diff --git a/.gitignore b/.gitignore
index 306c9d2f5409bdf2a003e63b795885f268af391a..a14ac887e7f573d4e37d483bf9b33e7de42970e6 100644
--- a/.gitignore
+++ b/.gitignore
@@ -1,10 +1,11 @@
-# general 
+# general
 .cache
 
 # C++ Build
 build*/
 install*/
 cppcheck-result.xml
+include/aidge/core_version.h
 
 # VSCode
 .vscode
diff --git a/CMakeLists.txt b/CMakeLists.txt
index 3a1dc22b43ce8326e295f2dce3db52c98c07d2d7..62051da26211a3dc54f12dc34bd14ab66a0883b2 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -3,17 +3,29 @@ set(CXX_STANDARD 14)
 
 file(STRINGS "${CMAKE_SOURCE_DIR}/version.txt" version)
 
+# Parse version.txt to retrieve Major, Minor and Path
+string(REGEX MATCH "([0-9]+\\.[0-9]+\\.[0-9]+)" _ MATCHES ${version})
+set(PROJECT_VERSION_MAJOR ${CMAKE_MATCH_1})
+set(PROJECT_VERSION_MINOR ${CMAKE_MATCH_2})
+set(PROJECT_VERSION_PATCH ${CMAKE_MATCH_3})
+
+# Retrieve latest git commit
+execute_process(
+    COMMAND git rev-parse --short HEAD
+    WORKING_DIRECTORY ${CMAKE_SOURCE_DIR}
+    OUTPUT_VARIABLE GIT_COMMIT_HASH
+    OUTPUT_STRIP_TRAILING_WHITESPACE
+    ERROR_QUIET
+)
+
 project(aidge_core
         VERSION ${version}
         DESCRIPTION "Core algorithms for operators and graph of the AIDGE framework"
         LANGUAGES CXX)
-message(STATUS "Project name: ${CMAKE_PROJECT_NAME}")
-message(STATUS "Project version: ${version}")
-add_definitions(-DPROJECT_VERSION="${version}")
 
 message(STATUS "Project name: ${CMAKE_PROJECT_NAME}")
 message(STATUS "Project version: ${version}")
-
+message(STATUS "Latest git commit: ${GIT_COMMIT_HASH}")
 # helper for LSP users
 set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
 
@@ -29,7 +41,6 @@ option(TEST "Enable tests" ON)
 option(COVERAGE "Enable coverage" OFF)
 option(ENABLE_ASAN "Enable ASan (AddressSanitizer) for runtime analysis of memory use (over/underflow, memory leak, ...)" OFF)
 
-
 ##############################################
 # Import utils CMakeLists
 set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_SOURCE_DIR}/cmake")
@@ -168,6 +179,13 @@ if(NOT $ENV{AIDGE_INSTALL} STREQUAL "")
     message(WARNING "CMAKE_INSTALL_PREFIX set to env variable AIDGE_INSTALL by default = ${CMAKE_INSTALL_PREFIX}")
 endif()
 
+message(STATUS "Creating ${CMAKE_CURRENT_SOURCE_DIR}/include/aidge/core_version.h")
+# Generate version.h file from config file version.h.in
+configure_file(
+    "${CMAKE_CURRENT_SOURCE_DIR}/include/aidge/version.h.in"
+    "${CMAKE_CURRENT_SOURCE_DIR}/include/aidge/core_version.h"
+)
+
 include(GNUInstallDirs)
 set(INSTALL_CONFIGDIR ${CMAKE_INSTALL_LIBDIR}/cmake/${CMAKE_PROJECT_NAME})
 
diff --git a/MANIFEST.in b/MANIFEST.in
index ed911dd75b59b65b8bfa023584aae8585de6325b..7d4d68c220e882a3aad520fff5980fc5cf758c18 100644
--- a/MANIFEST.in
+++ b/MANIFEST.in
@@ -1,8 +1,10 @@
 include README.md LICENSE
-recursive-include aidge_core *.py 
+recursive-include aidge_core *.py
 recursive-exclude aidge_core/unit_tests *.py
 
 recursive-include aidge_core/aidge_export_aidge *
+recursive-include aidge_core/export_utils/templates *
+
 recursive-include include *.hpp
 recursive-include src *.cpp
 recursive-include python_binding *.cpp
diff --git a/aidge_core/__init__.py b/aidge_core/__init__.py
index 32042125ed6ecb1d935e240837afe6516706dbcb..0832de2c472d15e2ce1667cae66e4f09303a5add 100644
--- a/aidge_core/__init__.py
+++ b/aidge_core/__init__.py
@@ -13,4 +13,3 @@ import aidge_core.utils
 from aidge_core.aidge_export_aidge import serialize_to_cpp
 from aidge_core.show_graphview import gview_to_json
 from aidge_core.mem_info import *
-from ._version import *
diff --git a/aidge_core/export_utils/data_conversion.py b/aidge_core/export_utils/data_conversion.py
index 401fc39f2a70245a67719699b5f0cdc61108e0cf..6dba5b78cd7b8e79baddb160a1110c3e830c7cd7 100644
--- a/aidge_core/export_utils/data_conversion.py
+++ b/aidge_core/export_utils/data_conversion.py
@@ -1,8 +1,9 @@
 import numpy as np
 import aidge_core
 
+from typing import Dict
 
-datatype_converter_aide2c = {
+datatype_converter_aidge2c = {
     aidge_core.dtype.float64 : "double",
     aidge_core.dtype.float32 : "float",
     aidge_core.dtype.float16 : "half_float::half",
@@ -19,12 +20,31 @@ datatype_converter_aide2c = {
 def aidge2c(datatype):
     """Convert a aidge datatype to C type
 
+    If the type is not convertible to a C type (e.g. int4), return None and raise a warning.
+
     :param datatype: Aidge datatype to convert
     :type datatype: :py:object:`aidge_core.DataType`
     :return: A string representing the C type
     :rtype: string
     """
-    if datatype in datatype_converter_aide2c:
-        return datatype_converter_aide2c[datatype]
+    if datatype in datatype_converter_aidge2c:
+        return datatype_converter_aidge2c[datatype]
     else:
         raise ValueError(f"Unsupported {datatype} aidge datatype")
+
+def aidge2export_type(datatype: aidge_core.dtype, conversion_map: Dict[aidge_core.dtype, str] = datatype_converter_aidge2c) -> str:
+    """Convert a aidge datatype to the export type specified by the map passed in argument
+
+    If the aidge type is not convertible, that is to say, is not specified in the map, a value Error is raised.
+
+    :param datatype: Aidge datatype to convert
+    :type datatype: :py:object:`aidge_core.DataType`
+    :param conversion_map: Map that specify the conversion
+    :type conversion_map: Dict[:py:object:`aidge_core.DataType`, str]
+    :return: A string representing the export type
+    :rtype: string
+    """
+    if datatype in conversion_map:
+        return conversion_map[datatype]
+    else:
+        raise ValueError(f"Unsupported type conversion {datatype} aidge datatype for export")
diff --git a/aidge_core/export_utils/export_registry.py b/aidge_core/export_utils/export_registry.py
index e5b6b2098cd760c4d425b96caf7b41cc8e82c46e..8927ae5169978da81e39912ebd4e26e2655137ad 100644
--- a/aidge_core/export_utils/export_registry.py
+++ b/aidge_core/export_utils/export_registry.py
@@ -80,6 +80,14 @@ class ExportLib(aidge_core.OperatorImpl):
                                     aidge_core.get_key_value_Tensor(["cpu", aidge_core.dtype.uint32]))
         aidge_core.register_Tensor([self._name, aidge_core.dtype.uint64],
                                     aidge_core.get_key_value_Tensor(["cpu", aidge_core.dtype.uint64]))
+        aidge_core.register_Tensor([self._name, aidge_core.dtype.int4],
+                                    aidge_core.get_key_value_Tensor(["cpu", aidge_core.dtype.int4]))
+        aidge_core.register_Tensor([self._name, aidge_core.dtype.uint4],
+                                    aidge_core.get_key_value_Tensor(["cpu", aidge_core.dtype.uint4]))
+        aidge_core.register_Tensor([self._name, aidge_core.dtype.dual_int4],
+                                    aidge_core.get_key_value_Tensor(["cpu", aidge_core.dtype.dual_int4]))
+        aidge_core.register_Tensor([self._name, aidge_core.dtype.dual_uint4],
+                                    aidge_core.get_key_value_Tensor(["cpu", aidge_core.dtype.dual_uint4]))
 
     @classproperty
     def _export_node_registry(cls) -> Dict[str, List['ExportNode']]:
diff --git a/aidge_core/export_utils/node_export.py b/aidge_core/export_utils/node_export.py
index 5777814a0b10c49d0f75245bdc4e9681027bdfb8..c24727adf11bb936cb99c1f40312c4da8c0705f3 100644
--- a/aidge_core/export_utils/node_export.py
+++ b/aidge_core/export_utils/node_export.py
@@ -3,7 +3,8 @@ from pathlib import Path
 
 from aidge_core.export_utils import data_conversion, code_generation
 from abc import ABC, abstractmethod
-from typing import List
+from typing import List, Dict
+
 
 
 def get_chan(tensor: aidge_core.Tensor) -> int:
@@ -14,12 +15,19 @@ def get_chan(tensor: aidge_core.Tensor) -> int:
             return dims[1]
         elif len(dims) == 2:  # Suppose NC
             return dims[1]
+        elif len(dims) == 1:  # Suppose C (for bias)
+            return dims[0]
         else:
             return None
     elif dformat == aidge_core.dformat.nchw:
         return dims[1]
     elif dformat == aidge_core.dformat.nhwc:
-        return dims[3]
+        if len(dims) == 4:  # NHWC
+            return dims[3]
+        elif len(dims) == 2:  # NC
+            return 1
+        elif len(dims) == 1:  # C for bias
+            return 1
     elif dformat == aidge_core.dformat.chwn:
         return dims[0]
     elif dformat == aidge_core.dformat.ncdhw:
@@ -40,12 +48,19 @@ def get_height(tensor: aidge_core.Tensor) -> int:
             return dims[2]
         elif len(dims) == 2:  # Suppose NC
             return 1
+        elif len(dims) == 1:  # Suppose C for bias
+            return 1
         else:
             return None
     elif dformat == aidge_core.dformat.nchw:
         return dims[2]
     elif dformat == aidge_core.dformat.nhwc:
-        return dims[1]
+        if len(dims) == 4:  # NHWC
+            return dims[1]
+        elif len(dims) == 2:  # NC
+            return 1
+        elif len(dims) == 1:  # C for bias
+            return 1
     elif dformat == aidge_core.dformat.chwn:
         return dims[1]
     elif dformat == aidge_core.dformat.ncdhw:
@@ -66,12 +81,19 @@ def get_width(tensor: aidge_core.Tensor) -> int:
             return dims[3]
         elif len(dims) == 2:  # Suppose NC
             return 1
+        elif len(dims) == 1:  # Suppose C for bias
+            return 1
         else:
             return None
     elif dformat == aidge_core.dformat.nchw:
         return dims[3]
     elif dformat == aidge_core.dformat.nhwc:
-        return dims[2]
+        if len(dims) == 4:  # NHWC
+            return dims[2]
+        elif len(dims) == 2:  # NC
+            return 1
+        elif len(dims) == 1:  # C for bias
+            return 1
     elif dformat == aidge_core.dformat.chwn:
         return dims[2]
     elif dformat == aidge_core.dformat.ncdhw:
@@ -162,7 +184,9 @@ class ExportNode(ABC):
     """
 
     @abstractmethod
-    def __init__(self, aidge_node: aidge_core.Node, mem_info: List[dict]=None) -> None:
+    def __init__(self, aidge_node: aidge_core.Node, 
+                 mem_info: List[dict]=None, 
+                 conversion_map: Dict[aidge_core.dtype, str] = data_conversion.datatype_converter_aidge2c) -> None:
         """Create ExportNode and retrieve attributes from ``aidge_node``:
         """
 
@@ -231,8 +255,8 @@ class ExportNode(ABC):
                 self.attributes["in_dformat"][idx] = tensor.dformat()
                 self.attributes["in_format"][idx] = aidge_core.format_as(tensor.dformat())
                 self.attributes["in_dtype"][idx] = tensor.dtype()
-                self.attributes["in_cdtype"][idx] = data_conversion.aidge2c(
-                    tensor.dtype())
+                # self.attributes["in_cdtype"][idx] = data_conversion.aidge2c(tensor.dtype())
+                self.attributes["in_cdtype"][idx] = data_conversion.aidge2export_type(tensor.dtype(), conversion_map)
                 self.attributes["in_chan"][idx] = get_chan(tensor)
                 self.attributes["in_height"][idx] = get_height(tensor)
                 self.attributes["in_width"][idx] = get_width(tensor)
@@ -254,8 +278,8 @@ class ExportNode(ABC):
                 self.attributes["out_dformat"][idx] = tensor.dformat()
                 self.attributes["out_format"][idx] = aidge_core.format_as(tensor.dformat())
                 self.attributes["out_dtype"][idx] = tensor.dtype()
-                self.attributes["out_cdtype"][idx] = data_conversion.aidge2c(
-                    tensor.dtype())
+                # self.attributes["out_cdtype"][idx] = data_conversion.aidge2c(tensor.dtype())
+                self.attributes["out_cdtype"][idx] = data_conversion.aidge2export_type(tensor.dtype(), conversion_map)
                 self.attributes["out_chan"][idx] = get_chan(tensor)
                 self.attributes["out_height"][idx] = get_height(tensor)
                 self.attributes["out_width"][idx] = get_width(tensor)
diff --git a/aidge_core/mem_info.py b/aidge_core/mem_info.py
index 5e36eb3ee56165b9ddd2422a8e0607f79871afe8..cabc2c72ee973babdf0342ba82057f7ab0769b52 100644
--- a/aidge_core/mem_info.py
+++ b/aidge_core/mem_info.py
@@ -5,6 +5,9 @@ from pathlib import Path
 import aidge_core
 from typing import Tuple, List
 
+import matplotlib.pyplot as plt
+import aidge_core.mem_info
+import numpy as np
 
 # Default memory management, which can be used for development
 def compute_default_mem_info(scheduler: aidge_core.Scheduler) -> Tuple[int, List]:
@@ -41,20 +44,72 @@ def compute_default_mem_info(scheduler: aidge_core.Scheduler) -> Tuple[int, List
             mem_info[node] = [] # No meminfo for producer
     return mem_size, mem_info
 
+def log_meminfo(mem_manager:aidge_core.MemoryManager, path: Path, diplay_names:bool):
+    """Generate a graph representing the memory allocation of each ouputs.
 
-def _gnuplot_installed():
-    try:
-        # Run gnuplot with the --version flag and capture the output
-        subprocess.run(["gnuplot", "--version"])
-        return True
-    except FileNotFoundError:
-        aidge_core.Log.warn("Gnuplot is not installed.")
-        return False
-    except subprocess.CalledProcessError:
-        aidge_core.Log.warn("Gnuplot command found but failed to run.")
-        return False
+    Block with the smae color correspond to the same memory plane.
 
-def generate_optimized_memory_info(scheduler: aidge_core.Scheduler, stats_folder: Path = None, wrapping: bool = False, auto_concat: bool = False) -> Tuple[int, List[dict]]:
+    :param mem_manager: Memory manager to log
+    :type mem_manager: aidge_core.memory_manager
+    :param path: Path where to save the figure
+    :type path: Path
+    :param diplay_names: If True Node names are diplayed alongside their block
+    :type diplay_names: bool
+    """
+
+    max_lifetime = mem_manager.get_max_lifetime()
+
+    # peak_usage in kwords
+    peak_usage = mem_manager.get_peak_usage() / 1024
+
+    # Set figure size 1920x1080 px
+    plt.figure(figsize=(19.20, 10.80))
+    # Same color for each planes
+    colors = plt.cm.viridis(np.linspace(0, 1, len(mem_manager.get_planes()) + 1))
+    color_id = 1
+    for node, planes in mem_manager.get_planes().items():
+        for plane in planes:
+            cont_offset    = plane.get_contiguous_offset()
+            cont_size      = plane.get_contiguous_size()
+            allocated      = plane.mem_space.allocated
+            released       = plane.mem_space.released
+            is_released    = released >= 0 and not plane.mem_space.dependencies
+            x_start        = allocated
+            y_start        = cont_offset / 1024.0
+            y_end          = (cont_offset + cont_size) / 1024.0
+            x_end          = max_lifetime if not is_released else released
+
+            plt.fill_betweenx(
+                [y_start, y_end],
+                x_start,
+                x_end + 1,
+                color=colors[color_id % len(colors)]
+            )
+
+            if diplay_names:
+                # Rotation for lisibility!
+                plt.text(x_end,y_end, node.name(), rotation=45)
+        color_id += 1
+
+    plt.xlim(0, max_lifetime + 1)
+    plt.ylim(0, peak_usage)
+    plt.axhline(y=peak_usage, color='red', linestyle='--')
+    plt.text(0, peak_usage, f'Peak usage = {peak_usage} KWords', color='red')
+    plt.xlabel("Time")
+    plt.ylabel("Memory usage (KWords)")
+    plt.title("Memory Usage Over Time")
+    plt.grid(True)
+    ax = plt.gca()
+    ax.spines['top'].set_visible(False)
+    ax.spines['right'].set_visible(False)
+    folder_path = path.parent
+    folder_path.mkdir(parents=True, exist_ok=True)
+    plt.savefig(path)
+    plt.close()
+    aidge_core.Log.notice(f"Generated memory management info at: {path}")
+
+
+def generate_optimized_memory_info(scheduler: aidge_core.Scheduler, stats_folder: Path = None, wrapping: bool = False, auto_concat: bool = False, display_names: bool=True) -> Tuple[int, List[dict]]:
     """Generates optimized memory information for a computation graph managed by a scheduler.
 
     This function analyzes the memory usage of a computation graph, determining the memory peak
@@ -73,6 +128,8 @@ def generate_optimized_memory_info(scheduler: aidge_core.Scheduler, stats_folder
     :param auto_concat: Boolean flag to enable or disable auto-concatenation optimization.
                      Defaults to `False`.
     :type auto_concat: bool, optional
+    :param diplay_names: If True Node names are diplayed in the memory plot alongside their block, defaults to False
+    :type diplay_names: bool, optional
     :return: A tuple containing the peak memory size and a list of memory information for each
              scheduled node. The memory information for each node includes details such as size,
              offset, stride, length, count, and optional wrap-around details.
@@ -95,18 +152,8 @@ def generate_optimized_memory_info(scheduler: aidge_core.Scheduler, stats_folder
     nodes_at_input = [n[0] for n in scheduler.graph_view().inputs()]
 
     if stats_folder is not None:
-        if _gnuplot_installed():
-            # Use gnuplot to generate the log
-            os.makedirs(str(Path(stats_folder) / "graph"), exist_ok=True)
-            mem_manager.log("memory_info")
-            os.chmod("memory_info_plot.gnu", 0o777)
-            os.system("./memory_info_plot.gnu")
-            shutil.move("memory_info", str(Path(stats_folder) / "graph" / "memory_info"))
-            shutil.move("memory_info_plot.png", str(
-                Path(stats_folder) / "graph" / "memory_info_plot.png"))
-            os.remove("memory_info_plot.gnu")
-        else:
-            aidge_core.Log.warn("Warning: gnuplot is not installed, could not generate stat folder.")
+        log_meminfo(mem_manager, Path(stats_folder) / "memory_info.png", display_names)
+
     # In the export, we currently use an unified memory buffer whose size
     # is determined by the memory peak usage
     mem_size = mem_manager.get_peak_usage()
diff --git a/include/aidge/aidge.hpp b/include/aidge/aidge.hpp
index a06202696951a888284f1e0a50b6c25b677fe7f3..d65a46378c01b070d998b72d5d2e272b7d8f7def 100644
--- a/include/aidge/aidge.hpp
+++ b/include/aidge/aidge.hpp
@@ -11,6 +11,7 @@
 
 #ifndef AIDGE_IMPORTS_H_
 #define AIDGE_IMPORTS_H_
+#include "aidge/core_version.h"
 
 #include "aidge/backend/OperatorImpl.hpp"
 #include "aidge/backend/TensorImpl.hpp"
@@ -92,5 +93,6 @@
 #include "aidge/utils/Random.hpp"
 #include "aidge/utils/Registrar.hpp"
 #include "aidge/utils/Types.h"
+#include "aidge/utils/sys_info/CoreVersionInfo.hpp"
 
 #endif /* AIDGE_IMPORTS_H_ */
diff --git a/include/aidge/backend/cpu/data/TensorImpl.hpp b/include/aidge/backend/cpu/data/TensorImpl.hpp
index d04624fc530a21730cc4dc1f4f1ac90a58e6590b..4f7079e59c4328885969e7dc7181395d1333d0af 100644
--- a/include/aidge/backend/cpu/data/TensorImpl.hpp
+++ b/include/aidge/backend/cpu/data/TensorImpl.hpp
@@ -55,7 +55,7 @@ public:
         T* dstT = static_cast<T *>(rawPtr(offset));
 
