diff --git a/CHANGELOG b/CHANGELOG
index 0031beb91337e681884cd5a1d8c420a099a27861..b53d52720c420583973bee58f8ba2b290f0879af 100644
--- a/CHANGELOG
+++ b/CHANGELOG
@@ -1,6 +1,8 @@
+# Version 0.4.0 (December 2024)
+
 # Version 0.2.1 (May 14, 2024)
 
-* rework export mechanism 
+* rework export mechanism
 * change `Operator::computeOutputDims()` with `Operator::forwardDims()`
 * automatic docstring decorators for python
 * add implementation of Operators only performing data/format manipulation
diff --git a/include/aidge/data/Data.hpp b/include/aidge/data/Data.hpp
index 5303d61f9ca0bc28687c9300506220c0d34a5c70..d641df6e688e738efaf49e5ae0c44649f465b644 100644
--- a/include/aidge/data/Data.hpp
+++ b/include/aidge/data/Data.hpp
@@ -20,6 +20,7 @@
 
 #include "aidge/data/half.hpp"
 #include "aidge/utils/Attributes.hpp"
+#include "aidge/utils/ErrorHandling.hpp"
 
 namespace Aidge {
 enum class DataType {
@@ -98,7 +99,19 @@ DataFormatTranspose getDataFormatTranspose(const DataFormat& src, const DataForm
 
 class Data {
 public:
+    Data() = delete;
+    Data(Data&& other) = default;
+    Data(const Data& other) = default;
     Data(const std::string& type): mType(type) {};
+
+    Data& operator=(const Data& other) {
+        AIDGE_ASSERT(other.mType == mType, "Cannot copy a different type fo Data object.");
+        return *this;
+    };
+    Data& operator=(Data&& other) {
+        AIDGE_ASSERT(other.mType == mType, "Cannot copy a different type fo Data object.");
+        return *this;
+    };
     constexpr const std::string& type() const {
         return mType;
     }
diff --git a/include/aidge/data/Tensor.hpp b/include/aidge/data/Tensor.hpp
index cfd54e9aa64a0ad6b5165024284b0e3431cab28c..627a5a4784b4e6546cdfc96b65acbe2a39ee119c 100644
--- a/include/aidge/data/Tensor.hpp
+++ b/include/aidge/data/Tensor.hpp
@@ -23,6 +23,8 @@
 #include <type_traits>  // std::is_arithmetic
 #include <vector>
 
+#include <fmt/core.h>
+
 #include "aidge/backend/TensorImpl.hpp"
 #include "aidge/data/Data.hpp"
 #include "aidge/utils/ArrayHelpers.hpp"
@@ -212,14 +214,13 @@ class Tensor : public Data,
 
     /**
      * @brief Copy dimensions, datatype and data from another Tensor.
-     * If current Tensor already has an implementation, data is copied to the
-     * existing implementation. Tensor backend/device remain untouched.
-     * If current Tensor does not have an implementation, only a shallow copy
-     * is performed and the Tensor will share data with t.
+     * Tensor backend/device are also copied and only a shallow copy
+     * is performed for data. Implementation will be shared with original Tensor.
      * @param other other Tensor object.
      * @return Tensor&
      */
-    Tensor &operator=(const Tensor& other);
+    Tensor &operator=(const Tensor& other) = default;
+    Tensor &operator=(Tensor&& other) = default;
 
     template <typename T>
     constexpr Tensor &operator=(Vector<T> &&arr) {
@@ -273,6 +274,17 @@ class Tensor : public Data,
      * @return Tensor
      */
     Tensor operator+(const Tensor& other) const;
+    template<typename T,
+             typename VT = std::enable_if_t<std::is_arithmetic<T>::value, std::decay_t<T>>>
+    Tensor operator+(T val) const { return *this + Tensor(val); }
+    template<typename T,
+             typename VT = std::enable_if_t<std::is_arithmetic<T>::value, std::decay_t<T>>>
+    friend Tensor operator+(T val, const Tensor& other) { return other + val; }
+
+    Tensor& operator+=(const Tensor& other);
+    template<typename T,
+             typename VT = std::enable_if_t<std::is_arithmetic<T>::value, std::decay_t<T>>>
+    Tensor& operator+=(T val) {return *this += Tensor(val); }
 
     /**
      * @brief Element-wise subtraction operation for two ``Tensor``s.
@@ -284,6 +296,17 @@ class Tensor : public Data,
      * @return Tensor
      */
     Tensor operator-(const Tensor& other) const;
+    template<typename T,
+             typename VT = std::enable_if_t<std::is_arithmetic<T>::value, std::decay_t<T>>>
+    inline Tensor operator-(T val) const { return *this - Tensor(val); }
+    template<typename T,
+             typename VT = std::enable_if_t<std::is_arithmetic<T>::value, std::decay_t<T>>>
+    friend inline Tensor operator-(T val, const Tensor& other) { return other - val; }
+
+    Tensor& operator-=(const Tensor& other);
+    template<typename T,
+             typename VT = std::enable_if_t<std::is_arithmetic<T>::value, std::decay_t<T>>>
+    inline Tensor& operator-=(T val) {return *this -= Tensor(val); }
 
     /**
      * @brief Element-wise multiplication operation for two ``Tensor``s.
@@ -295,6 +318,17 @@ class Tensor : public Data,
      * @return Tensor
      */
     Tensor operator*(const Tensor& other) const;
+    template<typename T,
+             typename VT = std::enable_if_t<std::is_arithmetic<T>::value, std::decay_t<T>>>
+    inline Tensor operator*(T val) const { return *this * Tensor(val); }
+    template<typename T,
+             typename VT = std::enable_if_t<std::is_arithmetic<T>::value, std::decay_t<T>>>
+    friend inline Tensor operator*(T val, const Tensor& other) { return other * val; }
+
+    Tensor& operator*=(const Tensor& other);
+    template<typename T,
+             typename VT = std::enable_if_t<std::is_arithmetic<T>::value, std::decay_t<T>>>
+    inline Tensor& operator*=(T val) {return *this *= Tensor(val); }
 
     /**
      * @brief Element-wise division operation for two ``Tensor``s.
@@ -306,6 +340,14 @@ class Tensor : public Data,
      * @return Tensor
      */
     Tensor operator/(const Tensor& other) const;
+    template<typename T,
+             typename VT = std::enable_if_t<std::is_arithmetic<T>::value, std::decay_t<T>>>
+    inline Tensor operator/(T val) const { return *this / Tensor(val); }
+
+    Tensor& operator/=(const Tensor& other);
+    template<typename T,
+             typename VT = std::enable_if_t<std::is_arithmetic<T>::value, std::decay_t<T>>>
+    inline Tensor& operator/=(T val) {return *this /= Tensor(val); }
 
     /**
      * @brief Element-wise sqrt operation for Tensor.
@@ -332,14 +374,17 @@ public:
      * @brief Perform a deep copy of the tensor.
     */
     Tensor clone() const {
-        Tensor newTensor(*this);
-        if (!newTensor.isContiguous()) {
-            newTensor.makeContiguous();
-        }
-        else {
-            std::shared_ptr<TensorImpl> newImpl = Registrar<Tensor>::create({mImpl->backend(), mDataType})(mImpl->device().second, mDims);
-            newImpl->copy(mImpl->rawPtr(mImplOffset), mSize);
-            newTensor.setImpl(newImpl);
+        Tensor newTensor(*this); // shallow copy
+        // handle deepcopy of implementation if any
+        if (newTensor.hasImpl()) {
+            if (!newTensor.isContiguous()) {
+                newTensor.makeContiguous();
+            }
+            else {
+                std::shared_ptr<TensorImpl> newImpl = Registrar<Tensor>::create({mImpl->backend(), mDataType})(mImpl->device().second, mDims);
+                newImpl->copy(mImpl->rawPtr(mImplOffset), mSize);
+                newTensor.setImpl(newImpl);
+            }
         }
         return newTensor;
     }
@@ -925,4 +970,17 @@ private:
 };
 }  // namespace Aidge
 
