diff --git a/.gitignore b/.gitignore index 306c9d2f5409bdf2a003e63b795885f268af391a..a14ac887e7f573d4e37d483bf9b33e7de42970e6 100644 --- a/.gitignore +++ b/.gitignore @@ -1,10 +1,11 @@ -# general +# general .cache # C++ Build build*/ install*/ cppcheck-result.xml +include/aidge/core_version.h # VSCode .vscode diff --git a/CMakeLists.txt b/CMakeLists.txt index 3a1dc22b43ce8326e295f2dce3db52c98c07d2d7..62051da26211a3dc54f12dc34bd14ab66a0883b2 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -3,17 +3,29 @@ set(CXX_STANDARD 14) file(STRINGS "${CMAKE_SOURCE_DIR}/version.txt" version) +# Parse version.txt to retrieve Major, Minor and Path +string(REGEX MATCH "([0-9]+\\.[0-9]+\\.[0-9]+)" _ MATCHES ${version}) +set(PROJECT_VERSION_MAJOR ${CMAKE_MATCH_1}) +set(PROJECT_VERSION_MINOR ${CMAKE_MATCH_2}) +set(PROJECT_VERSION_PATCH ${CMAKE_MATCH_3}) + +# Retrieve latest git commit +execute_process( + COMMAND git rev-parse --short HEAD + WORKING_DIRECTORY ${CMAKE_SOURCE_DIR} + OUTPUT_VARIABLE GIT_COMMIT_HASH + OUTPUT_STRIP_TRAILING_WHITESPACE + ERROR_QUIET +) + project(aidge_core VERSION ${version} DESCRIPTION "Core algorithms for operators and graph of the AIDGE framework" LANGUAGES CXX) -message(STATUS "Project name: ${CMAKE_PROJECT_NAME}") -message(STATUS "Project version: ${version}") -add_definitions(-DPROJECT_VERSION="${version}") message(STATUS "Project name: ${CMAKE_PROJECT_NAME}") message(STATUS "Project version: ${version}") - +message(STATUS "Latest git commit: ${GIT_COMMIT_HASH}") # helper for LSP users set(CMAKE_EXPORT_COMPILE_COMMANDS ON) @@ -29,7 +41,6 @@ option(TEST "Enable tests" ON) option(COVERAGE "Enable coverage" OFF) option(ENABLE_ASAN "Enable ASan (AddressSanitizer) for runtime analysis of memory use (over/underflow, memory leak, ...)" OFF) - ############################################## # Import utils CMakeLists set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_SOURCE_DIR}/cmake") @@ -168,6 +179,13 @@ if(NOT $ENV{AIDGE_INSTALL} STREQUAL "") message(WARNING "CMAKE_INSTALL_PREFIX set to env variable AIDGE_INSTALL by default = ${CMAKE_INSTALL_PREFIX}") endif() +message(STATUS "Creating ${CMAKE_CURRENT_SOURCE_DIR}/include/aidge/core_version.h") +# Generate version.h file from config file version.h.in +configure_file( + "${CMAKE_CURRENT_SOURCE_DIR}/include/aidge/version.h.in" + "${CMAKE_CURRENT_SOURCE_DIR}/include/aidge/core_version.h" +) + include(GNUInstallDirs) set(INSTALL_CONFIGDIR ${CMAKE_INSTALL_LIBDIR}/cmake/${CMAKE_PROJECT_NAME}) diff --git a/MANIFEST.in b/MANIFEST.in index ed911dd75b59b65b8bfa023584aae8585de6325b..7d4d68c220e882a3aad520fff5980fc5cf758c18 100644 --- a/MANIFEST.in +++ b/MANIFEST.in @@ -1,8 +1,10 @@ include README.md LICENSE -recursive-include aidge_core *.py +recursive-include aidge_core *.py recursive-exclude aidge_core/unit_tests *.py recursive-include aidge_core/aidge_export_aidge * +recursive-include aidge_core/export_utils/templates * + recursive-include include *.hpp recursive-include src *.cpp recursive-include python_binding *.cpp diff --git a/aidge_core/__init__.py b/aidge_core/__init__.py index 32042125ed6ecb1d935e240837afe6516706dbcb..0832de2c472d15e2ce1667cae66e4f09303a5add 100644 --- a/aidge_core/__init__.py +++ b/aidge_core/__init__.py @@ -13,4 +13,3 @@ import aidge_core.utils from aidge_core.aidge_export_aidge import serialize_to_cpp from aidge_core.show_graphview import gview_to_json from aidge_core.mem_info import * -from ._version import * diff --git a/aidge_core/export_utils/data_conversion.py b/aidge_core/export_utils/data_conversion.py index 401fc39f2a70245a67719699b5f0cdc61108e0cf..6dba5b78cd7b8e79baddb160a1110c3e830c7cd7 100644 --- a/aidge_core/export_utils/data_conversion.py +++ b/aidge_core/export_utils/data_conversion.py @@ -1,8 +1,9 @@ import numpy as np import aidge_core +from typing import Dict -datatype_converter_aide2c = { +datatype_converter_aidge2c = { aidge_core.dtype.float64 : "double", aidge_core.dtype.float32 : "float", aidge_core.dtype.float16 : "half_float::half", @@ -19,12 +20,31 @@ datatype_converter_aide2c = { def aidge2c(datatype): """Convert a aidge datatype to C type + If the type is not convertible to a C type (e.g. int4), return None and raise a warning. + :param datatype: Aidge datatype to convert :type datatype: :py:object:`aidge_core.DataType` :return: A string representing the C type :rtype: string """ - if datatype in datatype_converter_aide2c: - return datatype_converter_aide2c[datatype] + if datatype in datatype_converter_aidge2c: + return datatype_converter_aidge2c[datatype] else: raise ValueError(f"Unsupported {datatype} aidge datatype") + +def aidge2export_type(datatype: aidge_core.dtype, conversion_map: Dict[aidge_core.dtype, str] = datatype_converter_aidge2c) -> str: + """Convert a aidge datatype to the export type specified by the map passed in argument + + If the aidge type is not convertible, that is to say, is not specified in the map, a value Error is raised. + + :param datatype: Aidge datatype to convert + :type datatype: :py:object:`aidge_core.DataType` + :param conversion_map: Map that specify the conversion + :type conversion_map: Dict[:py:object:`aidge_core.DataType`, str] + :return: A string representing the export type + :rtype: string + """ + if datatype in conversion_map: + return conversion_map[datatype] + else: + raise ValueError(f"Unsupported type conversion {datatype} aidge datatype for export") diff --git a/aidge_core/export_utils/export_registry.py b/aidge_core/export_utils/export_registry.py index e5b6b2098cd760c4d425b96caf7b41cc8e82c46e..8927ae5169978da81e39912ebd4e26e2655137ad 100644 --- a/aidge_core/export_utils/export_registry.py +++ b/aidge_core/export_utils/export_registry.py @@ -80,6 +80,14 @@ class ExportLib(aidge_core.OperatorImpl): aidge_core.get_key_value_Tensor(["cpu", aidge_core.dtype.uint32])) aidge_core.register_Tensor([self._name, aidge_core.dtype.uint64], aidge_core.get_key_value_Tensor(["cpu", aidge_core.dtype.uint64])) + aidge_core.register_Tensor([self._name, aidge_core.dtype.int4], + aidge_core.get_key_value_Tensor(["cpu", aidge_core.dtype.int4])) + aidge_core.register_Tensor([self._name, aidge_core.dtype.uint4], + aidge_core.get_key_value_Tensor(["cpu", aidge_core.dtype.uint4])) + aidge_core.register_Tensor([self._name, aidge_core.dtype.dual_int4], + aidge_core.get_key_value_Tensor(["cpu", aidge_core.dtype.dual_int4])) + aidge_core.register_Tensor([self._name, aidge_core.dtype.dual_uint4], + aidge_core.get_key_value_Tensor(["cpu", aidge_core.dtype.dual_uint4])) @classproperty def _export_node_registry(cls) -> Dict[str, List['ExportNode']]: diff --git a/aidge_core/export_utils/node_export.py b/aidge_core/export_utils/node_export.py index 5777814a0b10c49d0f75245bdc4e9681027bdfb8..c24727adf11bb936cb99c1f40312c4da8c0705f3 100644 --- a/aidge_core/export_utils/node_export.py +++ b/aidge_core/export_utils/node_export.py @@ -3,7 +3,8 @@ from pathlib import Path from aidge_core.export_utils import data_conversion, code_generation from abc import ABC, abstractmethod -from typing import List +from typing import List, Dict + def get_chan(tensor: aidge_core.Tensor) -> int: @@ -14,12 +15,19 @@ def get_chan(tensor: aidge_core.Tensor) -> int: return dims[1] elif len(dims) == 2: # Suppose NC return dims[1] + elif len(dims) == 1: # Suppose C (for bias) + return dims[0] else: return None elif dformat == aidge_core.dformat.nchw: return dims[1] elif dformat == aidge_core.dformat.nhwc: - return dims[3] + if len(dims) == 4: # NHWC + return dims[3] + elif len(dims) == 2: # NC + return 1 + elif len(dims) == 1: # C for bias + return 1 elif dformat == aidge_core.dformat.chwn: return dims[0] elif dformat == aidge_core.dformat.ncdhw: @@ -40,12 +48,19 @@ def get_height(tensor: aidge_core.Tensor) -> int: return dims[2] elif len(dims) == 2: # Suppose NC return 1 + elif len(dims) == 1: # Suppose C for bias + return 1 else: return None elif dformat == aidge_core.dformat.nchw: return dims[2] elif dformat == aidge_core.dformat.nhwc: - return dims[1] + if len(dims) == 4: # NHWC + return dims[1] + elif len(dims) == 2: # NC + return 1 + elif len(dims) == 1: # C for bias + return 1 elif dformat == aidge_core.dformat.chwn: return dims[1] elif dformat == aidge_core.dformat.ncdhw: @@ -66,12 +81,19 @@ def get_width(tensor: aidge_core.Tensor) -> int: return dims[3] elif len(dims) == 2: # Suppose NC return 1 + elif len(dims) == 1: # Suppose C for bias + return 1 else: return None elif dformat == aidge_core.dformat.nchw: return dims[3] elif dformat == aidge_core.dformat.nhwc: - return dims[2] + if len(dims) == 4: # NHWC + return dims[2] + elif len(dims) == 2: # NC + return 1 + elif len(dims) == 1: # C for bias + return 1 elif dformat == aidge_core.dformat.chwn: return dims[2] elif dformat == aidge_core.dformat.ncdhw: @@ -162,7 +184,9 @@ class ExportNode(ABC): """ @abstractmethod - def __init__(self, aidge_node: aidge_core.Node, mem_info: List[dict]=None) -> None: + def __init__(self, aidge_node: aidge_core.Node, + mem_info: List[dict]=None, + conversion_map: Dict[aidge_core.dtype, str] = data_conversion.datatype_converter_aidge2c) -> None: """Create ExportNode and retrieve attributes from ``aidge_node``: """ @@ -231,8 +255,8 @@ class ExportNode(ABC): self.attributes["in_dformat"][idx] = tensor.dformat() self.attributes["in_format"][idx] = aidge_core.format_as(tensor.dformat()) self.attributes["in_dtype"][idx] = tensor.dtype() - self.attributes["in_cdtype"][idx] = data_conversion.aidge2c( - tensor.dtype()) + # self.attributes["in_cdtype"][idx] = data_conversion.aidge2c(tensor.dtype()) + self.attributes["in_cdtype"][idx] = data_conversion.aidge2export_type(tensor.dtype(), conversion_map) self.attributes["in_chan"][idx] = get_chan(tensor) self.attributes["in_height"][idx] = get_height(tensor) self.attributes["in_width"][idx] = get_width(tensor) @@ -254,8 +278,8 @@ class ExportNode(ABC): self.attributes["out_dformat"][idx] = tensor.dformat() self.attributes["out_format"][idx] = aidge_core.format_as(tensor.dformat()) self.attributes["out_dtype"][idx] = tensor.dtype() - self.attributes["out_cdtype"][idx] = data_conversion.aidge2c( - tensor.dtype()) + # self.attributes["out_cdtype"][idx] = data_conversion.aidge2c(tensor.dtype()) + self.attributes["out_cdtype"][idx] = data_conversion.aidge2export_type(tensor.dtype(), conversion_map) self.attributes["out_chan"][idx] = get_chan(tensor) self.attributes["out_height"][idx] = get_height(tensor) self.attributes["out_width"][idx] = get_width(tensor) diff --git a/aidge_core/mem_info.py b/aidge_core/mem_info.py index 5e36eb3ee56165b9ddd2422a8e0607f79871afe8..cabc2c72ee973babdf0342ba82057f7ab0769b52 100644 --- a/aidge_core/mem_info.py +++ b/aidge_core/mem_info.py @@ -5,6 +5,9 @@ from pathlib import Path import aidge_core from typing import Tuple, List +import matplotlib.pyplot as plt +import aidge_core.mem_info +import numpy as np # Default memory management, which can be used for development def compute_default_mem_info(scheduler: aidge_core.Scheduler) -> Tuple[int, List]: @@ -41,20 +44,72 @@ def compute_default_mem_info(scheduler: aidge_core.Scheduler) -> Tuple[int, List mem_info[node] = [] # No meminfo for producer return mem_size, mem_info +def log_meminfo(mem_manager:aidge_core.MemoryManager, path: Path, diplay_names:bool): + """Generate a graph representing the memory allocation of each ouputs. -def _gnuplot_installed(): - try: - # Run gnuplot with the --version flag and capture the output - subprocess.run(["gnuplot", "--version"]) - return True - except FileNotFoundError: - aidge_core.Log.warn("Gnuplot is not installed.") - return False - except subprocess.CalledProcessError: - aidge_core.Log.warn("Gnuplot command found but failed to run.") - return False + Block with the smae color correspond to the same memory plane. -def generate_optimized_memory_info(scheduler: aidge_core.Scheduler, stats_folder: Path = None, wrapping: bool = False, auto_concat: bool = False) -> Tuple[int, List[dict]]: + :param mem_manager: Memory manager to log + :type mem_manager: aidge_core.memory_manager + :param path: Path where to save the figure + :type path: Path + :param diplay_names: If True Node names are diplayed alongside their block + :type diplay_names: bool + """ + + max_lifetime = mem_manager.get_max_lifetime() + + # peak_usage in kwords + peak_usage = mem_manager.get_peak_usage() / 1024 + + # Set figure size 1920x1080 px + plt.figure(figsize=(19.20, 10.80)) + # Same color for each planes + colors = plt.cm.viridis(np.linspace(0, 1, len(mem_manager.get_planes()) + 1)) + color_id = 1 + for node, planes in mem_manager.get_planes().items(): + for plane in planes: + cont_offset = plane.get_contiguous_offset() + cont_size = plane.get_contiguous_size() + allocated = plane.mem_space.allocated + released = plane.mem_space.released + is_released = released >= 0 and not plane.mem_space.dependencies + x_start = allocated + y_start = cont_offset / 1024.0 + y_end = (cont_offset + cont_size) / 1024.0 + x_end = max_lifetime if not is_released else released + + plt.fill_betweenx( + [y_start, y_end], + x_start, + x_end + 1, + color=colors[color_id % len(colors)] + ) + + if diplay_names: + # Rotation for lisibility! + plt.text(x_end,y_end, node.name(), rotation=45) + color_id += 1 + + plt.xlim(0, max_lifetime + 1) + plt.ylim(0, peak_usage) + plt.axhline(y=peak_usage, color='red', linestyle='--') + plt.text(0, peak_usage, f'Peak usage = {peak_usage} KWords', color='red') + plt.xlabel("Time") + plt.ylabel("Memory usage (KWords)") + plt.title("Memory Usage Over Time") + plt.grid(True) + ax = plt.gca() + ax.spines['top'].set_visible(False) + ax.spines['right'].set_visible(False) + folder_path = path.parent + folder_path.mkdir(parents=True, exist_ok=True) + plt.savefig(path) + plt.close() + aidge_core.Log.notice(f"Generated memory management info at: {path}") + + +def generate_optimized_memory_info(scheduler: aidge_core.Scheduler, stats_folder: Path = None, wrapping: bool = False, auto_concat: bool = False, display_names: bool=True) -> Tuple[int, List[dict]]: """Generates optimized memory information for a computation graph managed by a scheduler. This function analyzes the memory usage of a computation graph, determining the memory peak @@ -73,6 +128,8 @@ def generate_optimized_memory_info(scheduler: aidge_core.Scheduler, stats_folder :param auto_concat: Boolean flag to enable or disable auto-concatenation optimization. Defaults to `False`. :type auto_concat: bool, optional + :param diplay_names: If True Node names are diplayed in the memory plot alongside their block, defaults to False + :type diplay_names: bool, optional :return: A tuple containing the peak memory size and a list of memory information for each scheduled node. The memory information for each node includes details such as size, offset, stride, length, count, and optional wrap-around details. @@ -95,18 +152,8 @@ def generate_optimized_memory_info(scheduler: aidge_core.Scheduler, stats_folder nodes_at_input = [n[0] for n in scheduler.graph_view().inputs()] if stats_folder is not None: - if _gnuplot_installed(): - # Use gnuplot to generate the log - os.makedirs(str(Path(stats_folder) / "graph"), exist_ok=True) - mem_manager.log("memory_info") - os.chmod("memory_info_plot.gnu", 0o777) - os.system("./memory_info_plot.gnu") - shutil.move("memory_info", str(Path(stats_folder) / "graph" / "memory_info")) - shutil.move("memory_info_plot.png", str( - Path(stats_folder) / "graph" / "memory_info_plot.png")) - os.remove("memory_info_plot.gnu") - else: - aidge_core.Log.warn("Warning: gnuplot is not installed, could not generate stat folder.") + log_meminfo(mem_manager, Path(stats_folder) / "memory_info.png", display_names) + # In the export, we currently use an unified memory buffer whose size # is determined by the memory peak usage mem_size = mem_manager.get_peak_usage() diff --git a/include/aidge/aidge.hpp b/include/aidge/aidge.hpp index a06202696951a888284f1e0a50b6c25b677fe7f3..d65a46378c01b070d998b72d5d2e272b7d8f7def 100644 --- a/include/aidge/aidge.hpp +++ b/include/aidge/aidge.hpp @@ -11,6 +11,7 @@ #ifndef AIDGE_IMPORTS_H_ #define AIDGE_IMPORTS_H_ +#include "aidge/core_version.h" #include "aidge/backend/OperatorImpl.hpp" #include "aidge/backend/TensorImpl.hpp" @@ -92,5 +93,6 @@ #include "aidge/utils/Random.hpp" #include "aidge/utils/Registrar.hpp" #include "aidge/utils/Types.h" +#include "aidge/utils/sys_info/CoreVersionInfo.hpp" #endif /* AIDGE_IMPORTS_H_ */ diff --git a/include/aidge/backend/cpu/data/TensorImpl.hpp b/include/aidge/backend/cpu/data/TensorImpl.hpp index d04624fc530a21730cc4dc1f4f1ac90a58e6590b..4f7079e59c4328885969e7dc7181395d1333d0af 100644 --- a/include/aidge/backend/cpu/data/TensorImpl.hpp +++ b/include/aidge/backend/cpu/data/TensorImpl.hpp @@ -55,7 +55,7 @@ public: T* dstT = static_cast<T *>(rawPtr(offset)); AIDGE_ASSERT(dstT < srcT || dstT >= srcT + length, "TensorImpl_cpu<{}>::copy(): overlapping copy is not supported", typeid(T).name()); - std::copy(srcT, srcT + length, dstT); + std::copy_n(srcT, length, dstT); } void copyCast(const void *src, const DataType srcDt, NbElts_t length, NbElts_t offset = 0) override final; @@ -126,6 +126,20 @@ REGISTRAR(Tensor, {"cpu", DataType::Int64}, Aidge::TensorImpl_cpu<int64_t>::crea REGISTRAR(Tensor, {"cpu", DataType::Int32}, Aidge::TensorImpl_cpu<int32_t>::create); REGISTRAR(Tensor, {"cpu", DataType::Int16}, Aidge::TensorImpl_cpu<int16_t>::create); REGISTRAR(Tensor, {"cpu", DataType::Int8}, Aidge::TensorImpl_cpu<int8_t>::create); +REGISTRAR(Tensor, {"cpu", DataType::Int4}, Aidge::TensorImpl_cpu<int8_t>::create); +REGISTRAR(Tensor, {"cpu", DataType::UInt4}, Aidge::TensorImpl_cpu<uint8_t>::create); +REGISTRAR(Tensor, {"cpu", DataType::Int3}, Aidge::TensorImpl_cpu<int8_t>::create); +REGISTRAR(Tensor, {"cpu", DataType::UInt3}, Aidge::TensorImpl_cpu<uint8_t>::create); +REGISTRAR(Tensor, {"cpu", DataType::Int2}, Aidge::TensorImpl_cpu<int8_t>::create); +REGISTRAR(Tensor, {"cpu", DataType::UInt2}, Aidge::TensorImpl_cpu<uint8_t>::create); +REGISTRAR(Tensor, {"cpu", DataType::Dual_Int4}, Aidge::TensorImpl_cpu<int8_t>::create); +REGISTRAR(Tensor, {"cpu", DataType::Dual_UInt4}, Aidge::TensorImpl_cpu<uint8_t>::create); +REGISTRAR(Tensor, {"cpu", DataType::Dual_Int3}, Aidge::TensorImpl_cpu<int8_t>::create); +REGISTRAR(Tensor, {"cpu", DataType::Dual_UInt3}, Aidge::TensorImpl_cpu<uint8_t>::create); +REGISTRAR(Tensor, {"cpu", DataType::Quad_Int2}, Aidge::TensorImpl_cpu<int8_t>::create); +REGISTRAR(Tensor, {"cpu", DataType::Quad_UInt2}, Aidge::TensorImpl_cpu<uint8_t>::create); +REGISTRAR(Tensor, {"cpu", DataType::Binary}, Aidge::TensorImpl_cpu<int8_t>::create); +REGISTRAR(Tensor, {"cpu", DataType::Octo_Binary}, Aidge::TensorImpl_cpu<int8_t>::create); REGISTRAR(Tensor, {"cpu", DataType::UInt64}, Aidge::TensorImpl_cpu<uint64_t>::create); REGISTRAR(Tensor, {"cpu", DataType::UInt32}, Aidge::TensorImpl_cpu<uint32_t>::create); REGISTRAR(Tensor, {"cpu", DataType::UInt16}, Aidge::TensorImpl_cpu<uint16_t>::create); diff --git a/include/aidge/data/Data.hpp b/include/aidge/data/Data.hpp index a34718296e4ccddbfca0b4eb0daf14b08124389a..35df9c0e0bf24ee175fe27eb7c831fcae7a700e7 100644 --- a/include/aidge/data/Data.hpp +++ b/include/aidge/data/Data.hpp @@ -29,10 +29,14 @@ enum class DataType { Float16, BFloat16, Binary, + Octo_Binary, Ternary, Int2, + Quad_Int2, Int3, + Dual_Int3, Int4, + Dual_Int4, Int5, Int6, Int7, @@ -41,8 +45,11 @@ enum class DataType { Int32, Int64, UInt2, + Quad_UInt2, UInt3, + Dual_UInt3, UInt4, + Dual_UInt4, UInt5, UInt6, UInt7, @@ -117,6 +124,17 @@ private: } namespace { + +template <Aidge::DataType D> struct WeightInterleavingType { static const Aidge::DataType type; }; +template <> const Aidge::DataType WeightInterleavingType<Aidge::DataType::Int4>::type = Aidge::DataType::Dual_Int4; +template <> const Aidge::DataType WeightInterleavingType<Aidge::DataType::UInt4>::type = Aidge::DataType::Dual_UInt4; +template <> const Aidge::DataType WeightInterleavingType<Aidge::DataType::Int3>::type = Aidge::DataType::Dual_Int3; +template <> const Aidge::DataType WeightInterleavingType<Aidge::DataType::UInt3>::type = Aidge::DataType::Dual_UInt3; +template <> const Aidge::DataType WeightInterleavingType<Aidge::DataType::Int2>::type = Aidge::DataType::Quad_Int2; +template <> const Aidge::DataType WeightInterleavingType<Aidge::DataType::UInt2>::type = Aidge::DataType::Quad_UInt2; +template <> const Aidge::DataType WeightInterleavingType<Aidge::DataType::Binary>::type = Aidge::DataType::Octo_Binary; + + template <typename T> struct NativeType { static const Aidge::DataType type; }; template <> const Aidge::DataType NativeType<double>::type = Aidge::DataType::Float64; template <> const Aidge::DataType NativeType<float>::type = Aidge::DataType::Float32; @@ -132,9 +150,9 @@ template <> const Aidge::DataType NativeType<std::uint64_t>::type = Aidge::DataT template <> const char* const EnumStrings<Aidge::DataType>::data[] - = {"Float64", "Float32", "Float16", "BFloat16", "Binary", "Ternary", - "Int2", "Int3", "Int4", "Int5", "Int6", "Int7", "Int8", "Int16", - "Int32", "Int64", "UInt2", "UInt3", "UInt4", "UInt5", "UInt6", + = {"Float64", "Float32", "Float16", "BFloat16", "Binary", "Octo_Binary", "Ternary", + "Int2", "Quad_Int2", "Int3", "Dual_Int3", "Int4", "Dual_Int4", "Int5", "Int6", "Int7", "Int8", "Int16", + "Int32", "Int64", "UInt2", "Quad_UInt2", "UInt3", "Dual_UInt3", "UInt4", "Dual_UInt4", "UInt5", "UInt6", "UInt7", "UInt8", "UInt16", "UInt32", "UInt64", "Any"}; template <> @@ -147,6 +165,20 @@ template <Aidge::DataType D> struct cpptype { template <> struct cpptype<Aidge::DataType::Float16> { using type = half_float::half; }; template <> struct cpptype<Aidge::DataType::Float32> { using type = float; }; template <> struct cpptype<Aidge::DataType::Float64> { using type = double; }; +template <> struct cpptype<Aidge::DataType::Int4> { using type = std::int8_t; }; +template <> struct cpptype<Aidge::DataType::UInt4> { using type = std::int8_t; }; +template <> struct cpptype<Aidge::DataType::Int3> { using type = std::int8_t; }; +template <> struct cpptype<Aidge::DataType::UInt3> { using type = std::int8_t; }; +template <> struct cpptype<Aidge::DataType::Int2> { using type = std::int8_t; }; +template <> struct cpptype<Aidge::DataType::UInt2> { using type = std::int8_t; }; +template <> struct cpptype<Aidge::DataType::Dual_Int4> { using type = std::int8_t; }; +template <> struct cpptype<Aidge::DataType::Dual_UInt4> { using type = std::int8_t; }; +template <> struct cpptype<Aidge::DataType::Dual_Int3> { using type = std::int8_t; }; +template <> struct cpptype<Aidge::DataType::Dual_UInt3> { using type = std::int8_t; }; +template <> struct cpptype<Aidge::DataType::Quad_Int2> { using type = std::int8_t; }; +template <> struct cpptype<Aidge::DataType::Quad_UInt2> { using type = std::int8_t; }; +template <> struct cpptype<Aidge::DataType::Binary> { using type = std::int8_t; }; +template <> struct cpptype<Aidge::DataType::Octo_Binary> { using type = std::int8_t; }; template <> struct cpptype<Aidge::DataType::Int8> { using type = std::int8_t; }; template <> struct cpptype<Aidge::DataType::Int16> { using type = std::int16_t; }; template <> struct cpptype<Aidge::DataType::Int32> { using type = std::int32_t; }; @@ -157,6 +189,7 @@ template <> struct cpptype<Aidge::DataType::UInt32> { using type = std::uint32_t template <> struct cpptype<Aidge::DataType::UInt64> { using type = std::uint64_t; }; template <Aidge::DataType D> using cpptype_t = typename cpptype<D>::type; + } diff --git a/include/aidge/data/Tensor.hpp b/include/aidge/data/Tensor.hpp index 627a5a4784b4e6546cdfc96b65acbe2a39ee119c..fdeef2a8e20c2cd04ad31ae18a0f9b1befd5373b 100644 --- a/include/aidge/data/Tensor.hpp +++ b/include/aidge/data/Tensor.hpp @@ -112,7 +112,7 @@ class Tensor : public Data, * @tparam T datatype */ template <typename T> - constexpr Tensor(Vector<T> &&arr) + Tensor(Vector<T> &&arr) : Data(Type), mDataType(NativeType<T>::type), mDims({arr.data.size()}), @@ -204,13 +204,13 @@ class Tensor : public Data, * Tensor and the initial one. * @param other */ - Tensor(const Tensor& other) = default; + Tensor(const Tensor& other); /** * @brief Move constructor. * @param other */ - Tensor(Tensor&& other) = default; + Tensor(Tensor&& other); /** * @brief Copy dimensions, datatype and data from another Tensor. @@ -219,8 +219,8 @@ class Tensor : public Data, * @param other other Tensor object. * @return Tensor& */ - Tensor &operator=(const Tensor& other) = default; - Tensor &operator=(Tensor&& other) = default; + Tensor &operator=(const Tensor& other); + Tensor &operator=(Tensor&& other); template <typename T> constexpr Tensor &operator=(Vector<T> &&arr) { diff --git a/include/aidge/graph/Connector.hpp b/include/aidge/graph/Connector.hpp index 599ca7d6defd729b6e6536dcc95f326d345701d9..ec59e1b38c10cbe53eb667b724991ea8e5427a6e 100644 --- a/include/aidge/graph/Connector.hpp +++ b/include/aidge/graph/Connector.hpp @@ -11,10 +11,10 @@ #ifndef AIDGE_CORE_GRAPH_CONNECTOR_H_ #define AIDGE_CORE_GRAPH_CONNECTOR_H_ -#include <cassert> #include <memory> #include <vector> +#include "aidge/utils/ErrorHandling.hpp" #include "aidge/utils/Types.h" namespace Aidge { @@ -55,7 +55,7 @@ class Connector { public: Connector operator[](IOIndex_t index) { - assert((size() > 1) && "Cannot refer a slice of the output."); + AIDGE_ASSERT((size() > 1), "Cannot refer a slice of the output."); return Connector(mNode, index); } @@ -68,7 +68,7 @@ class Connector { private: Connector(std::shared_ptr<Node> node, IOIndex_t index) : mNode(node) { - assert((index != gk_IODefaultIndex) && (index < size()) && + AIDGE_ASSERT((index != gk_IODefaultIndex) && (index < size()), "Non-valid output index.