         AIDGE_ASSERT(dstT < srcT || dstT >= srcT + length, "TensorImpl_cpu<{}>::copy(): overlapping copy is not supported", typeid(T).name());
-        std::copy(srcT, srcT + length, dstT);
+        std::copy_n(srcT, length, dstT);
     }
 
     void copyCast(const void *src, const DataType srcDt, NbElts_t length, NbElts_t offset = 0) override final;
@@ -126,6 +126,20 @@ REGISTRAR(Tensor, {"cpu", DataType::Int64}, Aidge::TensorImpl_cpu<int64_t>::crea
 REGISTRAR(Tensor, {"cpu", DataType::Int32}, Aidge::TensorImpl_cpu<int32_t>::create);
 REGISTRAR(Tensor, {"cpu", DataType::Int16}, Aidge::TensorImpl_cpu<int16_t>::create);
 REGISTRAR(Tensor, {"cpu", DataType::Int8}, Aidge::TensorImpl_cpu<int8_t>::create);
+REGISTRAR(Tensor, {"cpu", DataType::Int4}, Aidge::TensorImpl_cpu<int8_t>::create);
+REGISTRAR(Tensor, {"cpu", DataType::UInt4}, Aidge::TensorImpl_cpu<uint8_t>::create);
+REGISTRAR(Tensor, {"cpu", DataType::Int3}, Aidge::TensorImpl_cpu<int8_t>::create);
+REGISTRAR(Tensor, {"cpu", DataType::UInt3}, Aidge::TensorImpl_cpu<uint8_t>::create);
+REGISTRAR(Tensor, {"cpu", DataType::Int2}, Aidge::TensorImpl_cpu<int8_t>::create);
+REGISTRAR(Tensor, {"cpu", DataType::UInt2}, Aidge::TensorImpl_cpu<uint8_t>::create);
+REGISTRAR(Tensor, {"cpu", DataType::Dual_Int4}, Aidge::TensorImpl_cpu<int8_t>::create);
+REGISTRAR(Tensor, {"cpu", DataType::Dual_UInt4}, Aidge::TensorImpl_cpu<uint8_t>::create);
+REGISTRAR(Tensor, {"cpu", DataType::Dual_Int3}, Aidge::TensorImpl_cpu<int8_t>::create);
+REGISTRAR(Tensor, {"cpu", DataType::Dual_UInt3}, Aidge::TensorImpl_cpu<uint8_t>::create);
+REGISTRAR(Tensor, {"cpu", DataType::Quad_Int2}, Aidge::TensorImpl_cpu<int8_t>::create);
+REGISTRAR(Tensor, {"cpu", DataType::Quad_UInt2}, Aidge::TensorImpl_cpu<uint8_t>::create);
+REGISTRAR(Tensor, {"cpu", DataType::Binary}, Aidge::TensorImpl_cpu<int8_t>::create);
+REGISTRAR(Tensor, {"cpu", DataType::Octo_Binary}, Aidge::TensorImpl_cpu<int8_t>::create);
 REGISTRAR(Tensor, {"cpu", DataType::UInt64}, Aidge::TensorImpl_cpu<uint64_t>::create);
 REGISTRAR(Tensor, {"cpu", DataType::UInt32}, Aidge::TensorImpl_cpu<uint32_t>::create);
 REGISTRAR(Tensor, {"cpu", DataType::UInt16}, Aidge::TensorImpl_cpu<uint16_t>::create);
diff --git a/include/aidge/data/Data.hpp b/include/aidge/data/Data.hpp
index a34718296e4ccddbfca0b4eb0daf14b08124389a..35df9c0e0bf24ee175fe27eb7c831fcae7a700e7 100644
--- a/include/aidge/data/Data.hpp
+++ b/include/aidge/data/Data.hpp
@@ -29,10 +29,14 @@ enum class DataType {
     Float16,
     BFloat16,
     Binary,
+    Octo_Binary,
     Ternary,
     Int2,
+    Quad_Int2,
     Int3,
+    Dual_Int3,
     Int4,
+    Dual_Int4,
     Int5,
     Int6,
     Int7,
@@ -41,8 +45,11 @@ enum class DataType {
     Int32,
     Int64,
     UInt2,
+    Quad_UInt2,
     UInt3,
+    Dual_UInt3,
     UInt4,
+    Dual_UInt4,
     UInt5,
     UInt6,
     UInt7,
@@ -117,6 +124,17 @@ private:
 }
 
 namespace {
+
+template <Aidge::DataType D> struct WeightInterleavingType { static const Aidge::DataType type; };
+template <> const Aidge::DataType WeightInterleavingType<Aidge::DataType::Int4>::type = Aidge::DataType::Dual_Int4;
+template <> const Aidge::DataType WeightInterleavingType<Aidge::DataType::UInt4>::type = Aidge::DataType::Dual_UInt4;
+template <> const Aidge::DataType WeightInterleavingType<Aidge::DataType::Int3>::type = Aidge::DataType::Dual_Int3;
+template <> const Aidge::DataType WeightInterleavingType<Aidge::DataType::UInt3>::type = Aidge::DataType::Dual_UInt3;
+template <> const Aidge::DataType WeightInterleavingType<Aidge::DataType::Int2>::type = Aidge::DataType::Quad_Int2;
+template <> const Aidge::DataType WeightInterleavingType<Aidge::DataType::UInt2>::type = Aidge::DataType::Quad_UInt2;
+template <> const Aidge::DataType WeightInterleavingType<Aidge::DataType::Binary>::type = Aidge::DataType::Octo_Binary;
+
+
 template <typename T> struct NativeType { static const Aidge::DataType type; };
 template <> const Aidge::DataType NativeType<double>::type = Aidge::DataType::Float64;
 template <> const Aidge::DataType NativeType<float>::type = Aidge::DataType::Float32;
@@ -132,9 +150,9 @@ template <> const Aidge::DataType NativeType<std::uint64_t>::type = Aidge::DataT
 
 template <>
 const char* const EnumStrings<Aidge::DataType>::data[]
-    = {"Float64", "Float32", "Float16", "BFloat16", "Binary", "Ternary",
-       "Int2", "Int3", "Int4", "Int5", "Int6", "Int7", "Int8", "Int16",
-       "Int32", "Int64", "UInt2", "UInt3", "UInt4", "UInt5", "UInt6",
+    = {"Float64", "Float32", "Float16", "BFloat16", "Binary", "Octo_Binary", "Ternary",
+       "Int2", "Quad_Int2", "Int3", "Dual_Int3", "Int4", "Dual_Int4", "Int5", "Int6", "Int7", "Int8", "Int16",
+       "Int32", "Int64", "UInt2", "Quad_UInt2", "UInt3", "Dual_UInt3", "UInt4", "Dual_UInt4", "UInt5", "UInt6",
        "UInt7", "UInt8", "UInt16", "UInt32", "UInt64", "Any"};
 
 template <>
@@ -147,6 +165,20 @@ template <Aidge::DataType D> struct cpptype {
 template <> struct cpptype<Aidge::DataType::Float16> { using type = half_float::half; };
 template <> struct cpptype<Aidge::DataType::Float32> { using type = float; };
 template <> struct cpptype<Aidge::DataType::Float64> { using type = double; };
+template <> struct cpptype<Aidge::DataType::Int4> { using type = std::int8_t; };
+template <> struct cpptype<Aidge::DataType::UInt4> { using type = std::int8_t; };
+template <> struct cpptype<Aidge::DataType::Int3> { using type = std::int8_t; };
+template <> struct cpptype<Aidge::DataType::UInt3> { using type = std::int8_t; };
+template <> struct cpptype<Aidge::DataType::Int2> { using type = std::int8_t; };
+template <> struct cpptype<Aidge::DataType::UInt2> { using type = std::int8_t; };
+template <> struct cpptype<Aidge::DataType::Dual_Int4> { using type = std::int8_t; };
+template <> struct cpptype<Aidge::DataType::Dual_UInt4> { using type = std::int8_t; };
+template <> struct cpptype<Aidge::DataType::Dual_Int3> { using type = std::int8_t; };
+template <> struct cpptype<Aidge::DataType::Dual_UInt3> { using type = std::int8_t; };
+template <> struct cpptype<Aidge::DataType::Quad_Int2> { using type = std::int8_t; };
+template <> struct cpptype<Aidge::DataType::Quad_UInt2> { using type = std::int8_t; };
+template <> struct cpptype<Aidge::DataType::Binary> { using type = std::int8_t; };
+template <> struct cpptype<Aidge::DataType::Octo_Binary> { using type = std::int8_t; };
 template <> struct cpptype<Aidge::DataType::Int8> { using type = std::int8_t; };
 template <> struct cpptype<Aidge::DataType::Int16> { using type = std::int16_t; };
 template <> struct cpptype<Aidge::DataType::Int32> { using type = std::int32_t; };
@@ -157,6 +189,7 @@ template <> struct cpptype<Aidge::DataType::UInt32> { using type = std::uint32_t
 template <> struct cpptype<Aidge::DataType::UInt64> { using type = std::uint64_t; };
 
 template <Aidge::DataType D> using cpptype_t = typename cpptype<D>::type;
+
 }
 
 
diff --git a/include/aidge/data/Tensor.hpp b/include/aidge/data/Tensor.hpp
index 627a5a4784b4e6546cdfc96b65acbe2a39ee119c..fdeef2a8e20c2cd04ad31ae18a0f9b1befd5373b 100644
--- a/include/aidge/data/Tensor.hpp
+++ b/include/aidge/data/Tensor.hpp
@@ -112,7 +112,7 @@ class Tensor : public Data,
      * @tparam T datatype
      */
     template <typename T>
-    constexpr Tensor(Vector<T> &&arr)
+    Tensor(Vector<T> &&arr)
         : Data(Type),
           mDataType(NativeType<T>::type),
           mDims({arr.data.size()}),
@@ -204,13 +204,13 @@ class Tensor : public Data,
      * Tensor and the initial one.
      * @param other
      */
-    Tensor(const Tensor& other) = default;
+    Tensor(const Tensor& other);
 
     /**
      * @brief Move constructor.
      * @param other
      */
-    Tensor(Tensor&& other) = default;
+    Tensor(Tensor&& other);
 
     /**
      * @brief Copy dimensions, datatype and data from another Tensor.
@@ -219,8 +219,8 @@ class Tensor : public Data,
      * @param other other Tensor object.
      * @return Tensor&
      */
-    Tensor &operator=(const Tensor& other) = default;
-    Tensor &operator=(Tensor&& other) = default;
+    Tensor &operator=(const Tensor& other);
+    Tensor &operator=(Tensor&& other);
 
     template <typename T>
     constexpr Tensor &operator=(Vector<T> &&arr) {
diff --git a/include/aidge/graph/Connector.hpp b/include/aidge/graph/Connector.hpp
index 599ca7d6defd729b6e6536dcc95f326d345701d9..ec59e1b38c10cbe53eb667b724991ea8e5427a6e 100644
--- a/include/aidge/graph/Connector.hpp
+++ b/include/aidge/graph/Connector.hpp
@@ -11,10 +11,10 @@
 #ifndef AIDGE_CORE_GRAPH_CONNECTOR_H_
 #define AIDGE_CORE_GRAPH_CONNECTOR_H_
 
-#include <cassert>
 #include <memory>
 #include <vector>
 
+#include "aidge/utils/ErrorHandling.hpp"
 #include "aidge/utils/Types.h"
 
 namespace Aidge {
@@ -55,7 +55,7 @@ class Connector {
 
    public:
     Connector operator[](IOIndex_t index) {
-        assert((size() > 1) && "Cannot refer a slice of the output.");
+        AIDGE_ASSERT((size() > 1), "Cannot refer a slice of the output.");
         return Connector(mNode, index);
     }
 
@@ -68,7 +68,7 @@ class Connector {
 
    private:
     Connector(std::shared_ptr<Node> node, IOIndex_t index) : mNode(node) {
-        assert((index != gk_IODefaultIndex) && (index < size()) &&
+        AIDGE_ASSERT((index != gk_IODefaultIndex) && (index < size()),
                "Non-valid output index.\n");
         mOutputId = index;
     }
diff --git a/include/aidge/graph/GraphView.hpp b/include/aidge/graph/GraphView.hpp
index 76f5dcdfc28e90a3f83435841af21048bcb2a9c0..e122aa446bde05abdce2a1fe0899c1fec52e4dba 100644
--- a/include/aidge/graph/GraphView.hpp
+++ b/include/aidge/graph/GraphView.hpp
@@ -424,21 +424,7 @@ public:
         addChild(toOtherNode, mNodeRegistry.at(fromOutNodeName), fromTensor, toTensor);
     }
 
-    inline void updateNodeName(const std::shared_ptr<Node>& node, const std::string& newName){
-        if (!newName.empty()) {
-            auto itNew = mNodeRegistry.insert(std::make_pair(newName, node));
-            if (!itNew.second) {
-                Log::notice("Replacing existing node name in graph node name registry: {}", newName);
-                (itNew.first)->second = node;
-            }
-        }
-
-        if (!node->name().empty()) {
-            const auto it = mNodeRegistry.find(node->name());
-            AIDGE_ASSERT(it != mNodeRegistry.end(), "No node named {} in graph {}, the graph may be corrupted !", node->name(), name());
-            mNodeRegistry.erase(it);
-        }
-    }
+    void updateNodeName(const std::shared_ptr<Node>& node, const std::string& newName);
 
     /**
      * @brief Include a GraphView content in the current GraphView and link
diff --git a/include/aidge/graph/Matching.hpp b/include/aidge/graph/Matching.hpp
index 3b0874580b112f4c219886a78677e6c9801b72b8..c8de86e90989a6313f47b1b06dea401d5ebd6600 100644
--- a/include/aidge/graph/Matching.hpp
+++ b/include/aidge/graph/Matching.hpp
@@ -12,9 +12,12 @@
 #ifndef AIDGE_CORE_GRAPH_MATCHING_H_
 #define AIDGE_CORE_GRAPH_MATCHING_H_
 
+#include <functional>
 #include <map>
 #include <memory>
 #include <set>
+#include <string>
+
 
 #include "aidge/graph/Node.hpp"
 #include "aidge/graph/GraphView.hpp"
@@ -43,10 +46,10 @@ public:
         bool singleOutput = true;
         IOIndex_t edgeLeftIdx = 0;
         IOIndex_t edgeRightIdx = 0;
-        NodePtr startNode;
+        std::shared_ptr<Node> startNode;
 
         // For check & debug purpose:
-        size_t depth = 0;
+        std::size_t depth = 0;
         std::set<std::string> anchors;
     };
 
@@ -56,8 +59,8 @@ public:
         // We use graph->rootNode() as the std::set key, which is guaranteed
         // to never change after insertion!
         mutable std::shared_ptr<GraphView> graph;
-        mutable std::map<std::string, std::map<std::string, NodePtr>> anchors;
-        mutable NodePtr startNode;
+        mutable std::map<std::string, std::map<std::string, std::shared_ptr<Node>>> anchors;
+        mutable std::shared_ptr<Node> startNode;
 
         MatchingResult();
 
@@ -66,11 +69,14 @@ public:
         ~MatchingResult() noexcept;
     };
 
+    SinglePassGraphMatching() = delete;
     SinglePassGraphMatching(std::shared_ptr<GraphView> graph) : mGraph(graph) {}
     SinglePassGraphMatching(const SinglePassGraphMatching& other);
-    SinglePassGraphMatching& operator=(const SinglePassGraphMatching& other);
+
     ~SinglePassGraphMatching() noexcept;
 
+    SinglePassGraphMatching& operator=(const SinglePassGraphMatching& other);
+
     /**
      * Matches a query by direct, single pass parse and match.
      * The returned matches are non-ordered and therefore stored in a std::set.
@@ -141,26 +147,26 @@ public:
 
     /**
      * @brief Same as match() but with a mandatory start node.
-     * 
+     *
      * @param startNode Mandatory start node for the query.
      * @param query The query to search.
      * @return MatchingResult MatchingResult struct, with empty graph if query
      * is not found, or the graph corresponding to the query.
      */
-    MatchingResult matchFrom(NodePtr startNode, const std::string& query);
+    MatchingResult matchFrom(std::shared_ptr<Node> startNode, const std::string& query);
 
     /**
      * Filter to keep only the longest disjoint (non-overlapping) matches.
     */
     std::set<MatchingResult> filterLonguestDisjoint(const std::set<MatchingResult>& matches);
 
-    inline void addNodeLambda(const std::string& name, std::function<bool(const NodePtr&)> func) {
+    inline void addNodeLambda(const std::string& name, std::function<bool(const std::shared_ptr<Node>&)> func) {
         mLambda[name] = func;
     }
 
 private:
     std::shared_ptr<GraphView> mGraph;
-    std::map<std::string, std::function<bool(const NodePtr&)>> mLambda;
+    std::map<std::string, std::function<bool(const std::shared_ptr<Node>&)>> mLambda;
 
     /**
      * QUANTIFIER = '?' | '*' | '+' | ('{' [0-9]+ '}')
@@ -205,13 +211,6 @@ private:
     */
     bool matchNode(Context& ctx, std::set<MatchingResult>& matches);
 
-    inline void removeWhiteSpace(std::string& str) {
-        str.erase(str.begin(),
-            std::find_if(str.begin(),
-                        str.end(),
-                        [](char c) { return !std::isspace(c); }));
-    }
-
     struct CompareMatchingResultSize {
         bool operator()(const MatchingResult& lhs, const MatchingResult& rhs) const {
             // Some matches size could be the same
@@ -225,10 +224,8 @@ private:
     };
 };
 
-inline bool operator<(const Aidge::SinglePassGraphMatching::MatchingResult& lhs, const Aidge::SinglePassGraphMatching::MatchingResult& rhs) {
-    // Matches rootNode are guaranteed to be different!
-    return lhs.graph->rootNode() < rhs.graph->rootNode();
-}
+bool operator<(const SinglePassGraphMatching::MatchingResult& lhs, const SinglePassGraphMatching::MatchingResult& rhs);
+
 }  // namespace Aidge
 
 #endif /* AIDGE_CORE_GRAPH_MATCHING_H_ */
diff --git a/include/aidge/graph/Node.hpp b/include/aidge/graph/Node.hpp
index a16bbd63ecf52e8c97d5032c5c90a5f69186f995..a57ccc91f48ca3285eb8be6ff85a1dbb4aef6d52 100644
--- a/include/aidge/graph/Node.hpp
+++ b/include/aidge/graph/Node.hpp
@@ -12,13 +12,13 @@
 #ifndef AIDGE_CORE_GRAPH_NODE_H_
 #define AIDGE_CORE_GRAPH_NODE_H_
 
-#include <cassert>
+#include <deque>
+#include <functional>
 #include <memory>
 #include <set>
 #include <string>
 #include <vector>
-#include <deque>
-#include <utility>
+#include <utility>     // std::pair
 
 #ifdef PYBIND
 #include <pybind11/pybind11.h>
@@ -27,7 +27,9 @@
 
 #include "aidge/graph/Connector.hpp"
 #include "aidge/operator/Operator.hpp"
+#include "aidge/utils/DynamicAttributes.hpp"
 #include "aidge/utils/Types.h"
+#include "aidge/utils/ErrorHandling.hpp"
 
 #ifdef PYBIND
 namespace py = pybind11;
@@ -131,7 +133,7 @@ public:
    * @brief Name of the Node.
    * @return std::string
    */
-  inline std::string name() const noexcept { return mAttrs->getAttr<std::string>("name"); }
+  std::string name() const noexcept { return mAttrs->getAttr<std::string>("name"); }
 
   /**
    * @brief Set the Node name.
@@ -175,7 +177,7 @@ public:
    * @brief Get the Operator object of the Node.
    * @return std::shared_ptr<Operator>
    */
-  inline std::shared_ptr<Operator> getOperator() const { return (*mOperator)(mAttrs); }
+  inline std::shared_ptr<Operator> getOperator() const { return mOperator; }
 //   inline std::shared_ptr<Operator> getOperator() const { return mOperator; }
 
   ///////////////////////////////////////////////////////
@@ -212,7 +214,7 @@ public:
    * @return std::pair<std::shared_ptr<Node>, IOIndex_t>
    */
   inline std::pair<NodePtr, IOIndex_t> input(const IOIndex_t inID) const {
-    assert((inID != gk_IODefaultIndex) && (inID < nbInputs()) && "Input index out of bound.");
+    AIDGE_ASSERT((inID != gk_IODefaultIndex) && (inID < nbInputs()), "Input index out of bound.");
     return std::pair<NodePtr, IOIndex_t>(mParents[inID], mIdOutParents[inID]);
   }
 
@@ -261,7 +263,7 @@ public:
    * @details [data, data, weight, bias] => 4
    * @return IOIndex_t
    */
-  inline IOIndex_t nbInputs() const noexcept { return getOperator()->nbInputs(); }
+  inline IOIndex_t nbInputs() const noexcept { return mOperator->nbInputs(); }
 
