From e617397a970c807d57b10a36b93dcfd72c0f3564 Mon Sep 17 00:00:00 2001 From: Olivier BICHLER <olivier.bichler@cea.fr> Date: Tue, 3 Sep 2024 16:37:06 +0200 Subject: [PATCH] Multiple fixes --- aidge_core/export_utils/operator_export.py | 58 +++++++++++++++++ include/aidge/backend/OperatorImpl.hpp | 4 ++ include/aidge/utils/Registrar.hpp | 5 +- .../backend/pybind_OperatorImpl.cpp | 1 + python_binding/data/pybind_Tensor.cpp | 1 + python_binding/data/pybind_TensorImpl.cpp | 64 +++++++++++++++++++ python_binding/pybind_core.cpp | 2 + python_binding/recipes/pybind_Recipes.cpp | 7 ++ src/backend/OperatorImpl.cpp | 11 ++-- src/recipes/AdaptToBackend.cpp | 7 +- 10 files changed, 153 insertions(+), 7 deletions(-) create mode 100644 aidge_core/export_utils/operator_export.py create mode 100644 python_binding/data/pybind_TensorImpl.cpp diff --git a/aidge_core/export_utils/operator_export.py b/aidge_core/export_utils/operator_export.py new file mode 100644 index 000000000..c68f6b319 --- /dev/null +++ b/aidge_core/export_utils/operator_export.py @@ -0,0 +1,58 @@ +# TODO: this file is here for prototyping only +# IT NEEDS TO BE REMOVED BEFORE ANY MERGE! + +import aidge_core + + +class OperatorExport_arm_cortexm(aidge_core.OperatorImpl): + register = dict() + + def __init__(self, operator): + super(OperatorExport_arm_cortexm, self).__init__(operator, "export_arm_cortexm") + print("ok") + + def get_available_impl_specs(self): + print(f"get_available_impl_specs: {self.get_operator().type()}") + if self.get_operator().type() in self.register: + print(f" : {list(self.register[self.get_operator().type()].keys())}") + return list(self.register[self.get_operator().type()].keys()) + else: + return [] + + class FCOpKernel(): + def generate(): + print("Gen code for FCOp") + + +# Register all operator types +aidge_core.register_FCOp("export_arm_cortexm", OperatorExport_arm_cortexm) +aidge_core.register_ReLUOp("export_arm_cortexm", OperatorExport_arm_cortexm) + +# Use the CPU backend for Tensor in the "export_arm_cortexm" backend +aidge_core.register_Tensor(["export_arm_cortexm", aidge_core.dtype.float32], + aidge_core.get_key_value_Tensor(["cpu", aidge_core.dtype.float32])) + +# Register kernels +OperatorExport_arm_cortexm.register[aidge_core.FCOp.Type] = dict() +OperatorExport_arm_cortexm.register[aidge_core.FCOp.Type][aidge_core.ImplSpec(aidge_core.IOSpec(aidge_core.dtype.int16))] = OperatorExport_arm_cortexm.FCOpKernel + + + +model = aidge_core.sequential( + [ + aidge_core.FC( + in_channels=32 * 32 * 3, out_channels=512, name="InputNode" + ), + aidge_core.ReLU(name="Relu0"), + aidge_core.FC(in_channels=512, out_channels=256, name="FC1"), + aidge_core.ReLU(name="Relu1"), + aidge_core.FC(in_channels=256, out_channels=128, name="FC2"), + aidge_core.ReLU(name="Relu2"), + aidge_core.FC(in_channels=128, out_channels=10, name="OutputNode"), + ] +) +model.set_backend("export_arm_cortexm") + +aidge_core.adapt_to_backend(model) + +model.save("test", verbose=True) \ No newline at end of file diff --git a/include/aidge/backend/OperatorImpl.hpp b/include/aidge/backend/OperatorImpl.hpp index 9c76f49b8..e145475c6 100644 --- a/include/aidge/backend/OperatorImpl.hpp +++ b/include/aidge/backend/OperatorImpl.hpp @@ -100,6 +100,10 @@ public: return mBackend; } + const Operator& getOperator() const noexcept { + return mOp; + } + /** * @brief Get the operator required implementation specification, according * to the current operator configuration. diff --git a/include/aidge/utils/Registrar.hpp b/include/aidge/utils/Registrar.hpp index 6323b2abd..de5f6f80f 100644 --- a/include/aidge/utils/Registrar.hpp +++ b/include/aidge/utils/Registrar.hpp @@ -101,11 +101,14 @@ template <class C> void declare_registrable(py::module& m, const std::string& class_name){ typedef typename C::registrar_key registrar_key; typedef typename C::registrar_type registrar_type; - m.def(("register_"+ class_name).c_str(), [](registrar_key& key, registrar_type function){ + m.def(("register_"+ class_name).c_str(), [](const registrar_key& key, registrar_type function){ Registrar<C>(key, function); }) .def(("get_keys_"+ class_name).c_str(), [](){ return Registrar<C>::getKeys(); + }) + .def(("get_key_value_"+ class_name).c_str(), [](const registrar_key& key){ + return Registrar<C>::create(key); }); } #endif diff --git a/python_binding/backend/pybind_OperatorImpl.cpp b/python_binding/backend/pybind_OperatorImpl.cpp index a129af8a2..be1d26e78 100644 --- a/python_binding/backend/pybind_OperatorImpl.cpp +++ b/python_binding/backend/pybind_OperatorImpl.cpp @@ -87,6 +87,7 @@ void init_OperatorImpl(py::module& m){ .def("backward", &OperatorImpl::backward) .def("prod_conso", &OperatorImpl::prodConso) .def("backend", &OperatorImpl::backend) + .def("get_operator", &OperatorImpl::getOperator) .def("get_required_spec", &OperatorImpl::getRequiredSpec) .def("get_best_match", &OperatorImpl::getBestMatch) .def("get_adaptation", &OperatorImpl::getAdaptation) diff --git a/python_binding/data/pybind_Tensor.cpp b/python_binding/data/pybind_Tensor.cpp index 8f96c28d4..bbbbf39a7 100644 --- a/python_binding/data/pybind_Tensor.cpp +++ b/python_binding/data/pybind_Tensor.cpp @@ -584,5 +584,6 @@ void init_Tensor(py::module& m){ // Handles python scalars and numpy scalars with a single overload addScalarCtor(pyClassTensor); + declare_registrable<Tensor>(m, "Tensor"); } } diff --git a/python_binding/data/pybind_TensorImpl.cpp b/python_binding/data/pybind_TensorImpl.cpp new file mode 100644 index 000000000..4c664274e --- /dev/null +++ b/python_binding/data/pybind_TensorImpl.cpp @@ -0,0 +1,64 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <pybind11/pybind11.h> +#include <pybind11/stl.h> +#include <pybind11/operators.h> +#include <pybind11/numpy.h> + +#include "aidge/data/Tensor.hpp" +#include "aidge/data/Data.hpp" +#include "aidge/utils/Registrar.hpp" +#include "aidge/utils/Types.h" +#include "aidge/backend/TensorImpl.hpp" +#include "aidge/backend/cpu/data/TensorImpl.hpp" + +namespace py = pybind11; +namespace Aidge { + +void init_TensorImpl(py::module& m){ + py::class_<TensorImpl, std::shared_ptr<TensorImpl>>(m, "TensorImpl"); + + py::class_<TensorImpl_cpu<double>, std::shared_ptr<TensorImpl_cpu<double>>, TensorImpl>(m, "TensorImpl_cpu_float64") + .def(py::init<DeviceIdx_t, std::vector<DimSize_t>>()); + + py::class_<TensorImpl_cpu<float>, std::shared_ptr<TensorImpl_cpu<float>>, TensorImpl>(m, "TensorImpl_cpu_float32") + .def(py::init<DeviceIdx_t, std::vector<DimSize_t>>()); + + py::class_<TensorImpl_cpu<half_float::half>, std::shared_ptr<TensorImpl_cpu<half_float::half>>, TensorImpl>(m, "TensorImpl_cpu_float16") + .def(py::init<DeviceIdx_t, std::vector<DimSize_t>>()); + + py::class_<TensorImpl_cpu<int64_t>, std::shared_ptr<TensorImpl_cpu<int64_t>>, TensorImpl>(m, "TensorImpl_cpu_int64") + .def(py::init<DeviceIdx_t, std::vector<DimSize_t>>()); + + py::class_<TensorImpl_cpu<int32_t>, std::shared_ptr<TensorImpl_cpu<int32_t>>, TensorImpl>(m, "TensorImpl_cpu_int32") + .def(py::init<DeviceIdx_t, std::vector<DimSize_t>>()); + + py::class_<TensorImpl_cpu<int16_t>, std::shared_ptr<TensorImpl_cpu<int16_t>>, TensorImpl>(m, "TensorImpl_cpu_int16") + .def(py::init<DeviceIdx_t, std::vector<DimSize_t>>()); + + py::class_<TensorImpl_cpu<int8_t>, std::shared_ptr<TensorImpl_cpu<int8_t>>, TensorImpl>(m, "TensorImpl_cpu_int8") + .def(py::init<DeviceIdx_t, std::vector<DimSize_t>>()); + + py::class_<TensorImpl_cpu<uint64_t>, std::shared_ptr<TensorImpl_cpu<uint64_t>>, TensorImpl>(m, "TensorImpl_cpu_uint64") + .def(py::init<DeviceIdx_t, std::vector<DimSize_t>>()); + + py::class_<TensorImpl_cpu<uint32_t>, std::shared_ptr<TensorImpl_cpu<uint32_t>>, TensorImpl>(m, "TensorImpl_cpu_uint32") + .def(py::init<DeviceIdx_t, std::vector<DimSize_t>>()); + + py::class_<TensorImpl_cpu<uint16_t>, std::shared_ptr<TensorImpl_cpu<uint16_t>>, TensorImpl>(m, "TensorImpl_cpu_uint16") + .def(py::init<DeviceIdx_t, std::vector<DimSize_t>>()); + + py::class_<TensorImpl_cpu<uint8_t>, std::shared_ptr<TensorImpl_cpu<uint8_t>>, TensorImpl>(m, "TensorImpl_cpu_uint8") + .def(py::init<DeviceIdx_t, std::vector<DimSize_t>>()); + +} +} diff --git a/python_binding/pybind_core.cpp b/python_binding/pybind_core.cpp index 9cf240d14..ae577246f 100644 --- a/python_binding/pybind_core.cpp +++ b/python_binding/pybind_core.cpp @@ -21,6 +21,7 @@ void init_Data(py::module&); void init_Database(py::module&); void init_DataProvider(py::module&); void init_Tensor(py::module&); +void init_TensorImpl(py::module&); void init_Attributes(py::module&); void init_OperatorImpl(py::module&); void init_Log(py::module&); @@ -89,6 +90,7 @@ void init_Aidge(py::module& m) { init_Database(m); init_DataProvider(m); init_Tensor(m); + init_TensorImpl(m); init_Attributes(m); init_Node(m); diff --git a/python_binding/recipes/pybind_Recipes.cpp b/python_binding/recipes/pybind_Recipes.cpp index 1c04a320d..144166876 100644 --- a/python_binding/recipes/pybind_Recipes.cpp +++ b/python_binding/recipes/pybind_Recipes.cpp @@ -122,6 +122,13 @@ void init_Recipes(py::module &m) :return: Number of sub-graph actually fused in a Meta Operator. :rtype: int )mydelimiter"); + + m.def("adapt_to_backend", adaptToBackend, py::arg("graph_view"), R"mydelimiter( + Adapt the graph to a specific backend. + + :param graph_view: Graph view on which we want to apply the recipe + :type graph_view: :py:class:`aidge_core.GraphView` + )mydelimiter"); } } // namespace Aidge diff --git a/src/backend/OperatorImpl.cpp b/src/backend/OperatorImpl.cpp index 5b53f9bef..a62da5f8e 100644 --- a/src/backend/OperatorImpl.cpp +++ b/src/backend/OperatorImpl.cpp @@ -221,7 +221,7 @@ std::shared_ptr<Aidge::Node> Aidge::OperatorImpl::getAdaptation(const