+template<>
+struct fmt::formatter<Aidge::Tensor> {
+    template<typename ParseContext>
+    inline constexpr auto parse(ParseContext& ctx) {
+        return ctx.begin();
+    }
+
+    template<typename FormatContext>
+    inline auto format(Aidge::Tensor const& t, FormatContext& ctx) const {
+        return fmt::format_to(ctx.out(), "{}", t.toString());
+    }
+};
+
 #endif /* AIDGE_CORE_DATA_TENSOR_H_ */
diff --git a/include/aidge/operator/Flatten.hpp b/include/aidge/operator/Flatten.hpp
new file mode 100644
index 0000000000000000000000000000000000000000..9bdfc932f113edf489a48a76796980bca5f2baf5
--- /dev/null
+++ b/include/aidge/operator/Flatten.hpp
@@ -0,0 +1,88 @@
+/********************************************************************************
+ * Copyright (c) 2023 CEA-List
+ *
+ * This program and the accompanying materials are made available under the
+ * terms of the Eclipse Public License 2.0 which is available at
+ * http://www.eclipse.org/legal/epl-2.0.
+ *
+ * SPDX-License-Identifier: EPL-2.0
+ *
+ ********************************************************************************/
+
+#ifndef AIDGE_CORE_OPERATOR_FLATTEN_H_
+#define AIDGE_CORE_OPERATOR_FLATTEN_H_
+
+#include <memory>
+#include <vector>
+
+#include "aidge/backend/OperatorImpl.hpp"
+#include "aidge/graph/Node.hpp"
+#include "aidge/operator/OperatorTensor.hpp"
+#include "aidge/utils/Registrar.hpp"
+#include "aidge/utils/StaticAttributes.hpp"
+#include "aidge/utils/Types.h"
+
+namespace Aidge {
+class Flatten_OpImpl : public OperatorImpl {
+public:
+    Flatten_OpImpl(const Operator& op, const std::string& backend = ""): OperatorImpl(op, backend) {}
+    void forward() override;
+};
+
+enum class FlattenAttr { Axis };
+
+class Flatten_Op : public OperatorTensor,
+                   public Registrable<Flatten_Op, std::string, std::function<std::shared_ptr<OperatorImpl>(const Flatten_Op&)>> {
+
+public:
+    static const std::string Type;
+
+private:
+    using Attributes_ = StaticAttributes<FlattenAttr,
+                                            std::int64_t>;
+    template <FlattenAttr e> using attr = typename Attributes_::template attr<e>;
+    const std::shared_ptr<Attributes_> mAttributes;
+
+public:
+    Flatten_Op() = delete;
+
+    Flatten_Op(std::int64_t axis = 1);
+
+    /**
+     * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated).
+     * @param op Operator to copy.
+     */
+    Flatten_Op(const Flatten_Op& op);
+
+    /**
+     * @brief Clone the operator using its copy-constructor.
+     * @see Operator::Flatten_Op
+     */
+    std::shared_ptr<Operator> clone() const override;
+
+    bool forwardDims(bool allowDataDependency = false) override final;
+
+    void setBackend(const std::string& name, DeviceIdx_t device = 0) override final;
+    std::set<std::string> getAvailableBackends() const override;
+
+    std::shared_ptr<Attributes> attributes() const override { return mAttributes; }
+    inline std::int64_t& axis() const { return mAttributes->template getAttr<FlattenAttr::Axis>(); }
+
+    static const std::vector<std::string> getInputsName(){
+        return {"data_input"};
+    }
+    static const std::vector<std::string> getOutputsName(){
+        return {"data_output"};
+    }
+};
+
+std::shared_ptr<Node> Flatten(std::int64_t axis = 1,
+                            const std::string &name = "");
+}  // namespace Aidge
+
+namespace {
+template <>
+const char *const EnumStrings<Aidge::FlattenAttr>::data[] = { "axis" };
+}
+
+#endif /* AIDGE_CORE_OPERATOR_FLATTEN_H_ */
diff --git a/include/aidge/operator/Scaling.hpp b/include/aidge/operator/Scaling.hpp
index 4ef39f63a2f9af34cd3fe28b01cf2fc195bdfc6e..9465667babb0978e33de3cf9f155d9b2e9d495b4 100644
--- a/include/aidge/operator/Scaling.hpp
+++ b/include/aidge/operator/Scaling.hpp
@@ -23,6 +23,9 @@
 #include "aidge/utils/StaticAttributes.hpp"
 #include "aidge/utils/Types.h"
 
+//Caution: This operator is now deprecated and should no longer be used. 
+//It has been replaced by the MetaOperator "Quantizer" (located directly in aidge_quantization).
+
 namespace Aidge {
 enum class ScalingAttr {
     ScalingFactor, QuantizedNbBits, IsOutputUnsigned
diff --git a/include/aidge/operator/Slice.hpp b/include/aidge/operator/Slice.hpp
index 055e6fd1d8917ae015b88a223f1f8701fd9dce59..5bb07ae01d8f076891a803698d2b3f489d90b462 100644
--- a/include/aidge/operator/Slice.hpp
+++ b/include/aidge/operator/Slice.hpp
@@ -25,6 +25,12 @@
 
 namespace Aidge {
 
+class Slice_OpImpl : public OperatorImpl {
+public:
+    Slice_OpImpl(const Operator& op, const std::string& backend = ""): OperatorImpl(op, backend) {}
+    void forward() override;
+};
+
 enum class SliceAttr { Starts, Ends, Axes, Steps };
 
 class Slice_Op
@@ -32,13 +38,13 @@ class Slice_Op
       public Registrable<Slice_Op, std::string, std::function<std::shared_ptr<OperatorImpl>(const Slice_Op &)>> {
 public:
     static const std::string Type;
-
-private:
     using Attributes_ = StaticAttributes<SliceAttr,
                                             std::vector<std::int64_t>,
                                             std::vector<std::int64_t>,
                                             std::vector<std::int8_t>,
                                             std::vector<std::int64_t>>;
+
+private:
     template <SliceAttr e> using attr = typename Attributes_::template attr<e>;
     const std::shared_ptr<Attributes_> mAttributes;
 
@@ -50,7 +56,6 @@ public:
             const std::vector<std::int8_t>& axes,
             const std::vector<std::int64_t>& steps);
 
-
     /**
      * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its
      * input tensors (the new operator has no input associated).
@@ -58,7 +63,6 @@ public:
      */
     Slice_Op(const Slice_Op &op);
 
-public:
     /**
      * @brief Clone the operator using its copy-constructor.
      * @see Operator::Slice_Op
@@ -103,4 +107,4 @@ template <>
 const char *const EnumStrings<Aidge::SliceAttr>::data[] = { "starts", "ends", "axes", "steps" };
 }
 