   /**
    * @brief Category of a specific input (Data or Param, optional or not).
@@ -269,7 +271,7 @@ public:
    * @return InputCategory
    */
   inline InputCategory inputCategory(IOIndex_t idx) const {
-    return getOperator()->inputCategory(idx);
+    return mOperator->inputCategory(idx);
   }
 
   /**
@@ -279,7 +281,7 @@ public:
    * @return true if the operator defines it as a back edge
    */
   inline bool parentIsBackEdge(IOIndex_t idx) const {
-    return getOperator()->isBackEdge(idx);
+    return mOperator->isBackEdge(idx);
   }
 
   /**
@@ -292,7 +294,7 @@ public:
    * @brief Getter for the number of Output Tensors of the Node.
    * @return IOIndex_t
    */
-  inline IOIndex_t nbOutputs() const noexcept { return getOperator()->nbOutputs(); }
+  inline IOIndex_t nbOutputs() const noexcept { return mOperator->nbOutputs(); }
 
   IOIndex_t nbValidOutputs() const;
 
@@ -304,15 +306,7 @@ public:
    * @brief Set of pointers to each GraphView containing this Node
    * @return std::set<GraphView>
    */
-  inline std::set<std::shared_ptr<GraphView>> views() const noexcept {
-    std::set<std::shared_ptr<GraphView>> res;
-    for (const auto &v : mViews) {
-      if (auto p = v.lock()) {
-        res.insert(p);
-      }
-    }
-    return res;
-  }
+  std::set<std::shared_ptr<GraphView>> views() const noexcept;
 
   /**
    * @brief Add a GraphView pointer to the list of GraphView containing
@@ -323,7 +317,7 @@ public:
     mViews.insert(std::weak_ptr<GraphView>(graphPtr));
   }
 
-  inline void removeView(const std::shared_ptr<GraphView> &graphPtr) {
+  void removeView(const std::shared_ptr<GraphView> &graphPtr) {
     mViews.erase(graphPtr);
   }
 
@@ -368,7 +362,6 @@ public:
    * @return std::shared_ptr<Node>&
    */
   inline NodePtr &getParent(const IOIndex_t inId) {
-    assert(inId != gk_IODefaultIndex);
     return mParents.at(inId);
   }
 
diff --git a/include/aidge/graph/StaticAnalysis.hpp b/include/aidge/graph/StaticAnalysis.hpp
index d3fe681749eeb69e4816a38f302d510f1c81381a..cc5532224ebd00f17aefbf5c2620a3ef15cfaa2a 100644
--- a/include/aidge/graph/StaticAnalysis.hpp
+++ b/include/aidge/graph/StaticAnalysis.hpp
@@ -13,13 +13,12 @@
 #ifndef AIDGE_CORE_GRAPH_STATICANALYSIS_H_
 #define AIDGE_CORE_GRAPH_STATICANALYSIS_H_
 
+#include <cstddef>  // std::size_t
 #include <memory>
+#include <string>
 
-#include "aidge/utils/Registrar.hpp"
-#include "aidge/graph/GraphView.hpp"
 #include "aidge/data/Tensor.hpp"
-#include "aidge/operator/OperatorTensor.hpp"
-
+#include "aidge/graph/GraphView.hpp"
 #include "aidge/operator/AvgPooling.hpp"
 #include "aidge/operator/Producer.hpp"
 #include "aidge/operator/Conv.hpp"
@@ -27,125 +26,131 @@
 #include "aidge/operator/FC.hpp"
 #include "aidge/operator/MatMul.hpp"
 #include "aidge/operator/MaxPooling.hpp"
+#include "aidge/operator/Operator.hpp"
+#include "aidge/operator/OperatorTensor.hpp"
 #include "aidge/operator/ReduceMean.hpp"
 #include "aidge/operator/ReduceSum.hpp"
 #include "aidge/operator/Softmax.hpp"
 #include "aidge/operator/MetaOperator.hpp"
+#include "aidge/utils/Registrar.hpp"
 
 namespace Aidge {
 /**
  * @brief Base class to compute statistics from an Operator.
- * 
+ *
  */
 class OperatorStats : public Registrable<OperatorStats, std::string, std::function<std::shared_ptr<OperatorStats>(const Operator&)>> {
 public:
+    OperatorStats() = delete;
     OperatorStats(const Operator& op);
-    const Operator& getOperator() const noexcept { return mOp; }
+
+    virtual ~OperatorStats();
+
+    inline const Operator& getOperator() const noexcept { return mOp; }
 
     /**
-     * @brief Get the worst case total number of arithmetic operations for the 
+     * @brief Get the worst case total number of arithmetic operations for the
      * operator data flow. This includes base arithmetic operations: +, -, / and *.
-     * Control flow operations (loop counters, index computation...) and memory 
+     * Control flow operations (loop counters, index computation...) and memory
      * accesses are not included.
-     * A naive implementation is considered (more operations might be required 
+     * A naive implementation is considered (more operations might be required
      * for numerical stability in an actual implementation).
      * Example of Operator with only arithmetic operations: Conv.
-     * 
-     * @return size_t Number of arithmetic operations.
+     *
+     * @return std::size_t Number of arithmetic operations.
      */
-    virtual size_t getNbArithmOps() const { return 2 * getNbMACOps(); };
+    virtual std::size_t getNbArithmOps() const { return 2 * getNbMACOps(); };
 
     /**
-     * @brief Get the worst case total number of logic operations for the 
+     * @brief Get the worst case total number of logic operations for the
      * operator data flow. This includes operations like logical shift, or, and...
-     * Control flow operations (loop counters, index computation...) and memory 
+     * Control flow operations (loop counters, index computation...) and memory
      * accesses are not included.
-     * A naive implementation is considered (more operations might be required 
+     * A naive implementation is considered (more operations might be required
      * for numerical stability in an actual implementation).
      * Example of Operator with only logic operations: BitShift.
-     * 
-     * @return size_t Number of logic operations.
+     *
+     * @return std::size_t Number of logic operations.
      */
-    virtual size_t getNbLogicOps() const { return 0; };
+    virtual std::size_t getNbLogicOps() const { return 0; };
 
     /**
-     * @brief Get the worst case total number of comparison operations for the 
+     * @brief Get the worst case total number of comparison operations for the
      * operator data flow. This includes operations like <, >, =...
-     * Control flow operations (loop counters, index computation...) and memory 
+     * Control flow operations (loop counters, index computation...) and memory
      * accesses are not included.
-     * A naive implementation is considered (more operations might be required 
+     * A naive implementation is considered (more operations might be required
      * for numerical stability in an actual implementation).
      * Example of Operator with only comparison operations: MaxPool.
-     * 
-     * @return size_t Number of comparison operations.
+     *
+     * @return std::size_t Number of comparison operations.
      */
-    virtual size_t getNbCompOps() const { return 0; };
+    virtual std::size_t getNbCompOps() const { return 0; };
 
     /**
      * @brief Get the worst case total number of non-linear (NL) operations for the
      * operator data flow. This includes operations like calls to tanh(), erf(), cos()...
-     * Control flow operations (loop counters, index computation...) and memory 
+     * Control flow operations (loop counters, index computation...) and memory
      * accesses are not included.
-     * A naive implementation is considered (more operations might be required 
+     * A naive implementation is considered (more operations might be required
      * for numerical stability in an actual implementation).
      * Example of Operator with only NL operations: Tanh.
      * Non-linear operations are necessarily of floating-point type.
-     * 
-     * @return size_t Number of non-linear (NL) operations.
+     *
+     * @return std::size_t Number of non-linear (NL) operations.
      */
-    virtual size_t getNbNLOps() const { return 0; };
+    virtual std::size_t getNbNLOps() const { return 0; };
 
     /**
      * @brief Get the worst case total number of operations for the operator data flow.
      * Total number of operations = arithmetic ops + logic ops + comp ops + NL ops.
-     * Control flow operations (loop counters, index computation...) and memory 
+     * Control flow operations (loop counters, index computation...) and memory
      * accesses are not included.
-     * A naive implementation is considered (more operations might be required 
+     * A naive implementation is considered (more operations might be required
      * for numerical stability in an actual implementation).
-     * 
-     * @return size_t Number of operations.
+     *
+     * @return std::size_t Number of operations.
      */
-    size_t getNbOps() const { return getNbArithmOps() + getNbLogicOps() + getNbCompOps() + getNbNLOps(); };
+    std::size_t getNbOps() const { return getNbArithmOps() + getNbLogicOps() + getNbCompOps() + getNbNLOps(); };
 
     /**
      * @brief Get the worst case total number of INT arithmetic operations for
      * the operator data flow.
      * Such that getNbArithmOps() = getNbArithmIntOps() + getNbArithmFpOps()
-     * Control flow operations (loop counters, index computation...) and memory 
+     * Control flow operations (loop counters, index computation...) and memory
      * accesses are not included.
-     * A naive implementation is considered (more operations might be required 
+     * A naive implementation is considered (more operations might be required
      * for numerical stability in an actual implementation).
-     * 
-     * @return size_t Number of INT arithmetic operations.
+     *
+     * @return std::size_t Number of INT arithmetic operations.
      */
-    virtual size_t getNbArithmIntOps() const;
+    virtual std::size_t getNbArithmIntOps() const;
 
     /**
-     * @brief Get the worst case total number of FP arithmetic operations for 
+     * @brief Get the worst case total number of FP arithmetic operations for
      * the operator data flow.
      * Such that getNbArithmOps() = getNbArithmIntOps() + getNbArithmFpOps()
-     * Control flow operations (loop counters, index computation...) and memory 
+     * Control flow operations (loop counters, index computation...) and memory
      * accesses are not included.
-     * A naive implementation is considered (more operations might be required 
+     * A naive implementation is considered (more operations might be required
      * for numerical stability in an actual implementation).
-     * 
-     * @return size_t Number of FP arithmetic operations.
+     *
+     * @return std::size_t Number of FP arithmetic operations.
      */
-    size_t getNbArithmFpOps() const { return getNbArithmOps() - getNbArithmIntOps(); };
+    std::size_t getNbArithmFpOps() const { return getNbArithmOps() - getNbArithmIntOps(); };
 
     /**
      * @brief Get the worst case total number of MAC operations for the operator
-     * data flow. MAC operations are included in getNbArithmOps(), with 1 MAC 
+     * data flow. MAC operations are included in getNbArithmOps(), with 1 MAC
      * operation counted as 2 arithmetic operations. MAC can be INT of FP.
-     * Control flow operations (loop counters, index computation...) and memory 
+     * Control flow operations (loop counters, index computation...) and memory
      * accesses are not included.
-     * A naive implementation is considered (more operations might be required 
+     * A naive implementation is considered (more operations might be required
      * for numerical stability in an actual implementation).
-     * 
-     * @return size_t Number of MAC operations.
+     *
+     * @return std::size_t Number of MAC operations.
      */
-    virtual size_t getNbMACOps() const { return 0; };
-    virtual ~OperatorStats() = default;
+    virtual std::size_t getNbMACOps() const { return 0; };
 
 protected:
     const Operator &mOp;
@@ -153,16 +158,20 @@ protected:
 
 /**
  * @brief Base class to compute statistics from a GraphView
- * 
+ *
  */
 class StaticAnalysis : public std::enable_shared_from_this<StaticAnalysis> {
 public:
+    StaticAnalysis() = delete;
     StaticAnalysis(std::shared_ptr<GraphView> graph);
-    const std::shared_ptr<GraphView> getGraph() const noexcept { return mGraph; }
+
+    virtual ~StaticAnalysis();
+
+    inline const std::shared_ptr<GraphView> getGraph() const noexcept { return mGraph; }
 
     /**
      * @brief Get the Operator Stats object corresponding to the given node.
-     * 
+     *
      * @param node Node
      * @return std::shared_ptr<OperatorStats> Node's Operator stats
      */
@@ -172,65 +181,67 @@ public:
      * @brief Get the number of parameters associated to a node. This includes
      * all Producers directly connected to the node's inputs as well as all
      * internal Producers (in case of a meta operator).
-     * 
+     *
      * Note: this function does not check if parameters are shared between
      * several nodes or not. This means that simply adding parameters count from
      * several nodes may lead to a higher number of parameters than in reality
      * if some of them are shared.
-     * 
+     *
      * @param node Node
-     * @return size_t Number of parameters
+     * @return std::size_t Number of parameters
      */
-    virtual size_t getNbParams(std::shared_ptr<Node> node) const;
+    virtual std::size_t getNbParams(std::shared_ptr<Node> node) const;
 
     /**
      * @brief Get the total parameters memory size, in bits, associated to a node.
-     * This includes all Producers directly connected to the node's inputs as 
+     * This includes all Producers directly connected to the node's inputs as
      * well as all internal Producers (in case of a meta operator).
-     * 
+     *
      * Note: this function does not check if parameters are shared between
      * several nodes or not. This means that simply adding parameters size from
      * several nodes may lead to a higher parameter size than in reality
      * if some of them are shared.
-     * 
+     *
      * @param node Node
-     * @return size_t Total parameters memory, in bits
+     * @return std::size_t Total parameters memory, in bits
      */
-    virtual size_t getParamsSize(std::shared_ptr<Node> node) const;
-
-    size_t getNbArithmOps() const { return accumulate(&OperatorStats::getNbArithmOps); }
-    size_t getNbLogicOps() const { return accumulate(&OperatorStats::getNbLogicOps); }
-    size_t getNbCompOps() const { return accumulate(&OperatorStats::getNbCompOps); }
-    size_t getNbNLOps() const { return accumulate(&OperatorStats::getNbNLOps); }
-    size_t getNbOps() const { return accumulate(&OperatorStats::getNbOps); }
-    size_t getNbArithmIntOps() const { return accumulate(&OperatorStats::getNbArithmIntOps); }
-    size_t getNbArithmFpOps() const { return accumulate(&OperatorStats::getNbArithmFpOps); }
-    size_t getNbMACOps() const { return accumulate(&OperatorStats::getNbMACOps); }
+    virtual std::size_t getParamsSize(std::shared_ptr<Node> node) const;
+
+    std::size_t getNbArithmOps() const;
+    std::size_t getNbLogicOps() const;
+    std::size_t getNbCompOps() const;
+    std::size_t getNbNLOps() const;
+    std::size_t getNbOps() const;
+    std::size_t getNbArithmIntOps() const;
+    std::size_t getNbArithmFpOps() const;
+    std::size_t getNbMACOps() const;
     virtual void summary(bool incProducers = false) const;
-    virtual ~StaticAnalysis() = default;
 
 protected:
     const std::shared_ptr<GraphView> mGraph;
 
-    size_t accumulate(size_t (OperatorStats::*func)() const) const;
+    std::size_t accumulate(std::size_t (OperatorStats::*func)() const) const;
 };
 
 ////////////////////////////////////////////////////////////////////////////////
 
 class MetaOpStats : public OperatorStats {
 public:
+    MetaOpStats() = delete;
     MetaOpStats(const Operator& op) : OperatorStats(op) {}
 
+    ~MetaOpStats();
+
     static std::unique_ptr<MetaOpStats> create(const Operator& op) {
         return std::make_unique<MetaOpStats>(op);
     }
 
-    size_t getNbArithmOps() const override { return StaticAnalysis(dynamic_cast<const MetaOperator_Op&>(mOp).getMicroGraph()).getNbArithmOps(); }
-    size_t getNbLogicOps() const override { return StaticAnalysis(dynamic_cast<const MetaOperator_Op&>(mOp).getMicroGraph()).getNbLogicOps(); }
-    size_t getNbCompOps() const override { return StaticAnalysis(dynamic_cast<const MetaOperator_Op&>(mOp).getMicroGraph()).getNbCompOps(); }
-    size_t getNbNLOps() const override { return StaticAnalysis(dynamic_cast<const MetaOperator_Op&>(mOp).getMicroGraph()).getNbNLOps(); }
-    size_t getNbArithmIntOps() const override { return StaticAnalysis(dynamic_cast<const MetaOperator_Op&>(mOp).getMicroGraph()).getNbArithmIntOps(); }
-    size_t getNbMACOps() const override { return StaticAnalysis(dynamic_cast<const MetaOperator_Op&>(mOp).getMicroGraph()).getNbMACOps(); }
+    std::size_t getNbArithmOps() const override;
+    std::size_t getNbLogicOps() const override;
+    std::size_t getNbCompOps() const override;
+    std::size_t getNbNLOps() const override;
+    std::size_t getNbArithmIntOps() const override;
+    std::size_t getNbMACOps() const override;
 };
 
 template <class OP>
@@ -242,7 +253,7 @@ public:
         return std::make_unique<ConvStats<OP>>(op);
     }
 
-    size_t getNbMACOps() const override {
+    std::size_t getNbMACOps() const override {
         const OP& op_ = dynamic_cast<const OP&>(mOp);
         AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis");
 	    const std::size_t weightsSize = op_.getInput(1)->size();
@@ -250,7 +261,7 @@ public:
             = std::accumulate(op_.getOutput(0)->dims().cbegin() + 2,
                               op_.getOutput(0)->dims().cend(),
                               1,
-                              std::multiplies<size_t>()); // NCHW...
+                              std::multiplies<std::size_t>()); // NCHW...
         const std::size_t batchSize = op_.getInput(0)->dims()[0]; // NCHW
         return batchSize * (weightsSize * outputSize);
     }
@@ -271,19 +282,19 @@ public:
         return std::make_unique<MaxPoolingStats<OP>>(op);
     }
 
-    size_t getNbCompOps() const override {
+    std::size_t getNbCompOps() const override {
         const OP& op_ = dynamic_cast<const OP&>(mOp);
         AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis");
 	    const std::size_t poolSize
             = std::accumulate(op_.kernelDims().cbegin(),
                               op_.kernelDims().cend(),
                               1,
-                              std::multiplies<size_t>());
+                              std::multiplies<std::size_t>());
         const std::size_t outputSize
             = std::accumulate(op_.getOutput(0)->dims().cbegin() + 2,
                               op_.getOutput(0)->dims().cend(),
                               1,
-                              std::multiplies<size_t>()); // NCHW...
+                              std::multiplies<std::size_t>()); // NCHW...
         const std::size_t batchSize = op_.getInput(0)->dims()[0]; // NCHW
         return batchSize * ((poolSize - 1) * outputSize);
     }
@@ -302,19 +313,19 @@ public:
         return std::make_unique<AvgPoolingStats<OP>>(op);
     }
 
-    size_t getNbArithmOps() const override {
+    std::size_t getNbArithmOps() const override {
         const OP& op_ = dynamic_cast<const OP&>(mOp);
         AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis");
 	    const std::size_t poolSize
             = std::accumulate(op_.kernelDims().cbegin(),
                               op_.kernelDims().cend(),
                               1,
-                              std::multiplies<size_t>());
+                              std::multiplies<std::size_t>());
         const std::size_t outputSize
             = std::accumulate(op_.getOutput(0)->dims().cbegin() + 2,
                               op_.getOutput(0)->dims().cend(),
                               1,
-                              std::multiplies<size_t>()); // NCHW...
+                              std::multiplies<std::size_t>()); // NCHW...
         const std::size_t batchSize = op_.getInput(0)->dims()[0]; // NCHW
         // (poolSize - 1) additions + 1 division for each output
         return batchSize * (poolSize * outputSize);
@@ -334,7 +345,7 @@ public:
         return std::make_unique<FCStats>(op);
     }
 
-    size_t getNbMACOps() const override {
+    std::size_t getNbMACOps() const override {
         const FC_Op& op_ = dynamic_cast<const FC_Op&>(mOp);
         AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis");
 	    const std::size_t weightsSize = op_.getInput(1)->size();
@@ -353,20 +364,20 @@ public:
         return std::make_unique<MatMulStats>(op);
     }
 
-    size_t getNbMACOps() const override {
+    std::size_t getNbMACOps() const override {
         const MatMul_Op& op_ = dynamic_cast<const MatMul_Op&>(mOp);
         AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis");
-        const size_t n = (op_.getInput(0)->dims().size() > 1)
+        const std::size_t n = (op_.getInput(0)->dims().size() > 1)
             ? op_.getInput(0)->dims().end()[-2] : 1;
-        const size_t k = op_.getInput(0)->dims().back();
-        const size_t m = (op_.getInput(1)->dims().size() > 1)
+        const std::size_t k = op_.getInput(0)->dims().back();
+        const std::size_t m = (op_.getInput(1)->dims().size() > 1)
             ? op_.getInput(1)->dims().back() : 1;
-        const size_t nb = (op_.getInput(0)->dims().size() > 2)
+        const std::size_t nb = (op_.getInput(0)->dims().size() > 2)
             ? std::accumulate(op_.getInput(0)->dims().cbegin(),
                               op_.getInput(0)->dims().cend() - 2,
                               1,
-                              std::multiplies<size_t>())
-            : 1; 
+                              std::multiplies<std::size_t>())
+            : 1;
 
         return nb * n * m * k;
     }
@@ -382,7 +393,7 @@ public:
         return std::make_unique<ReLUStats>(op);
     }
 
