From d2a8b90f35beba65128ecf24adae3ae8caab1ff9 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Gr=C3=A9goire=20KUBLER?= <gregoire.kubler@proton.me> Date: Tue, 17 Dec 2024 17:46:28 +0100 Subject: [PATCH] fix : [Conv] added check to ensure that dilation & stride values were all >= 1 Also better warning message for conv operator constructor --- include/aidge/operator/Conv.hpp | 13 ++++++++++--- src/operator/Conv.cpp | 15 +++++++++++++++ 2 files changed, 25 insertions(+), 3 deletions(-) diff --git a/include/aidge/operator/Conv.hpp b/include/aidge/operator/Conv.hpp index 283d0136e..0db1e8343 100644 --- a/include/aidge/operator/Conv.hpp +++ b/include/aidge/operator/Conv.hpp @@ -12,6 +12,7 @@ #ifndef AIDGE_CORE_OPERATOR_CONV_H_ #define AIDGE_CORE_OPERATOR_CONV_H_ +#include <algorithm> #include <array> #include <cstddef> // std::size_t #include <string> @@ -234,10 +235,16 @@ std::shared_ptr<Node> Conv(DimSize_t inChannels, bool noBias = false); /** - * @brief Helper function for Conv with C-style arrays. + * @brief Perform a convolution on the input Tensor. * - * This helper function allows automatic template deduction of the number of dimensions (DIM) - * based on the kernel dimensions provided. + * @tparam DIM Number of dimensions for the feature map. + * @param inChannels Number of input channels. + * @param outChannels Number of output channels. + * @param kernelDims Dimensions of the kernel. Must be the same number of dimensions as the feature map. + * @param name Name of the operator. + * @param strideDims Dimensions of the stride attribute. Must be the same number of dimensions as the feature map. + * @param dilationDims Dimensions of the dilation attribute. Must be the same number of dimensions as the feature map. + * @return std::shared_ptr<Node> A Node containing the operator. */ template <DimSize_t DIM> std::shared_ptr<Node> Conv( diff --git a/src/operator/Conv.cpp b/src/operator/Conv.cpp index 8d5f33322..3abd144f8 100644 --- a/src/operator/Conv.cpp +++ b/src/operator/Conv.cpp @@ -237,6 +237,21 @@ std::shared_ptr<Aidge::Node> Aidge::Conv( const std::array<Aidge::DimSize_t, DIM> &dilationDims, bool noBias) { + AIDGE_ASSERT(DIM<=MaxDim,"{}: Too many kernel dimensions required, maximum allowed : {} ", Conv_Op<DIM>::Type, MaxDim); + AIDGE_ASSERT(!std::any_of(dilationDims.cbegin(), + dilationDims.cend(), + [](DimSize_t val) { return val == 0; }), + "Conv : at least of of the dilation dimension is 0, expecting " + "strictly positive values. Got {}", + Conv_Op<DIM>::Type, + dilationDims); + AIDGE_ASSERT(!std::any_of(strideDims.cbegin(), + strideDims.cend(), + [](DimSize_t val) { return val == 0; }), + "{}: at least one of the stride dimension is 0, expecting " + "strictly positive values. Got {}.", + Conv_Op<DIM>::Type, + strideDims); static_assert(DIM<=MaxDim,"Too many kernel dimensions required by Conv, not supported"); return Conv(inChannels, outChannels, to_array(kernelDims), name, strideDims, dilationDims, noBias); } -- GitLab