\n"); mOutputId = index; } diff --git a/include/aidge/graph/GraphView.hpp b/include/aidge/graph/GraphView.hpp index 76f5dcdfc28e90a3f83435841af21048bcb2a9c0..e122aa446bde05abdce2a1fe0899c1fec52e4dba 100644 --- a/include/aidge/graph/GraphView.hpp +++ b/include/aidge/graph/GraphView.hpp @@ -424,21 +424,7 @@ public: addChild(toOtherNode, mNodeRegistry.at(fromOutNodeName), fromTensor, toTensor); } - inline void updateNodeName(const std::shared_ptr<Node>& node, const std::string& newName){ - if (!newName.empty()) { - auto itNew = mNodeRegistry.insert(std::make_pair(newName, node)); - if (!itNew.second) { - Log::notice("Replacing existing node name in graph node name registry: {}", newName); - (itNew.first)->second = node; - } - } - - if (!node->name().empty()) { - const auto it = mNodeRegistry.find(node->name()); - AIDGE_ASSERT(it != mNodeRegistry.end(), "No node named {} in graph {}, the graph may be corrupted !", node->name(), name()); - mNodeRegistry.erase(it); - } - } + void updateNodeName(const std::shared_ptr<Node>& node, const std::string& newName); /** * @brief Include a GraphView content in the current GraphView and link diff --git a/include/aidge/graph/Matching.hpp b/include/aidge/graph/Matching.hpp index 3b0874580b112f4c219886a78677e6c9801b72b8..c8de86e90989a6313f47b1b06dea401d5ebd6600 100644 --- a/include/aidge/graph/Matching.hpp +++ b/include/aidge/graph/Matching.hpp @@ -12,9 +12,12 @@ #ifndef AIDGE_CORE_GRAPH_MATCHING_H_ #define AIDGE_CORE_GRAPH_MATCHING_H_ +#include <functional> #include <map> #include <memory> #include <set> +#include <string> + #include "aidge/graph/Node.hpp" #include "aidge/graph/GraphView.hpp" @@ -43,10 +46,10 @@ public: bool singleOutput = true; IOIndex_t edgeLeftIdx = 0; IOIndex_t edgeRightIdx = 0; - NodePtr startNode; + std::shared_ptr<Node> startNode; // For check & debug purpose: - size_t depth = 0; + std::size_t depth = 0; std::set<std::string> anchors; }; @@ -56,8 +59,8 @@ public: // We use graph->rootNode() as the std::set key, which is guaranteed // to never change after insertion! mutable std::shared_ptr<GraphView> graph; - mutable std::map<std::string, std::map<std::string, NodePtr>> anchors; - mutable NodePtr startNode; + mutable std::map<std::string, std::map<std::string, std::shared_ptr<Node>>> anchors; + mutable std::shared_ptr<Node> startNode; MatchingResult(); @@ -66,11 +69,14 @@ public: ~MatchingResult() noexcept; }; + SinglePassGraphMatching() = delete; SinglePassGraphMatching(std::shared_ptr<GraphView> graph) : mGraph(graph) {} SinglePassGraphMatching(const SinglePassGraphMatching& other); - SinglePassGraphMatching& operator=(const SinglePassGraphMatching& other); + ~SinglePassGraphMatching() noexcept; + SinglePassGraphMatching& operator=(const SinglePassGraphMatching& other); + /** * Matches a query by direct, single pass parse and match. * The returned matches are non-ordered and therefore stored in a std::set. @@ -141,26 +147,26 @@ public: /** * @brief Same as match() but with a mandatory start node. - * + * * @param startNode Mandatory start node for the query. * @param query The query to search. * @return MatchingResult MatchingResult struct, with empty graph if query * is not found, or the graph corresponding to the query. */ - MatchingResult matchFrom(NodePtr startNode, const std::string& query); + MatchingResult matchFrom(std::shared_ptr<Node> startNode, const std::string& query); /** * Filter to keep only the longest disjoint (non-overlapping) matches. */ std::set<MatchingResult> filterLonguestDisjoint(const std::set<MatchingResult>& matches); - inline void addNodeLambda(const std::string& name, std::function<bool(const NodePtr&)> func) { + inline void addNodeLambda(const std::string& name, std::function<bool(const std::shared_ptr<Node>&)> func) { mLambda[name] = func; } private: std::shared_ptr<GraphView> mGraph; - std::map<std::string, std::function<bool(const NodePtr&)>> mLambda; + std::map<std::string, std::function<bool(const std::shared_ptr<Node>&)>> mLambda; /** * QUANTIFIER = '?' | '*' | '+' | ('{' [0-9]+ '}') @@ -205,13 +211,6 @@ private: */ bool matchNode(Context& ctx, std::set<MatchingResult>& matches); - inline void removeWhiteSpace(std::string& str) { - str.erase(str.begin(), - std::find_if(str.begin(), - str.end(), - [](char c) { return !std::isspace(c); })); - } - struct CompareMatchingResultSize { bool operator()(const MatchingResult& lhs, const MatchingResult& rhs) const { // Some matches size could be the same @@ -225,10 +224,8 @@ private: }; }; -inline bool operator<(const Aidge::SinglePassGraphMatching::MatchingResult& lhs, const Aidge::SinglePassGraphMatching::MatchingResult& rhs) { - // Matches rootNode are guaranteed to be different! - return lhs.graph->rootNode() < rhs.graph->rootNode(); -} +bool operator<(const SinglePassGraphMatching::MatchingResult& lhs, const SinglePassGraphMatching::MatchingResult& rhs); + } // namespace Aidge #endif /* AIDGE_CORE_GRAPH_MATCHING_H_ */ diff --git a/include/aidge/graph/Node.hpp b/include/aidge/graph/Node.hpp index a16bbd63ecf52e8c97d5032c5c90a5f69186f995..a57ccc91f48ca3285eb8be6ff85a1dbb4aef6d52 100644 --- a/include/aidge/graph/Node.hpp +++ b/include/aidge/graph/Node.hpp @@ -12,13 +12,13 @@ #ifndef AIDGE_CORE_GRAPH_NODE_H_ #define AIDGE_CORE_GRAPH_NODE_H_ -#include <cassert> +#include <deque> +#include <functional> #include <memory> #include <set> #include <string> #include <vector> -#include <deque> -#include <utility> +#include <utility> // std::pair #ifdef PYBIND #include <pybind11/pybind11.h> @@ -27,7 +27,9 @@ #include "aidge/graph/Connector.hpp" #include "aidge/operator/Operator.hpp" +#include "aidge/utils/DynamicAttributes.hpp" #include "aidge/utils/Types.h" +#include "aidge/utils/ErrorHandling.hpp" #ifdef PYBIND namespace py = pybind11; @@ -131,7 +133,7 @@ public: * @brief Name of the Node. * @return std::string */ - inline std::string name() const noexcept { return mAttrs->getAttr<std::string>("name"); } + std::string name() const noexcept { return mAttrs->getAttr<std::string>("name"); } /** * @brief Set the Node name. @@ -175,7 +177,7 @@ public: * @brief Get the Operator object of the Node. * @return std::shared_ptr<Operator> */ - inline std::shared_ptr<Operator> getOperator() const { return (*mOperator)(mAttrs); } + inline std::shared_ptr<Operator> getOperator() const { return mOperator; } // inline std::shared_ptr<Operator> getOperator() const { return mOperator; } /////////////////////////////////////////////////////// @@ -212,7 +214,7 @@ public: * @return std::pair<std::shared_ptr<Node>, IOIndex_t> */ inline std::pair<NodePtr, IOIndex_t> input(const IOIndex_t inID) const { - assert((inID != gk_IODefaultIndex) && (inID < nbInputs()) && "Input index out of bound."); + AIDGE_ASSERT((inID != gk_IODefaultIndex) && (inID < nbInputs()), "Input index out of bound."); return std::pair<NodePtr, IOIndex_t>(mParents[inID], mIdOutParents[inID]); } @@ -261,7 +263,7 @@ public: * @details [data, data, weight, bias] => 4 * @return IOIndex_t */ - inline IOIndex_t nbInputs() const noexcept { return getOperator()->nbInputs(); } + inline IOIndex_t nbInputs() const noexcept { return mOperator->nbInputs(); } /** * @brief Category of a specific input (Data or Param, optional or not). @@ -269,7 +271,7 @@ public: * @return InputCategory */ inline InputCategory inputCategory(IOIndex_t idx) const { - return getOperator()->inputCategory(idx); + return mOperator->inputCategory(idx); } /** @@ -279,7 +281,7 @@ public: * @return true if the operator defines it as a back edge */ inline bool parentIsBackEdge(IOIndex_t idx) const { - return getOperator()->isBackEdge(idx); + return mOperator->isBackEdge(idx); } /** @@ -292,7 +294,7 @@ public: * @brief Getter for the number of Output Tensors of the Node. * @return IOIndex_t */ - inline IOIndex_t nbOutputs() const noexcept { return getOperator()->nbOutputs(); } + inline IOIndex_t nbOutputs() const noexcept { return mOperator->nbOutputs(); } IOIndex_t nbValidOutputs() const; @@ -304,15 +306,7 @@ public: * @brief Set of pointers to each GraphView containing this Node * @return std::set<GraphView> */ - inline std::set<std::shared_ptr<GraphView>> views() const noexcept { - std::set<std::shared_ptr<GraphView>> res; - for (const auto &v : mViews) { - if (auto p = v.lock()) { - res.insert(p); - } - } - return res; - } + std::set<std::shared_ptr<GraphView>> views() const noexcept; /** * @brief Add a GraphView pointer to the list of GraphView containing @@ -323,7 +317,7 @@ public: mViews.insert(std::weak_ptr<GraphView>(graphPtr)); } - inline void removeView(const std::shared_ptr<GraphView> &graphPtr) { + void removeView(const std::shared_ptr<GraphView> &graphPtr) { mViews.erase(graphPtr); } @@ -368,7 +362,6 @@ public: * @return std::shared_ptr<Node>& */ inline NodePtr &getParent(const IOIndex_t inId) { - assert(inId != gk_IODefaultIndex); return mParents.at(inId); } diff --git a/include/aidge/graph/StaticAnalysis.hpp b/include/aidge/graph/StaticAnalysis.hpp index d3fe681749eeb69e4816a38f302d510f1c81381a..cc5532224ebd00f17aefbf5c2620a3ef15cfaa2a 100644 --- a/include/aidge/graph/StaticAnalysis.hpp +++ b/include/aidge/graph/StaticAnalysis.hpp @@ -13,13 +13,12 @@ #ifndef AIDGE_CORE_GRAPH_STATICANALYSIS_H_ #define AIDGE_CORE_GRAPH_STATICANALYSIS_H_ +#include <cstddef> // std::size_t #include <memory> +#include <string> -#include "aidge/utils/Registrar.hpp" -#include "aidge/graph/GraphView.hpp" #include "aidge/data/Tensor.hpp" -#include "aidge/operator/OperatorTensor.hpp" - +#include "aidge/graph/GraphView.hpp" #include "aidge/operator/AvgPooling.hpp" #include "aidge/operator/Producer.hpp" #include "aidge/operator/Conv.hpp" @@ -27,125 +26,131 @@ #include "aidge/operator/FC.hpp" #include "aidge/operator/MatMul.hpp" #include "aidge/operator/MaxPooling.hpp" +#include "aidge/operator/Operator.hpp" +#include "aidge/operator/OperatorTensor.hpp" #include "aidge/operator/ReduceMean.hpp" #include "aidge/operator/ReduceSum.hpp" #include "aidge/operator/Softmax.hpp" #include "aidge/operator/MetaOperator.hpp" +#include "aidge/utils/Registrar.hpp" namespace Aidge { /** * @brief Base class to compute statistics from an Operator. - * + * */ class OperatorStats : public Registrable<OperatorStats, std::string, std::function<std::shared_ptr<OperatorStats>(const Operator&)>> { public: + OperatorStats() = delete; OperatorStats(const Operator& op); - const Operator& getOperator() const noexcept { return mOp; } + + virtual ~OperatorStats(); + + inline const Operator& getOperator() const noexcept { return mOp; } /** - * @brief Get the worst case total number of arithmetic operations for the + * @brief Get the worst case total number of arithmetic operations for the * operator data flow. This includes base arithmetic operations: +, -, / and *. - * Control flow operations (loop counters, index computation...) and memory + * Control flow operations (loop counters, index computation...) and memory * accesses are not included. - * A naive implementation is considered (more operations might be required + * A naive implementation is considered (more operations might be required * for numerical stability in an actual implementation). * Example of Operator with only arithmetic operations: Conv. - * - * @return size_t Number of arithmetic operations. + * + * @return std::size_t Number of arithmetic operations. */ - virtual size_t getNbArithmOps() const { return 2 * getNbMACOps(); }; + virtual std::size_t getNbArithmOps() const { return 2 * getNbMACOps(); }; /** - * @brief Get the worst case total number of logic operations for the + * @brief Get the worst case total number of logic operations for the * operator data flow. This includes operations like logical shift, or, and... - * Control flow operations (loop counters, index computation...) and memory + * Control flow operations (loop counters, index computation...) and memory * accesses are not included. - * A naive implementation is considered (more operations might be required + * A naive implementation is considered (more operations might be required * for numerical stability in an actual implementation). * Example of Operator with only logic operations: BitShift. - * - * @return size_t Number of logic operations. + * + * @return std::size_t Number of logic operations. */ - virtual size_t getNbLogicOps() const { return 0; }; + virtual std::size_t getNbLogicOps() const { return 0; }; /** - * @brief Get the worst case total number of comparison operations for the + * @brief Get the worst case total number of comparison operations for the * operator data flow. This includes operations like <, >, =... - * Control flow operations (loop counters, index computation...) and memory + * Control flow operations (loop counters, index computation...) and memory * accesses are not included. - * A naive implementation is considered (more operations might be required + * A naive implementation is considered (more operations might be required * for numerical stability in an actual implementation). * Example of Operator with only comparison operations: MaxPool. - * - * @return size_t Number of comparison operations. + * + * @return std::size_t Number of comparison operations. */ - virtual size_t getNbCompOps() const { return 0; }; + virtual std::size_t getNbCompOps() const { return 0; }; /** * @brief Get the worst case total number of non-linear (NL) operations for the * operator data flow. This includes operations like calls to tanh(), erf(), cos()... - * Control flow operations (loop counters, index computation...) and memory + * Control flow operations (loop counters, index computation...) and memory * accesses are not included. - * A naive implementation is considered (more operations might be required + * A naive implementation is considered (more operations might be required * for numerical stability in an actual implementation). * Example of Operator with only NL operations: Tanh. * Non-linear operations are necessarily of floating-point type. - * - * @return size_t Number of non-linear (NL) operations. + * + * @return std::size_t Number of non-linear (NL) operations. */ - virtual size_t getNbNLOps() const { return 0; }; + virtual std::size_t getNbNLOps() const { return 0; }; /** * @brief Get the worst case total number of operations for the operator data flow. * Total number of operations = arithmetic ops + logic ops + comp ops + NL ops. - * Control flow operations (loop counters, index computation...) and memory + * Control flow operations (loop counters, index computation...) and memory * accesses are not included. - * A naive implementation is considered (more operations might be required + * A naive implementation is considered (more operations might be required * for numerical stability in an actual implementation). - * - * @return size_t Number of operations. + * + * @return std::size_t Number of operations. */ - size_t getNbOps() const { return getNbArithmOps() + getNbLogicOps() + getNbCompOps() + getNbNLOps(); }; + std::size_t getNbOps() const { return getNbArithmOps() + getNbLogicOps() + getNbCompOps() + getNbNLOps(); }; /** * @brief Get the worst case total number of INT arithmetic operations for * the operator data flow. * Such that getNbArithmOps() = getNbArithmIntOps() + getNbArithmFpOps() - * Control flow operations (loop counters, index computation...) and memory + * Control flow operations (loop counters, index computation...) and memory * accesses are not included. - * A naive implementation is considered (more operations might be required + * A naive implementation is considered (more operations might be required * for numerical stability in an actual implementation). - * - * @return size_t Number of INT arithmetic operations. + * + * @return std::size_t Number of INT arithmetic operations. */ - virtual size_t getNbArithmIntOps() const; + virtual std::size_t getNbArithmIntOps() const; /** - * @brief Get the worst case total number of FP arithmetic operations for + * @brief Get the worst case total number of FP arithmetic operations for * the operator data flow. * Such that getNbArithmOps() = getNbArithmIntOps() + getNbArithmFpOps() - * Control flow operations (loop counters, index computation...) and memory + * Control flow operations (loop counters, index computation...) and memory * accesses are not included. - * A naive implementation is considered (more operations might be required + * A naive implementation is considered (more operations might be required * for numerical stability in an actual implementation). - * - * @return size_t Number of FP arithmetic operations. + * + * @return std::size_t Number of FP arithmetic operations. */ - size_t getNbArithmFpOps() const { return getNbArithmOps() - getNbArithmIntOps(); }; + std::size_t getNbArithmFpOps() const { return getNbArithmOps() - getNbArithmIntOps(); }; /** * @brief Get the worst case total number of MAC operations for the operator - * data flow. MAC operations are included in getNbArithmOps(), with 1 MAC + * data flow. MAC operations are included in getNbArithmOps(), with 1 MAC * operation counted as 2 arithmetic operations. MAC can be INT of FP. - * Control flow operations (loop counters, index computation...) and memory + * Control flow operations (loop counters, index computation...) and memory * accesses are not included. - * A naive implementation is considered (more operations might be required + * A naive implementation is considered (more operations might be required * for numerical stability in an actual implementation). - * - * @return size_t Number of MAC operations. + * + * @return std::size_t Number of MAC operations. */ - virtual size_t getNbMACOps() const { return 0; }; - virtual ~OperatorStats() = default; + virtual std::size_t getNbMACOps() const { return 0; }; protected: const Operator &mOp; @@ -153,16 +158,20 @@ protected: /** * @brief Base class to compute statistics from a GraphView - * + * */ class StaticAnalysis : public std::enable_shared_from_this<StaticAnalysis> { public: + StaticAnalysis() = delete; StaticAnalysis(std::shared_ptr<GraphView> graph); - const std::shared_ptr<GraphView> getGraph() const noexcept { return mGraph; } + + virtual ~StaticAnalysis(); + + inline const std::shared_ptr<GraphView> getGraph() const noexcept { return mGraph; } /** * @brief Get the Operator Stats object corresponding to the given node. - * + * * @param node Node * @return std::shared_ptr<OperatorStats> Node's Operator stats */ @@ -172,65 +181,67 @@ public: * @brief Get the number of parameters associated to a node. This includes * all Producers directly connected to the node's inputs as well as all * internal Producers (in case of a meta operator). - * + * * Note: this function does not check if parameters are shared between * several nodes or not. This means that simply adding parameters count from * several nodes may lead to a higher number of parameters than in reality * if some of them are shared. - * + * * @param node Node - * @return size_t Number of parameters + * @return std::size_t Number of parameters */ - virtual size_t getNbParams(std::shared_ptr<Node> node) const; + virtual std::size_t getNbParams(std::shared_ptr<Node> node) const; /** * @brief Get the total parameters memory size, in bits, associated to a node. - * This includes all Producers directly connected to the node's inputs as + * This includes all Producers directly connected to the node's inputs as * well as all internal Producers (in case of a meta operator). - * + * * Note: this function does not check if parameters are shared between * several nodes or not. This means that simply adding parameters size from * several nodes may lead to a higher parameter size than in reality * if some of them are shared. - * + * * @param node Node - * @return size_t Total parameters memory, in bits + * @return std::size_t Total parameters memory, in bits */ - virtual size_t getParamsSize(std::shared_ptr<Node> node) const; - - size_t getNbArithmOps() const { return accumulate(&OperatorStats::getNbArithmOps); } - size_t getNbLogicOps() const { return accumulate(&OperatorStats::getNbLogicOps); } - size_t getNbCompOps() const { return accumulate(&OperatorStats::getNbCompOps); } - size_t getNbNLOps() const { return accumulate(&OperatorStats::getNbNLOps); } - size_t getNbOps() const { return accumulate(&OperatorStats::getNbOps); } - size_t getNbArithmIntOps() const { return accumulate(&OperatorStats::getNbArithmIntOps); } - size_t getNbArithmFpOps() const { return accumulate(&OperatorStats::getNbArithmFpOps); } - size_t getNbMACOps() const { return accumulate(&OperatorStats::getNbMACOps); } + virtual std::size_t getParamsSize(std::shared_ptr<Node> node) const; + + std::size_t getNbArithmOps() const; + std::size_t getNbLogicOps() const; + std::size_t getNbCompOps() const; + std::size_t getNbNLOps() const; + std::size_t getNbOps() const; + std::size_t getNbArithmIntOps() const; + std::size_t getNbArithmFpOps() const; + std::size_t getNbMACOps() const; virtual void summary(bool incProducers = false) const; - virtual ~StaticAnalysis() = default; protected: const std::shared_ptr<GraphView> mGraph; - size_t accumulate(size_t (OperatorStats::*func)() const) const; + std::size_t accumulate(std::size_t (OperatorStats::*func)() const) const; }; //////////////////////////////////////////////////////////////////////////////// class MetaOpStats : public OperatorStats { public: + MetaOpStats() = delete; MetaOpStats(const Operator& op) : OperatorStats(op) {} + ~MetaOpStats(); + static std::unique_ptr<MetaOpStats> create(const Operator& op) { return std::make_unique<MetaOpStats>(op); } - size_t getNbArithmOps() const override { return StaticAnalysis(dynamic_cast<const MetaOperator_Op&>(mOp).getMicroGraph()).getNbArithmOps(); } - size_t getNbLogicOps() const override { return StaticAnalysis(dynamic_cast<const MetaOperator_Op&>(mOp).getMicroGraph()).getNbLogicOps(); } - size_t getNbCompOps() const override { return StaticAnalysis(dynamic_cast<const MetaOperator_Op&>(mOp).getMicroGraph()).getNbCompOps(); } - size_t getNbNLOps() const override { return StaticAnalysis(dynamic_cast<const MetaOperator_Op&>(mOp).getMicroGraph()).getNbNLOps(); } - size_t getNbArithmIntOps() const override { return StaticAnalysis(dynamic_cast<const MetaOperator_Op&>(mOp).getMicroGraph()).getNbArithmIntOps(); } - size_t getNbMACOps() const override { return StaticAnalysis(dynamic_cast<const MetaOperator_Op&>(mOp).getMicroGraph()).getNbMACOps(); } + std::size_t getNbArithmOps() const override; + std::size_t getNbLogicOps() const override; + std::size_t getNbCompOps() const override; + std::size_t getNbNLOps() const override; + std::size_t getNbArithmIntOps() const override; + std::size_t getNbMACOps() const override; }; template <class OP> @@ -242,7 +253,7 @@ public: return std::make_unique<ConvStats<OP>>(op); } - size_t getNbMACOps() const override { + std::size_t getNbMACOps() const override { const OP& op_ = dynamic_cast<const OP&>(mOp); AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis"); const std::size_t weightsSize = op_.getInput(1)->size(); @@ -250,7 +261,7 @@ public: = std::accumulate(op_.getOutput(0)->dims().cbegin() + 2, op_.getOutput(0)->dims().cend(), 1, - std::multiplies<size_t>()); // NCHW... + std::multiplies<std::size_t>()); // NCHW... const std::size_t batchSize = op_.getInput(0)->dims()[0]; // NCHW return batchSize * (weightsSize * outputSize); } @@ -271,19 +282,19 @@ public: return std::make_unique<MaxPoolingStats<OP>>(op); } - size_t getNbCompOps() const override { + std::size_t getNbCompOps() const override { const OP& op_ = dynamic_cast<const OP&>(mOp); AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis"); const std::size_t poolSize = std::accumulate(op_.kernelDims().cbegin(), op_.kernelDims().cend(), 1, - std::multiplies<size_t>()); + std::multiplies<std::size_t>()); const std::size_t outputSize = std::accumulate(op_.getOutput(0)->dims().cbegin() + 2, op_.getOutput(0)->dims().cend(), 1, - std::multiplies<size_t>()); // NCHW... + std::multiplies<std::size_t>()); // NCHW... const std::size_t batchSize = op_.getInput(0)->dims()[0]; // NCHW return batchSize * ((poolSize - 1) * outputSize); } @@ -302,19 +313,19 @@ public: return std::make_unique<AvgPoolingStats<OP>>(op); } - size_t getNbArithmOps() const override { + std::size_t getNbArithmOps() const override { const OP& op_ = dynamic_cast<const OP&>(mOp); AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis"); const std::size_t poolSize = std::accumulate(op_.kernelDims().cbegin(), op_.kernelDims().cend(), 1, - std::multiplies<size_t>()); + std::multiplies<std::size_t>()); const std::size_t outputSize = std::accumulate(op_.getOutput(0)->dims().cbegin() + 2, op_.getOutput(0)->dims().cend(), 1, - std::multiplies<size_t>()); // NCHW... + std::multiplies<std::size_t>()); // NCHW... const std::size_t batchSize = op_.getInput(0)->dims()[0]; // NCHW // (poolSize - 1) additions + 1 division for each output return batchSize * (poolSize * outputSize); @@ -334,7 +345,7 @@ public: return std::make_unique<FCStats>(op); } - size_t getNbMACOps() const override { + std::size_t getNbMACOps() const override { const FC_Op& op_ = dynamic_cast<const FC_Op&>(mOp); AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis"); const std::size_t weightsSize = op_.getInput(1)->size(); @@ -353,20 +364,20 @@ public: return std::make_unique<MatMulStats>(op); } - size_t getNbMACOps() const override { + std::size_t getNbMACOps() const override { const MatMul_Op& op_ = dynamic_cast<const MatMul_Op&>(mOp); AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis"); - const size_t n = (op_.getInput(0)->dims().size() > 1) + const std::size_t n = (op_.getInput(0)->dims().size() > 1) ? op_.getInput(0)->dims().end()[-2] : 1; - const size_t k = op_.getInput(0)->dims().back(); - const size_t m = (op_.getInput(1)->dims().size() > 1) + const std::size_t k = op_.getInput(0)->dims().back(); + const std::size_t m = (op_.getInput(1)->dims().size() > 1) ? op_.getInput(1)->dims().back() : 1; - const size_t nb = (op_.getInput(0)->dims().size() > 2) + const std::size_t nb = (op_.getInput(0)->dims().size() > 2) ? std::accumulate(op_.getInput(0)->dims().cbegin(), op_.getInput(0)->dims().cend() - 2, 1, - std::multiplies<size_t>()) - : 1; + std::multiplies<std::size_t>()) + : 1; return nb * n * m * k; } @@ -382,7 +393,7 @@ public: return std::make_unique<ReLUStats>(op); } - size_t getNbCompOps() const override { + std::size_t getNbCompOps() const override { const OperatorTensor& op_ = dynamic_cast<const OperatorTensor&>(mOp); AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis"); return op_.getOutput(0)->size(); @@ -399,14 +410,14 @@ public: return std::make_unique<AbsStats>(op); } - size_t getNbCompOps() const override { + std::size_t getNbCompOps() const override { const OperatorTensor& op_ = dynamic_cast<const OperatorTensor&>(mOp); AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis"); return op_.getOutput(0)->size(); } // This is in the worst case (all values are negative) - size_t getNbArithmOps() const override { + std::size_t getNbArithmOps() const override { const OperatorTensor& op_ = dynamic_cast<const OperatorTensor&>(mOp); AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis"); return op_.getOutput(0)->size(); @@ -423,12 +434,12 @@ public: return std::make_unique<ReduceMeanStats>(op); } - size_t getNbArithmOps() const override { + std::size_t getNbArithmOps() const override { const ReduceMean_Op& op_ = dynamic_cast<const ReduceMean_Op&>(mOp); AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis"); - const size_t nbIn = op_.getInput(0)->size(); - const size_t nbOut = op_.getOutput(0)->size(); - const size_t nbReduce = nbIn / nbOut; + const std::size_t nbIn = op_.getInput(0)->size(); + const std::size_t nbOut = op_.getOutput(0)->size(); + const std::size_t nbReduce = nbIn / nbOut; // (nbReduce - 1) additions + 1 division for each output return nbOut * nbReduce; } @@ -444,12 +455,12 @@ public: return std::make_unique<ReduceSumStats>(op); } - size_t getNbArithmOps() const override { + std::size_t getNbArithmOps() const override { const ReduceSum_Op& op_ = dynamic_cast<const ReduceSum_Op&>(mOp); AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis"); - const size_t nbIn = op_.getInput(0)->size(); - const size_t nbOut = op_.getOutput(0)->size(); - const size_t nbReduce = nbIn / nbOut; + const std::size_t nbIn = op_.getInput(0)->size(); + const std::size_t nbOut = op_.getOutput(0)->size(); + const std::size_t nbReduce = nbIn / nbOut; // (nbReduce - 1) additions for each output return nbOut * (nbReduce - 1); } @@ -465,22 +476,22 @@ public: return std::make_unique<SoftmaxStats>(op); } - size_t getNbArithmOps() const override { + std::size_t getNbArithmOps() const override { const Softmax_Op& op_ = dynamic_cast<const Softmax_Op&>(mOp); AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis"); - const size_t axis = (op_.axis() >= 0) ? op_.axis() : op_.getInput(0)->nbDims() + op_.axis(); - const size_t nbReduce = op_.getInput(0)->dims()[axis]; - const size_t nbOut = op_.getOutput(0)->size(); + const std::size_t axis = (op_.axis() >= 0) ? op_.axis() : op_.getInput(0)->nbDims() + op_.axis(); + const std::size_t nbReduce = op_.getInput(0)->dims()[axis]; + const std::size_t nbOut = op_.getOutput(0)->size(); // nbOut divisions + (nbReduce - 1) additions return nbOut + (nbReduce - 1); } - size_t getNbNLOps() const override { + std::size_t getNbNLOps() const override { const Softmax_Op& op_ = dynamic_cast<const Softmax_Op&>(mOp); AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis"); - const size_t axis = (op_.axis() >= 0) ? op_.axis() : op_.getInput(0)->nbDims() + op_.axis(); - const size_t nbReduce = op_.getInput(0)->dims()[axis]; - const size_t nbOut = op_.getOutput(0)->size(); + const std::size_t axis = (op_.axis() >= 0) ? op_.axis() : op_.getInput(0)->nbDims() + op_.axis(); + const std::size_t nbReduce = op_.getInput(0)->dims()[axis]; + const std::size_t nbOut = op_.getOutput(0)->size(); // nbOut exp + nbReduce exp return nbOut + nbReduce; } @@ -515,7 +526,7 @@ public: return std::make_unique<ElemWiseOpStats>(op); } - size_t getNbArithmOps() const override { + std::size_t getNbArithmOps() const override { const OperatorTensor& op_ = dynamic_cast<const OperatorTensor&>(mOp); AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis"); return op_.getOutput(0)->size(); @@ -535,7 +546,7 @@ public: return std::make_unique<ElemWiseLogicOpStats>(op); } - size_t getNbArithmOps() const override { + std::size_t getNbArithmOps() const override { const OperatorTensor& op_ = dynamic_cast<const OperatorTensor&>(mOp); AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis"); return op_.getOutput(0)->size(); @@ -552,7 +563,7 @@ public: return std::make_unique<ElemWiseNLOpStats>(op); } - size_t getNbNLOps() const override { + std::size_t getNbNLOps() const override { const OperatorTensor& op_ = dynamic_cast<const OperatorTensor&>(mOp); AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis"); return op_.getOutput(0)->size(); diff --git a/include/aidge/operator/ArgMax.hpp b/include/aidge/operator/ArgMax.hpp index 13f63ce98c526f0c57a363ada4e7f50ccdbfb83b..a2d344cba3dd7af3b6f0b2b4078852afcd0ae8cf 100644 --- a/include/aidge/operator/ArgMax.hpp +++ b/include/aidge/operator/ArgMax.hpp @@ -52,12 +52,12 @@ public: /** * @brief constructor for ArgMax op * @param[in] axis around which perform the operation - * @param[in] keep_dims if true we set a dimension of 1 in the place of the reduced axis and + * @param[in] keep_dims if true we set a dimension of 1 in the place of the reduced axis and * if false we remove the dimension completely - * @param[in] select_last_index in case we have many maximum, if true the last index is returned - * if false the first index is returned. + * @param[in] select_last_index in case we have many maximum, if true the last index is returned + * if false the first index is returned. */ - ArgMax_Op(std::int32_t axis, bool keep_dims, bool select_last_index) + ArgMax_Op(std::int32_t axis = 0, bool keep_dims = true, bool select_last_index = false) : OperatorTensor(Type, {InputCategory::Data}, 1), mAttributes(std::make_shared<Attributes_>( attr<ArgMaxAttr::Axis>(axis), @@ -69,24 +69,13 @@ public: * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated). * @param op Operator to copy. */ - ArgMax_Op(const ArgMax_Op& op) - : OperatorTensor(op), - mAttributes(op.mAttributes) - { - if (op.mImpl){ - SET_IMPL_MACRO(ArgMax_Op, *this, op.backend()); - } else { - mImpl = nullptr; - } - } + ArgMax_Op(const ArgMax_Op& op); /** * @brief Clone the operator using its copy-constructor. * @see Operator::ArgMax_Op */ - std::shared_ptr<Operator> clone() const override { - return std::make_shared<ArgMax_Op>(*this); - } + std::shared_ptr<Operator> clone() const override; bool forwardDims(bool allowDataDependency = false) override final; @@ -114,17 +103,14 @@ public: * @param axis Dimension over which data max should be computed. * @param keep_dims Whether or not reduced dimensions are to be erased. * @param select_last_index Whether to select the last index of max elements in case there are many maximums. - * By default the first max element index is + * By default the first max element index is * @param name Name of the Operator. * @return std::shared_ptr<Node> Node containing the Operator. */ -inline std::shared_ptr<Node> ArgMax(std::int32_t axis=0, - bool keep_dims=true, - bool select_last_index=false, - const std::string& name = "") { - return std::make_shared<Node>(std::make_shared<ArgMax_Op>(axis, keep_dims, select_last_index), name); - -} +std::shared_ptr<Node> ArgMax(std::int32_t axis = 0, + bool keep_dims = true, + bool select_last_index = false, + const std::string& name = ""); } // namespace Aidge diff --git a/include/aidge/operator/Operator.hpp b/include/aidge/operator/Operator.hpp index 95698b751a9f0f4c0cc8e716eb5140ee74e21a3f..5f148e126b889c422392923fa33ea1cffbbd654e 100644 --- a/include/aidge/operator/Operator.hpp +++ b/include/aidge/operator/Operator.hpp @@ -12,11 +12,11 @@ #ifndef AIDGE_CORE_OPERATOR_OPERATOR_H_ #define AIDGE_CORE_OPERATOR_OPERATOR_H_ +#include <cstddef> #include <memory> #include <string> #include <vector> #include <utility> -#include <cstddef> #ifdef PYBIND #include <pybind11/pybind11.h> @@ -49,11 +49,19 @@ enum class InputCategory { class Operator : public std::enable_shared_from_this<Operator> { protected: - std::shared_ptr<OperatorImpl> mImpl; // implementation of the operator - std::shared_ptr<DynamicAttributes> mInheritedAttrs; + /** Implementation of the operator. */ + std::shared_ptr<OperatorImpl> mImpl; + /** Attributes of the associated Node. + * + * Default to empty vector for copy construction because two Operator cannot + * be associated to the same Node. + */ + std::vector<std::shared_ptr<DynamicAttributes>> mInheritedAttrs{}; private: + /** Type of Operator. */ std::string mType; + /** Type of data the Operator should handle. */ const OperatorType mOperatorType; const std::vector<InputCategory> mInputsCategory; const IOIndex_t mNbOut; @@ -82,18 +90,34 @@ public: // Implementation is never cloned. It is up to the non-abstract Operator copy-constructor to create a new implementation matching the copied Operator