-    size_t getNbCompOps() const override {
+    std::size_t getNbCompOps() const override {
         const OperatorTensor& op_ = dynamic_cast<const OperatorTensor&>(mOp);
         AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis");
         return op_.getOutput(0)->size();
@@ -399,14 +410,14 @@ public:
         return std::make_unique<AbsStats>(op);
     }
 
-    size_t getNbCompOps() const override {
+    std::size_t getNbCompOps() const override {
         const OperatorTensor& op_ = dynamic_cast<const OperatorTensor&>(mOp);
         AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis");
         return op_.getOutput(0)->size();
     }
 
     // This is in the worst case (all values are negative)
-    size_t getNbArithmOps() const override {
+    std::size_t getNbArithmOps() const override {
         const OperatorTensor& op_ = dynamic_cast<const OperatorTensor&>(mOp);
         AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis");
         return op_.getOutput(0)->size();
@@ -423,12 +434,12 @@ public:
         return std::make_unique<ReduceMeanStats>(op);
     }
 
-    size_t getNbArithmOps() const override {
+    std::size_t getNbArithmOps() const override {
         const ReduceMean_Op& op_ = dynamic_cast<const ReduceMean_Op&>(mOp);
         AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis");
-        const size_t nbIn = op_.getInput(0)->size();
-        const size_t nbOut = op_.getOutput(0)->size();
-        const size_t nbReduce = nbIn / nbOut;
+        const std::size_t nbIn = op_.getInput(0)->size();
+        const std::size_t nbOut = op_.getOutput(0)->size();
+        const std::size_t nbReduce = nbIn / nbOut;
         // (nbReduce - 1) additions + 1 division for each output
         return nbOut * nbReduce;
     }
@@ -444,12 +455,12 @@ public:
         return std::make_unique<ReduceSumStats>(op);
     }
 
-    size_t getNbArithmOps() const override {
+    std::size_t getNbArithmOps() const override {
         const ReduceSum_Op& op_ = dynamic_cast<const ReduceSum_Op&>(mOp);
         AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis");
-        const size_t nbIn = op_.getInput(0)->size();
-        const size_t nbOut = op_.getOutput(0)->size();
-        const size_t nbReduce = nbIn / nbOut;
+        const std::size_t nbIn = op_.getInput(0)->size();
+        const std::size_t nbOut = op_.getOutput(0)->size();
+        const std::size_t nbReduce = nbIn / nbOut;
         // (nbReduce - 1) additions for each output
         return nbOut * (nbReduce - 1);
     }
@@ -465,22 +476,22 @@ public:
         return std::make_unique<SoftmaxStats>(op);
     }
 
-    size_t getNbArithmOps() const override {
+    std::size_t getNbArithmOps() const override {
         const Softmax_Op& op_ = dynamic_cast<const Softmax_Op&>(mOp);
         AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis");
-        const size_t axis = (op_.axis() >= 0) ? op_.axis() : op_.getInput(0)->nbDims() + op_.axis();
-        const size_t nbReduce = op_.getInput(0)->dims()[axis];
-        const size_t nbOut = op_.getOutput(0)->size();
+        const std::size_t axis = (op_.axis() >= 0) ? op_.axis() : op_.getInput(0)->nbDims() + op_.axis();
+        const std::size_t nbReduce = op_.getInput(0)->dims()[axis];
+        const std::size_t nbOut = op_.getOutput(0)->size();
         // nbOut divisions + (nbReduce - 1) additions
         return nbOut + (nbReduce - 1);
     }
 
-    size_t getNbNLOps() const override {
+    std::size_t getNbNLOps() const override {
         const Softmax_Op& op_ = dynamic_cast<const Softmax_Op&>(mOp);
         AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis");
-        const size_t axis = (op_.axis() >= 0) ? op_.axis() : op_.getInput(0)->nbDims() + op_.axis();
-        const size_t nbReduce = op_.getInput(0)->dims()[axis];
-        const size_t nbOut = op_.getOutput(0)->size();
+        const std::size_t axis = (op_.axis() >= 0) ? op_.axis() : op_.getInput(0)->nbDims() + op_.axis();
+        const std::size_t nbReduce = op_.getInput(0)->dims()[axis];
+        const std::size_t nbOut = op_.getOutput(0)->size();
         // nbOut exp + nbReduce exp
         return nbOut + nbReduce;
     }
@@ -515,7 +526,7 @@ public:
         return std::make_unique<ElemWiseOpStats>(op);
     }
 
-    size_t getNbArithmOps() const override {
+    std::size_t getNbArithmOps() const override {
         const OperatorTensor& op_ = dynamic_cast<const OperatorTensor&>(mOp);
         AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis");
         return op_.getOutput(0)->size();
@@ -535,7 +546,7 @@ public:
         return std::make_unique<ElemWiseLogicOpStats>(op);
     }
 
-    size_t getNbArithmOps() const override {
+    std::size_t getNbArithmOps() const override {
         const OperatorTensor& op_ = dynamic_cast<const OperatorTensor&>(mOp);
         AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis");
         return op_.getOutput(0)->size();
@@ -552,7 +563,7 @@ public:
         return std::make_unique<ElemWiseNLOpStats>(op);
     }
 
-    size_t getNbNLOps() const override {
+    std::size_t getNbNLOps() const override {
         const OperatorTensor& op_ = dynamic_cast<const OperatorTensor&>(mOp);
         AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis");
         return op_.getOutput(0)->size();
diff --git a/include/aidge/operator/ArgMax.hpp b/include/aidge/operator/ArgMax.hpp
index 13f63ce98c526f0c57a363ada4e7f50ccdbfb83b..a2d344cba3dd7af3b6f0b2b4078852afcd0ae8cf 100644
--- a/include/aidge/operator/ArgMax.hpp
+++ b/include/aidge/operator/ArgMax.hpp
@@ -52,12 +52,12 @@ public:
     /**
      * @brief constructor for ArgMax op
      * @param[in] axis around which perform the operation
-     * @param[in] keep_dims if true we set a dimension of 1 in the place of the reduced axis and 
+     * @param[in] keep_dims if true we set a dimension of 1 in the place of the reduced axis and
      * if false we remove the dimension completely
-     * @param[in] select_last_index in case we have many maximum, if true the last index is returned 
-     * if false the first index is returned. 
+     * @param[in] select_last_index in case we have many maximum, if true the last index is returned
+     * if false the first index is returned.
      */
-    ArgMax_Op(std::int32_t axis, bool keep_dims, bool select_last_index)
+    ArgMax_Op(std::int32_t axis = 0, bool keep_dims = true, bool select_last_index = false)
         : OperatorTensor(Type, {InputCategory::Data}, 1),
           mAttributes(std::make_shared<Attributes_>(
             attr<ArgMaxAttr::Axis>(axis),
@@ -69,24 +69,13 @@ public:
      * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated).
      * @param op Operator to copy.
      */
-    ArgMax_Op(const ArgMax_Op& op)
-        : OperatorTensor(op),
-          mAttributes(op.mAttributes)
-    {
-        if (op.mImpl){
-            SET_IMPL_MACRO(ArgMax_Op, *this, op.backend());
-        } else {
-            mImpl = nullptr;
-        }
-    }
+    ArgMax_Op(const ArgMax_Op& op);
 
     /**
      * @brief Clone the operator using its copy-constructor.
      * @see Operator::ArgMax_Op
      */
-    std::shared_ptr<Operator> clone() const override {
-        return std::make_shared<ArgMax_Op>(*this);
-    }
+    std::shared_ptr<Operator> clone() const override;
 
     bool forwardDims(bool allowDataDependency = false) override final;
 
@@ -114,17 +103,14 @@ public:
  * @param axis Dimension over which data max should be computed.
  * @param keep_dims Whether or not reduced dimensions are to be erased.
  * @param select_last_index Whether to select the last index of max elements in case there are many maximums.
- * By default the first max element index is 
+ * By default the first max element index is
  * @param name Name of the Operator.
  * @return std::shared_ptr<Node> Node containing the Operator.
  */
-inline std::shared_ptr<Node> ArgMax(std::int32_t axis=0,
-                                    bool keep_dims=true,
-                                    bool select_last_index=false,
-                                    const std::string& name = "") {
-    return std::make_shared<Node>(std::make_shared<ArgMax_Op>(axis, keep_dims, select_last_index), name);
-
-}
+std::shared_ptr<Node> ArgMax(std::int32_t axis = 0,
+                                    bool keep_dims = true,
+                                    bool select_last_index = false,
+                                    const std::string& name = "");
 
 }  // namespace Aidge
 
diff --git a/include/aidge/operator/Operator.hpp b/include/aidge/operator/Operator.hpp
index 95698b751a9f0f4c0cc8e716eb5140ee74e21a3f..5f148e126b889c422392923fa33ea1cffbbd654e 100644
--- a/include/aidge/operator/Operator.hpp
+++ b/include/aidge/operator/Operator.hpp
@@ -12,11 +12,11 @@
 #ifndef AIDGE_CORE_OPERATOR_OPERATOR_H_
 #define AIDGE_CORE_OPERATOR_OPERATOR_H_
 
+#include <cstddef>
 #include <memory>
 #include <string>
 #include <vector>
 #include <utility>
-#include <cstddef>
 
 #ifdef PYBIND
 #include <pybind11/pybind11.h>
@@ -49,11 +49,19 @@ enum class InputCategory {
 
 class Operator : public std::enable_shared_from_this<Operator> {
 protected:
-    std::shared_ptr<OperatorImpl> mImpl; // implementation of the operator
-    std::shared_ptr<DynamicAttributes> mInheritedAttrs;
+    /** Implementation of the operator. */
+    std::shared_ptr<OperatorImpl> mImpl;
+    /** Attributes of the associated Node.
+     *
+     * Default to empty vector for copy construction because two Operator cannot
+     * be associated to the same Node.
+     */
+    std::vector<std::shared_ptr<DynamicAttributes>> mInheritedAttrs{};
 
 private:
+    /** Type of Operator. */
     std::string mType;
+    /** Type of data the Operator should handle. */
     const OperatorType mOperatorType;
     const std::vector<InputCategory> mInputsCategory;
     const IOIndex_t mNbOut;
@@ -82,18 +90,34 @@ public:
         // Implementation is never cloned. It is up to the non-abstract Operator copy-constructor to create a new implementation matching the copied Operator implementation.
         // See https://gitlab.eclipse.org/eclipse/aidge/aidge_core/-/merge_requests/8#note_1214050 for the discussion.
     }
-    std::shared_ptr<Operator> operator()(std::shared_ptr<DynamicAttributes> attrs) {
-        mInheritedAttrs = attrs;
-        return shared_from_this();
-    }
+    // std::shared_ptr<Operator> operator()(std::shared_ptr<DynamicAttributes> attrs) {
+    //     mInheritedAttrs = attrs;
+    //     return shared_from_this();
+    // }
 
     virtual ~Operator() noexcept;
 
 public:
+    void setInheritedAttrs(std::shared_ptr<DynamicAttributes>& attr) {
+        mInheritedAttrs.push_back(attr);
+    }
     virtual std::shared_ptr<Operator> clone() const = 0;
 
     virtual std::shared_ptr<Attributes> attributes() const { return nullptr; };
-    virtual std::shared_ptr<DynamicAttributes> inheritedAttributes() const { return mInheritedAttrs; };
+
+    /**
+     * @brief Get the currently associated Node's attributes.
+     * @return Shared pointer to the Attributes of the associated Node.
+     *
+     * If no Node as be associated to the Operator, returns a `nullptr`.
+     * @note As Operators have only been tested with a single associated Node,
+     * only attributes of the first associated Node are returned. This should be
+     * updated.
+     */
+    virtual std::shared_ptr<DynamicAttributes> inheritedAttributes() const {
+        return mInheritedAttrs.empty() ? nullptr : mInheritedAttrs[0];
+    }
+
     /**
      * @brief Set the specified input with a shallow copy.
      * @param inputIdx Index of the input to set.
diff --git a/include/aidge/operator/OperatorTensor.hpp b/include/aidge/operator/OperatorTensor.hpp
index 19e2f13e4ff39fee181c6ad0cf2fbab510f22c3e..5a4fcb5f492bb60899f00e11f35793df0e65789f 100644
--- a/include/aidge/operator/OperatorTensor.hpp
+++ b/include/aidge/operator/OperatorTensor.hpp
@@ -43,7 +43,7 @@ public:
     /**
      * @brief Operator tensor constructor. This function is not meant to be called directly but by a derived class constructor
      * every operator class derive from this class.
-     * 
+     *
 	 * @param[in] type     : type of operator (i.e. "Add", "AveragePool",...)
 	 * @param[in] inputsCategory : describes the type of each input.
 	 * @param[in] nbOut    : Number of tensors this operator will output
@@ -67,11 +67,14 @@ public:
     // input management
     void setInput(const IOIndex_t inputIdx, const std::shared_ptr<Data>& data) override;
     const std::shared_ptr<Tensor>& getInput(const IOIndex_t inputIdx) const;
+    virtual const std::vector<std::shared_ptr<Tensor>>& getInputs() const;
     std::shared_ptr<Data> getRawInput(const IOIndex_t inputIdx) const override final;
 
     // output management
     void setOutput(const IOIndex_t outputIdx, const std::shared_ptr<Data>& data) const override;
     virtual const std::shared_ptr<Tensor>& getOutput(const IOIndex_t outputIdx) const;
+    virtual const std::vector<std::shared_ptr<Tensor>>& getOutputs() const;
+
     std::shared_ptr<Aidge::Data> getRawOutput(const Aidge::IOIndex_t outputIdx) const override final;
     ///////////////////////////////////////////////////
 
@@ -94,7 +97,7 @@ public:
  	 *        - TOKEN mode means that forwarddims will only ensure that all inputs and outputs of the graph the node is within are connected.
  	 * @param[in] allowDataDependency if set to true, this means that this operator output dimensions depends on the dimensions of optional parameter tensors.
  	 * @return true if dims have been properly forwarded. false otherwise. If set to false, then forwardDims will enter in token mode.
- 	 *      
+ 	 *
      */
     virtual bool forwardDims(bool allowDataDependency = false);
     virtual bool dimsForwarded() const;
@@ -110,4 +113,4 @@ protected:
 };
 }  // namespace Aidge
 
-#endif  // AIDGE_CORE_OPERATOR_OPERATORTENSOR_H_
\ No newline at end of file
+#endif  // AIDGE_CORE_OPERATOR_OPERATORTENSOR_H_
diff --git a/include/aidge/operator/Slice.hpp b/include/aidge/operator/Slice.hpp
index 5bb07ae01d8f076891a803698d2b3f489d90b462..bf98736f0cab95b4ad618d1bee0850520144428d 100644
--- a/include/aidge/operator/Slice.hpp
+++ b/include/aidge/operator/Slice.hpp
@@ -31,6 +31,10 @@ public:
     void forward() override;
 };
 
+// Implementation note:
+// If start or end are out of bound then it takes the max value for the given axe.
+// Example Slice with start=1, end=1000, axes=0 for tensor [0, 1, 2, 3]
+// Will return [1, 2, 3]
 enum class SliceAttr { Starts, Ends, Axes, Steps };
 
 class Slice_Op
diff --git a/include/aidge/operator/WeightInterleaving.hpp b/include/aidge/operator/WeightInterleaving.hpp
new file mode 100644
index 0000000000000000000000000000000000000000..e9e51441aab7772ca5cbb26195c94a0a837d7157
--- /dev/null
+++ b/include/aidge/operator/WeightInterleaving.hpp
@@ -0,0 +1,83 @@
+/********************************************************************************
+ * Copyright (c) 2023 CEA-List
+ *
+ * This program and the accompanying materials are made available under the
+ * terms of the Eclipse Public License 2.0 which is available at
+ * http://www.eclipse.org/legal/epl-2.0.
+ *
+ * SPDX-License-Identifier: EPL-2.0
+ *
+ ********************************************************************************/
+
+#ifndef AIDGE_CORE_OPERATOR_WEIGHTINTERLEAVING_H_
+#define AIDGE_CORE_OPERATOR_WEIGHTINTERLEAVING_H_
+
+#include <cassert>
+#include <memory>
+#include <vector>
+
+#include "aidge/backend/OperatorImpl.hpp"
+#include "aidge/graph/Node.hpp"
+#include "aidge/operator/OperatorTensor.hpp"
+#include "aidge/utils/ErrorHandling.hpp"
+#include "aidge/utils/Registrar.hpp"
+#include "aidge/utils/Types.h"
+
+
+namespace Aidge {
+
+class WeightInterleaving_Op :
+    public OperatorTensor,
+    public Registrable<WeightInterleaving_Op,  // <Op, backend, implementation creation function>
+        std::string,
+        std::function<std::shared_ptr<OperatorImpl>(const WeightInterleaving_Op&)>>
+{
+public:
+    static const std::string Type;
+
+    WeightInterleaving_Op() : OperatorTensor(Type, {InputCategory::Data}, 1) {}
+
+    /**
+     * @brief Copy-constructor.
+     * @param op WeightInterleaving_Op to copy.
+     * @details Copies the operator attributes and its output tensor(s), but not
+     * its input tensors. The new operator has no associated input.
+     */
+    WeightInterleaving_Op(const WeightInterleaving_Op& op);
+
+    /**
+     * @brief Clone the operator using its copy-constructor.
+     * @see Operator::WeightInterleaving_Op
+     */
+    std::shared_ptr<Operator> clone() const override;
+
+    bool forwardDims(bool allowDataDependency = false) override final;
+
+    void setBackend(const std::string& name, DeviceIdx_t device = 0) override final;
+    std::set<std::string> getAvailableBackends() const override;
+
+    static const std::vector<std::string> getInputsName(){
+        return {"data_input"};
+    }
+    static const std::vector<std::string> getOutputsName(){
+        return {"data_output"};
+    }
+
+    /**
+     * @brief Calculates the required size for the 8-bits`compactData` vector.
+     * 
+     * This function determines the minimum number of bytes needed in `compactData`
+     * to store `dataSize` elements compacted to `nb_bits` bits each.
+     * 
+     * @param dataSize The total number of elements in the input data array.
+     * @param nb_bits The number of bits to use for each compacted element (from 1 to 7).
+     * @return std::size_t The required size in bytes for `compactData`.
+     */
+    std::size_t compactDataSize(std::size_t dataSize, std::uint8_t nb_bits);
+
+};
+
+std::shared_ptr<Node> WeightInterleaving(const std::string& name = "");
+}
+
+#endif /* AIDGE_CORE_OPERATOR_RELU_H_ */
diff --git a/include/aidge/recipes/Recipes.hpp b/include/aidge/recipes/Recipes.hpp
index aa4d3ae1b79d3feb04eb1db7623633174a15c7ce..0a3f5dc4d0ea00ddb5c8d0b8885269c882f7f705 100644
--- a/include/aidge/recipes/Recipes.hpp
+++ b/include/aidge/recipes/Recipes.hpp
@@ -186,19 +186,24 @@ size_t convToMatMul(std::shared_ptr<GraphView> graph);
  */
 void adaptToBackend(std::shared_ptr<GraphView> graph);
 
-// /**
-//  * @brief The node passed contains an operator which input of index 1 is supposed be be weights of type Int4, Int3, Int2, binary.
-//  *        This recipie only operates memory transformations on the weight tensor. 
-//  *        First, permutes the dimensions to match the dataformat NHWC
-//  *        Second, compact the last dimension (Channel dimension) into int8_t
-//  * 
-//  * @param node Node 
-//  */
-// void applyWeightInterleaving(std::shared_ptr<Node> node);
-
 
+/**
+ * @brief Create a GenericOp from an Operator and replace it
+ * 
+ * @param node Node which Operator will be changed into a generic Operator
+ */
 void toGenericOp(std::shared_ptr<Node> node);
 
+/**
+ * @brief The node passed contains an operator which input of index 1 is supposed be be weights of type Int4, Int3, Int2, binary.
+ *        This recipie only operates memory transformations on the weight tensor. 
+ *        First, permutes the dimensions to match the dataformat NHWC
+ *        Second, compact the last dimension of the weights (Channel dimension) into 8bits 
+ * 
+ * @param node Node 
+ */
+void applyWeightInterleaving(std::shared_ptr<Node> node);
+
 } // namespace Aidge
 
 #endif /* AIDGE_CORE_UTILS_RECIPES_H_ */
diff --git a/include/aidge/utils/DynamicAttributes.hpp b/include/aidge/utils/DynamicAttributes.hpp
index 0fc350f1a10227e417f3b09baf2c7bebeb84d875..6ac76c138e2a835f8e74c5ede26e449c537d61d2 100644
--- a/include/aidge/utils/DynamicAttributes.hpp
+++ b/include/aidge/utils/DynamicAttributes.hpp
@@ -365,7 +365,7 @@ public:
     static inline typename std::enable_if<!has_less_than_operator<T>::value, void>::type makeTypeConditionallyAvailable() {}
 
     template<typename T>
-    static inline typename std::enable_if<has_less_than_operator<T>::value, void>::type makeTypeConditionallyAvailable() {
+    static typename std::enable_if<has_less_than_operator<T>::value, void>::type makeTypeConditionallyAvailable() {
         mAnyUtils.emplace(typeid(T), std::unique_ptr<AnyUtils<T>>(new AnyUtils<T>()));
     }
 