ImplSpec& // Adapt inputs for (size_t i = 0; i < requiredSpecs.inputs.size(); ++i) { - const ImplSpec::IOSpec& IOSpec = spec.inputs[i]; + const auto IOSpec = (i < spec.inputs.size()) ? spec.inputs[i] : spec.inputs.back(); const ImplSpec::IOSpec& requiredIOSpec = requiredSpecs.inputs[i]; std::shared_ptr<Node> parent = node; @@ -272,7 +272,7 @@ std::shared_ptr<Aidge::Node> Aidge::OperatorImpl::getAdaptation(const ImplSpec& // Adapt outputs for (size_t i = 0; i < requiredSpecs.outputs.size(); ++i) { - const ImplSpec::IOSpec& IOSpec = spec.outputs[i]; + const auto IOSpec = (i < spec.outputs.size()) ? spec.outputs[i] : spec.outputs.back(); const ImplSpec::IOSpec& requiredIOSpec = requiredSpecs.outputs[i]; std::shared_ptr<Node> parent = node; @@ -321,11 +321,12 @@ std::shared_ptr<Aidge::Node> Aidge::OperatorImpl::getAdaptation(const ImplSpec& } } - return MetaOperator("", getConnectedGraphView(node)); + return MetaOperator(std::string("Adapted_" + op->type()).c_str(), getConnectedGraphView(node)); } std::shared_ptr<Aidge::Node> Aidge::OperatorImpl::getBestAdaptation(const ImplSpec& requiredSpecs) const { const auto availableSpecs = getAvailableImplSpecs(); + Log::debug("Adapt operator type {}: {} impl. available", mOp.type(), availableSpecs.size()); using AdaptationCost = int; std::map<std::shared_ptr<Node>, AdaptationCost> adaptations; @@ -334,11 +335,13 @@ std::shared_ptr<Aidge::Node> Aidge::OperatorImpl::getBestAdaptation(const ImplSp auto adaptation = getAdaptation(availableSpecs[s], requiredSpecs); if (adaptation) { - auto microGraph = std::dynamic_pointer_cast<MetaOperator_Op>(adaptation)->getMicroGraph(); + auto microGraph = std::dynamic_pointer_cast<MetaOperator_Op>(adaptation->getOperator())->getMicroGraph(); adaptations.insert(std::make_pair(adaptation, microGraph->getNodes().size())); } } + Log::debug("Adapt operator type {}: found {} possible adaptations", mOp.type(), adaptations.size()); + if (!adaptations.empty()) { // Return best adaptation (with min. AdaptationCost) const auto bestAdaptation = std::min_element(adaptations.begin(), adaptations.end(), diff --git a/src/recipes/AdaptToBackend.cpp b/src/recipes/AdaptToBackend.cpp index b1e62c02b..e625a52f6 100644 --- a/src/recipes/AdaptToBackend.cpp +++ b/src/recipes/AdaptToBackend.cpp @@ -18,15 +18,18 @@ #include "aidge/recipes/Recipes.hpp" void Aidge::adaptToBackend(std::shared_ptr<GraphView> graphView) { - for (auto node : graphView->getNodes()) { + const auto nodes = graphView->getNodes(); + for (auto node : nodes) { auto impl = node->getOperator()->getImpl(); + AIDGE_ASSERT(impl, "Missing implementation for node {} (of type {})", + node->name(), node->type()); auto adaptedNode = impl->getBestAdaptation(impl->getRequiredSpec()); if (adaptedNode == nullptr) { Log::notice("Unable to adapt node {} (of type {}) to backend {}", node->name(), node->type(), impl->backend()); } - else if (!node->getOperator()->isAtomic()) { + else if (!adaptedNode->getOperator()->isAtomic()) { Log::info("Adapted node {} (of type {}) to backend {}", node->name(), node->type(), impl->backend()); AIDGE_ASSERT(GraphView::replace({node}, {adaptedNode}), "Unable to replace adapted node!"); -- GitLab