implementation. // See https://gitlab.eclipse.org/eclipse/aidge/aidge_core/-/merge_requests/8#note_1214050 for the discussion. } - std::shared_ptr<Operator> operator()(std::shared_ptr<DynamicAttributes> attrs) { - mInheritedAttrs = attrs; - return shared_from_this(); - } + // std::shared_ptr<Operator> operator()(std::shared_ptr<DynamicAttributes> attrs) { + // mInheritedAttrs = attrs; + // return shared_from_this(); + // } virtual ~Operator() noexcept; public: + void setInheritedAttrs(std::shared_ptr<DynamicAttributes>& attr) { + mInheritedAttrs.push_back(attr); + } virtual std::shared_ptr<Operator> clone() const = 0; virtual std::shared_ptr<Attributes> attributes() const { return nullptr; }; - virtual std::shared_ptr<DynamicAttributes> inheritedAttributes() const { return mInheritedAttrs; }; + + /** + * @brief Get the currently associated Node's attributes. + * @return Shared pointer to the Attributes of the associated Node. + * + * If no Node as be associated to the Operator, returns a `nullptr`. + * @note As Operators have only been tested with a single associated Node, + * only attributes of the first associated Node are returned. This should be + * updated. + */ + virtual std::shared_ptr<DynamicAttributes> inheritedAttributes() const { + return mInheritedAttrs.empty() ? nullptr : mInheritedAttrs[0]; + } + /** * @brief Set the specified input with a shallow copy. * @param inputIdx Index of the input to set. diff --git a/include/aidge/operator/OperatorTensor.hpp b/include/aidge/operator/OperatorTensor.hpp index 19e2f13e4ff39fee181c6ad0cf2fbab510f22c3e..5a4fcb5f492bb60899f00e11f35793df0e65789f 100644 --- a/include/aidge/operator/OperatorTensor.hpp +++ b/include/aidge/operator/OperatorTensor.hpp @@ -43,7 +43,7 @@ public: /** * @brief Operator tensor constructor. This function is not meant to be called directly but by a derived class constructor * every operator class derive from this class. - * + * * @param[in] type : type of operator (i.e. "Add", "AveragePool",...) * @param[in] inputsCategory : describes the type of each input. * @param[in] nbOut : Number of tensors this operator will output @@ -67,11 +67,14 @@ public: // input management void setInput(const IOIndex_t inputIdx, const std::shared_ptr<Data>& data) override; const std::shared_ptr<Tensor>& getInput(const IOIndex_t inputIdx) const; + virtual const std::vector<std::shared_ptr<Tensor>>& getInputs() const; std::shared_ptr<Data> getRawInput(const IOIndex_t inputIdx) const override final; // output management void setOutput(const IOIndex_t outputIdx, const std::shared_ptr<Data>& data) const override; virtual const std::shared_ptr<Tensor>& getOutput(const IOIndex_t outputIdx) const; + virtual const std::vector<std::shared_ptr<Tensor>>& getOutputs() const; + std::shared_ptr<Aidge::Data> getRawOutput(const Aidge::IOIndex_t outputIdx) const override final; /////////////////////////////////////////////////// @@ -94,7 +97,7 @@ public: * - TOKEN mode means that forwarddims will only ensure that all inputs and outputs of the graph the node is within are connected. * @param[in] allowDataDependency if set to true, this means that this operator output dimensions depends on the dimensions of optional parameter tensors. * @return true if dims have been properly forwarded. false otherwise. If set to false, then forwardDims will enter in token mode. - * + * */ virtual bool forwardDims(bool allowDataDependency = false); virtual bool dimsForwarded() const; @@ -110,4 +113,4 @@ protected: }; } // namespace Aidge -#endif // AIDGE_CORE_OPERATOR_OPERATORTENSOR_H_ \ No newline at end of file +#endif // AIDGE_CORE_OPERATOR_OPERATORTENSOR_H_ diff --git a/include/aidge/operator/Slice.hpp b/include/aidge/operator/Slice.hpp index 5bb07ae01d8f076891a803698d2b3f489d90b462..bf98736f0cab95b4ad618d1bee0850520144428d 100644 --- a/include/aidge/operator/Slice.hpp +++ b/include/aidge/operator/Slice.hpp @@ -31,6 +31,10 @@ public: void forward() override; }; +// Implementation note: +// If start or end are out of bound then it takes the max value for the given axe. +// Example Slice with start=1, end=1000, axes=0 for tensor [0, 1, 2, 3] +// Will return [1, 2, 3] enum class SliceAttr { Starts, Ends, Axes, Steps }; class Slice_Op diff --git a/include/aidge/operator/WeightInterleaving.hpp b/include/aidge/operator/WeightInterleaving.hpp new file mode 100644 index 0000000000000000000000000000000000000000..e9e51441aab7772ca5cbb26195c94a0a837d7157 --- /dev/null +++ b/include/aidge/operator/WeightInterleaving.hpp @@ -0,0 +1,83 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#ifndef AIDGE_CORE_OPERATOR_WEIGHTINTERLEAVING_H_ +#define AIDGE_CORE_OPERATOR_WEIGHTINTERLEAVING_H_ + +#include <cassert> +#include <memory> +#include <vector> + +#include "aidge/backend/OperatorImpl.hpp" +#include "aidge/graph/Node.hpp" +#include "aidge/operator/OperatorTensor.hpp" +#include "aidge/utils/ErrorHandling.hpp" +#include "aidge/utils/Registrar.hpp" +#include "aidge/utils/Types.h" + + +namespace Aidge { + +class WeightInterleaving_Op : + public OperatorTensor, + public Registrable<WeightInterleaving_Op, // <Op, backend, implementation creation function> + std::string, + std::function<std::shared_ptr<OperatorImpl>(const WeightInterleaving_Op&)>> +{ +public: + static const std::string Type; + + WeightInterleaving_Op() : OperatorTensor(Type, {InputCategory::Data}, 1) {} + + /** + * @brief Copy-constructor. + * @param op WeightInterleaving_Op to copy. + * @details Copies the operator attributes and its output tensor(s), but not + * its input tensors. The new operator has no associated input. + */ + WeightInterleaving_Op(const WeightInterleaving_Op& op); + + /** + * @brief Clone the operator using its copy-constructor. + * @see Operator::WeightInterleaving_Op + */ + std::shared_ptr<Operator> clone() const override; + + bool forwardDims(bool allowDataDependency = false) override final; + + void setBackend(const std::string& name, DeviceIdx_t device = 0) override final; + std::set<std::string> getAvailableBackends() const override; + + static const std::vector<std::string> getInputsName(){ + return {"data_input"}; + } + static const std::vector<std::string> getOutputsName(){ + return {"data_output"}; + } + + /** + * @brief Calculates the required size for the 8-bits`compactData` vector. + * + * This function determines the minimum number of bytes needed in `compactData` + * to store `dataSize` elements compacted to `nb_bits` bits each. + * + * @param dataSize The total number of elements in the input data array. + * @param nb_bits The number of bits to use for each compacted element (from 1 to 7). + * @return std::size_t The required size in bytes for `compactData`. + */ + std::size_t compactDataSize(std::size_t dataSize, std::uint8_t nb_bits); + +}; + +std::shared_ptr<Node> WeightInterleaving(const std::string& name = ""); +} + +#endif /* AIDGE_CORE_OPERATOR_RELU_H_ */ diff --git a/include/aidge/recipes/Recipes.hpp b/include/aidge/recipes/Recipes.hpp index aa4d3ae1b79d3feb04eb1db7623633174a15c7ce..0a3f5dc4d0ea00ddb5c8d0b8885269c882f7f705 100644 --- a/include/aidge/recipes/Recipes.hpp +++ b/include/aidge/recipes/Recipes.hpp @@ -186,19 +186,24 @@ size_t convToMatMul(std::shared_ptr<GraphView> graph); */ void adaptToBackend(std::shared_ptr<GraphView> graph); -// /** -// * @brief The node passed contains an operator which input of index 1 is supposed be be weights of type Int4, Int3, Int2, binary. -// * This recipie only operates memory transformations on the weight tensor. -// * First, permutes the dimensions to match the dataformat NHWC -// * Second, compact the last dimension (Channel dimension) into int8_t -// * -// * @param node Node -// */ -// void applyWeightInterleaving(std::shared_ptr<Node> node); - +/** + * @brief Create a GenericOp from an Operator and replace it + * + * @param node Node which Operator will be changed into a generic Operator + */ void toGenericOp(std::shared_ptr<Node> node); +/** + * @brief The node passed contains an operator which input of index 1 is supposed be be weights of type Int4, Int3, Int2, binary. + * This recipie only operates memory transformations on the weight tensor. + * First, permutes the dimensions to match the dataformat NHWC + * Second, compact the last dimension of the weights (Channel dimension) into 8bits + * + * @param node Node + */ +void applyWeightInterleaving(std::shared_ptr<Node> node); + } // namespace Aidge #endif /* AIDGE_CORE_UTILS_RECIPES_H_ */ diff --git a/include/aidge/utils/DynamicAttributes.hpp b/include/aidge/utils/DynamicAttributes.hpp index 0fc350f1a10227e417f3b09baf2c7bebeb84d875..6ac76c138e2a835f8e74c5ede26e449c537d61d2 100644 --- a/include/aidge/utils/DynamicAttributes.hpp +++ b/include/aidge/utils/DynamicAttributes.hpp @@ -365,7 +365,7 @@ public: static inline typename std::enable_if<!has_less_than_operator<T>::value, void>::type makeTypeConditionallyAvailable() {} template<typename T> - static inline typename std::enable_if<has_less_than_operator<T>::value, void>::type makeTypeConditionallyAvailable() { + static typename std::enable_if<has_less_than_operator<T>::value, void>::type makeTypeConditionallyAvailable() { mAnyUtils.emplace(typeid(T), std::unique_ptr<AnyUtils<T>>(new AnyUtils<T>())); } @@ -388,7 +388,7 @@ struct DynamicAttributes::AnyUtils<py::object> : public DynamicAttributes::AnyUt size_t hash(const future_std::any& attr) const override final { // Here we are mixing Python and C++ hashes... if both are - // well implemented, this should not increase the collision + // well implemented, this should not increase the collision // probability for the same number of stored hashes. return py::hash(future_std::any_cast<py::object>(attr)); } diff --git a/include/aidge/utils/Log.hpp b/include/aidge/utils/Log.hpp index d6851f1e42233f9d8af88d10da9046f73f94b8c4..bc99ab7c0362f5bfa4c2f1bbc01f3089d28d699f 100644 --- a/include/aidge/utils/Log.hpp +++ b/include/aidge/utils/Log.hpp @@ -19,7 +19,6 @@ #include <fmt/ranges.h> #include "aidge/data/half_fmt.hpp" - #include "aidge/utils/Attributes.hpp" namespace Aidge { diff --git a/include/aidge/utils/sys_info/CoreVersionInfo.hpp b/include/aidge/utils/sys_info/CoreVersionInfo.hpp new file mode 100644 index 0000000000000000000000000000000000000000..648998ede84a886315be9f26dfde68e7abddd345 --- /dev/null +++ b/include/aidge/utils/sys_info/CoreVersionInfo.hpp @@ -0,0 +1,37 @@ +#ifndef AIDGE_UTILS_SYS_INFO_CORE_VERSION_INFO_H +#define AIDGE_UTILS_SYS_INFO_CORE_VERSION_INFO_H + +#include "aidge/utils/Log.hpp" +#include "aidge/core_version.h" + +namespace Aidge { + +constexpr inline const char * getCoreProjectVersion(){ + return PROJECT_VERSION; +} + +constexpr inline const char * getCoreGitHash(){ + return PROJECT_GIT_HASH; +} + +void showCoreVersion() { + Log::info("Aidge core: {} ({}), {} {}", getCoreProjectVersion(), getCoreGitHash(), __DATE__, __TIME__); + // Compiler version + #if defined(__clang__) + /* Clang/LLVM. ---------------------------------------------- */ + Log::info("Clang/LLVM compiler version: {}.{}.{}\n", __clang_major__ , __clang_minor__, __clang_patchlevel__); + #elif defined(__ICC) || defined(__INTEL_COMPILER) + /* Intel ICC/ICPC. ------------------------------------------ */ + Log::info("Intel ICC/ICPC compiler version: {}\n", __INTEL_COMPILER); + #elif defined(__GNUC__) || defined(__GNUG__) + /* GNU GCC/G++. --------------------------------------------- */ + Log::info("GNU GCC/G++ compiler version: {}.{}.{}", __GNUC__, __GNUC_MINOR__, __GNUC_PATCHLEVEL__); + #elif defined(_MSC_VER) + /* Microsoft Visual Studio. --------------------------------- */ + Log::info("Microsoft Visual Studio compiler version: {}\n", _MSC_VER); + #else + Log::info("Unknown compiler\n"); + #endif +} +} // namespace Aidge +#endif // AIDGE_UTILS_SYS_INFO_CORE_VERSION_INFO_H diff --git a/include/aidge/version.h.in b/include/aidge/version.h.in new file mode 100644 index 0000000000000000000000000000000000000000..4b876f63002972c1f8f1340b70cdecdace911012 --- /dev/null +++ b/include/aidge/version.h.in @@ -0,0 +1,11 @@ +#ifndef VERSION_H +#define VERSION_H + +namespace Aidge { +static constexpr const int PROJECT_VERSION_MAJOR = @PROJECT_VERSION_MAJOR@; +static constexpr const int PROJECT_VERSION_MINOR = @PROJECT_VERSION_MINOR@; +static constexpr const int PROJECT_VERSION_PATCH = @PROJECT_VERSION_PATCH@; +static constexpr const char * PROJECT_VERSION = "@PROJECT_VERSION_MAJOR@.