@@ -388,7 +388,7 @@ struct DynamicAttributes::AnyUtils<py::object> : public DynamicAttributes::AnyUt
 
     size_t hash(const future_std::any& attr) const override final {
         // Here we are mixing Python and C++ hashes... if both are
-        // well implemented, this should not increase the collision 
+        // well implemented, this should not increase the collision
         // probability for the same number of stored hashes.
         return py::hash(future_std::any_cast<py::object>(attr));
     }
diff --git a/include/aidge/utils/Log.hpp b/include/aidge/utils/Log.hpp
index d6851f1e42233f9d8af88d10da9046f73f94b8c4..bc99ab7c0362f5bfa4c2f1bbc01f3089d28d699f 100644
--- a/include/aidge/utils/Log.hpp
+++ b/include/aidge/utils/Log.hpp
@@ -19,7 +19,6 @@
 #include <fmt/ranges.h>
 
 #include "aidge/data/half_fmt.hpp"
-
 #include "aidge/utils/Attributes.hpp"
 
 namespace Aidge {
diff --git a/include/aidge/utils/sys_info/CoreVersionInfo.hpp b/include/aidge/utils/sys_info/CoreVersionInfo.hpp
new file mode 100644
index 0000000000000000000000000000000000000000..648998ede84a886315be9f26dfde68e7abddd345
--- /dev/null
+++ b/include/aidge/utils/sys_info/CoreVersionInfo.hpp
@@ -0,0 +1,37 @@
+#ifndef AIDGE_UTILS_SYS_INFO_CORE_VERSION_INFO_H
+#define AIDGE_UTILS_SYS_INFO_CORE_VERSION_INFO_H
+
+#include "aidge/utils/Log.hpp"
+#include "aidge/core_version.h"
+
+namespace Aidge {
+
+constexpr inline const char * getCoreProjectVersion(){
+    return PROJECT_VERSION;
+}
+
+constexpr inline const char * getCoreGitHash(){
+    return PROJECT_GIT_HASH;
+}
+
+void showCoreVersion() {
+    Log::info("Aidge core: {} ({}), {} {}", getCoreProjectVersion(), getCoreGitHash(), __DATE__, __TIME__);
+        // Compiler version
+    #if defined(__clang__)
+    /* Clang/LLVM. ---------------------------------------------- */
+        Log::info("Clang/LLVM compiler version: {}.{}.{}\n", __clang_major__ , __clang_minor__, __clang_patchlevel__);
+    #elif defined(__ICC) || defined(__INTEL_COMPILER)
+    /* Intel ICC/ICPC. ------------------------------------------ */
+        Log::info("Intel ICC/ICPC compiler version: {}\n", __INTEL_COMPILER);
+    #elif defined(__GNUC__) || defined(__GNUG__)
+    /* GNU GCC/G++. --------------------------------------------- */
+        Log::info("GNU GCC/G++ compiler version: {}.{}.{}", __GNUC__, __GNUC_MINOR__, __GNUC_PATCHLEVEL__);
+    #elif defined(_MSC_VER)
+    /* Microsoft Visual Studio. --------------------------------- */
+        Log::info("Microsoft Visual Studio compiler version: {}\n", _MSC_VER);
+    #else
+        Log::info("Unknown compiler\n");
+    #endif
+}
+}  // namespace Aidge
+#endif  // AIDGE_UTILS_SYS_INFO_CORE_VERSION_INFO_H
diff --git a/include/aidge/version.h.in b/include/aidge/version.h.in
new file mode 100644
index 0000000000000000000000000000000000000000..4b876f63002972c1f8f1340b70cdecdace911012
--- /dev/null
+++ b/include/aidge/version.h.in
@@ -0,0 +1,11 @@
+#ifndef VERSION_H
+#define VERSION_H
+
+namespace Aidge {
+static constexpr const int PROJECT_VERSION_MAJOR = @PROJECT_VERSION_MAJOR@;
+static constexpr const int PROJECT_VERSION_MINOR = @PROJECT_VERSION_MINOR@;
+static constexpr const int PROJECT_VERSION_PATCH = @PROJECT_VERSION_PATCH@;
+static constexpr const char * PROJECT_VERSION = "@PROJECT_VERSION_MAJOR@.@PROJECT_VERSION_MINOR@.@PROJECT_VERSION_PATCH@";
+static constexpr const char * PROJECT_GIT_HASH = "@GIT_COMMIT_HASH@";
+}
+#endif // VERSION_H
diff --git a/pyproject.toml b/pyproject.toml
index b838aca5ee100d182ba88b79f23f3a2ebff9acf3..610b5f8c226fcf2f040a6d6c22cffcb0498a0f8d 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -1,18 +1,27 @@
 [project]
-name = "aidge_core"
+name="aidge_core"
+
 description="Core algorithms for operators and graph of the AIDGE framework"
 dependencies = [
     "numpy>=1.21.6",
-    "Jinja2>=3.1.2"
+    "Jinja2>=3.1.2",
+    "matplotlib"
 ]
 requires-python = ">= 3.7"
 readme = "README.md"
 license = { file = "LICENSE" }
-classifiers = [ 
+classifiers = [
     "Development Status :: 2 - Pre-Alpha",
     "Programming Language :: Python :: 3"
     ]
-dynamic = ["version"] # defined in tool.setuptools_scm
+dynamic = ["version"] # defined by pbr
+
+[project.urls]
+Homepage = "https://www.deepgreen.ai/en/platform"
+Documentation = "https://eclipse-aidge.readthedocs.io/en/latest/"
+Repository = "https://gitlab.eclipse.org/eclipse/aidge/aidge_core"
+Issues = "https://gitlab.eclipse.org/eclipse/aidge/aidge_core/-/issues/"
+Changelog = "https://gitlab.eclipse.org/eclipse/aidge/aidge_core/-/releases"
 
 [project.optional-dependencies]
 test = [
@@ -22,8 +31,8 @@ test = [
 [build-system]
 requires = [
     "setuptools>=64",
-    "setuptools_scm[toml]==7.1.0",
-    "cmake>=3.18.4.post1"
+    "cmake>=3.18.4.post1",
+    "pbr"
 ]
 build-backend = "setuptools.build_meta"
 
@@ -40,11 +49,7 @@ exclude = [ # exclude packages matching these glob patterns (empty by default)
     ".unit_tests.static",
     ".aidge_export_aidge.__pycache__",
     ".aidge_export_aidge.utils.__pycache__",
-] 
-
-# SETUPTOOLS_SCM
-[tool.setuptools_scm]
-write_to = "aidge_core/_version.py"
+]
 
 #####################################################
 # CIBUILDWHEEL
diff --git a/python_binding/data/pybind_Tensor.cpp b/python_binding/data/pybind_Tensor.cpp
index 0d4ed716ca6c65c2e8a0153a729ebecef771ea9e..35e60e1589ce5599affbc2b466171acc6bf4ef01 100644
--- a/python_binding/data/pybind_Tensor.cpp
+++ b/python_binding/data/pybind_Tensor.cpp
@@ -226,6 +226,8 @@ static T castToNativeType(const py::object val_obj) {
     DataType dtype;
     getConservativeNativeVal(val_obj, &val, &dtype);
     switch (dtype) {
+    case DataType::Int4:
+        return (T)val.i8;
     case DataType::Int8:
         return (T)val.i8;
     case DataType::Int16:
@@ -353,6 +355,22 @@ void init_Tensor(py::module& m){
                 return py::cast(b.get<float>(idx));
             case DataType::Int8:
                 return py::cast(b.get<std::int8_t>(idx));
+            case DataType::Int4:
+                return py::cast(b.get<std::int8_t>(idx));
+            case DataType::Dual_Int4:
+                return py::cast(b.get<std::int8_t>(idx));
+            case DataType::Int3:
+                return py::cast(b.get<std::int8_t>(idx));
+            case DataType::Dual_Int3:
+                return py::cast(b.get<std::int8_t>(idx));
+            case DataType::Int2:
+                return py::cast(b.get<std::int8_t>(idx));
+            case DataType::Quad_Int2:
+                return py::cast(b.get<std::int8_t>(idx));
+            case DataType::Binary:
+                return py::cast(b.get<std::int8_t>(idx));
+             case DataType::Octo_Binary:
+                return py::cast(b.get<std::int8_t>(idx));
             case DataType::Int16:
                 return py::cast(b.get<std::int16_t>(idx));
             case DataType::Int32:
@@ -361,6 +379,18 @@ void init_Tensor(py::module& m){
                 return py::cast(b.get<std::int64_t>(idx));
             case DataType::UInt8:
                 return py::cast(b.get<std::uint8_t>(idx));
+            case DataType::UInt4:
+                return py::cast(b.get<std::uint8_t>(idx));
+            case DataType::Dual_UInt4:
+                return py::cast(b.get<std::uint8_t>(idx));
+            case DataType::UInt3:
+                return py::cast(b.get<std::uint8_t>(idx));
+            case DataType::Dual_UInt3:
+                return py::cast(b.get<std::uint8_t>(idx));
+            case DataType::UInt2:
+                return py::cast(b.get<std::uint8_t>(idx));
+            case DataType::Quad_UInt2:
+                return py::cast(b.get<std::uint8_t>(idx));
             case DataType::UInt16:
                 return py::cast(b.get<std::uint16_t>(idx));
             case DataType::UInt32:
@@ -380,6 +410,22 @@ void init_Tensor(py::module& m){
                 return py::cast(b.get<float>(coordIdx));
             case DataType::Int8:
                 return py::cast(b.get<std::int8_t>(coordIdx));
+            case DataType::Int4:
+                return py::cast(b.get<std::int8_t>(coordIdx));
+            case DataType::Dual_Int4:
+                return py::cast(b.get<std::int8_t>(coordIdx));
+            case DataType::Int3:
+                return py::cast(b.get<std::int8_t>(coordIdx));
+            case DataType::Dual_Int3:
+                return py::cast(b.get<std::int8_t>(coordIdx));
+            case DataType::Int2:
+                return py::cast(b.get<std::int8_t>(coordIdx));
+            case DataType::Quad_Int2:
+                return py::cast(b.get<std::int8_t>(coordIdx));
+            case DataType::Binary:
+                return py::cast(b.get<std::int8_t>(coordIdx));
+             case DataType::Octo_Binary:
+                return py::cast(b.get<std::int8_t>(coordIdx));
             case DataType::Int16:
                 return py::cast(b.get<std::int16_t>(coordIdx));
             case DataType::Int32:
@@ -388,6 +434,18 @@ void init_Tensor(py::module& m){
                 return py::cast(b.get<std::int64_t>(coordIdx));
             case DataType::UInt8:
                 return py::cast(b.get<std::uint8_t>(coordIdx));
+            case DataType::UInt4:
+                return py::cast(b.get<std::uint8_t>(coordIdx));
+            case DataType::Dual_UInt4:
+                return py::cast(b.get<std::uint8_t>(coordIdx));
+            case DataType::UInt3:
+                return py::cast(b.get<std::uint8_t>(coordIdx));
+            case DataType::Dual_UInt3:
+                return py::cast(b.get<std::uint8_t>(coordIdx));
+            case DataType::UInt2:
+                return py::cast(b.get<std::uint8_t>(coordIdx));
+            case DataType::Quad_UInt2:
+                return py::cast(b.get<std::uint8_t>(coordIdx));
             case DataType::UInt16:
                 return py::cast(b.get<std::uint16_t>(coordIdx));
             case DataType::UInt32:
@@ -410,6 +468,30 @@ void init_Tensor(py::module& m){
             case DataType::Int8:
                 b.set(idx, castToNativeType<std::int8_t>(val));
                 break;
+            case DataType::Int4:
+                b.set(idx, castToNativeType<std::int8_t>(val));
+                break;
+            case DataType::Dual_Int4:
+                b.set(idx, castToNativeType<std::int8_t>(val));
+                break;
+            case DataType::Int3:
+                b.set(idx, castToNativeType<std::int8_t>(val));
+                break;
+            case DataType::Dual_Int3:
+                b.set(idx, castToNativeType<std::int8_t>(val));
+                break;
+            case DataType::Int2:
+                b.set(idx, castToNativeType<std::int8_t>(val));
+                break;
+            case DataType::Quad_Int2:
+                b.set(idx, castToNativeType<std::int8_t>(val));
+                break;
+            case DataType::Binary:
+                b.set(idx, castToNativeType<std::int8_t>(val));
+                break;
+             case DataType::Octo_Binary:
+                b.set(idx, castToNativeType<std::int8_t>(val));
+                break;
             case DataType::Int16:
                 b.set(idx, castToNativeType<std::int16_t>(val));
                 break;
@@ -422,6 +504,24 @@ void init_Tensor(py::module& m){
             case DataType::UInt8:
                 b.set(idx, castToNativeType<std::uint8_t>(val));
                 break;
+            case DataType::UInt4:
+                b.set(idx, castToNativeType<std::uint8_t>(val));
+                break;
+            case DataType::Dual_UInt4:
+                b.set(idx, castToNativeType<std::uint8_t>(val));
+                break;
+            case DataType::UInt3:
+                b.set(idx, castToNativeType<std::uint8_t>(val));
+                break;
+            case DataType::Dual_UInt3:
+                b.set(idx, castToNativeType<std::uint8_t>(val));
+                break;
+            case DataType::UInt2:
+                b.set(idx, castToNativeType<std::uint8_t>(val));
+                break;
+            case DataType::Quad_UInt2:
+                b.set(idx, castToNativeType<std::uint8_t>(val));
+                break;
             case DataType::UInt16:
                 b.set(idx, castToNativeType<std::uint16_t>(val));
                 break;
@@ -448,6 +548,30 @@ void init_Tensor(py::module& m){
             case DataType::Int8:
                 b.set(coordIdx, castToNativeType<std::int8_t>(val));
                 break;
+            case DataType::Int4:
+                b.set(coordIdx, castToNativeType<std::int8_t>(val));
+                break;
+            case DataType::Dual_Int4:
+                b.set(coordIdx, castToNativeType<std::int8_t>(val));
+                break;
+            case DataType::Int3:
+                b.set(coordIdx, castToNativeType<std::int8_t>(val));
+                break;
+            case DataType::Dual_Int3:
+                b.set(coordIdx, castToNativeType<std::int8_t>(val));
+                break;
+            case DataType::Int2:
+                b.set(coordIdx, castToNativeType<std::int8_t>(val));
+                break;
+            case DataType::Quad_Int2:
+                b.set(coordIdx, castToNativeType<std::int8_t>(val));
+                break;
+            case DataType::Binary:
+                b.set(coordIdx, castToNativeType<std::int8_t>(val));
+                break;
+             case DataType::Octo_Binary:
+                b.set(coordIdx, castToNativeType<std::int8_t>(val));
+                break;
             case DataType::Int16:
                 b.set(coordIdx, castToNativeType<std::int16_t>(val));
                 break;
@@ -460,6 +584,24 @@ void init_Tensor(py::module& m){
             case DataType::UInt8:
                 b.set(coordIdx, castToNativeType<std::uint8_t>(val));
                 break;
+            case DataType::UInt4:
+                b.set(coordIdx, castToNativeType<std::uint8_t>(val));
+                break;
+            case DataType::Dual_UInt4:
+                b.set(coordIdx, castToNativeType<std::uint8_t>(val));
+                break;
+            case DataType::UInt3:
+                b.set(coordIdx, castToNativeType<std::uint8_t>(val));
+                break;
+            case DataType::Dual_UInt3:
+                b.set(coordIdx, castToNativeType<std::uint8_t>(val));
+                break;
+            case DataType::UInt2:
+                b.set(coordIdx, castToNativeType<std::uint8_t>(val));
+                break;
+            case DataType::Quad_UInt2:
+                b.set(coordIdx, castToNativeType<std::uint8_t>(val));
+                break;
             case DataType::UInt16:
                 b.set(coordIdx, castToNativeType<std::uint16_t>(val));
                 break;
@@ -497,6 +639,48 @@ void init_Tensor(py::module& m){
             case DataType::Float32:
                 dataFormatDescriptor = py::format_descriptor<float>::format();
                 break;;
+            case DataType::Int4:
+                dataFormatDescriptor = py::format_descriptor<std::int8_t>::format();
+                break;
+            case DataType::UInt4:
+                dataFormatDescriptor = py::format_descriptor<std::uint8_t>::format();
+                break;
+            case DataType::Int3:
+                dataFormatDescriptor = py::format_descriptor<std::int8_t>::format();
+                break;
+            case DataType::UInt3:
+                dataFormatDescriptor = py::format_descriptor<std::uint8_t>::format();
+                break;
+            case DataType::Int2:
+                dataFormatDescriptor = py::format_descriptor<std::int8_t>::format();
+                break;
+            case DataType::UInt2:
+                dataFormatDescriptor = py::format_descriptor<std::uint8_t>::format();
+                break;
+            case DataType::Dual_Int4:
+                dataFormatDescriptor = py::format_descriptor<std::int8_t>::format();
+                break;
+            case DataType::Dual_UInt4:
+                dataFormatDescriptor = py::format_descriptor<std::uint8_t>::format();
+                break;
+            case DataType::Dual_Int3:
+                dataFormatDescriptor = py::format_descriptor<std::int8_t>::format();
+                break;
+            case DataType::Dual_UInt3:
+                dataFormatDescriptor = py::format_descriptor<std::uint8_t>::format();
+                break;
+            case DataType::Quad_Int2:
+                dataFormatDescriptor = py::format_descriptor<std::int8_t>::format();
+                break;
+            case DataType::Quad_UInt2:
+                dataFormatDescriptor = py::format_descriptor<std::uint8_t>::format();
+                break;
+            case DataType::Binary:
+                dataFormatDescriptor = py::format_descriptor<std::int8_t>::format();
+                break;
+            case DataType::Octo_Binary:
+                dataFormatDescriptor = py::format_descriptor<std::int8_t>::format();
+                break;
             case DataType::Int8:
                 dataFormatDescriptor = py::format_descriptor<std::int8_t>::format();
                 break;
diff --git a/python_binding/operator/pybind_Operator.cpp b/python_binding/operator/pybind_Operator.cpp
index ded3b54088e6d1ed473ed614e23fc08cd89a0346..2191d866f2a2b1f1d490b2016de97afd8ec8157b 100644
--- a/python_binding/operator/pybind_Operator.cpp
+++ b/python_binding/operator/pybind_Operator.cpp
@@ -61,6 +61,7 @@ void init_Operator(py::module& m){
     )mydelimiter")
     .def("associate_input", &Operator::associateInput, py::arg("inputIdx"), py::arg("data"))
     .def("set_datatype", &Operator::setDataType, py::arg("dataType"))
+    .def("set_dataformat", &Operator::setDataFormat, py::arg("dataFormat"))
     .def("set_backend", py::overload_cast<const std::string&, DeviceIdx_t>(&Operator::setBackend), py::arg("name"), py::arg("device") = 0)
     .def("set_backend", py::overload_cast<const std::vector<std::pair<std::string, DeviceIdx_t>>&>(&Operator::setBackend), py::arg("backends"))
     .def("forward", &Operator::forward)
diff --git a/python_binding/operator/pybind_OperatorTensor.cpp b/python_binding/operator/pybind_OperatorTensor.cpp
index 8c515e321207605c20acc9e5b02271906c9707d1..2602e115d43d805451aa9f0836c8151b2cd4b109 100644
--- a/python_binding/operator/pybind_OperatorTensor.cpp
+++ b/python_binding/operator/pybind_OperatorTensor.cpp
@@ -26,7 +26,9 @@ namespace Aidge {
 void init_OperatorTensor(py::module& m){
     py::class_<OperatorTensor, std::shared_ptr<OperatorTensor>, Operator>(m, "OperatorTensor")
     .def("get_output", &OperatorTensor::getOutput, py::arg("outputIdx"))
+    .def("get_outputs", &OperatorTensor::getOutputs)
     .def("get_input", &OperatorTensor::getInput, py::arg("inputIdx"))
+    .def("get_inputs", &OperatorTensor::getInputs)
 