-#endif /* AIDGE_CORE_OPERATOR_RELU_H_ */
+#endif /* AIDGE_CORE_OPERATOR_SLICE_H_ */
diff --git a/include/aidge/utils/TensorUtils.hpp b/include/aidge/utils/TensorUtils.hpp
index e287db4e8724f0388c13d438fc2e152fe69021cd..b5601f84c60b81d8c560b61b06c00673f51f4eee 100644
--- a/include/aidge/utils/TensorUtils.hpp
+++ b/include/aidge/utils/TensorUtils.hpp
@@ -44,6 +44,7 @@ bool approxEq(const Tensor& t1, const Tensor& t2, float relative = 1e-5f, float
     }
     for(size_t i = 0; i < t1.size(); ++i){
         if (static_cast<float>(std::abs(t1.get<T1>(i) - t2.get<T2>(i))) > (absolute + (relative * static_cast<float>(std::abs(t2.get<T2>(i)))))){
+            fmt::print("t1:\n{}\nt2\n{}\nat index {} {} != {}", t1, t2, i, t1.get<T1>(i), t2.get<T1>(i));
             return false;
         }
     }
diff --git a/python_binding/operator/pybind_Operator.cpp b/python_binding/operator/pybind_Operator.cpp
index 514a64be9da0fc5485c1fd542d4252a47378c4bc..2191d866f2a2b1f1d490b2016de97afd8ec8157b 100644
--- a/python_binding/operator/pybind_Operator.cpp
+++ b/python_binding/operator/pybind_Operator.cpp
@@ -37,6 +37,7 @@ void init_Operator(py::module& m){
     py::class_<Operator, std::shared_ptr<Operator>>(m, "Operator")
     .def("__repr__", &Operator::repr)
     .def("backend", &Operator::backend)
+    .def("clone", &Operator::clone)
     .def("set_output", py::overload_cast<const IOIndex_t, const std::shared_ptr<Data>&>(&Operator::setOutput, py::const_), py::arg("outputIdx"), py::arg("data"))
     .def("set_input", py::overload_cast<const IOIndex_t, const std::shared_ptr<Data>&>(&Operator::setInput), py::arg("inputIdx"), py::arg("data"))
     .def("get_raw_output", &Operator::getRawOutput, py::arg("outputIdx"))
diff --git a/src/data/Tensor.cpp b/src/data/Tensor.cpp
index 7eb09fe6d91d7a37cef89c98a66ef190332c8a21..ee19796098bf1d755448d833aa6a8a2c24180baa 100644
--- a/src/data/Tensor.cpp
+++ b/src/data/Tensor.cpp
@@ -44,7 +44,24 @@ Tensor Tensor::operator+(const Tensor& other) const {
     add_.setBackend(mImpl->backend());
     add_.forward();
     // using add_backend = std::remove_reference_t<decltype(*Registrar<Add_Op>::create("cpu")(std::declval<const Add_Op&>()))>;
-    return add_.getOutput(0)->clone();
+    return *add_.getOutput(0);
+}
+
+Tensor& Tensor::operator+=(const Tensor& other) {
+    AIDGE_ASSERT(hasImpl() && other.hasImpl(), "At least one Tensor cannot perform any binary operation because it has no implementation.");
+    AIDGE_ASSERT(mImpl->backend() == other.mImpl->backend(), "Tensors must have the same backend");
+    AIDGE_ASSERT(dataType() == other.dataType(), "Tensors must have the same data type");
+    AIDGE_ASSERT(dataFormat() == other.dataFormat(), "Tensors must have the same data format");
+    auto add_ = Add_Op();
+    const auto thisPtr = std::make_shared<Tensor>(*this);
+    add_.associateInput(0, thisPtr);
+    add_.associateInput(1, std::make_shared<Tensor>(other));
+    add_.setOutput(0, thisPtr);
+    add_.setDataType(dataType());
+    add_.setDataFormat(dataFormat());
+    add_.setBackend(mImpl->backend());
+    add_.forward();
+    return *this;
 }
 
 
@@ -61,7 +78,25 @@ Tensor Tensor::operator-(const Tensor& other) const {
     sub_.setBackend(mImpl->backend());
     sub_.forward();
     // using add_backend = std::remove_reference_t<decltype(*Registrar<Add_Op>::create("cpu")(std::declval<const Add_Op&>()))>;
-    return sub_.getOutput(0)->clone();
+    return *sub_.getOutput(0);
+}
+
+Tensor& Tensor::operator-=(const Tensor& other) {
+    AIDGE_ASSERT(hasImpl() && other.hasImpl(), "At least one Tensor cannot perform any binary operation because it has no implementation.");
+    AIDGE_ASSERT(mImpl->backend() == other.mImpl->backend(), "Tensors must have the same backend");
+    AIDGE_ASSERT(dataType() == other.dataType(), "Tensors must have the same data type");
+    AIDGE_ASSERT(dataFormat() == other.dataFormat(), "Tensors must have the same data format");
+    auto sub_ = Sub_Op();
+    const auto thisPtr = std::make_shared<Tensor>(*this);
+    sub_.associateInput(0, thisPtr);
+    sub_.associateInput(1, std::make_shared<Tensor>(other));
+    sub_.setOutput(0, thisPtr);
+    sub_.setDataType(dataType());
+    sub_.setDataFormat(dataFormat());
+    sub_.setBackend(mImpl->backend());
+    sub_.forward();
+    // using add_backend = std::remove_reference_t<decltype(*Registrar<Add_Op>::create("cpu")(std::declval<const Add_Op&>()))>;
+    return *this;
 }
 
 
@@ -81,6 +116,24 @@ Tensor Tensor::operator*(const Tensor& other) const {
     return mul_.getOutput(0)->clone();
 }
 
+Tensor& Tensor::operator*=(const Tensor& other) {
+    AIDGE_ASSERT(hasImpl() && other.hasImpl(), "At least one Tensor cannot perform any binary operation because it has no implementation.");
+    AIDGE_ASSERT(mImpl->backend() == other.mImpl->backend(), "Tensors must have the same backend");
+    AIDGE_ASSERT(dataType() == other.dataType(), "Tensors must have the same data type");
+    AIDGE_ASSERT(dataFormat() == other.dataFormat(), "Tensors must have the same data format");
+    auto mul_ = Mul_Op();
+    const auto thisPtr = std::make_shared<Tensor>(*this);
+    mul_.associateInput(0, thisPtr);
+    mul_.associateInput(1, std::make_shared<Tensor>(other));
+    mul_.setOutput(0, thisPtr);
+    mul_.setDataType(dataType());
+    mul_.setDataFormat(dataFormat());
+    mul_.setBackend(mImpl->backend());
+    mul_.forward();
+    // using add_backend = std::remove_reference_t<decltype(*Registrar<Add_Op>::create("cpu")(std::declval<const Add_Op&>()))>;
+    return *this;
+}
+
 
 Tensor Tensor::operator/(const Tensor& other) const {
     AIDGE_ASSERT(hasImpl() && other.hasImpl(), "At least one Tensor cannot perform any binary operation because it has no implementation.");
@@ -98,6 +151,24 @@ Tensor Tensor::operator/(const Tensor& other) const {
     return div_.getOutput(0)->clone();
 }
 
+Tensor& Tensor::operator/=(const Tensor& other) {
+    AIDGE_ASSERT(hasImpl() && other.hasImpl(), "At least one Tensor cannot perform any binary operation because it has no implementation.");
+    AIDGE_ASSERT(mImpl->backend() == other.mImpl->backend(), "Tensors must have the same backend");
+    AIDGE_ASSERT(dataType() == other.dataType(), "Tensors must have the same data type");
+    AIDGE_ASSERT(dataFormat() == other.dataFormat(), "Tensors must have the same data format");
+    auto div_ = Div_Op();
+    const auto thisPtr = std::make_shared<Tensor>(*this);
+    div_.associateInput(0, thisPtr);
+    div_.associateInput(1, std::make_shared<Tensor>(other));
+    div_.setOutput(0, thisPtr);
+    div_.setDataType(dataType());
+    div_.setDataFormat(dataFormat());
+    div_.setBackend(mImpl->backend());
+    div_.forward();
+    // using add_backend = std::remove_reference_t<decltype(*Registrar<Add_Op>::create("cpu")(std::declval<const Add_Op&>()))>;
+    return *this;
+}
+
 Tensor Tensor::sqrt() const {
     AIDGE_ASSERT(hasImpl(), "Tensor has no implementation.");
     auto sqrt_ = Sqrt_Op();
@@ -135,24 +206,24 @@ Tensor Tensor::mean() const {
     return mean_.getOutput(0)->clone();
 }
 
-Tensor& Tensor::operator=(const Tensor& other) {
-    if (this == &other) {
-        return *this;
-    }
-    resize(other.dims(), other.strides());
-    setDataType(other.dataType(), false);  // do not convert existing data
-    if (other.hasImpl()) {
-        if (hasImpl()) {
-            copyFrom(other);
-        } else {
-            // Perform a shallow copy only
-            setImpl(other.mImpl, other.mImplOffset);
-        }
-    } else {
-        setImpl(nullptr);
-    }
-    return *this;
-}
+// Tensor& Tensor::operator=(const Tensor& other) {
+//     if (this == &other) {
+//         return *this;
+//     }
+//     resize(other.dims(), other.strides());
+//     setDataType(other.dataType(), false);  // do not convert existing data
+//     if (other.hasImpl()) {
+//         if (hasImpl()) {
+//         //     copyFrom(other);
+//         // } else {
+//             // Perform a shallow copy only
+//             setImpl(other.mImpl, other.mImplOffset);
+//         }
+//     } else {
+//         setImpl(nullptr);
+//     }
+//     return *this;
+// }
 
 
 void Tensor::setBackend(const std::string &name, DeviceIdx_t device, bool copyFrom) {
diff --git a/src/graph/Node.cpp b/src/graph/Node.cpp
index da6d833f3aa933cd5e707814c279142de5bc4a23..92ae463085a3583dfe894a1b9f6119fa0b099287 100644
--- a/src/graph/Node.cpp
+++ b/src/graph/Node.cpp
@@ -407,18 +407,18 @@ void Aidge::Node::resetConnections(bool includeLearnableParam) {
 ///////////////////////////////////////////////////////
 
