From c617a2125f4fc814e7c96ab208d943d3778153ac Mon Sep 17 00:00:00 2001 From: bhalimi <benjamin.halimi@cea.fr> Date: Wed, 27 Nov 2024 13:45:55 +0000 Subject: [PATCH] change the training flag type from int to bool --- include/aidge/operator/BatchNorm.hpp | 14 +++++++------- python_binding/operator/pybind_BatchNorm.cpp | 4 ++-- src/operator/BatchNorm.cpp | 8 ++++---- unit_tests/graph/Test_Matching.cpp | 4 ++-- 4 files changed, 15 insertions(+), 15 deletions(-) diff --git a/include/aidge/operator/BatchNorm.hpp b/include/aidge/operator/BatchNorm.hpp index 34366b9b6..8f33380b2 100644 --- a/include/aidge/operator/BatchNorm.hpp +++ b/include/aidge/operator/BatchNorm.hpp @@ -33,7 +33,7 @@ public: static const std::string Type; private: - using Attributes_ = StaticAttributes<BatchNormAttr, float, float, int>; + using Attributes_ = StaticAttributes<BatchNormAttr, float, float, bool>; template <BatchNormAttr e> using attr = typename Attributes_::template attr<e>; const std::shared_ptr<Attributes_> mAttributes; @@ -42,7 +42,7 @@ public: BatchNorm_Op() = delete; - constexpr BatchNorm_Op(float epsilon, float momentum, int trainingMode) + constexpr BatchNorm_Op(float epsilon, float momentum, bool trainingMode) : OperatorTensor(Type, {InputCategory::Data, InputCategory::Param, @@ -86,7 +86,7 @@ public: inline std::shared_ptr<Attributes> attributes() const override { return mAttributes; } inline float& epsilon() const { return mAttributes->template getAttr<BatchNormAttr::Epsilon>(); } inline float& momentum() const { return mAttributes->template getAttr<BatchNormAttr::Momentum>(); } - inline int& trainingMode() const { return mAttributes->template getAttr<BatchNormAttr::TrainingMode>(); } + inline bool& trainingMode() const { return mAttributes->template getAttr<BatchNormAttr::TrainingMode>(); } static const std::vector<std::string> getInputsName() { return {"data_input", "scale", "shift", "mean", "variance"}; @@ -104,13 +104,13 @@ template <DimSize_t DIM> std::shared_ptr<Node> BatchNorm(const DimSize_t nbFeatures, const float epsilon = 1.0e-5F, const float momentum = 0.1F, - const int trainingMode = 0, + const bool trainingMode = false, const std::string& name = ""); } // namespace Aidge -extern template std::shared_ptr<Aidge::Node> Aidge::BatchNorm<2>(const DimSize_t, const float, const float, const int, const std::string&); -extern template std::shared_ptr<Aidge::Node> Aidge::BatchNorm<3>(const DimSize_t, const float, const float, const int, const std::string&); -extern template std::shared_ptr<Aidge::Node> Aidge::BatchNorm<4>(const DimSize_t, const float, const float, const int, const std::string&); +extern template std::shared_ptr<Aidge::Node> Aidge::BatchNorm<2>(const DimSize_t, const float, const float, const bool, const std::string&); +extern template std::shared_ptr<Aidge::Node> Aidge::BatchNorm<3>(const DimSize_t, const float, const float, const bool, const std::string&); +extern template std::shared_ptr<Aidge::Node> Aidge::BatchNorm<4>(const DimSize_t, const float, const float, const bool, const std::string&); namespace { template <> diff --git a/python_binding/operator/pybind_BatchNorm.cpp b/python_binding/operator/pybind_BatchNorm.cpp index 039147018..c380f5940 100644 --- a/python_binding/operator/pybind_BatchNorm.cpp +++ b/python_binding/operator/pybind_BatchNorm.cpp @@ -26,7 +26,7 @@ void declare_BatchNormOp(py::module& m) { const std::string pyClassName("BatchNorm" + std::to_string(DIM) + "DOp"); py::class_<BatchNorm_Op<DIM>, std::shared_ptr<BatchNorm_Op<DIM>>, OperatorTensor>( m, pyClassName.c_str(), py::multiple_inheritance()) - .def(py::init<float, float, int>(), + .def(py::init<float, float, bool>(), py::arg("epsilon"), py::arg("momentum"), py::arg("training_mode")) @@ -36,7 +36,7 @@ void declare_BatchNormOp(py::module& m) { declare_registrable<BatchNorm_Op<DIM>>(m, pyClassName); - m.def(("BatchNorm" + std::to_string(DIM) + "D").c_str(), &BatchNorm<DIM>, py::arg("nb_features"), py::arg("epsilon") = 1.0e-5F, py::arg("momentum") = 0.1F, py::arg("training_mode") = 0, py::arg("name") = ""); + m.def(("BatchNorm" + std::to_string(DIM) + "D").c_str(), &BatchNorm<DIM>, py::arg("nb_features"), py::arg("epsilon") = 1.0e-5F, py::arg("momentum") = 0.1F, py::arg("training_mode") = false, py::arg("name") = ""); } void init_BatchNorm(py::module &m) { diff --git a/src/operator/BatchNorm.cpp b/src/operator/BatchNorm.cpp index 6a5d8819e..24a49e56c 100644 --- a/src/operator/BatchNorm.cpp +++ b/src/operator/BatchNorm.cpp @@ -108,7 +108,7 @@ template <Aidge::DimSize_t DIM> inline std::shared_ptr<Aidge::Node> Aidge::BatchNorm(const Aidge::DimSize_t nbFeatures, const float epsilon, const float momentum, - const int trainingMode, + const bool trainingMode, const std::string& name) { static_assert(DIM<=MaxDim,"Too many kernel dimensions required by BatchNorm, not supported"); auto batchNorm = std::make_shared<Node>(std::make_shared<BatchNorm_Op<static_cast<DimIdx_t>(DIM)>>(epsilon, momentum, trainingMode), name); @@ -119,6 +119,6 @@ inline std::shared_ptr<Aidge::Node> Aidge::BatchNorm(const Aidge::DimSize_t nbFe return batchNorm; } -template std::shared_ptr<Aidge::Node> Aidge::BatchNorm<2>(const DimSize_t, const float, const float, const int, const std::string&); -template std::shared_ptr<Aidge::Node> Aidge::BatchNorm<3>(const DimSize_t, const float, const float, const int, const std::string&); -template std::shared_ptr<Aidge::Node> Aidge::BatchNorm<4>(const DimSize_t, const float, const float, const int, const std::string&); +template std::shared_ptr<Aidge::Node> Aidge::BatchNorm<2>(const DimSize_t, const float, const float, const bool, const std::string&); +template std::shared_ptr<Aidge::Node> Aidge::BatchNorm<3>(const DimSize_t, const float, const float, const bool, const std::string&); +template std::shared_ptr<Aidge::Node> Aidge::BatchNorm<4>(const DimSize_t, const float, const float, const bool, const std::string&); diff --git a/unit_tests/graph/Test_Matching.cpp b/unit_tests/graph/Test_Matching.cpp index ce454c409..582c73565 100644 --- a/unit_tests/graph/Test_Matching.cpp +++ b/unit_tests/graph/Test_Matching.cpp @@ -352,11 +352,11 @@ TEST_CASE("[core/graph] Matching") { auto g2 = Sequential({ Producer({16, 3, 512, 512}, "dataProvider"), Conv(3, 4, {5, 5}, "conv1"), - BatchNorm<2>(4, 1.0e-5, 0.1, 0, "bn1"), + BatchNorm<2>(4, 1.0e-5, 0.1, false, "bn1"), Conv(4, 4, {5, 5}, "conv2"), ReLU("relu2"), Conv(4, 4, {5, 5}, "conv3"), - BatchNorm<2>(4, 1.0e-5, 0.1, 0, "bn3"), + BatchNorm<2>(4, 1.0e-5, 0.1, false, "bn3"), FC(4, 4, false, "fc1"), FC(4, 4, false, "fc2"), FC(4, 4, false, "fc3"), -- GitLab