     .def("set_output", (void (OperatorTensor::*)(const IOIndex_t, const std::shared_ptr<Data>&) const) &OperatorTensor::setOutput, py::arg("outputIdx"), py::arg("data"))
     .def("set_input", (void (OperatorTensor::*)(const IOIndex_t, const std::shared_ptr<Data>&)) &OperatorTensor::setInput, py::arg("outputIdx"), py::arg("data"))
diff --git a/python_binding/operator/pybind_WeightInterleaving.cpp b/python_binding/operator/pybind_WeightInterleaving.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..25b423bd66503b39f031695121cf673c45c34bbe
--- /dev/null
+++ b/python_binding/operator/pybind_WeightInterleaving.cpp
@@ -0,0 +1,39 @@
+/********************************************************************************
+ * Copyright (c) 2023 CEA-List
+ *
+ * This program and the accompanying materials are made available under the
+ * terms of the Eclipse Public License 2.0 which is available at
+ * http://www.eclipse.org/legal/epl-2.0.
+ *
+ * SPDX-License-Identifier: EPL-2.0
+ *
+ ********************************************************************************/
+
+#include <pybind11/pybind11.h>
+#include "aidge/operator/WeightInterleaving.hpp"
+
+namespace py = pybind11;
+
+namespace Aidge {
+
+void declare_WeightInterleaving(py::module &m) {
+  py::class_<WeightInterleaving_Op, std::shared_ptr<WeightInterleaving_Op>, OperatorTensor>(m, "WeightInterleavingOp", py::multiple_inheritance())
+    .def(py::init<>())
+    .def_static("get_inputs_name", &WeightInterleaving_Op::getInputsName)
+    .def_static("get_outputs_name", &WeightInterleaving_Op::getOutputsName)
+    .def_readonly_static("Type", &WeightInterleaving_Op::Type)
+
+    .def("__repr__", [](WeightInterleaving_Op& b) {
+        return fmt::format("Operator(type='{}')", b.Type);
+    });
+
+  declare_registrable<WeightInterleaving_Op>(m, "WeightInterleavingOp");
+
+  m.def("WeightInterleaving", &WeightInterleaving, py::arg("name") = "");
+}
+
+void init_WeightInterleaving(py::module &m) {
+  declare_WeightInterleaving(m);
+}
+
+}  // namespace Aidge
diff --git a/python_binding/pybind_core.cpp b/python_binding/pybind_core.cpp
index 006eeb289f25570ddf337f048b05816102624028..eccbebd2f0db7fd45484f114e4ae3dea8b2e5451 100644
--- a/python_binding/pybind_core.cpp
+++ b/python_binding/pybind_core.cpp
@@ -16,6 +16,7 @@
 namespace py = pybind11;
 
 namespace Aidge {
+void init_CoreSysInfo(py::module&);
 void init_Random(py::module&);
 void init_Data(py::module&);
 void init_Database(py::module&);
@@ -83,6 +84,7 @@ void init_Sub(py::module&);
 void init_Tanh(py::module&);
 void init_Transpose(py::module&);
 void init_Unsqueeze(py::module&);
+void init_WeightInterleaving(py::module&);
 
 void init_Node(py::module&);
 void init_GraphView(py::module&);
@@ -103,6 +105,7 @@ void init_TensorUtils(py::module&);
 void init_Filler(py::module&);
 
 void init_Aidge(py::module& m) {
+    init_CoreSysInfo(m);
     init_Random(m);
 
     init_Data(m);
@@ -177,6 +180,7 @@ void init_Aidge(py::module& m) {
     init_Tanh(m);
     init_Transpose(m);
     init_Unsqueeze(m);
+    init_WeightInterleaving(m);
 
     init_Producer(m);
 
diff --git a/python_binding/recipes/pybind_Recipes.cpp b/python_binding/recipes/pybind_Recipes.cpp
index f656af70dfa05678875afd4b4748f358437852a8..21478a5b14d609801f232b20cda25e7e1c0d9475 100644
--- a/python_binding/recipes/pybind_Recipes.cpp
+++ b/python_binding/recipes/pybind_Recipes.cpp
@@ -151,6 +151,14 @@ void init_Recipes(py::module &m)
     :param node: Node which Operator will turn into a Generic Operator
     :type graph_view: :py:class:`aidge_core.Node`
     )mydelimiter");
+
+  m.def("apply_weightinterleaving", applyWeightInterleaving, py::arg("node"), R"mydelimiter(
+    Replace weight Producer linked to the given node with a weight producer with interleaving and format NHWC.
+    This recipe is specific to the ARM cortex-m export for low bit integer support.
+
+    :param node: Node which linked weights will recieve interleaving
+    :type graph_view: :py:class:`aidge_core.Node`
+    )mydelimiter");
 }
 
 } // namespace Aidge
diff --git a/python_binding/scheduler/pybind_MemoryManager.cpp b/python_binding/scheduler/pybind_MemoryManager.cpp
index 0f18db405bec0aee9637f2e5f2ecc7b71e502cc5..3fce92349f28e3c6a897356dee60359c1797d9ca 100644
--- a/python_binding/scheduler/pybind_MemoryManager.cpp
+++ b/python_binding/scheduler/pybind_MemoryManager.cpp
@@ -36,10 +36,10 @@ void init_MemoryManager(py::module& m)
         .def_readwrite("released", &MemoryManager::MemorySpace::released);
 
     py::class_<MemoryManager::MemoryPlane, std::shared_ptr<MemoryManager::MemoryPlane>>(m, "MemoryPlane")
-        .def(py::init<std::shared_ptr<MemoryManager::MemorySpace>, 
+        .def(py::init<std::shared_ptr<MemoryManager::MemorySpace>,
                       MemoryManager::Clock_T, unsigned int, unsigned int,
                       unsigned int, unsigned int, unsigned int>(),
-                      py::arg("mem_space"), py::arg("clock"), py::arg("offset"), 
+                      py::arg("mem_space"), py::arg("clock"), py::arg("offset"),
                       py::arg("size"), py::arg("stride"), py::arg("length"), py::arg("count"))
         .def_readwrite("mem_space", &MemoryManager::MemoryPlane::memSpace)
         .def_readwrite("allocated", &MemoryManager::MemoryPlane::allocated)
@@ -101,7 +101,6 @@ void init_MemoryManager(py::module& m)
         .def("get_nb_planes", (unsigned int (MemoryManager::*)(std::shared_ptr<MemoryManager::MemorySpace>) const) &MemoryManager::getNbPlanes, py::arg("mem_space"))
         .def("get_current_tick", &MemoryManager::getCurrentTick)
         .def("tick", &MemoryManager::tick)
-        .def("log", &MemoryManager::log, py::arg("file_name"))
         ;
 }
 
diff --git a/python_binding/utils/sys_info/pybind_CoreVersionInfo.cpp b/python_binding/utils/sys_info/pybind_CoreVersionInfo.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..b498e86ed31adad57de4dbd57fa8f358b188f499
--- /dev/null
+++ b/python_binding/utils/sys_info/pybind_CoreVersionInfo.cpp
@@ -0,0 +1,11 @@
+#include <pybind11/pybind11.h>
+#include "aidge/utils/sys_info/CoreVersionInfo.hpp"
+
+namespace py = pybind11;
+namespace Aidge {
+void init_CoreSysInfo(py::module& m){
+    m.def("show_version", &showCoreVersion);
+    m.def("get_project_version", &getCoreProjectVersion);
+    m.def("get_git_hash", &getCoreGitHash);
+}
+}
diff --git a/setup.cfg b/setup.cfg
new file mode 100644
index 0000000000000000000000000000000000000000..bd90e50b282a1e1c08e0b2acaaddae940b0b4ac5
--- /dev/null
+++ b/setup.cfg
@@ -0,0 +1,4 @@
+# pbr file
+[metadata]
+name = file: project_name.txt
+version = file: version.txt
diff --git a/setup.py b/setup.py
index 4f2e21711f193eb7d5c37ace7b5ad83ac63d3635..2fb84a991e416c41da709845f44c1cd6042a278d 100644
--- a/setup.py
+++ b/setup.py
@@ -10,7 +10,11 @@ from setuptools import setup, Extension
 from setuptools.command.build_ext import build_ext
 
 
-PROJECT_NAME = "aidge_core"
+def get_project_name() -> str:
+    return open(pathlib.Path().absolute() / "project_name.txt", "r").read().strip()
+
+
+PROJECT_NAME = get_project_name()
 
 SETUP_DIR = pathlib.Path(__file__).parent
 
diff --git a/src/backend/cpu/data/TensorImpl.cpp b/src/backend/cpu/data/TensorImpl.cpp
index 506287a0c520915e6426f1f0b64d9c562c754d33..236e5bb8e1e867d5a0dad85571d754bc9e2a2a22 100644
--- a/src/backend/cpu/data/TensorImpl.cpp
+++ b/src/backend/cpu/data/TensorImpl.cpp
@@ -95,6 +95,62 @@ void Aidge::TensorImpl_cpu<T>::copyCast(const void *src, const Aidge::DataType s
             std::copy(static_cast<const uint8_t*>(src), static_cast<const uint8_t*>(src) + length,
                     dstT);
             break;
+        case DataType::Int4:
+            std::copy(static_cast<const int8_t*>(src), static_cast<const int8_t*>(src) + length,
+                    dstT);
+            break;
+        case DataType::UInt4:
+            std::copy(static_cast<const uint8_t*>(src), static_cast<const uint8_t*>(src) + length,
+                    dstT);
+            break;
+        case DataType::Dual_Int4:
+            std::copy(static_cast<const int8_t*>(src), static_cast<const int8_t*>(src) + length,
+                    dstT);
+            break;
+        case DataType::Dual_UInt4:
+            std::copy(static_cast<const uint8_t*>(src), static_cast<const uint8_t*>(src) + length,
+                    dstT);
+            break;
+        case DataType::Int3:
+            std::copy(static_cast<const int8_t*>(src), static_cast<const int8_t*>(src) + length,
+                    dstT);
+            break;
+        case DataType::UInt3:
+            std::copy(static_cast<const uint8_t*>(src), static_cast<const uint8_t*>(src) + length,
+                    dstT);
+            break;
+        case DataType::Dual_Int3:
+            std::copy(static_cast<const int8_t*>(src), static_cast<const int8_t*>(src) + length,
+                    dstT);
+            break;
+        case DataType::Dual_UInt3:
+            std::copy(static_cast<const uint8_t*>(src), static_cast<const uint8_t*>(src) + length,
+                    dstT);
+            break;
+        case DataType::Int2:
+            std::copy(static_cast<const int8_t*>(src), static_cast<const int8_t*>(src) + length,
+                    dstT);
+            break;
+        case DataType::UInt2:
+            std::copy(static_cast<const uint8_t*>(src), static_cast<const uint8_t*>(src) + length,
+                    dstT);
+            break;
+        case DataType::Quad_Int2:
+            std::copy(static_cast<const int8_t*>(src), static_cast<const int8_t*>(src) + length,
+                    dstT);
+            break;
+        case DataType::Quad_UInt2:
+            std::copy(static_cast<const uint8_t*>(src), static_cast<const uint8_t*>(src) + length,
+                    dstT);
+            break;
+        case DataType::Binary:
+            std::copy(static_cast<const int8_t*>(src), static_cast<const int8_t*>(src) + length,
+                    dstT);
+            break;
+        case DataType::Octo_Binary:
+            std::copy(static_cast<const int8_t*>(src), static_cast<const int8_t*>(src) + length,
+                    dstT);
+            break;
         default:
             AIDGE_THROW_OR_ABORT(std::runtime_error, "Unsupported data type.");
             break;
diff --git a/src/data/Tensor.cpp b/src/data/Tensor.cpp
index e8a0e9edee29ae56447ecc41e41d1db321d40058..a14ae4187707490cfb70681fc418daf961cb053b 100644
--- a/src/data/Tensor.cpp
+++ b/src/data/Tensor.cpp
@@ -28,6 +28,12 @@
 
 namespace Aidge {
 
+Tensor::Tensor(const Tensor& other) = default;
+Tensor::Tensor(Tensor&& other) = default;
+
+Tensor& Tensor::operator=(const Tensor& other) = default;
+Tensor& Tensor::operator=(Tensor&& other) = default;
+
 Tensor::~Tensor() noexcept = default;
 
 
@@ -322,6 +328,34 @@ std::string Tensor::toString() const {
                 return std::to_string(static_cast<float*>(ptr)[idx]);
             case DataType::Float16:
                 return std::to_string(static_cast<half_float::half*>(ptr)[idx]);
+            case DataType::Binary:
+                return std::to_string(static_cast<int8_t*>(ptr)[idx]);
+            case DataType::Octo_Binary:
+                return std::to_string(static_cast<int8_t*>(ptr)[idx]);
+            case DataType::Dual_Int4:
+                return std::to_string(static_cast<int8_t*>(ptr)[idx]);
+            case DataType::Dual_UInt4:
+                return std::to_string(static_cast<uint8_t*>(ptr)[idx]);
+            case DataType::Dual_Int3:
+                return std::to_string(static_cast<int8_t*>(ptr)[idx]);
+            case DataType::Dual_UInt3:
+                return std::to_string(static_cast<uint8_t*>(ptr)[idx]);
+            case DataType::Quad_Int2:
+                return std::to_string(static_cast<int8_t*>(ptr)[idx]);
+            case DataType::Quad_UInt2:
+                return std::to_string(static_cast<uint8_t*>(ptr)[idx]);
+            case DataType::Int4:
+                return std::to_string(static_cast<int8_t*>(ptr)[idx]);
+            case DataType::UInt4:
+                return std::to_string(static_cast<uint8_t*>(ptr)[idx]);
+            case DataType::Int3:
+                return std::to_string(static_cast<int8_t*>(ptr)[idx]);
+            case DataType::UInt3:
+                return std::to_string(static_cast<uint8_t*>(ptr)[idx]);
+            case DataType::Int2:
+                return std::to_string(static_cast<int8_t*>(ptr)[idx]);
+            case DataType::UInt2:
+                return std::to_string(static_cast<uint8_t*>(ptr)[idx]);
             case DataType::Int8:
                 return std::to_string(static_cast<int8_t*>(ptr)[idx]);
             case DataType::Int16:
diff --git a/src/graph/GraphView.cpp b/src/graph/GraphView.cpp
index 465359757eadd2799aa7f272e2d85b032a60cfdd..4c6f6ada8fdf069c308398f7b978e1d44fde8f65 100644
--- a/src/graph/GraphView.cpp
+++ b/src/graph/GraphView.cpp
@@ -940,6 +940,22 @@ void Aidge::GraphView::addChild(
   add(toOtherView);
 }
 
+void Aidge::GraphView::updateNodeName(const std::shared_ptr<Node>& node, const std::string& newName) {
+    if (!newName.empty()) {
+        auto itNew = mNodeRegistry.insert(std::make_pair(newName, node));
+        if (!itNew.second) {
+            Log::notice("Replacing existing node name in graph node name registry: {}", newName);
+            (itNew.first)->second = node;
+        }
+    }
+
+    if (!node->name().empty()) {
+        const auto it = mNodeRegistry.find(node->name());
+        AIDGE_ASSERT(it != mNodeRegistry.end(), "No node named {} in graph {}, the graph may be corrupted !", node->name(), name());
+        mNodeRegistry.erase(it);
+    }
+}
+
 std::set<std::shared_ptr<Aidge::Node>> Aidge::GraphView::getParents() const {
   // TODO: choose if we return a set or a vector
   std::set<std::shared_ptr<Node>> parents;
diff --git a/src/graph/Matching.cpp b/src/graph/Matching.cpp
index 4a62019a7aa044ebcf2089d91f3ba097d85218e7..ddf9bcbf946b6fe8e86c9a14679b951ebd88323f 100644
--- a/src/graph/Matching.cpp
+++ b/src/graph/Matching.cpp
@@ -1,11 +1,43 @@
+/********************************************************************************
+ * Copyright (c) 2023 CEA-List
+ *
+ * This program and the accompanying materials are made available under the
+ * terms of the Eclipse Public License 2.0 which is available at
+ * http://www.eclipse.org/legal/epl-2.0.
+ *
+ * SPDX-License-Identifier: EPL-2.0
+ *
+ ********************************************************************************/
+
 #include "aidge/graph/Matching.hpp"
 
+#include <algorithm>   // std::find_if
+#include <cctype>      // std::isspace
+#include <cstddef>     // std::size_t
+#include <memory>
+#include <set>
+#include <string>      // std::stoi
+#include <utility>     // std::pair
+#include <vector>
+
 #include <fmt/color.h>
 
+#include "aidge/graph/GraphView.hpp"
+#include "aidge/graph/Node.hpp"
+
+static void removeLeadingWhitespace(std::string& str) {
+    str.erase(str.begin(),
+        std::find_if(str.cbegin(),
+                    str.cend(),
+                    [](char c) { return !std::isspace(c); }));
+}
+
+////////////////////////////////////////////////////////////
+
 Aidge::SinglePassGraphMatching::Context::Context() = default;
 Aidge::SinglePassGraphMatching::Context::Context(const Context& other) = default;
 Aidge::SinglePassGraphMatching::Context& Aidge::SinglePassGraphMatching::Context::operator=(const Context& other) = default;
-Aidge::SinglePassGraphMatching::Context::~Context() = default;
+Aidge::SinglePassGraphMatching::Context::~Context() noexcept = default;
 
 ////////////////////////////////////////////////////////////
 
@@ -35,7 +67,7 @@ std::set<Aidge::SinglePassGraphMatching::MatchingResult> Aidge::SinglePassGraphM
     std::set<MatchingResult> matches;
 
     while (matchSequence(ctx, matches) || matchNodeOrBlock(ctx, matches)) {
-        removeWhiteSpace(ctx.query);
+        removeLeadingWhitespace(ctx.query);
         if (!ctx.query.empty() && ctx.query[0] == ';') {
             ctx.query.erase(0, 1);
         }
@@ -44,7 +76,7 @@ std::set<Aidge::SinglePassGraphMatching::MatchingResult> Aidge::SinglePassGraphM
         }
     }
 
-    removeWhiteSpace(ctx.query);
+    removeLeadingWhitespace(ctx.query);
     if (!ctx.query.empty()) {
         Log::warn("Syntax error, unable to parse remaining query: {}", ctx.query);
     }
@@ -56,14 +88,14 @@ std::set<Aidge::SinglePassGraphMatching::MatchingResult> Aidge::SinglePassGraphM
     return matches;
 }
 
-Aidge::SinglePassGraphMatching::MatchingResult Aidge::SinglePassGraphMatching::matchFrom(NodePtr startNode, const std::string& query) {
+Aidge::SinglePassGraphMatching::MatchingResult Aidge::SinglePassGraphMatching::matchFrom(std::shared_ptr<Node> startNode, const std::string& query) {
     Context ctx;
     ctx.query = query;
     ctx.startNode = startNode;
     std::set<MatchingResult> matches;
 
     while (matchSequence(ctx, matches) || matchNodeOrBlock(ctx, matches)) {
-        removeWhiteSpace(ctx.query);
+        removeLeadingWhitespace(ctx.query);
         if (!ctx.query.empty() && ctx.query[0] == ';') {
             ctx.query.erase(0, 1);
         }
@@ -72,7 +104,7 @@ Aidge::SinglePassGraphMatching::MatchingResult Aidge::SinglePassGraphMatching::m
         }
     }
 
-    removeWhiteSpace(ctx.query);
+    removeLeadingWhitespace(ctx.query);
     if (!ctx.query.empty()) {
         Log::warn("Syntax error, unable to parse remaining query: {}", ctx.query);
     }
@@ -123,8 +155,8 @@ bool Aidge::SinglePassGraphMatching::matchNodeOrBlock(Context& ctx, std::set<Mat
 
     // QUANTIFIER?
     bool matchMore = false;
-    size_t matchQuantity = 0;
-    removeWhiteSpace(newCtx.query);
+    std::size_t matchQuantity = 0;
+    removeLeadingWhitespace(newCtx.query);
     if (!newCtx.query.empty() && (newCtx.query[0] == '?' || newCtx.query[0] == '*')) {
         AIDGE_ASSERT(!(ctx.firstSequence && ctx.firstNode),
             "Ill-formed query; the root node cannot be optional in query at: {}", ctx.query);
@@ -155,7 +187,7 @@ bool Aidge::SinglePassGraphMatching::matchNodeOrBlock(Context& ctx, std::set<Mat
     else if (!newCtx.query.empty() && newCtx.query[0] == '{') {
         newCtx.query.erase(0, 1);
 
-        removeWhiteSpace(newCtx.query);
+        removeLeadingWhitespace(newCtx.query);
         const auto endQuantity = std::find_if(newCtx.query.begin(), newCtx.query.end(),
             [](char c) { return !isdigit(c); });
         if (endQuantity != newCtx.query.begin()) {
@@ -172,7 +204,7 @@ bool Aidge::SinglePassGraphMatching::matchNodeOrBlock(Context& ctx, std::set<Mat
             return false;
         }
 
-        removeWhiteSpace(newCtx.query);
+        removeLeadingWhitespace(newCtx.query);
         if (!newCtx.query.empty() && newCtx.query[0] == '}') {
             newCtx.query.erase(0, 1);
         }
@@ -231,7 +263,7 @@ bool Aidge::SinglePassGraphMatching::matchBlock(Context& ctx, std::set<MatchingR
     ++newCtx.depth;
 
     // '('
-    removeWhiteSpace(newCtx.query);
+    removeLeadingWhitespace(newCtx.query);
     if (!newCtx.query.empty() && newCtx.query[0] == '(') {
         newCtx.query.erase(0, 1);
     }
@@ -252,7 +284,7 @@ bool Aidge::SinglePassGraphMatching::matchBlock(Context& ctx, std::set<MatchingR
     }
 