 Aidge::NodePtr Aidge::Node::cloneSharedOperators() const {
-    return std::make_shared<Node>(mOperator, mAttrs);
+    return std::make_shared<Node>(mOperator, std::make_shared<DynamicAttributes>(*mAttrs));
 }
 
 Aidge::NodePtr Aidge::Node::cloneSharedProducers() const {
     std::shared_ptr<Operator> op =
             (mOperator->type() == Producer_Op::Type) ? mOperator : mOperator->clone();
 
-    return std::make_shared<Node>(op, mAttrs);
+    return std::make_shared<Node>(op, std::make_shared<DynamicAttributes>(*mAttrs));
 }
 
 Aidge::NodePtr Aidge::Node::clone() const {
-    return std::make_shared<Node>(mOperator->clone(), mAttrs);
+    return std::make_shared<Node>(mOperator->clone(), std::make_shared<DynamicAttributes>(*mAttrs));
 }
 
 std::set<Aidge::NodePtr> Aidge::Node::getNodeDelta(int delta, std::set<Aidge::NodePtr> nodeSee) {
diff --git a/src/operator/Flatten.cpp b/src/operator/Flatten.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..c77adc37400b0f14faade331965f75ac76c8c7b9
--- /dev/null
+++ b/src/operator/Flatten.cpp
@@ -0,0 +1,90 @@
+/********************************************************************************
+ * Copyright (c) 2023 CEA-List
+ *
+ * This program and the accompanying materials are made available under the
+ * terms of the Eclipse Public License 2.0 which is available at
+ * http://www.eclipse.org/legal/epl-2.0.
+ *
+ * SPDX-License-Identifier: EPL-2.0
+ *
+ ********************************************************************************/
+
+#include "aidge/operator/Flatten.hpp"
+
+#include <cstddef>    // std::size_t
+#include <cstdint>    // std::int64_t
+#include <memory>
+#include <stdexcept>  // std::runtime_error
+#include <string>
+#include <vector>
+
+#include "aidge/data/Tensor.hpp"
+#include "aidge/utils/ErrorHandling.hpp"
+#include "aidge/utils/Registrar.hpp"
+#include "aidge/utils/Types.h"
+
+void Aidge::Flatten_OpImpl::forward() {
+    const Flatten_Op& op = dynamic_cast<const Flatten_Op&>(mOp);
+    op.getOutput(0)->getImpl()->copy(op.getInput(0)->getImpl()->rawPtr(), op.getInput(0)->size());
+}
+
+//////////////////////////////////////////////////
+
+const std::string Aidge::Flatten_Op::Type = "Flatten";
+
+Aidge::Flatten_Op::Flatten_Op(const std::int64_t axis)
+    : OperatorTensor(Type, {InputCategory::Data}, 1),
+        mAttributes(std::make_shared<Attributes_>(
+        attr<FlattenAttr::Axis>(axis)))
+{
+    mImpl = std::make_shared<Flatten_OpImpl>(*this);
+}
+
+Aidge::Flatten_Op::Flatten_Op(const Aidge::Flatten_Op& op)
+    : OperatorTensor(op),
+        mAttributes(op.mAttributes)
+{
+    if (!op.backend().empty()) {
+        SET_IMPL_MACRO(Flatten_Op, *this, op.backend());
+    }
+    else {
+        mImpl = std::make_shared<Flatten_OpImpl>(*this);
+    }
+}
+
+std::shared_ptr<Aidge::Operator> Aidge::Flatten_Op::clone() const {
+    return std::make_shared<Flatten_Op>(*this);
+}
+
+bool Aidge::Flatten_Op::forwardDims(bool /*allowDataDependency*/) {
+    if (inputsAssociated()) {
+        const auto inDims(getInput(0)->dims());
+        const auto firstDim = std::accumulate(inDims.begin(), inDims.begin() + axis(), 1ULL, std::multiplies<DimSize_t>());
+        mOutputs[0]->resize({firstDim, getInput(0)->size() / firstDim});
+        return true;
+    }
+
+    return false;
+}
+
+void Aidge::Flatten_Op::setBackend(const std::string& name, Aidge::DeviceIdx_t device) {
+    if (Registrar<Flatten_Op>::exists({name})){
+        SET_IMPL_MACRO(Flatten_Op, *this, name);
+    }
+    else {
+        mImpl = std::make_shared<Flatten_OpImpl>(*this);
+    }
+    mOutputs[0]->setBackend(name, device);
+}
+
+std::set<std::string> Aidge::Flatten_Op::getAvailableBackends() const {
+    return Registrar<Flatten_Op>::getKeys();
+}
+
+//////////////////////////////////////////////
+
+std::shared_ptr<Aidge::Node> Aidge::Flatten(std::int64_t axis,
+                            const std::string &name)
+{
+    return std::make_shared<Node>(std::make_shared<Flatten_Op>(axis), name);
+}
\ No newline at end of file
diff --git a/src/operator/MetaOperator.cpp b/src/operator/MetaOperator.cpp
index cd307c9d15043d3ee5f5de48695e04e4ad2ada6b..ae3c3ed6ca85c059204c524f467f5387f656e30b 100644
--- a/src/operator/MetaOperator.cpp
+++ b/src/operator/MetaOperator.cpp
@@ -96,7 +96,9 @@ void Aidge::MetaOperator_Op::setBackend(const std::string &name, Aidge::DeviceId
         for(auto i: mGraph->inputNodes()){
             auto op_i = std::static_pointer_cast<OperatorTensor>(i->getOperator());
             for(std::size_t in_idx=0; in_idx < op_i->nbInputs(); ++in_idx){
-                op_i->getInput(in_idx)->setBackend(name, device);
+                if (op_i->getInput(in_idx)) {
+                    op_i->getInput(in_idx)->setBackend(name, device);
+                }
             }
         }
         for(auto o: mGraph->outputNodes()){
diff --git a/src/operator/Pop.cpp b/src/operator/Pop.cpp
index a27e2745b8929e84456ac079d063d94ffa359679..fa77d18e7e3c5b30466304e04cf2ad95affce20e 100644
--- a/src/operator/Pop.cpp
+++ b/src/operator/Pop.cpp
@@ -33,7 +33,7 @@ void Aidge::Pop_OpImpl::forward() {
     const Pop_Op& op = dynamic_cast<const Pop_Op&>(mOp);
 
     assert(op.getInput(0) && "missing input #0");
-    *op.getOutput(0) = op.getInput(0)->extract({op.forwardStep()});
+    *op.getOutput(0) = op.getInput(0)->extract({op.forwardStep()}).clone();
 }
 
 //////////////////////////////////////////////////////////
diff --git a/src/operator/Producer.cpp b/src/operator/Producer.cpp
index 3d48b88ab400596d68cbfa34502e795766ff94f0..9af4586886fc98c50862672392d3b704e6bc1d0c 100644
--- a/src/operator/Producer.cpp
+++ b/src/operator/Producer.cpp
@@ -44,7 +44,7 @@ Aidge::Producer_Op::Producer_Op(const std::shared_ptr<Aidge::Tensor> tensor, boo
         attr<ProdAttr::Constant>(constant)))
 {
     mOutputs[0] = tensor; // copy the pointer of the Tensor
-    if (mOutputs[0]->getImpl() && Registrar<Producer_Op>::exists({mOutputs[0]->getImpl()->backend()})){
+    if (mOutputs[0] && mOutputs[0]->hasImpl() && Registrar<Producer_Op>::exists({mOutputs[0]->getImpl()->backend()})){
         SET_IMPL_MACRO(Producer_Op, *this, mOutputs[0]->getImpl()->backend());
     }
     else {
@@ -61,7 +61,7 @@ Aidge::Producer_Op::Producer_Op(const Aidge::Producer_Op& op)
     : OperatorTensor(op),
       mAttributes(op.mAttributes)
 {
-    mOutputs[0] = std::make_shared<Tensor>(*(op.getOutput(0)));
+    *mOutputs[0] = *(op.getOutput(0));
     if (mOutputs[0]->getImpl() && Registrar<Producer_Op>::exists({mOutputs[0]->getImpl()->backend()})){
         SET_IMPL_MACRO(Producer_Op, *this, mOutputs[0]->getImpl()->backend());
     }
@@ -71,7 +71,12 @@ Aidge::Producer_Op::Producer_Op(const Aidge::Producer_Op& op)
 }
 
