefs.cpp b/python_binding/operator/pybind_MetaOperatorDefs.cpp index 5f6cc12fc1e84ee245fdb7babf025b5af4316315..5f173068af0f1140830d458979ec924c38ade078 100644 --- a/python_binding/operator/pybind_MetaOperatorDefs.cpp +++ b/python_binding/operator/pybind_MetaOperatorDefs.cpp @@ -194,7 +194,7 @@ void init_MetaOperatorDefs(py::module &m) { // declare_PaddedMaxPoolingOp<3>(m); declare_LSTMOp(m); - py::class_<MetaOperator_Op, std::shared_ptr<MetaOperator_Op>, OperatorTensor>(m, "MetaOperator_Op", py::multiple_inheritance()) + py::class_<MetaOperator_Op, std::shared_ptr<MetaOperator_Op>, OperatorTensor>(m, "MetaOperatorOp", py::multiple_inheritance()) .def(py::init<const char *, const std::shared_ptr<GraphView>&, const std::vector<InputCategory>&>(), py::arg("type"), py::arg("graph"), diff --git a/unit_tests/graphRegex/Test_GraphRegex.cpp b/unit_tests/graphRegex/Test_GraphRegex.cpp index 68ac509e79e347106a9a132249f125ebe6e39f6a..79e471d44a49dfb52fd5eb4aa1ed2dc4ab8dc0bb 100644 --- a/unit_tests/graphRegex/Test_GraphRegex.cpp +++ b/unit_tests/graphRegex/Test_GraphRegex.cpp @@ -153,9 +153,9 @@ TEST_CASE("GraphRegexUser") { // generate the original GraphView auto matmul0 = MatMul("matmul0"); - auto add0 = Add(2, "add0"); + auto add0 = Add("add0"); auto matmul1 = MatMul("matmul1"); - auto add1 = Add(2, "add1"); + auto add1 = Add("add1"); auto b0 = Producer({5}, "B0"); auto w0 = Producer({5, 5}, "W0");