     // ')'
-    removeWhiteSpace(newCtx.query);
+    removeLeadingWhitespace(newCtx.query);
     if (!newCtx.query.empty() && newCtx.query[0] == ')') {
         newCtx.query.erase(0, 1);
     }
@@ -337,7 +369,7 @@ bool Aidge::SinglePassGraphMatching::matchParallel(Context& ctx, std::set<Matchi
     while (true) {
         // ('&' NODE_OR_BLOCK)+
         //   '&'
-        removeWhiteSpace(newCtx.query);
+        removeLeadingWhitespace(newCtx.query);
         if (!newCtx.query.empty() && newCtx.query[0] == '&') {
             newCtx.query.erase(0, 1);
             found = true;
@@ -402,7 +434,7 @@ bool Aidge::SinglePassGraphMatching::matchAlternative(Context& ctx, std::set<Mat
     while (true) {
         // ('|' NODE_OR_BLOCK)+
         //    '|'
-        removeWhiteSpace(newCtx.query);
+        removeLeadingWhitespace(newCtx.query);
         if (!newCtx.query.empty() && newCtx.query[0] == '|') {
             newCtx.query.erase(0, 1);
             found = true;
@@ -446,7 +478,7 @@ bool Aidge::SinglePassGraphMatching::matchEdge(Context& ctx, std::set<MatchingRe
     Log::debug("{}edge", std::string(2*newCtx.depth, ' '));
 
     // ('-' | '~') or '<'
-    removeWhiteSpace(newCtx.query);
+    removeLeadingWhitespace(newCtx.query);
     if (!newCtx.query.empty() && (newCtx.query[0] == '-' || newCtx.query[0] == '~')) {
         newCtx.singleOutput = (newCtx.query[0] == '-');
         newCtx.query.erase(0, 1); // drop '-'
@@ -550,7 +582,7 @@ bool Aidge::SinglePassGraphMatching::matchNode(Context& ctx, std::set<MatchingRe
     auto newMatches = matches;
 
     // (TYPE | '.' | '$')
-    removeWhiteSpace(newCtx.query);
+    removeLeadingWhitespace(newCtx.query);
     if (newCtx.query.empty()) {
         Log::debug("{}{}", std::string(2*ctx.depth, ' '), fmt::styled("×", fmt::fg(fmt::color::red)));
         return false;
@@ -833,3 +865,8 @@ bool Aidge::SinglePassGraphMatching::matchNode(Context& ctx, std::set<MatchingRe
     matches = newMatches;
     return true;
 }
+
+bool Aidge::operator<(const Aidge::SinglePassGraphMatching::MatchingResult& lhs, const Aidge::SinglePassGraphMatching::MatchingResult& rhs) {
+    // Matching rootNode are guaranteed to be different!
+    return lhs.graph->rootNode() < rhs.graph->rootNode();
+}
\ No newline at end of file
diff --git a/src/graph/Node.cpp b/src/graph/Node.cpp
index 92ae463085a3583dfe894a1b9f6119fa0b099287..384e946c674641f7d498d8c5745dcc745f34d751 100644
--- a/src/graph/Node.cpp
+++ b/src/graph/Node.cpp
@@ -35,6 +35,7 @@ Aidge::Node::Node(std::shared_ptr<Operator> op, std::shared_ptr<DynamicAttribute
     mForward.push_back([this](){ this->mOperator->forward(); return true; });
     // mForward.push_back(std::bind(&Operator::forward, mOperator.get()));
     mBackward.push_back([this](){ this->mOperator->backward(); return true; });
+    op->setInheritedAttrs(attrs);
 }
 
 // Aidge::Node::Node(std::shared_ptr<Operator> op, const DynamicAttributes& attrs)
@@ -225,6 +226,16 @@ Aidge::IOIndex_t Aidge::Node::nbValidOutputs() const {
     return counter;
 }
 
+std::set<std::shared_ptr<Aidge::GraphView>> Aidge::Node::views() const noexcept {
+    std::set<std::shared_ptr<GraphView>> res;
+    for (const auto &v : mViews) {
+        if (auto p = v.lock()) {
+        res.insert(p);
+        }
+    }
+    return res;
+}
+
 void Aidge::Node::setInputId(const IOIndex_t inId, const IOIndex_t newNodeoutId) {
     AIDGE_ASSERT(inId != gk_IODefaultIndex && inId < nbInputs(),
         "Input index ({}) is out of bound ({}) for node {} (of type {})",
diff --git a/src/graph/StaticAnalysis.cpp b/src/graph/StaticAnalysis.cpp
index 033e51022842983caacba9385248c9f02c1e5568..4309c5c37b72dea9f07f8e5a2e7ce7678090b2e2 100644
--- a/src/graph/StaticAnalysis.cpp
+++ b/src/graph/StaticAnalysis.cpp
@@ -11,13 +11,31 @@
 
 #include "aidge/graph/StaticAnalysis.hpp"
 
+#include <cstddef>  // std::size_t
+#include <memory>
+#include <numeric>  // std::accumulate
+#include <set>
+
+#include <fmt/core.h>  // fmt::println
+#include <fmt/format.h>
+#include <fmt/ranges.h>
+
+#include "aidge/data/Data.hpp"  // Aidge::isDataTypeFloatingPoint
+#include "aidge/data/Tensor.hpp"
+#include "aidge/graph/GraphView.hpp"
+#include "aidge/graph/Node.hpp"
+#include "aidge/operator/Operator.hpp"
+#include "aidge/operator/OperatorTensor.hpp"
+
 Aidge::OperatorStats::OperatorStats(const Operator& op)
   : mOp(op)
 {
     //ctor
 }
 
-size_t Aidge::OperatorStats::getNbArithmIntOps() const {
+Aidge::OperatorStats::~OperatorStats() = default;
+
+std::size_t Aidge::OperatorStats::getNbArithmIntOps() const {
     const auto opTensor = dynamic_cast<const OperatorTensor*>(&mOp);
     if (opTensor) {
         if (!isDataTypeFloatingPoint(opTensor->getOutput(0)->dataType())) {
@@ -27,23 +45,27 @@ size_t Aidge::OperatorStats::getNbArithmIntOps() const {
     return 0;
 }
 
+////////////////////////////////////////////////////////////////////////////////
+
 Aidge::StaticAnalysis::StaticAnalysis(std::shared_ptr<GraphView> graph)
   : mGraph(graph)
 {
     //ctor
 }
 
+Aidge::StaticAnalysis::~StaticAnalysis() = default;
+
 void Aidge::StaticAnalysis::summary(bool incProducers) const {
     fmt::println("--------------------------------------------------------------------------------");
     fmt::println("                        Layer (type)               Output Shape         Param #");
     fmt::println("================================================================================");
 
-    size_t nbParams = 0;
-    size_t paramsSize = 0;  // Size in bits
-    size_t fwdBwdSize = 0;  // Size in bits
+    std::size_t nbParams = 0;
+    std::size_t paramsSize = 0;  // Size in bits
+    std::size_t fwdBwdSize = 0;  // Size in bits
 
     const auto namePtrTable = mGraph->getRankedNodesName("{0} ({1}#{3})");
-    for (const auto node : mGraph->getOrderedNodes()) {
+    for (const auto& node : mGraph->getOrderedNodes()) {
         if (node->type() == Producer_Op::Type && !incProducers) {
             continue;
         }
@@ -53,8 +75,8 @@ void Aidge::StaticAnalysis::summary(bool incProducers) const {
         if (opTensor) {
             const auto outputDims = opTensor->getOutput(0)->dims();
             outputDimsStr = fmt::format("{: >27}", fmt::format("{}", outputDims));
-  
-            for (size_t out = 0; out < node->nbOutputs(); ++out) {
+
+            for (std::size_t out = 0; out < node->nbOutputs(); ++out) {
                 const auto output = opTensor->getOutput(out);
                 if (output && node->type() != Producer_Op::Type) {
                     fwdBwdSize += output->size()
@@ -69,8 +91,8 @@ void Aidge::StaticAnalysis::summary(bool incProducers) const {
           namePtrTable.at(node), outputDimsStr, getNbParams(node));
     }
 
-    size_t inputSize = 0;  // Size in bits
-    for (const auto input : mGraph->getOrderedInputs()) {
+    std::size_t inputSize = 0;  // Size in bits
+    for (const auto& input : mGraph->getOrderedInputs()) {
         if (input.first) {
             auto opTensor = std::dynamic_pointer_cast<OperatorTensor>(input.first->getOperator());
             if (opTensor && opTensor->getInput(input.second)) {
@@ -90,13 +112,13 @@ void Aidge::StaticAnalysis::summary(bool incProducers) const {
     fmt::println("--------------------------------------------------------------------------------");
 }
 
-size_t Aidge::StaticAnalysis::getNbParams(std::shared_ptr<Node> node) const {
+std::size_t Aidge::StaticAnalysis::getNbParams(std::shared_ptr<Node> node) const {
     const auto opTensor = std::dynamic_pointer_cast<OperatorTensor>(node->getOperator());
 
-    size_t nbParams = 0;
+    std::size_t nbParams = 0;
 
     // Look for Producers directly attached to the node's inputs.
-    size_t i = 0;
+    std::size_t i = 0;
     for (auto parent : node->inputs()) {
         if (parent.first && mGraph->inView(parent.first)) {
             if (parent.first->type() == Producer_Op::Type && opTensor->getInput(i)) {
@@ -109,7 +131,7 @@ size_t Aidge::StaticAnalysis::getNbParams(std::shared_ptr<Node> node) const {
     // Look for internal Producers, in case of meta-op.
     if (!node->getOperator()->isAtomic()) {
         const auto microGraph = std::dynamic_pointer_cast<MetaOperator_Op>(node->getOperator())->getMicroGraph();
-        for (const auto internalNode : microGraph->getNodes()) {
+        for (const auto& internalNode : microGraph->getNodes()) {
             if (internalNode->type() == Producer_Op::Type) {
                 const auto internalOpTensor = std::dynamic_pointer_cast<OperatorTensor>(internalNode->getOperator());
                 nbParams += internalOpTensor->getOutput(0)->size();
@@ -120,14 +142,14 @@ size_t Aidge::StaticAnalysis::getNbParams(std::shared_ptr<Node> node) const {
     return nbParams;
 }
 
-size_t Aidge::StaticAnalysis::getParamsSize(std::shared_ptr<Node> node) const {
+std::size_t Aidge::StaticAnalysis::getParamsSize(std::shared_ptr<Node> node) const {
     const auto opTensor = std::dynamic_pointer_cast<OperatorTensor>(node->getOperator());
 
-    size_t paramsSize = 0;
+    std::size_t paramsSize = 0;
 
     // Look for Producers directly attached to the node's inputs.
-    size_t i = 0;
-    for (auto parent : node->inputs()) {
+    std::size_t i = 0;
+    for (const auto& parent : node->inputs()) {
         if (parent.first && mGraph->inView(parent.first)) {
             if (parent.first->type() == Producer_Op::Type && opTensor->getInput(i)) {
                 paramsSize += opTensor->getInput(i)->size()
@@ -140,7 +162,7 @@ size_t Aidge::StaticAnalysis::getParamsSize(std::shared_ptr<Node> node) const {
     // Look for internal Producers, in case of meta-op.
     if (!node->getOperator()->isAtomic()) {
         const auto microGraph = std::dynamic_pointer_cast<MetaOperator_Op>(node->getOperator())->getMicroGraph();
-        for (const auto internalNode : microGraph->getNodes()) {
+        for (const auto& internalNode : microGraph->getNodes()) {
             if (internalNode->type() == Producer_Op::Type) {
                 const auto internalOpTensor = std::dynamic_pointer_cast<OperatorTensor>(internalNode->getOperator());
                 paramsSize += internalOpTensor->getOutput(0)->size()
@@ -160,12 +182,32 @@ std::shared_ptr<Aidge::OperatorStats> Aidge::StaticAnalysis::getOpStats(std::sha
             : std::make_shared<MetaOpStats>(*(node->getOperator()));
 }
 
-size_t Aidge::StaticAnalysis::accumulate(size_t (OperatorStats::*func)() const) const {
+std::size_t Aidge::StaticAnalysis::getNbArithmOps() const { return accumulate(&OperatorStats::getNbArithmOps); }
+std::size_t Aidge::StaticAnalysis::getNbLogicOps() const { return accumulate(&OperatorStats::getNbLogicOps); }
+std::size_t Aidge::StaticAnalysis::getNbCompOps() const { return accumulate(&OperatorStats::getNbCompOps); }
+std::size_t Aidge::StaticAnalysis::getNbNLOps() const { return accumulate(&OperatorStats::getNbNLOps); }
+std::size_t Aidge::StaticAnalysis::getNbOps() const { return accumulate(&OperatorStats::getNbOps); }
+std::size_t Aidge::StaticAnalysis::getNbArithmIntOps() const { return accumulate(&OperatorStats::getNbArithmIntOps); }
+std::size_t Aidge::StaticAnalysis::getNbArithmFpOps() const { return accumulate(&OperatorStats::getNbArithmFpOps); }
+std::size_t Aidge::StaticAnalysis::getNbMACOps() const { return accumulate(&OperatorStats::getNbMACOps); }
+
+std::size_t Aidge::StaticAnalysis::accumulate(std::size_t (OperatorStats::*func)() const) const {
     return std::accumulate(
         mGraph->getNodes().cbegin(),
         mGraph->getNodes().cend(),
         std::size_t(0),
-        [this, func](const size_t& lhs, const std::shared_ptr<Node>& rhs) {
+        [this, func](const std::size_t& lhs, const std::shared_ptr<Node>& rhs) {
             return lhs + (this->getOpStats(rhs).get()->*func)();
         });
 }
+
+////////////////////////////////////////////////////////////////////////////////
+
+Aidge::MetaOpStats::~MetaOpStats() = default;
+
+std::size_t Aidge::MetaOpStats::getNbArithmOps() const { return StaticAnalysis(dynamic_cast<const MetaOperator_Op&>(mOp).getMicroGraph()).getNbArithmOps(); }
+std::size_t Aidge::MetaOpStats::getNbLogicOps() const { return StaticAnalysis(dynamic_cast<const MetaOperator_Op&>(mOp).getMicroGraph()).getNbLogicOps(); }
+std::size_t Aidge::MetaOpStats::getNbCompOps() const { return StaticAnalysis(dynamic_cast<const MetaOperator_Op&>(mOp).getMicroGraph()).getNbCompOps(); }
+std::size_t Aidge::MetaOpStats::getNbNLOps() const { return StaticAnalysis(dynamic_cast<const MetaOperator_Op&>(mOp).getMicroGraph()).getNbNLOps(); }
+std::size_t Aidge::MetaOpStats::getNbArithmIntOps() const { return StaticAnalysis(dynamic_cast<const MetaOperator_Op&>(mOp).getMicroGraph()).getNbArithmIntOps(); }
+std::size_t Aidge::MetaOpStats::getNbMACOps() const { return StaticAnalysis(dynamic_cast<const MetaOperator_Op&>(mOp).getMicroGraph()).getNbMACOps(); }
\ No newline at end of file
diff --git a/src/operator/ArgMax.cpp b/src/operator/ArgMax.cpp
index 4808b730d2261ba0c1ea6d0d09871b1f322fc8fb..531c41596ed4ef553a4b7ec7d2642b778044cc66 100644
--- a/src/operator/ArgMax.cpp
+++ b/src/operator/ArgMax.cpp
@@ -14,7 +14,6 @@
 #include <cstddef>    // std::size_t
 #include <cstdint>    // std::int32_t
 #include <memory>
-#include <stdexcept>  // std::runtime_error
 #include <string>
 #include <vector>
 
@@ -25,6 +24,21 @@
 
 const std::string Aidge::ArgMax_Op::Type = "ArgMax";
 
+Aidge::ArgMax_Op::ArgMax_Op(const Aidge::ArgMax_Op& op)
+    : OperatorTensor(op),
+      mAttributes(op.mAttributes)
+{
+    if (op.mImpl){
+        SET_IMPL_MACRO(ArgMax_Op, *this, op.backend());
+    } else {
+        mImpl = nullptr;
+    }
+}
+
+std::shared_ptr<Aidge::Operator> Aidge::ArgMax_Op::clone() const {
+    return std::make_shared<ArgMax_Op>(*this);
+}
+
 bool Aidge::ArgMax_Op::forwardDims(bool /*allowDataDependency*/) {
     if (inputsAssociated()) {
         // make Axis attribute positive
@@ -55,3 +69,12 @@ void Aidge::ArgMax_Op::setBackend(const std::string& name, Aidge::DeviceIdx_t de
 std::set<std::string> Aidge::ArgMax_Op::getAvailableBackends() const {
     return Registrar<ArgMax_Op>::getKeys();
 }
+
+////////////////////////////////////////////////////////////////////////////////
+
+std::shared_ptr<Aidge::Node> Aidge::ArgMax(std::int32_t axis,
+                                    bool keep_dims,
+                                    bool select_last_index,
+                                    const std::string& name) {
+    return std::make_shared<Node>(std::make_shared<ArgMax_Op>(axis, keep_dims, select_last_index), name);
+}
\ No newline at end of file
diff --git a/src/operator/OperatorTensor.cpp b/src/operator/OperatorTensor.cpp
index 3bdb4b17127eb8a9115f8dec045db32bf041b00b..873e93f3296bae6c5eae8cf2b5ec7bacc82c45ce 100644
--- a/src/operator/OperatorTensor.cpp
+++ b/src/operator/OperatorTensor.cpp
@@ -92,6 +92,12 @@ const std::shared_ptr<Aidge::Tensor>& Aidge::OperatorTensor::getOutput(const Aid
     return mOutputs[outputIdx];
 }
 
+const std::vector<std::shared_ptr<Aidge::Tensor>>& Aidge::OperatorTensor::getOutputs() const{
+    return mOutputs;
+}
+const std::vector<std::shared_ptr<Aidge::Tensor>>& Aidge::OperatorTensor::getInputs() const{
+    return mInputs;
+}
 
 std::vector<std::pair<std::vector<Aidge::DimSize_t>, std::vector<Aidge::DimSize_t>>> Aidge::OperatorTensor::computeReceptiveField(
         const std::vector<DimSize_t>& firstEltDims,
diff --git a/src/operator/Slice.cpp b/src/operator/Slice.cpp
index 02dcad58c47fb804f50b9eb2e20be45a12e73fae..31c7c09c9ff41c163f5d505bd4ce6b3aeaf42872 100644
--- a/src/operator/Slice.cpp
+++ b/src/operator/Slice.cpp
@@ -101,8 +101,9 @@ void Aidge::Slice_OpImpl::forward() {
             int step = op.steps()[axisIdx];
 
             start = start >= 0 ? start: start + inputDims[axisIdx];
+            start = std::max(0, std::min(start, static_cast<int>(inputDims[axisIdx])));
             end = end >= 0 ? end: end + inputDims[axisIdx];
-
+            end = std::max(0, std::min(end, static_cast<int>(inputDims[axisIdx])));
             // Generate the range of indices for this axis
             for (int idx = start; (step > 0) ? (idx < end) : (idx > end); idx += step) {
                 ranges[axisIdx].push_back(idx);
@@ -253,12 +254,17 @@ bool Aidge::Slice_Op::forwardDims(bool allowDataDependency) {
             const DimIdx_t axis = this->axes()[i] >= 0 ?
                             static_cast<DimIdx_t>(this->axes()[i]) :
                             static_cast<DimIdx_t>(this->axes()[i] + static_cast<DimIdx_t>(getInput(0)->nbDims()));
-            const DimSize_t start = this->starts()[i] >= 0 ?
+            DimSize_t start = this->starts()[i] >= 0 ?
                                 static_cast<DimSize_t>(this->starts()[i]) :
                                 static_cast<DimSize_t>(this->starts()[i] + static_cast<DimSize_t>(getInput(0)->dims()[axis]));
-            const DimSize_t end = this->ends()[i] >= 0 ?
+            // Clamp start to the range [0, axis_dim]
+            start = std::max(static_cast<DimSize_t>(0), std::min(start, getInput(0)->dims()[axis]-1));
+
+            DimSize_t end = this->ends()[i] >= 0 ?
                             static_cast<DimSize_t>(this->ends()[i]) :
                             static_cast<DimSize_t>(this->ends()[i] + static_cast<DimSize_t>(getInput(0)->dims()[axis]));
+            // Clamp end to the range [0, axis_dim]
+            end = std::max(static_cast<DimSize_t>(0), std::min(end, getInput(0)->dims()[axis]));
             const std::int64_t step = this->steps()[i];
 