 std::shared_ptr<Aidge::Operator> Aidge::Producer_Op::clone() const {
-    return std::make_shared<Producer_Op>(*this);
+    // mOutput cannot be nullptr because of OperatorTensor constructor
+    std::shared_ptr<Tensor> newTensor = std::make_shared<Tensor>(mOutputs[0]->clone());
+
+    std::shared_ptr<Producer_Op> newOp = std::make_shared<Producer_Op>(newTensor, constant());
+
+    return newOp;
 }
 
 void Aidge::Producer_Op::setBackend(const std::string& name, Aidge::DeviceIdx_t device) {
diff --git a/src/operator/Scaling.cpp b/src/operator/Scaling.cpp
index 5ac08cd2245e0caa3ca7072c70ccc69bcfcf9558..268a14cf9759a6e03302680814778da4804dcc19 100644
--- a/src/operator/Scaling.cpp
+++ b/src/operator/Scaling.cpp
@@ -18,6 +18,10 @@
 #include "aidge/utils/Registrar.hpp"
 #include "aidge/utils/Types.h"
 
+
+//Caution: This operator is now deprecated and should no longer be used. 
+//It has been replaced by the MetaOperator "Quantizer" (located directly in aidge_quantization).
+
 const std::string Aidge::Scaling_Op::Type = "Scaling";
 
 Aidge::Scaling_Op::Scaling_Op(float scalingFactor, std::size_t nbBits, bool isOutputUnsigned)
@@ -26,12 +30,15 @@ Aidge::Scaling_Op::Scaling_Op(float scalingFactor, std::size_t nbBits, bool isOu
         attr<ScalingAttr::ScalingFactor>(scalingFactor),
         attr<ScalingAttr::QuantizedNbBits>(nbBits),
         attr<ScalingAttr::IsOutputUnsigned>(isOutputUnsigned)))
-{}
+{
+    Log::warn("Caution: The [Scaling] operator is now deprecated and should no longer be used.\nIt has been replaced by the MetaOperator [Quantizer] (located directly in aidge_quantization).");
+} 
 
 Aidge::Scaling_Op::Scaling_Op(const Aidge::Scaling_Op& op)
     : OperatorTensor(op),
     mAttributes(op.mAttributes)
 {
+    Log::warn("Caution: The [Scaling] operator is now deprecated and should no longer be used. \nIt has been replaced by the MetaOperator [Quantizer] (located directly in aidge_quantization).");
     if (op.mImpl){
         SET_IMPL_MACRO(Scaling_Op, *this, op.backend());
     } else {
diff --git a/src/operator/Slice.cpp b/src/operator/Slice.cpp
index 3bdee8c13c1759261140d634940b0a4e81210084..02dcad58c47fb804f50b9eb2e20be45a12e73fae 100644
--- a/src/operator/Slice.cpp
+++ b/src/operator/Slice.cpp
@@ -24,6 +24,9 @@
 #include "aidge/data/Tensor.hpp"
 #include "aidge/utils/ErrorHandling.hpp"
 #include "aidge/utils/Types.h"
+#include "aidge/data/Data.hpp"
+#include "aidge/utils/Registrar.hpp"
+
 
 const std::string Aidge::Slice_Op::Type = "Slice";
 
@@ -43,17 +46,18 @@ Aidge::Slice_Op::Slice_Op(const std::vector<std::int64_t>& starts,
         attr<SliceAttr::Ends>(ends),
         attr<SliceAttr::Axes>(axes),
         attr<SliceAttr::Steps>(steps)))
-{}
+{
+    mImpl = std::make_shared<Slice_OpImpl>(*this);
+}
 
-Aidge::Slice_Op::Slice_Op(const Aidge::Slice_Op &op)
-    : OperatorTensor(op),
-        mAttributes(op.mAttributes)
+Aidge::Slice_Op::Slice_Op(const Aidge::Slice_Op& op)
+    : OperatorTensor(op), mAttributes(op.mAttributes)
 {
     if (!op.backend().empty()) {
         SET_IMPL_MACRO(Slice_Op, *this, op.backend());
     }
     else {
-        mImpl = nullptr;
+        mImpl = std::make_shared<Slice_OpImpl>(*this);
     }
 }
 
@@ -61,6 +65,82 @@ std::shared_ptr<Aidge::Operator> Aidge::Slice_Op::clone() const {
     return std::make_shared<Slice_Op>(*this);
 }
 
+// Helper function to calculate the linear index for multi-dimensional data
+size_t getLinearIndex(const std::vector<size_t>& dims, const std::vector<size_t>& indices) {
+    size_t linearIndex = 0;
+    size_t stride = 1;
+    for (int i = dims.size() - 1; i >= 0; --i) {
+        linearIndex += indices[i] * stride;
+        stride *= dims[i];
+    }
+    return linearIndex;
+}
+
+void Aidge::Slice_OpImpl::forward() {
+    const Slice_Op& op = dynamic_cast<const Slice_Op&>(mOp);
+
+    if (!op.getInput(0)) {
+        AIDGE_THROW_OR_ABORT(std::runtime_error, "{}: input #0 should be associated with a Tensor", op.Type);
+    }
+    AIDGE_ASSERT((op.axes().size() == op.ends().size()) &&
+                 (op.axes().size() == op.starts().size()),
+                 "Starts, Ends and Axes arguments should be the same size.");
+
+    const std::vector<size_t> inputDims = op.getInput(0)->dims();
+    std::vector<size_t> indices(inputDims.size(), 0); // Initialize indices for each dimension
+
+    // Create an array of ranges for each axis
+    std::vector<std::vector<int>> ranges(inputDims.size());
+
+    // Generate ranges dynamically for each dimension
+    for (size_t axisIdx = 0; axisIdx < inputDims.size(); ++axisIdx) {
+        if (std::find(op.axes().begin(), op.axes().end(), axisIdx) != op.axes().end()) {
+            // This axis is being sliced
+            int start = op.starts()[axisIdx];
+            int end = op.ends()[axisIdx];
+            int step = op.steps()[axisIdx];
+
+            start = start >= 0 ? start: start + inputDims[axisIdx];
+            end = end >= 0 ? end: end + inputDims[axisIdx];
+
+            // Generate the range of indices for this axis
+            for (int idx = start; (step > 0) ? (idx < end) : (idx > end); idx += step) {
+                ranges[axisIdx].push_back(idx);
+            }
+        } else {
+            // This axis is not being sliced, keep its full range (just one index in the range)
+            ranges[axisIdx].push_back(0);
+        }
+    }
+
+    // Use iterative stack to handle all dimensions dynamically
+    std::vector<size_t> currentIndex(inputDims.size(), 0); // Track current index in each dimension
+    std::vector<size_t> stackPointer(inputDims.size(), 0); // Pointers to ranges for each dimension
+    size_t dim = 0; // Start at the first dimension
+    size_t offset = 0; // Offset in the output tensor
+
+    while (dim < inputDims.size()) {
+        if (stackPointer[dim] < ranges[dim].size()) {
+            // Set the current index for this dimension
+            currentIndex[dim] = ranges[dim][stackPointer[dim]];
+            stackPointer[dim]++;
+
+            if (dim == inputDims.size() - 1) {
+                // We've reached the last dimension, process this index combination
+                size_t linearIndex = getLinearIndex(inputDims, currentIndex);
+                op.getOutput(0)->getImpl()->copy(op.getInput(0)->getImpl()->rawPtr(linearIndex), 1, offset);
+                offset++;
+            } else {
+                // Move to the next dimension
+                dim++;
+            }
+        } else {
+            // Reset this dimension and move back to the previous one
+            stackPointer[dim] = 0;
+            dim--;
+        }
+    }
+}
 
 bool Aidge::Slice_Op::dimsForwarded() const {
     if ((getInput(1) && !getInput(1)->undefined())
@@ -191,7 +271,7 @@ bool Aidge::Slice_Op::forwardDims(bool allowDataDependency) {
                 }
             }
 