             AIDGE_ASSERT(step != 0, "Slice_Op: Step ({}) must have a non-zero value on axis {}!", this->steps(), axis);
@@ -309,4 +315,4 @@ std::shared_ptr<Aidge::Node> Aidge::Slice(const std::vector<std::int64_t>& start
                                    const std::vector<std::int64_t>& steps,
                                    const std::string &name) {
     return std::make_shared<Node>(std::make_shared<Slice_Op>(starts, ends, axes, steps), name);
-}
\ No newline at end of file
+}
diff --git a/src/operator/WeightInterleaving.cpp b/src/operator/WeightInterleaving.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..66af1d51f87c24b5b8d7d9c1f0ab3701f122515d
--- /dev/null
+++ b/src/operator/WeightInterleaving.cpp
@@ -0,0 +1,121 @@
+/********************************************************************************
+ * Copyright (c) 2023 CEA-List
+ *
+ * This program and the accompanying materials are made available under the
+ * terms of the Eclipse Public License 2.0 which is available at
+ * http://www.eclipse.org/legal/epl-2.0.
+ *
+ * SPDX-License-Identifier: EPL-2.0
+ *
+ ********************************************************************************/
+
+#include "aidge/operator/WeightInterleaving.hpp"
+
+#include <memory>
+#include <string>
+#include <vector>
+
+#include "aidge/data/Data.hpp"
+#include "aidge/data/Tensor.hpp"
+#include "aidge/utils/ErrorHandling.hpp"
+#include "aidge/utils/StaticAttributes.hpp"
+#include "aidge/utils/Types.h"
+
+const std::string Aidge::WeightInterleaving_Op::Type = "WeightInterleaving";
+
+/**
+ * @brief Copy-constructor.
+ * @param op WeightInterleaving_Op to copy.
+ * @details Copies the operator attributes and its output tensor(s), but not
+ * its input tensors. The new operator has no associated input.
+ */
+Aidge::WeightInterleaving_Op::WeightInterleaving_Op(const WeightInterleaving_Op& op)
+    : OperatorTensor(op)
+{
+    if (op.mImpl) {
+        SET_IMPL_MACRO(WeightInterleaving_Op, *this, op.backend());
+    } else {
+        mImpl = nullptr;
+    }
+}
+
+
+std::shared_ptr<Aidge::Operator> Aidge::WeightInterleaving_Op::clone() const {
+    return std::make_shared<WeightInterleaving_Op>(*this);
+}
+
+
+bool Aidge::WeightInterleaving_Op::forwardDims(bool /*allowDataDependency*/) {
+    
+    if (inputsAssociated()) {
+
+        // check input data format is NHWC
+        AIDGE_ASSERT((getInput(0)->dataFormat() == DataFormat::NHWC),
+                    "Wrong Input tensor Data Format : {} for WeightInterleaving operator (should be DataFormat::NHWC for STM32).", getInput(0)->dataFormat());
+        
+        // Take the last dimension of the tensor : It is the Channel dimension in format NHWC
+        // The weights will be compacted along side the channel dimension only
+        const DimSize_t& lastDim = getInput(0)->dims().back();
+
+        // Compute the last dimension size of the tensor after the weight interleaving compression
+        // TO DO : implement a mechanism to get the number of bits of the DataType
+        const DataType& dt = getInput(0)->dataType();
+
+        std::uint8_t nbBits = 0;
+
+        switch (dt) {
+            case DataType::Int4:
+                nbBits=4;
+                break;
+            case DataType::Int3:
+                nbBits=3;
+                break;
+            case DataType::Int2:
+                nbBits=2;
+                break;
+            default:
+                AIDGE_ASSERT(true, "Unsupport type for WeightInterleaving {}", dt);
+        }
+
+
+        const auto lastDimCompression = compactDataSize(lastDim, nbBits);
+
+        std::vector<DimSize_t> outputDims = getInput(0)->dims();
+        outputDims.back() = lastDimCompression;
+
+        // <batch, OutChannels>
+        mOutputs[0]->resize(outputDims);
+
+        return true;
+    }
+
+    return false;
+}
+
+
+void Aidge::WeightInterleaving_Op::setBackend(const std::string& name, DeviceIdx_t device) {
+    SET_IMPL_MACRO(WeightInterleaving_Op, *this, name);
+    mOutputs[0]->setBackend(name, device);
+}
+
+std::set<std::string> Aidge::WeightInterleaving_Op::getAvailableBackends() const {
+    return Registrar<WeightInterleaving_Op>::getKeys();
+}
+
+std::shared_ptr<Aidge::Node> Aidge::WeightInterleaving(const std::string& name) {
+    return std::make_shared<Node>(std::make_shared<WeightInterleaving_Op>(), name);
+}
+
+
+std::size_t Aidge::WeightInterleaving_Op::compactDataSize(std::size_t dataSize, std::uint8_t nbBits) {
+    AIDGE_ASSERT(nbBits > 0 && nbBits < 8, "nbBits must be between 1 and 4"); // Ensure valid bit width
+
+    // Calculate the number of `nbBits` segments that can fit in an 8-bit byte.
+    const unsigned int nbSlot = 8 / nbBits;
+
+    // Calculate the number of compacted bytes needed to store all data elements.
+    // The formula (dataSize + nbSlot - 1) / nbSlot effectively rounds up the division, ensuring that any remaining elements that don't fully fill a byte are accounted for.
+    std::size_t requiredSize = (dataSize + nbSlot - 1) / nbSlot;
+
+    return requiredSize;
+}
\ No newline at end of file
diff --git a/src/recipes/ApplyWeightInterleaving.cpp b/src/recipes/ApplyWeightInterleaving.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..b9c042a538bc1ece754c5f659048e9c5f6c0d249
--- /dev/null
+++ b/src/recipes/ApplyWeightInterleaving.cpp
@@ -0,0 +1,119 @@
+/********************************************************************************
+ * Copyright (c) 2023 CEA-List
+ *
+ * This program and the accompanying materials are made available under the
+ * terms of the Eclipse Public License 2.0 which is available at
+ * http://www.eclipse.org/legal/epl-2.0.
+ *
+ * SPDX-License-Identifier: EPL-2.0
+ *
+ ********************************************************************************/
+
+#include <memory>
+
+#include "aidge/data/Data.hpp"
+#include "aidge/data/Tensor.hpp"
+#include "aidge/graph/Node.hpp"
+#include "aidge/graph/GraphView.hpp"
+#include "aidge/operator/WeightInterleaving.hpp"
+#include "aidge/operator/Transpose.hpp"
+#include "aidge/operator/Producer.hpp"
+#include "aidge/operator/OperatorTensor.hpp"
+#include "aidge/recipes/Recipes.hpp"
+
+
+
+
+void Aidge::applyWeightInterleaving(std::shared_ptr<Node> node){
+    auto weightProducer = node->getParent(1);
+    AIDGE_ASSERT(weightProducer, "Cannot Apply Weight Interleaving on {} because it has no weights linked", node->name())
+
+    auto weightTensor = std::make_shared<Aidge::Tensor>(std::static_pointer_cast<Aidge::OperatorTensor>(weightProducer->getOperator())->getOutput(0)->clone());
+    // auto backend = node->getOperator()->backend();
+    // Cover the case of Generic Operators
+    auto backend = node->getOperator()->backend().empty() ? "cpu" : node->getOperator()->backend();
+
+    const Aidge::DataType weightDataType = weightTensor->dataType();
+
+    // 1 - Apply dataformat NHWC to match the custom kernel implementation for ARM cortexM
+    // Issue : If the dataFormat is Default then setting it to NHWC won't permute dimensions
+    // Fix : If the datatype is at default then set it to NCHW THEN set it to NHWC
+    
+    std::shared_ptr<Tensor> transposedWeightTensor;
+
+    // Case 4D tensor (conv)
+    if (weightTensor->nbDims() == 4)
+    {
+        if (weightTensor->dataFormat() == Aidge::DataFormat::Default) {
+            weightTensor->setDataFormat(Aidge::DataFormat::NCHW);
+        }
+        
+        // Apply permutation for NHWC format
+        if (weightTensor->dataFormat() != Aidge::DataFormat::NHWC) {
+            weightTensor->setDataFormat(Aidge::DataFormat::NHWC);
+        }
+
+        transposedWeightTensor = weightTensor;
+        
+    }
+    else if (weightTensor->nbDims() == 2)
+    {
+        std::shared_ptr<Node> myTranspose = Transpose({1, 0});
+        auto op = std::static_pointer_cast<OperatorTensor>(myTranspose -> getOperator());
+        op->associateInput(0,weightTensor);
+        op->setDataType(weightDataType);
+        op->setBackend("cpu");
+        myTranspose->forward();
+
+        transposedWeightTensor = op->getOutput(0);
+        transposedWeightTensor->setDataFormat(Aidge::DataFormat::NHWC);
+
+    } else {
+        AIDGE_THROW_OR_ABORT(std::runtime_error, "Cannot transpose {} weights.", node->name());
+    }
+    
+    // 2 - Apply Weight interleaving 
+    // Instanciate weight Interleaving operator
+    auto WIOp = WeightInterleaving_Op();
+
+    // Forward the Weight INterleaving op
+    WIOp.associateInput(0, transposedWeightTensor);
+
+    switch (weightDataType) {
+        case Aidge::DataType::Int4:
+            WIOp.setDataType(Aidge::DataType::Dual_Int4);
+            break;
+        case Aidge::DataType::UInt4:
+            WIOp.setDataType(Aidge::DataType::Dual_UInt4);
+            break;
+        case Aidge::DataType::Int3:
+            WIOp.setDataType(Aidge::DataType::Dual_Int3);
+            break;
+        case Aidge::DataType::UInt3:
+            WIOp.setDataType(Aidge::DataType::Dual_UInt3);
+            break;
+        case Aidge::DataType::Int2:
+            WIOp.setDataType(Aidge::DataType::Quad_Int2);
+            break;
+        case Aidge::DataType::UInt2:
+            WIOp.setDataType(Aidge::DataType::Quad_UInt2);
+            break;
+        case Aidge::DataType::Binary:
+            WIOp.setDataType(Aidge::DataType::Octo_Binary);
+            break;
+        default:
+            AIDGE_THROW_OR_ABORT(std::runtime_error, "Data type {} not supported for weight interleaving.", weightDataType);
+    }
+
+    WIOp.setDataFormat(Aidge::DataFormat::NHWC);
+    WIOp.setBackend(backend);
+
+    WIOp.forward();
+
+    // 3 - Replace the Weight Producer
+    auto newProducer = {Producer(WIOp.getOutput(0), weightProducer->name())};
+    auto oldProducer = {weightProducer};
+
+    GraphView::replace(oldProducer, newProducer);
+    
+}
\ No newline at end of file
diff --git a/src/recipes/FuseBatchNorm.cpp b/src/recipes/FuseBatchNorm.cpp
index 50c8f561c1732d6f7f37ae5b8d6f03c4e135939c..55be9636f4596b0deeb81d0174b717a91ff76644 100644
--- a/src/recipes/FuseBatchNorm.cpp
+++ b/src/recipes/FuseBatchNorm.cpp
@@ -117,7 +117,7 @@ void Aidge::fuseBatchNorm(std::shared_ptr<Aidge::Node> convNode,
 
             auto prod = addProducer(metaNode, inputIdx, {convNbOutChannels}, "b");
             // Add the new bias node to the same views as the meta node
-            for (auto g : metaNode->views()) {
+            for (auto& g : metaNode->views()) {
                 g->add(prod);
             }
         }
@@ -126,12 +126,12 @@ void Aidge::fuseBatchNorm(std::shared_ptr<Aidge::Node> convNode,
             if (convNode->input(1).first) {
                 // Add the new bias node to the same views as the weights node
                 // if possible
-                for (auto g : convNode->input(1).first->views()) {
+                for (auto& g : convNode->input(1).first->views()) {
                     g->add(prod);
                 }
             }
             else {
-                for (auto g : convNode->views()) {
+                for (auto& g : convNode->views()) {
                     g->add(prod);
                 }
             }
diff --git a/src/scheduler/MemoryManager.cpp b/src/scheduler/MemoryManager.cpp
index ba805f919a607e0b2ae3272d173aa11360548fa7..05f461b82f16b6af4ed412b7336aa2328bcafbe1 100644
--- a/src/scheduler/MemoryManager.cpp
+++ b/src/scheduler/MemoryManager.cpp
@@ -634,152 +634,6 @@ void Aidge::MemoryManager::tick()
     ++mClock;
 }
 
-void Aidge::MemoryManager::log(const std::string& fileName) const
-{
-    auto memData = std::unique_ptr<FILE, decltype(&std::fclose)>(std::fopen(fileName.c_str(), "w"), &std::fclose);
-
-    if (!memData) {
-        AIDGE_THROW_OR_ABORT(std::runtime_error,
-            "Could not create memory layout log file: {}", fileName);
-    }
-
-    auto gnuplot = std::unique_ptr<FILE, decltype(&std::fclose)>(std::fopen((fileName + "_plot.gnu").c_str(), "w"), &std::fclose);
-
-    if (!gnuplot) {
-        AIDGE_THROW_OR_ABORT(std::runtime_error,
-            "Could not create memory layout log file: {}", (fileName + "_plot.gnu"));
-    }
-
-    const Clock_T maxLifetime = getMaxLifetime();
-    const unsigned int peakUsage = getPeakUsage();
-
-    fmt::print(gnuplot.get(), "#!/usr/bin/gnuplot\n");
-    fmt::print(gnuplot.get(), "set term pngcairo size 1280,768 noenhanced\n");
-    fmt::print(gnuplot.get(), "set output \"{}\"\n", fileName + "_plot.png");
-    fmt::print(gnuplot.get(), "set xrange [{}:{}]\n", 0, maxLifetime + 1);
-    fmt::print(gnuplot.get(), "set yrange [{}:{}]\n", 0, 1.05 * (peakUsage / 1024.0));
-    fmt::print(gnuplot.get(), "set xlabel \"Time\"\n");
-    fmt::print(gnuplot.get(), "set ylabel \"Memory usage (KWords)\"\n");
-    fmt::print(gnuplot.get(), "set grid\n");
-    fmt::print(gnuplot.get(), "set xtics 1\n");
-    fmt::print(gnuplot.get(), "unset key\n");
-    fmt::print(gnuplot.get(), "set palette rgbformulae 30,31,32\n");
-    fmt::print(gnuplot.get(), "unset colorbox\n");
-    fmt::print(gnuplot.get(), "N={}\n", mMemPlanes.size() + 1);
-
-    unsigned int objectId = 1;
-    unsigned int labelId = 1;
-
-    for (std::map<std::shared_ptr<Node>, std::vector<MemoryPlane> >
-        ::const_iterator it = mMemPlanes.begin(), itEnd = mMemPlanes.end();
-        it != itEnd; ++it)
-    {
-        const std::string name = (*it).first->name();
-        fmt::print(memData.get(), "{}\n", name);
-
-        double minX = -1;
-        unsigned int maxY = 0;
-
-        for (std::vector<MemoryPlane>::const_iterator itPlanes
-             = (*it).second.begin(), itPlanesBegin = (*it).second.begin(),
-            itPlanesEnd = (*it).second.end(); itPlanes != itPlanesEnd;
-            ++itPlanes)
-        {
-            const unsigned int contiguousOffset
-                = (*itPlanes).getContiguousOffset();
-            const unsigned int contiguousSize = (*itPlanes).getContiguousSize();
-            const unsigned int wrappedOffset = (*itPlanes).getWrappedOffset();
-            const unsigned int wrappedSize = (*itPlanes).getWrappedSize();
-
-            const Clock_T allocated = (*itPlanes).allocated;
-            const Clock_T released = (*itPlanes).memSpace->released;
-            const bool isReleased = (released >= 0
-                                && (*itPlanes).memSpace->dependencies.empty());
-
-            fmt::print(memData.get(), "  {} {} ({:#08x}U) -> {} ({:#08x}U)",
-                (itPlanes - itPlanesBegin), contiguousOffset, contiguousOffset,
-                (contiguousOffset + contiguousSize), (contiguousOffset + contiguousSize));
-
-            if (wrappedSize > 0) {
-                fmt::print(memData.get(), " + {} ({:#08x}U) -> {} ({:#08x}U)",
-                    wrappedOffset, wrappedOffset,
-                    (wrappedOffset + wrappedSize), (wrappedOffset + wrappedSize));
-            }
-
-            fmt::print(memData.get(), " [{}] @ {}", (*itPlanes).getSize(), allocated);
-
-            if (isReleased) {
-                fmt::print(memData.get(), " to {}", released);
-            }
-
-            fmt::print(memData.get(), "\n");
-
-            // Gnuplot
-            const double startX = allocated;
-
-            if (startX < minX || minX < 0) {
-                minX = startX;
-                maxY = contiguousOffset + contiguousSize;
-            }
-
-            if ((*itPlanes).size != (*itPlanes).stride) {
-                for (unsigned int offset = contiguousOffset;
-                    offset < contiguousOffset + contiguousSize;
-                    offset += (*itPlanes).stride)
-                {
-                    fmt::print(gnuplot.get(), "set object {} rectangle from {},{} to {},{} fc palette frac ({} * 1./N)\n",
-                        (allocated * 100 + objectId), startX, (offset / 1024.0),
-                        (((isReleased) ? released : maxLifetime) + 1),
-                        (std::min((offset + (*itPlanes).size),
-                                        contiguousOffset + contiguousSize) / 1024.0),
-                        labelId);
-                    ++objectId;
-                }
-            }
-            else {
-                fmt::print(gnuplot.get(), "set object {} rectangle from {},{} to {},{} fc palette frac ({} * 1./N)\n",
-                    (allocated * 100 + objectId), startX, (contiguousOffset / 1024.0),
-                    (((isReleased) ? released : maxLifetime) + 1),
-                    ((contiguousOffset + contiguousSize) / 1024.0),
-                    labelId);
-                ++objectId;
-            }
-
-            if (wrappedSize > 0) {
-                fmt::print(gnuplot.get(), "set object {} rectangle from {},{} to {},{} fc palette frac ({} * 1./N)\n",
-                    (allocated * 100 + objectId), startX, (wrappedOffset / 1024.0),
-                    (((isReleased) ? released : maxLifetime) + 1),
-                    ((wrappedOffset + contiguousSize) / 1024.0),
-                    labelId);
-                ++objectId;
-
-                fmt::print(gnuplot.get(), "set arrow from {},{} to {},{} nohead\n",
-                    startX, (contiguousOffset / 1024.0),
-                    (startX + 0.1), (contiguousOffset / 1024.0));
-
-                fmt::print(gnuplot.get(), "set arrow from {},{} to {},{} nohead\n",
-                    (startX + 0.05), ((contiguousOffset + contiguousSize) / 1024.0),
-                    (startX + 0.05), (wrappedOffset / 1024.0));
-            }
-        }
-
-        fmt::print(gnuplot.get(), "set label {} '{}' at {},{} rotate by 30 font \",8\" offset char 0.5,0.5\n",
-            labelId, name, minX, (maxY / 1024.0));
-        ++labelId;
-
-        fmt::print(memData.get(), "\n");
-    }
-
-    fmt::print(gnuplot.get(), "set arrow from 0,{} to {},{} nohead lc rgb \"red\"\n",
-        (peakUsage / 1024.0), (maxLifetime + 1),
-        (peakUsage / 1024.0));
-
-    fmt::print(gnuplot.get(), "set label {} 'Peak usage = {} KWords' at 0,{} textcolor rgb \"red\" offset char 0.5,0.5\n",
-        labelId, (peakUsage / 1024.0), (peakUsage / 1024.0));
-
-    fmt::print(gnuplot.get(), "plot 0\n");
-}
-
 unsigned int Aidge::MemoryManager::onStack(unsigned int size)
 {
     unsigned int offset = 0;
diff --git a/unit_tests/scheduler/Test_MemoryManager.cpp b/unit_tests/scheduler/Test_MemoryManager.cpp
index a4941203644b7ba291682f3932926a36fa83b745..b6cedfac47d53e0f8ab464fad8a2f6cc6c8dcc15 100644
--- a/unit_tests/scheduler/Test_MemoryManager.cpp
+++ b/unit_tests/scheduler/Test_MemoryManager.cpp
@@ -136,7 +136,6 @@ TEST_CASE("allocate1", "[MemoryManager]") {
     REQUIRE(memManager.getPlanes(node4).back().memSpace->allocated == 3);
     REQUIRE(memManager.getPlanes(node4).back().memSpace->released == 4);
 
-    memManager.log("MemoryManager_allocate1.log");
 }
 
 TEST_CASE("allocate2", "[MemoryManager]") {
@@ -281,7 +280,6 @@ TEST_CASE("allocate2", "[MemoryManager]") {
     REQUIRE(memManager.getPlanes(node4).back().memSpace->allocated == 3);
     REQUIRE(memManager.getPlanes(node4).back().memSpace->released == 4);
 
-    memManager.log("MemoryManager_allocate2.log");
 }
 
 TEST_CASE("allocate3", "[MemoryManager]") {
@@ -438,7 +436,6 @@ TEST_CASE("allocate3", "[MemoryManager]") {
     REQUIRE(memManager.getPlanes(node4).back().memSpace->allocated == 0);
     REQUIRE(memManager.getPlanes(node4).back().memSpace->released == 4);
 
-    memManager.log("MemoryManager_allocate3.log");
 }
 
 TEST_CASE("allocate3_wrapAround", "[MemoryManager]") {
@@ -595,5 +592,4 @@ TEST_CASE("allocate3_wrapAround", "[MemoryManager]") {
     REQUIRE(memManager.getPlanes(node4).back().memSpace->allocated == 0);
     REQUIRE(memManager.getPlanes(node4).back().memSpace->released == 4);
 
-    memManager.log("MemoryManager_allocate3_wrapAround.log");
 }