-            const std::size_t sliceLength = static_cast<std::size_t>(std::ceil((static_cast<float>(end) - static_cast<float>(start)) / static_cast<float>(step)));
+            const std::size_t sliceLength = static_cast<std::size_t>(std::ceil((static_cast<float>(end) - static_cast<float>(start)) / static_cast<float>((step))));
             // Check if slice length is valid
             if (sliceLength > getInput(0)->dims()[axis])
             {
@@ -208,7 +288,12 @@ bool Aidge::Slice_Op::forwardDims(bool allowDataDependency) {
 }
 
 void Aidge::Slice_Op::setBackend(const std::string& name, Aidge::DeviceIdx_t device) {
-    SET_IMPL_MACRO(Slice_Op, *this, name);
+    if (Registrar<Slice_Op>::exists({name})){
+        SET_IMPL_MACRO(Slice_Op, *this, name);
+    }
+    else {
+        mImpl = std::make_shared<Slice_OpImpl>(*this);
+    }
     mOutputs[0]->setBackend(name, device);
 }
 
diff --git a/unit_tests/data/Test_Tensor.cpp b/unit_tests/data/Test_Tensor.cpp
index 58003bb4009a484ca63acffdb50fbda156a48787..6c4b14602aed98ff5736d2cf30ba642f9e7ec57b 100644
--- a/unit_tests/data/Test_Tensor.cpp
+++ b/unit_tests/data/Test_Tensor.cpp
@@ -120,7 +120,27 @@ TEST_CASE("[core/data] Tensor(Construction)", "[Tensor][Constructor]") {
         ));
     }
     SECTION("copy constructor / copy assignment operator") {
+        Tensor t1 = Array1D<int, 2>{{1, 2}};
+        Tensor t2, t3;
 
+        REQUIRE_NOTHROW(t3 = t1);
+        REQUIRE(t1 == t3);
+
+        REQUIRE_NOTHROW(t2 = Tensor(t1));
+        REQUIRE(t1 == t2);
+
+
+        t1.set<int>(0, 10);
+
+        // check copies are shallow
+        REQUIRE(t2.get<int>(0) == 10);
+        REQUIRE(t3.get<int>(0) == 10);
+
+        // set already existing Tensor
+        Tensor t4 = Array1D<int, 1>{{11}};
+        REQUIRE_NOTHROW(t4 = t1);
+        REQUIRE(t4 == t1);
+        REQUIRE(t4.size() == 2);
     }
     SECTION("move constructor / move assignment operator") {
 
diff --git a/unit_tests/graph/Test_GraphView.cpp b/unit_tests/graph/Test_GraphView.cpp
index a7d02cd2fc1f3782046f3e8a9e7d7ca00b2ec5a7..5bd435e28718d663519e504995fd5b030913d254 100644
--- a/unit_tests/graph/Test_GraphView.cpp
+++ b/unit_tests/graph/Test_GraphView.cpp
@@ -816,7 +816,7 @@ TEST_CASE("[core/graph] GraphView(replace)", "[GraphView][replace]") {
     }
 }
 
-TEST_CASE("[GraphView] clone") {
+TEST_CASE("[GraphView] clone", "[GraphView][Core][Clone]") {
     auto dataProvider = Producer({16, 3, 224, 224}, "dataProvider");
     auto conv1 = Conv(3, 32, {3, 3}, "conv1");
     auto conv2 = Conv(32, 64, {3, 3}, "conv2");
diff --git a/unit_tests/operator/Test_FlattenImpl.cpp b/unit_tests/operator/Test_FlattenImpl.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..1990c0b61645722526c59c5e7a136b33e8d87b7a
--- /dev/null
+++ b/unit_tests/operator/Test_FlattenImpl.cpp
@@ -0,0 +1,98 @@
+/********************************************************************************
+ * Copyright (c) 2023 CEA-List
+ *
+ * This program and the accompanying materials are made available under the
+ * terms of the Eclipse Public License 2.0 which is available at
+ * http://www.eclipse.org/legal/epl-2.0.
+ *
+ * SPDX-License-Identifier: EPL-2.0
+ *
+ ********************************************************************************/
+
+#include <catch2/catch_test_macros.hpp>
+
+#include "aidge/data/Tensor.hpp"
+#include "aidge/operator/Flatten.hpp"
+
+#include <memory>
+
+using namespace Aidge;
+
+TEST_CASE("[cpu/operator] Flatten(forward)") {
+    std::shared_ptr<Tensor> input = std::make_shared<Tensor>(Array4D<int32_t,1,2,3,5> {
+        {
+            {
+                {
+                    { 1,  2,  3,  4,  5},
+                    { 6,  7,  8,  9, 10},
+                    {11, 12, 13, 14, 15}
+                },
+                {
+                    {16, 17, 18, 19, 20},
+                    {21, 22, 23, 24, 25},
+                    {26, 27, 28, 29, 30}
+                }
+            }
+        }
+    });
+
+    SECTION("Default (axis = 1)") {
+        std::shared_ptr<Node> myFlatten = Flatten();
+        auto op = std::static_pointer_cast<OperatorTensor>(myFlatten -> getOperator());
+        op->associateInput(0, input);
+        op->setDataType(DataType::Int32);
+        op->setBackend("cpu");
+        myFlatten->forward();
+
+        auto expectedOutput = input->clone();
+        expectedOutput.resize({1, input->size()});
+
+        REQUIRE(op->getOutput(0)->dims() == expectedOutput.dims());
+        REQUIRE(*(op->getOutput(0)) == expectedOutput);
+    }
+
+    SECTION("Axis = 0") {
+        std::shared_ptr<Node> myFlatten = Flatten(0);
+        auto op = std::static_pointer_cast<OperatorTensor>(myFlatten -> getOperator());
+        op->associateInput(0, input);
+        op->setDataType(DataType::Int32);
+        op->setBackend("cpu");
+        myFlatten->forward();
+
+        auto expectedOutput = input->clone();
+        expectedOutput.resize({1, input->size()});
+
+        REQUIRE(op->getOutput(0)->dims() == expectedOutput.dims());
+        REQUIRE(*(op->getOutput(0)) == expectedOutput);
+    }
+
+    SECTION("Axis = 2") {
+        std::shared_ptr<Node> myFlatten = Flatten(2);
+        auto op = std::static_pointer_cast<OperatorTensor>(myFlatten -> getOperator());
+        op->associateInput(0, input);
+        op->setDataType(DataType::Int32);
+        op->setBackend("cpu");
+        myFlatten->forward();
+
+        auto expectedOutput = input->clone();
+        expectedOutput.resize({2, input->size() / 2});
+
+        REQUIRE(op->getOutput(0)->dims() == expectedOutput.dims());
+        REQUIRE(*(op->getOutput(0)) == expectedOutput);
+    }
+
+    SECTION("Axis = 4") {
+        std::shared_ptr<Node> myFlatten = Flatten(4);
+        auto op = std::static_pointer_cast<OperatorTensor>(myFlatten -> getOperator());
+        op->associateInput(0, input);
+        op->setDataType(DataType::Int32);
+        op->setBackend("cpu");
+        myFlatten->forward();
+
+        auto expectedOutput = input->clone();
+        expectedOutput.resize({input->size(), 1});
+
+        REQUIRE(op->getOutput(0)->dims() == expectedOutput.dims());
+        REQUIRE(*(op->getOutput(0)) == expectedOutput);
+    }
+}
\ No newline at end of file
diff --git a/unit_tests/operator/Test_PopImpl.cpp b/unit_tests/operator/Test_PopImpl.cpp
index f46131ed8c324f38874eb433f97d13977b4253a4..d3c87ef7289e4516442885f7449060055c428c49 100644
--- a/unit_tests/operator/Test_PopImpl.cpp
+++ b/unit_tests/operator/Test_PopImpl.cpp
@@ -16,21 +16,22 @@
 #include "aidge/operator/Pop.hpp"
 #include "aidge/utils/TensorUtils.hpp"
 
-using Aidge::Tensor;
-using Aidge::Pop;
+using namespace Aidge;
 
 TEST_CASE("[cpu/operator] Pop(forward)", "[Pop][CPU]") {
-    std::shared_ptr<Tensor> pop1 = std::make_shared<Tensor>(Aidge::Array1D<int,3>{{4,5,6}});
-    std::shared_ptr<Tensor> pop2 = std::make_shared<Tensor>(Aidge::Array1D<int,3>{{1,2,3}});
-    std::shared_ptr<Tensor> input = std::make_shared<Tensor>(Aidge::Array2D<int,2,3>{{{1,2,3}, {4,5,6}}});
+    std::shared_ptr<Tensor> pop1 = std::make_shared<Tensor>(Array1D<int,3>{{4,5,6}});
+    std::shared_ptr<Tensor> pop2 = std::make_shared<Tensor>(Array1D<int,3>{{1,2,3}});
+    std::shared_ptr<Tensor> input = std::make_shared<Tensor>(Array2D<int,2,3>{{{1,2,3}, {4,5,6}}});
 
-    auto pop = Aidge::Pop("pop");
-    pop->getOperator()->associateInput(0, input);
-    pop->getOperator()->setBackend("cpu");
-    pop->getOperator()->setDataType(Aidge::DataType::Int32);
+    auto pop = Pop("pop");
+    std::shared_ptr<Pop_Op> op = std::static_pointer_cast<Pop_Op>(pop->getOperator());
+    op->associateInput(0, input);
+    op->setBackend("cpu");
+    op->setDataType(DataType::Int32);
+    op->forwardDims();
 
     REQUIRE_NOTHROW(pop->forward());
-    REQUIRE(*std::static_pointer_cast<Aidge::OperatorTensor>(pop->getOperator())->getOutput(0) == *pop2);
+    REQUIRE(*op->getOutput(0) == *pop2);
     REQUIRE_NOTHROW(pop->forward());
-    REQUIRE(*std::static_pointer_cast<Aidge::OperatorTensor>(pop->getOperator())->getOutput(0) == *pop1);
+    REQUIRE(*op->getOutput(0) == *pop1);
 }
diff --git a/unit_tests/operator/Test_SliceImpl.cpp b/unit_tests/operator/Test_SliceImpl.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..b856535f373fb498324674a7ab169da83f1746d2
--- /dev/null
+++ b/unit_tests/operator/Test_SliceImpl.cpp
@@ -0,0 +1,278 @@
+/********************************************************************************
+ * Copyright (c) 2023 CEA-List
+ *
+ * This program and the accompanying materials are made available under the
+ * terms of the Eclipse Public License 2.0 which is available at
+ * http://www.eclipse.org/legal/epl-2.0.
+ *
+ * SPDX-License-Identifier: EPL-2.0
+ *
+ ********************************************************************************/
+
+#include <catch2/catch_test_macros.hpp>
+
+#include "aidge/data/Tensor.hpp"
+#include "aidge/operator/Slice.hpp"
+
+using namespace Aidge;
+
+TEST_CASE("[cpu/operator] Slice(forward)", "[Slice][CPU]") {
+    SECTION("1D Tensor") {
+        std::shared_ptr<Tensor> input0 = std::make_shared<Tensor>(Array1D<int,10> {
+            {0, 1, -2,-3, 4,-5,-6, 7, 8, 9}
+        });
+        std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array1D<int,3> {
+            {0, 1, -2}
+        });
+        std::shared_ptr<Tensor> starts = std::make_shared<Tensor>(Array1D<int,1>{{0}});
+        std::shared_ptr<Tensor> ends = std::make_shared<Tensor>(Array1D<int,1>{{3}});
+        std::shared_ptr<Tensor> axes = std::make_shared<Tensor>(Array1D<int,1>{{0}});
+
+        std::shared_ptr<Node> mySlice = Slice();
+        auto op = std::static_pointer_cast<OperatorTensor>(mySlice -> getOperator());
+        mySlice->getOperator()->associateInput(0,input0);
+        mySlice->getOperator()->associateInput(1,starts);
+        mySlice->getOperator()->associateInput(2,ends);
+        mySlice->getOperator()->associateInput(3,axes);
+        mySlice->getOperator()->setDataType(DataType::Int32);
+        mySlice->getOperator()->setBackend("cpu");
+        mySlice->forward();
+
+        REQUIRE(*(op->getOutput(0)) == *expectedOutput);
+        REQUIRE(op->getOutput(0)->dims() == expectedOutput->dims());
+        REQUIRE(op->getOutput(0)->dataType() == expectedOutput->dataType());
+    }
+
+    SECTION("2D Tensor") {
+        std::shared_ptr<Tensor> input0 = std::make_shared<Tensor>(Array2D<int,2,10> {
+            {
+                { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9},
+                {-5, 4, 2,-3, 4,-5,-6, 7,-1,10}
+            }
+        });
+        std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array2D<int,2,3> {
+            {
+                {-5,-6, 7},
+                {-5,-6, 7}
+            }
+        });
+        std::shared_ptr<Tensor> starts = std::make_shared<Tensor>(Array1D<int,2>{{0,5}});
+        std::shared_ptr<Tensor> ends = std::make_shared<Tensor>(Array1D<int,2>{{2,8}});
+        std::shared_ptr<Tensor> axes = std::make_shared<Tensor>(Array1D<int,2>{{0,1}});
+
+        std::shared_ptr<Node> mySlice = Slice();
+        auto op = std::static_pointer_cast<OperatorTensor>(mySlice -> getOperator());
+        mySlice->getOperator()->associateInput(0,input0);
+        mySlice->getOperator()->associateInput(1,starts);
+        mySlice->getOperator()->associateInput(2,ends);
+        mySlice->getOperator()->associateInput(3,axes);
+        mySlice->getOperator()->setDataType(DataType::Int32);
+        mySlice->getOperator()->setBackend("cpu");
+        mySlice->forward();
+        op->getOutput(0)->print();
+        REQUIRE(*(op->getOutput(0)) == *expectedOutput);
+        REQUIRE(op->getOutput(0)->dims() == expectedOutput->dims());
+        REQUIRE(op->getOutput(0)->dataType() == expectedOutput->dataType());
+    }
+
+    SECTION("3D Tensor") {
+        std::shared_ptr<Tensor> input0 = std::make_shared<Tensor>(Array3D<int,2,2,10> {
+            {
+                {
+                    { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9},
+                    {-5, 4, 2,-3, 4,-5,-6, 7,-1,10}
+                },
+                {
+                    { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9},
+                    {-5, 4, 2,-3, 4,-5,-6, 7,-1,10}
+                }
+            }
+        });
+        std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array3D<int,1,1,3> {
+            {
+                {
+                    { 4,-5,-6}
+                }
+            }
+        });
+        std::shared_ptr<Tensor> starts = std::make_shared<Tensor>(Array1D<int,3>{{0,1,4}});
+        std::shared_ptr<Tensor> ends = std::make_shared<Tensor>(Array1D<int,3>{{1,2,7}});
+        std::shared_ptr<Tensor> axes = std::make_shared<Tensor>(Array1D<int,3>{{0,1,2}});
+
+        std::shared_ptr<Node> mySlice = Slice();
+        auto op = std::static_pointer_cast<OperatorTensor>(mySlice -> getOperator());
+        mySlice->getOperator()->associateInput(0,input0);
+        mySlice->getOperator()->associateInput(1,starts);
+        mySlice->getOperator()->associateInput(2,ends);
+        mySlice->getOperator()->associateInput(3,axes);
+        mySlice->getOperator()->setDataType(DataType::Int32);
+        mySlice->getOperator()->setBackend("cpu");
+        mySlice->forward();
+        // mySlice->getOperator()->output(0).print();
+        REQUIRE(*(op->getOutput(0)) == *expectedOutput);
+        REQUIRE(op->getOutput(0)->dims() == expectedOutput->dims());
+        REQUIRE(op->getOutput(0)->dataType() == expectedOutput->dataType());
+    }
+
+    SECTION("4D Tensor") {
+        std::shared_ptr<Tensor> input0 = std::make_shared<Tensor>(Array4D<int,2,2,2,10> {
+            {
+                {
+                    {
+                        { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9},
+                        {-5, 4, 2,-3, 4,-5,-6, 7,-1,10}
+                    },
+                    {
+                        { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9},
+                        {-5, 4, 2,-3, 4,-5,-6, 7,-1,10}
+                    }
+                },
+                {
+                    {
+                        { 0, 1, 2,-3, 6,-5,-6, 7, 8, 9},
+                        {-5, 4, 2,-3, 4,-5,-6, 7,-1,10}
+                    },
+                    {
+                        { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9},
+                        {-5, 4, 2,-3,11,-5,-6, 7,-1,10}
+                    }
+                }
+            }
+        });
+        std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array4D<int,2,2,2,10> {
+            {
+                {
+                    {
+                        { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9},
+                        {-5, 4, 2,-3, 4,-5,-6, 7,-1,10}
+                    },
+                    {
+                        { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9},
+                        {-5, 4, 2,-3, 4,-5,-6, 7,-1,10}
+                    }
+                },
+                {
+                    {
+                        { 0, 1, 2,-3, 6,-5,-6, 7, 8, 9},
+                        {-5, 4, 2,-3, 4,-5,-6, 7,-1,10}
+                    },
+                    {
+                        { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9},
+                        {-5, 4, 2,-3,11,-5,-6, 7,-1,10}
+                    }
+                }
+            }
+        });
+        std::shared_ptr<Tensor> starts = std::make_shared<Tensor>(Array1D<int,4>{{0,0,0,0}});
+        std::shared_ptr<Tensor> ends = std::make_shared<Tensor>(Array1D<int,4>{{2,2,2,10}});
+        std::shared_ptr<Tensor> axes = std::make_shared<Tensor>(Array1D<int,4>{{0,1,2,3}});
+
+        std::shared_ptr<Node> mySlice = Slice();
+        auto op = std::static_pointer_cast<OperatorTensor>(mySlice -> getOperator());
+        mySlice->getOperator()->associateInput(0,input0);
+        mySlice->getOperator()->associateInput(1,starts);
+        mySlice->getOperator()->associateInput(2,ends);
+        mySlice->getOperator()->associateInput(3,axes);
+        mySlice->getOperator()->setDataType(DataType::Int32);
+        mySlice->getOperator()->setBackend("cpu");
+        mySlice->forward();
+        // op->getOutput(0)->print();
+        REQUIRE(*(op->getOutput(0)) == *expectedOutput);
+        REQUIRE(op->getOutput(0)->dims() == expectedOutput->dims());
+        REQUIRE(op->getOutput(0)->dataType() == expectedOutput->dataType());
+    }
+
+    SECTION("Attributes instead of inputs") {
+        std::shared_ptr<Tensor> input0 = std::make_shared<Tensor>(Array4D<int,2,2,2,10> {
+            {
+                {
+                    {
+                        { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9},
+                        {-5, 4, 2,-3, 4,-5,-6, 7,-1,10}
+                    },
+                    {
+                        { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9},
+                        {-5, 4, 2,-3, 4,-5,-6, 7,-1,10}
+                    }
+                },
+                {
+                    {
+                        { 0, 1, 2,-3, 6,-5,-6, 7, 8, 9},
+                        {-5, 4, 2,-3, 4,-5,-6, 7,-1,10}
+                    },
+                    {
+                        { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9},
+                        {-5, 4, 2,-3,11,-5,-6, 7,-1,10}
+                    }
+                }
+            }
+        });
+        std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array4D<int,1,1,1,5> {
+            {
+                {
+                    {
+                        { 0, 1, 2,-3, 4}
+                    }
+                }
+            }
+        });
+
+        std::shared_ptr<Node> mySlice = Slice({0,0,0,0}, {1,1,1,5}, {0,1,2,3}, {1,1,1,1});
+        auto op = std::static_pointer_cast<OperatorTensor>(mySlice -> getOperator());
+        mySlice->getOperator()->associateInput(0,input0);
+        mySlice->getOperator()->setDataType(DataType::Int32);
+        mySlice->getOperator()->setBackend("cpu");
+        mySlice->forward();
+        // op->getOutput(0)->print();
+        REQUIRE(*(op->getOutput(0)) == *expectedOutput);
+        REQUIRE(op->getOutput(0)->dims() == expectedOutput->dims());
+        REQUIRE(op->getOutput(0)->dataType() == expectedOutput->dataType());
+    }
+
+    SECTION("Different Steps") {
+        std::shared_ptr<Tensor> input0 = std::make_shared<Tensor>(Array3D<int,4,2,8> {
+            {
+                {
+                    { 0, 1, 2,-3, 4,-5,-6,7},
+                    {-5, 4, 2,-3, 4,-5,-6,-7}
+                },
+                {
+                    { 10, 11, 12,-13, 14,-15,-16,17},
+                    {-15, 14, 12,-13, 14,-15,-16,-17}
+                },
+                {
+                    { 20, 21, 22,-23, 24,-25,-26,27},
+                    {-25, 24, 22,-23, 24,-25,-26,-27}
+                },
+                {
+                    { 30, 31, 32,-33, 34,-35,-36,37},
+                    {-35, 34, 32,-33, 34,-35,-36,-37}
+                }
+            }
+        });
+        std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array3D<int,2,1,3> {
+            {
+                {
+                    { 7, 4, 1}
+                },
+                {
+                    { 27, 24, 21}
+                }
+            }
+        });
+
+        std::shared_ptr<Node> mySlice = Slice({0,0,7}, {4,1,0}, {0,1,2}, {2,1,-3});
+        // on Axis 0: from 0 to 4 by step of 2
+        // on Axis 1: from 0 to 1 by step of 1
+        // on Axis 2: from 7 to 0 by step of -3 (reverse the order of elements)
+        auto op = std::static_pointer_cast<OperatorTensor>(mySlice -> getOperator());
+        mySlice->getOperator()->associateInput(0,input0);
+        mySlice->getOperator()->setDataType(DataType::Int32);
+        mySlice->getOperator()->setBackend("cpu");
+        mySlice->forward();
+        // op->getOutput(0)->print();
+        REQUIRE(*(op->getOutput(0)) == *expectedOutput);
+        REQUIRE(op->getOutput(0)->dims() == expectedOutput->dims());
+        REQUIRE(op->getOutput(0)->dataType() == expectedOutput->dataType());
+    }
+}
diff --git a/unit_tests/recipes/Test_ToGenericOp.cpp b/unit_tests/recipes/Test_ToGenericOp.cpp
index 886e07f953afa26fed885d8af35b78b1fca56ae1..cb75fdb1072dee476c88c1f6d502a792b2e6abd9 100644
--- a/unit_tests/recipes/Test_ToGenericOp.cpp
+++ b/unit_tests/recipes/Test_ToGenericOp.cpp
@@ -63,7 +63,8 @@ TEST_CASE("[graph/convert] toGenericOp", "[toGenericOp][recipies]") {
 
         std::shared_ptr<Node> metaOpNode;
 
-        for (const auto& nodePtr : g->getNodes()) 
+        const auto nodes = g->getNodes(); // g nodes gets modified in the loop!
+        for (const auto& nodePtr : nodes) 
         {
             if (nodePtr->type() == "ConvReLUFC") 
             {
@@ -74,10 +75,13 @@ TEST_CASE("[graph/convert] toGenericOp", "[toGenericOp][recipies]") {
             }
         }
 
+        REQUIRE(metaOpNode);
+        REQUIRE(!metaOpNode->getOperator()->isAtomic());
         auto newGenOp = g->getNode("ConvReLUFC_0");
 
         // Ensure the conversion
         REQUIRE(newGenOp->type() == "ConvReLUFC");
+        REQUIRE(std::dynamic_pointer_cast<GenericOperator_Op>(newGenOp->getOperator()));
 
         const auto metaOpAttr = *std::static_pointer_cast<DynamicAttributes>(metaOpNode->getOperator()->attributes());
         const auto newGenOpAttr = *std::static_pointer_cast<DynamicAttributes>(newGenOp->getOperator()->attributes());
diff --git a/version.txt b/version.txt
index 0d91a54c7d439e84e3dd17d3594f1b2b6737f430..1d0ba9ea182b0f7354f3daf12120744ec5e0c2f8 100644
--- a/version.txt
+++ b/version.txt
@@ -1 +1 @@
-0.3.0
+0.4.0