@PROJECT_VERSION_MINOR@.@PROJECT_VERSION_PATCH@"; +static constexpr const char * PROJECT_GIT_HASH = "@GIT_COMMIT_HASH@"; +} +#endif // VERSION_H diff --git a/pyproject.toml b/pyproject.toml index b838aca5ee100d182ba88b79f23f3a2ebff9acf3..610b5f8c226fcf2f040a6d6c22cffcb0498a0f8d 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,18 +1,27 @@ [project] -name = "aidge_core" +name="aidge_core" + description="Core algorithms for operators and graph of the AIDGE framework" dependencies = [ "numpy>=1.21.6", - "Jinja2>=3.1.2" + "Jinja2>=3.1.2", + "matplotlib" ] requires-python = ">= 3.7" readme = "README.md" license = { file = "LICENSE" } -classifiers = [ +classifiers = [ "Development Status :: 2 - Pre-Alpha", "Programming Language :: Python :: 3" ] -dynamic = ["version"] # defined in tool.setuptools_scm +dynamic = ["version"] # defined by pbr + +[project.urls] +Homepage = "https://www.deepgreen.ai/en/platform" +Documentation = "https://eclipse-aidge.readthedocs.io/en/latest/" +Repository = "https://gitlab.eclipse.org/eclipse/aidge/aidge_core" +Issues = "https://gitlab.eclipse.org/eclipse/aidge/aidge_core/-/issues/" +Changelog = "https://gitlab.eclipse.org/eclipse/aidge/aidge_core/-/releases" [project.optional-dependencies] test = [ @@ -22,8 +31,8 @@ test = [ [build-system] requires = [ "setuptools>=64", - "setuptools_scm[toml]==7.1.0", - "cmake>=3.18.4.post1" + "cmake>=3.18.4.post1", + "pbr" ] build-backend = "setuptools.build_meta" @@ -40,11 +49,7 @@ exclude = [ # exclude packages matching these glob patterns (empty by default) ".unit_tests.static", ".aidge_export_aidge.__pycache__", ".aidge_export_aidge.utils.__pycache__", -] - -# SETUPTOOLS_SCM -[tool.setuptools_scm] -write_to = "aidge_core/_version.py" +] ##################################################### # CIBUILDWHEEL diff --git a/python_binding/data/pybind_Tensor.cpp b/python_binding/data/pybind_Tensor.cpp index 0d4ed716ca6c65c2e8a0153a729ebecef771ea9e..35e60e1589ce5599affbc2b466171acc6bf4ef01 100644 --- a/python_binding/data/pybind_Tensor.cpp +++ b/python_binding/data/pybind_Tensor.cpp @@ -226,6 +226,8 @@ static T castToNativeType(const py::object val_obj) { DataType dtype; getConservativeNativeVal(val_obj, &val, &dtype); switch (dtype) { + case DataType::Int4: + return (T)val.i8; case DataType::Int8: return (T)val.i8; case DataType::Int16: @@ -353,6 +355,22 @@ void init_Tensor(py::module& m){ return py::cast(b.get<float>(idx)); case DataType::Int8: return py::cast(b.get<std::int8_t>(idx)); + case DataType::Int4: + return py::cast(b.get<std::int8_t>(idx)); + case DataType::Dual_Int4: + return py::cast(b.get<std::int8_t>(idx)); + case DataType::Int3: + return py::cast(b.get<std::int8_t>(idx)); + case DataType::Dual_Int3: + return py::cast(b.get<std::int8_t>(idx)); + case DataType::Int2: + return py::cast(b.get<std::int8_t>(idx)); + case DataType::Quad_Int2: + return py::cast(b.get<std::int8_t>(idx)); + case DataType::Binary: + return py::cast(b.get<std::int8_t>(idx)); + case DataType::Octo_Binary: + return py::cast(b.get<std::int8_t>(idx)); case DataType::Int16: return py::cast(b.get<std::int16_t>(idx)); case DataType::Int32: @@ -361,6 +379,18 @@ void init_Tensor(py::module& m){ return py::cast(b.get<std::int64_t>(idx)); case DataType::UInt8: return py::cast(b.get<std::uint8_t>(idx)); + case DataType::UInt4: + return py::cast(b.get<std::uint8_t>(idx)); + case DataType::Dual_UInt4: + return py::cast(b.get<std::uint8_t>(idx)); + case DataType::UInt3: + return py::cast(b.get<std::uint8_t>(idx)); + case DataType::Dual_UInt3: + return py::cast(b.get<std::uint8_t>(idx)); + case DataType::UInt2: + return py::cast(b.get<std::uint8_t>(idx)); + case DataType::Quad_UInt2: + return py::cast(b.get<std::uint8_t>(idx)); case DataType::UInt16: return py::cast(b.get<std::uint16_t>(idx)); case DataType::UInt32: @@ -380,6 +410,22 @@ void init_Tensor(py::module& m){ return py::cast(b.get<float>(coordIdx)); case DataType::Int8: return py::cast(b.get<std::int8_t>(coordIdx)); + case DataType::Int4: + return py::cast(b.get<std::int8_t>(coordIdx)); + case DataType::Dual_Int4: + return py::cast(b.get<std::int8_t>(coordIdx)); + case DataType::Int3: + return py::cast(b.get<std::int8_t>(coordIdx)); + case DataType::Dual_Int3: + return py::cast(b.get<std::int8_t>(coordIdx)); + case DataType::Int2: + return py::cast(b.get<std::int8_t>(coordIdx)); + case DataType::Quad_Int2: + return py::cast(b.get<std::int8_t>(coordIdx)); + case DataType::Binary: + return py::cast(b.get<std::int8_t>(coordIdx)); + case DataType::Octo_Binary: + return py::cast(b.get<std::int8_t>(coordIdx)); case DataType::Int16: return py::cast(b.get<std::int16_t>(coordIdx)); case DataType::Int32: @@ -388,6 +434,18 @@ void init_Tensor(py::module& m){ return py::cast(b.get<std::int64_t>(coordIdx)); case DataType::UInt8: return py::cast(b.get<std::uint8_t>(coordIdx)); + case DataType::UInt4: + return py::cast(b.get<std::uint8_t>(coordIdx)); + case DataType::Dual_UInt4: + return py::cast(b.get<std::uint8_t>(coordIdx)); + case DataType::UInt3: + return py::cast(b.get<std::uint8_t>(coordIdx)); + case DataType::Dual_UInt3: + return py::cast(b.get<std::uint8_t>(coordIdx)); + case DataType::UInt2: + return py::cast(b.get<std::uint8_t>(coordIdx)); + case DataType::Quad_UInt2: + return py::cast(b.get<std::uint8_t>(coordIdx)); case DataType::UInt16: return py::cast(b.get<std::uint16_t>(coordIdx)); case DataType::UInt32: @@ -410,6 +468,30 @@ void init_Tensor(py::module& m){ case DataType::Int8: b.set(idx, castToNativeType<std::int8_t>(val)); break; + case DataType::Int4: + b.set(idx, castToNativeType<std::int8_t>(val)); + break; + case DataType::Dual_Int4: + b.set(idx, castToNativeType<std::int8_t>(val)); + break; + case DataType::Int3: + b.set(idx, castToNativeType<std::int8_t>(val)); + break; + case DataType::Dual_Int3: + b.set(idx, castToNativeType<std::int8_t>(val)); + break; + case DataType::Int2: + b.set(idx, castToNativeType<std::int8_t>(val)); + break; + case DataType::Quad_Int2: + b.set(idx, castToNativeType<std::int8_t>(val)); + break; + case DataType::Binary: + b.set(idx, castToNativeType<std::int8_t>(val)); + break; + case DataType::Octo_Binary: + b.set(idx, castToNativeType<std::int8_t>(val)); + break; case DataType::Int16: b.set(idx, castToNativeType<std::int16_t>(val)); break; @@ -422,6 +504,24 @@ void init_Tensor(py::module& m){ case DataType::UInt8: b.set(idx, castToNativeType<std::uint8_t>(val)); break; + case DataType::UInt4: + b.set(idx, castToNativeType<std::uint8_t>(val)); + break; + case DataType::Dual_UInt4: + b.set(idx, castToNativeType<std::uint8_t>(val)); + break; + case DataType::UInt3: + b.set(idx, castToNativeType<std::uint8_t>(val)); + break; + case DataType::Dual_UInt3: + b.set(idx, castToNativeType<std::uint8_t>(val)); + break; + case DataType::UInt2: + b.set(idx, castToNativeType<std::uint8_t>(val)); + break; + case DataType::Quad_UInt2: + b.set(idx, castToNativeType<std::uint8_t>(val)); + break; case DataType::UInt16: b.set(idx, castToNativeType<std::uint16_t>(val)); break; @@ -448,6 +548,30 @@ void init_Tensor(py::module& m){ case DataType::Int8: b.set(coordIdx, castToNativeType<std::int8_t>(val)); break; + case DataType::Int4: + b.set(coordIdx, castToNativeType<std::int8_t>(val)); + break; + case DataType::Dual_Int4: + b.set(coordIdx, castToNativeType<std::int8_t>(val)); + break; + case DataType::Int3: + b.set(coordIdx, castToNativeType<std::int8_t>(val)); + break; + case DataType::Dual_Int3: + b.set(coordIdx, castToNativeType<std::int8_t>(val)); + break; + case DataType::Int2: + b.set(coordIdx, castToNativeType<std::int8_t>(val)); + break; + case DataType::Quad_Int2: + b.set(coordIdx, castToNativeType<std::int8_t>(val)); + break; + case DataType::Binary: + b.set(coordIdx, castToNativeType<std::int8_t>(val)); + break; + case DataType::Octo_Binary: + b.set(coordIdx, castToNativeType<std::int8_t>(val)); + break; case DataType::Int16: b.set(coordIdx, castToNativeType<std::int16_t>(val)); break; @@ -460,6 +584,24 @@ void init_Tensor(py::module& m){ case DataType::UInt8: b.set(coordIdx, castToNativeType<std::uint8_t>(val)); break; + case DataType::UInt4: + b.set(coordIdx, castToNativeType<std::uint8_t>(val)); + break; + case DataType::Dual_UInt4: + b.set(coordIdx, castToNativeType<std::uint8_t>(val)); + break; + case DataType::UInt3: + b.set(coordIdx, castToNativeType<std::uint8_t>(val)); + break; + case DataType::Dual_UInt3: + b.set(coordIdx, castToNativeType<std::uint8_t>(val)); + break; + case DataType::UInt2: + b.set(coordIdx, castToNativeType<std::uint8_t>(val)); + break; + case DataType::Quad_UInt2: + b.set(coordIdx, castToNativeType<std::uint8_t>(val)); + break; case DataType::UInt16: b.set(coordIdx, castToNativeType<std::uint16_t>(val)); break; @@ -497,6 +639,48 @@ void init_Tensor(py::module& m){ case DataType::Float32: dataFormatDescriptor = py::format_descriptor<float>::format(); break;; + case DataType::Int4: + dataFormatDescriptor = py::format_descriptor<std::int8_t>::format(); + break; + case DataType::UInt4: + dataFormatDescriptor = py::format_descriptor<std::uint8_t>::format(); + break; + case DataType::Int3: + dataFormatDescriptor = py::format_descriptor<std::int8_t>::format(); + break; + case DataType::UInt3: + dataFormatDescriptor = py::format_descriptor<std::uint8_t>::format(); + break; + case DataType::Int2: + dataFormatDescriptor = py::format_descriptor<std::int8_t>::format(); + break; + case DataType::UInt2: + dataFormatDescriptor = py::format_descriptor<std::uint8_t>::format(); + break; + case DataType::Dual_Int4: + dataFormatDescriptor = py::format_descriptor<std::int8_t>::format(); + break; + case DataType::Dual_UInt4: + dataFormatDescriptor = py::format_descriptor<std::uint8_t>::format(); + break; + case DataType::Dual_Int3: + dataFormatDescriptor = py::format_descriptor<std::int8_t>::format(); + break; + case DataType::Dual_UInt3: + dataFormatDescriptor = py::format_descriptor<std::uint8_t>::format(); + break; + case DataType::Quad_Int2: + dataFormatDescriptor = py::format_descriptor<std::int8_t>::format(); + break; + case DataType::Quad_UInt2: + dataFormatDescriptor = py::format_descriptor<std::uint8_t>::format(); + break; + case DataType::Binary: + dataFormatDescriptor = py::format_descriptor<std::int8_t>::format(); + break; + case DataType::Octo_Binary: + dataFormatDescriptor = py::format_descriptor<std::int8_t>::format(); + break; case DataType::Int8: dataFormatDescriptor = py::format_descriptor<std::int8_t>::format(); break; diff --git a/python_binding/operator/pybind_Operator.cpp b/python_binding/operator/pybind_Operator.cpp index ded3b54088e6d1ed473ed614e23fc08cd89a0346..2191d866f2a2b1f1d490b2016de97afd8ec8157b 100644 --- a/python_binding/operator/pybind_Operator.cpp +++ b/python_binding/operator/pybind_Operator.cpp @@ -61,6 +61,7 @@ void init_Operator(py::module& m){ )mydelimiter") .def("associate_input", &Operator::associateInput, py::arg("inputIdx"), py::arg("data")) .def("set_datatype", &Operator::setDataType, py::arg("dataType")) + .def("set_dataformat", &Operator::setDataFormat, py::arg("dataFormat")) .def("set_backend", py::overload_cast<const std::string&, DeviceIdx_t>(&Operator::setBackend), py::arg("name"), py::arg("device") = 0) .def("set_backend", py::overload_cast<const std::vector<std::pair<std::string, DeviceIdx_t>>&>(&Operator::setBackend), py::arg("backends")) .def("forward", &Operator::forward) diff --git a/python_binding/operator/pybind_OperatorTensor.cpp b/python_binding/operator/pybind_OperatorTensor.cpp index 8c515e321207605c20acc9e5b02271906c9707d1..2602e115d43d805451aa9f0836c8151b2cd4b109 100644 --- a/python_binding/operator/pybind_OperatorTensor.cpp +++ b/python_binding/operator/pybind_OperatorTensor.cpp @@ -26,7 +26,9 @@ namespace Aidge { void init_OperatorTensor(py::module& m){ py::class_<OperatorTensor, std::shared_ptr<OperatorTensor>, Operator>(m, "OperatorTensor") .def("get_output", &OperatorTensor::getOutput, py::arg("outputIdx")) + .def("get_outputs", &OperatorTensor::getOutputs) .def("get_input", &OperatorTensor::getInput, py::arg("inputIdx")) + .def("get_inputs", &OperatorTensor::getInputs) .def("set_output", (void (OperatorTensor::*)(const IOIndex_t, const std::shared_ptr<Data>&) const) &OperatorTensor::setOutput, py::arg("outputIdx"), py::arg("data")) .def("set_input", (void (OperatorTensor::*)(const IOIndex_t, const std::shared_ptr<Data>&)) &OperatorTensor::setInput, py::arg("outputIdx"), py::arg("data")) diff --git a/python_binding/operator/pybind_WeightInterleaving.cpp b/python_binding/operator/pybind_WeightInterleaving.cpp new file mode 100644 index 0000000000000000000000000000000000000000..25b423bd66503b39f031695121cf673c45c34bbe --- /dev/null +++ b/python_binding/operator/pybind_WeightInterleaving.cpp @@ -0,0 +1,39 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <pybind11/pybind11.h> +#include "aidge/operator/WeightInterleaving.hpp" + +namespace py = pybind11; + +namespace Aidge { + +void declare_WeightInterleaving(py::module &m) { + py::class_<WeightInterleaving_Op, std::shared_ptr<WeightInterleaving_Op>, OperatorTensor>(m, "WeightInterleavingOp", py::multiple_inheritance()) + .def(py::init<>()) + .def_static("get_inputs_name", &WeightInterleaving_Op::getInputsName) + .def_static("get_outputs_name", &WeightInterleaving_Op::getOutputsName) + .def_readonly_static("Type", &WeightInterleaving_Op::Type) + + .def("__repr__", [](WeightInterleaving_Op& b) { + return fmt::format("Operator(type='{}')", b.Type); + }); + + declare_registrable<WeightInterleaving_Op>(m, "WeightInterleavingOp"); + + m.def("WeightInterleaving", &WeightInterleaving, py::arg("name") = ""); +} + +void init_WeightInterleaving(py::module &m) { + declare_WeightInterleaving(m); +} + +} // namespace Aidge diff --git a/python_binding/pybind_core.cpp b/python_binding/pybind_core.cpp index 006eeb289f25570ddf337f048b05816102624028..eccbebd2f0db7fd45484f114e4ae3dea8b2e5451 100644 --- a/python_binding/pybind_core.cpp +++ b/python_binding/pybind_core.cpp @@ -16,6 +16,7 @@ namespace py = pybind11; namespace Aidge { +void init_CoreSysInfo(py::module&); void init_Random(py::module&); void init_Data(py::module&); void init_Database(py::module&); @@ -83,6 +84,7 @@ void init_Sub(py::module&); void init_Tanh(py::module&); void init_Transpose(py::module&); void init_Unsqueeze(py::module&); +void init_WeightInterleaving(py::module&); void init_Node(py::module&); void init_GraphView(py::module&); @@ -103,6 +105,7 @@ void init_TensorUtils(py::module&); void init_Filler(py::module&); void init_Aidge(py::module& m) { + init_CoreSysInfo(m); init_Random(m); init_Data(m); @@ -177,6 +180,7 @@ void init_Aidge(py::module& m) { init_Tanh(m); init_Transpose(m); init_Unsqueeze(m); + init_WeightInterleaving(m); init_Producer(m); diff --git a/python_binding/recipes/pybind_Recipes.cpp b/python_binding/recipes/pybind_Recipes.cpp index f656af70dfa05678875afd4b4748f358437852a8..21478a5b14d609801f232b20cda25e7e1c0d9475 100644 --- a/python_binding/recipes/pybind_Recipes.cpp +++ b/python_binding/recipes/pybind_Recipes.cpp @@ -151,6 +151,14 @@ void init_Recipes(py::module &m) :param node: Node which Operator will turn into a Generic Operator :type graph_view: :py:class:`aidge_core.Node` )mydelimiter"); + + m.def("apply_weightinterleaving", applyWeightInterleaving, py::arg("node"), R"mydelimiter( + Replace weight Producer linked to the given node with a weight producer with interleaving and format NHWC. + This recipe is specific to the ARM cortex-m export for low bit integer support. + + :param node: Node which linked weights will recieve interleaving + :type graph_view: :py:class:`aidge_core.Node` + )mydelimiter"); } } // namespace Aidge diff --git a/python_binding/scheduler/pybind_MemoryManager.cpp b/python_binding/scheduler/pybind_MemoryManager.cpp index 0f18db405bec0aee9637f2e5f2ecc7b71e502cc5..3fce92349f28e3c6a897356dee60359c1797d9ca 100644 --- a/python_binding/scheduler/pybind_MemoryManager.cpp +++ b/python_binding/scheduler/pybind_MemoryManager.cpp @@ -36,10 +36,10 @@ void init_MemoryManager(py::module& m) .def_readwrite("released", &MemoryManager::MemorySpace::released); py::class_<MemoryManager::MemoryPlane, std::shared_ptr<MemoryManager::MemoryPlane>>(m, "MemoryPlane") - .def(py::init<std::shared_ptr<MemoryManager::MemorySpace>, + .def(py::init<std::shared_ptr<MemoryManager::MemorySpace>, MemoryManager::Clock_T, unsigned int, unsigned int, unsigned int, unsigned int, unsigned int>(), - py::arg("mem_space"), py::arg("clock"), py::arg("offset"), + py::arg("mem_space"), py::arg("clock"), py::arg("offset"), py::arg("size"), py::arg("stride"), py::arg("length"), py::arg("count")) .def_readwrite("mem_space", &MemoryManager::MemoryPlane::memSpace) .def_readwrite("allocated", &MemoryManager::MemoryPlane::allocated) @@ -101,7 +101,6 @@ void init_MemoryManager(py::module& m) .def("get_nb_planes", (unsigned int (MemoryManager::*)(std::shared_ptr<MemoryManager::MemorySpace>) const) &MemoryManager::getNbPlanes, py::arg("mem_space")) .def("get_current_tick", &MemoryManager::getCurrentTick) .def("tick", &MemoryManager::tick) - .def("log", &MemoryManager::log, py::arg("file_name")) ; } diff --git a/python_binding/utils/sys_info/pybind_CoreVersionInfo.cpp b/python_binding/utils/sys_info/pybind_CoreVersionInfo.cpp new file mode 100644 index 0000000000000000000000000000000000000000..b498e86ed31adad57de4dbd57fa8f358b188f499 --- /dev/null +++ b/python_binding/utils/sys_info/pybind_CoreVersionInfo.cpp @@ -0,0 +1,11 @@ +#include <pybind11/pybind11.h> +#include "aidge/utils/sys_info/CoreVersionInfo.hpp" + +namespace py = pybind11; +namespace Aidge { +void init_CoreSysInfo(py::module& m){ + m.def("show_version", &showCoreVersion); + m.def("get_project_version", &getCoreProjectVersion); + m.def("get_git_hash", &getCoreGitHash); +} +} diff --git a/setup.cfg b/setup.cfg new file mode 100644 index 0000000000000000000000000000000000000000..bd90e50b282a1e1c08e0b2acaaddae940b0b4ac5 --- /dev/null +++ b/setup.cfg @@ -0,0 +1,4 @@ +# pbr file +[metadata] +name = file: project_name.txt +version = file: version.txt diff --git a/setup.py b/setup.py index 4f2e21711f193eb7d5c37ace7b5ad83ac63d3635..2fb84a991e416c41da709845f44c1cd6042a278d 100644 --- a/setup.py +++ b/setup.py @@ -10,7 +10,11 @@ from setuptools import setup, Extension from setuptools.command.build_ext import build_ext -PROJECT_NAME = "aidge_core" +def get_project_name() -> str: + return open(pathlib.Path().absolute() / "project_name.txt", "r").read().strip() + + +PROJECT_NAME = get_project_name() SETUP_DIR = pathlib.Path(__file__).parent diff --git a/src/backend/cpu/data/TensorImpl.cpp b/src/backend/cpu/data/TensorImpl.cpp index 506287a0c520915e6426f1f0b64d9c562c754d33..236e5bb8e1e867d5a0dad85571d754bc9e2a2a22 100644 --- a/src/backend/cpu/data/TensorImpl.cpp +++ b/src/backend/cpu/data/TensorImpl.cpp @@ -95,6 +95,62 @@ void Aidge::TensorImpl_cpu<T>::copyCast(const void *src, const Aidge::DataType s std::copy(static_cast<const uint8_t*>(src), static_cast<const uint8_t*>(src) + length, dstT); break; + case DataType::Int4: + std::copy(static_cast<const int8_t*>(src), static_cast<const int8_t*>(src) + length, + dstT); + break; + case DataType::UInt4: + std::copy(static_cast<const uint8_t*>(src), static_cast<const uint8_t*>(src) + length, + dstT); + break; + case DataType::Dual_Int4: + std::copy(static_cast<const int8_t*>(src), static_cast<const int8_t*>(src) + length, + dstT); + break; + case DataType::Dual_UInt4: + std::copy(static_cast<const uint8_t*>(src), static_cast<const uint8_t*>(src) + length, + dstT); + break; + case DataType::Int3: + std::copy(static_cast<const int8_t*>(src), static_cast<const int8_t*>(src) + length, + dstT); + break; + case DataType::UInt3: + std::copy(static_cast<const uint8_t*>(src), static_cast<const uint8_t*>(src) + length, + dstT); + break; + case DataType::Dual_Int3: + std::copy(static_cast<const int8_t*>(src), static_cast<const int8_t*>(src) + length, + dstT); + break; + case DataType::Dual_UInt3: + std::copy(static_cast<const uint8_t*>(src), static_cast<const uint8_t*>(src) + length, + dstT); + break; + case DataType::Int2: + std::copy(static_cast<const int8_t*>(src), static_cast<const int8_t*>(src) + length, + dstT); + break; + case DataType::UInt2: + std::copy(static_cast<const uint8_t*>(src), static_cast<const uint8_t*>(src) + length, + dstT); + break; + case DataType::Quad_Int2: + std::copy(static_cast<const int8_t*>(src), static_cast<const int8_t*>(src) + length, + dstT); + break; + case DataType::Quad_UInt2: + std::copy(static_cast<const uint8_t*>(src), static_cast<const uint8_t*>(src) + length, + dstT); + break; + case DataType::Binary: + std::copy(static_cast<const int8_t*>(src), static_cast<const int8_t*>(src) + length, + dstT); + break; + case DataType::Octo_Binary: + std::copy(static_cast<const int8_t*>(src), static_cast<const int8_t*>(src) + length, + dstT); + break; default: AIDGE_THROW_OR_ABORT(std::runtime_error, "Unsupported data type."); break; diff --git a/src/data/Tensor.cpp b/src/data/Tensor.cpp index e8a0e9edee29ae56447ecc41e41d1db321d40058..a14ae4187707490cfb70681fc418daf961cb053b 100644 --- a/src/data/Tensor.cpp +++ b/src/data/Tensor.cpp @@ -28,6 +28,12 @@ namespace Aidge { +Tensor::Tensor(const Tensor& other) = default; +Tensor::Tensor(Tensor&& other) = default; + +Tensor& Tensor::operator=(const Tensor& other) = default; +Tensor& Tensor::operator=(Tensor&& other) = default; + Tensor::~Tensor() noexcept = default; @@ -322,6 +328,34 @@ std::string Tensor::toString() const { return std::to_string(static_cast<float*>(ptr)[idx]); case DataType::Float16: return std::to_string(static_cast<half_float::half*>(ptr)[idx]); + case DataType::Binary: + return std::to_string(static_cast<int8_t*>(ptr)[idx]); + case DataType::Octo_Binary: + return std::to_string(static_cast<int8_t*>(ptr)[idx]); + case DataType::Dual_Int4: + return std::to_string(static_cast<int8_t*>(ptr)[idx]); + case DataType::Dual_UInt4: + return std::to_string(static_cast<uint8_t*>(ptr)[idx]); + case DataType::Dual_Int3: + return std::to_string(static_cast<int8_t*>(ptr)[idx]); + case DataType::Dual_UInt3: + return std::to_string(static_cast<uint8_t*>(ptr)[idx]); + case DataType::Quad_Int2: + return std::to_string(static_cast<int8_t*>(ptr)[idx]); + case DataType::Quad_UInt2: + return std::to_string(static_cast<uint8_t*>(ptr)[idx]); + case DataType::Int4: + return std::to_string(static_cast<int8_t*>(ptr)[idx]); + case DataType::UInt4: + return std::to_string(static_cast<uint8_t*>(ptr)[idx]); + case DataType::Int3: + return std::to_string(static_cast<int8_t*>(ptr)[idx]); + case DataType::UInt3: + return std::to_string(static_cast<uint8_t*>(ptr)[idx]); + case DataType::Int2: + return std::to_string(static_cast<int8_t*>(ptr)[idx]); + case DataType::UInt2: + return std::to_string(static_cast<uint8_t*>(ptr)[idx]); case DataType::Int8: return std::to_string(static_cast<int8_t*>(ptr)[idx]); case DataType::Int16: diff --git a/src/graph/GraphView.cpp b/src/graph/GraphView.cpp index 465359757eadd2799aa7f272e2d85b032a60cfdd..4c6f6ada8fdf069c308398f7b978e1d44fde8f65 100644 --- a/src/graph/GraphView.cpp +++ b/src/graph/GraphView.cpp @@ -940,6 +940,22 @@ void Aidge::GraphView::addChild( add(toOtherView); } +void Aidge::GraphView::updateNodeName(const std::shared_ptr<Node>& node, const std::string& newName) { + if (!newName.empty()) { + auto itNew = mNodeRegistry.insert(std::make_pair(newName, node)); + if (!itNew.second) { + Log::notice("Replacing existing node name in graph node name registry: {}", newName); + (itNew.first)->second = node; + } + } + + if (!node->name().empty()) { + const auto it = mNodeRegistry.find(node->name()); + AIDGE_ASSERT(it != mNodeRegistry.end(), "No node named {} in graph {}, the graph may be corrupted !", node->name(), name()); + mNodeRegistry.erase(it); + } +} + std::set<std::shared_ptr<Aidge::Node>> Aidge::GraphView::getParents() const { // TODO: choose if we return a set or a vector std::set<std::shared_ptr<Node>> parents; diff --git a/src/graph/Matching.cpp b/src/graph/Matching.cpp index 4a62019a7aa044ebcf2089d91f3ba097d85218e7..ddf9bcbf946b6fe8e86c9a14679b951ebd88323f 100644 --- a/src/graph/Matching.cpp +++ b/src/graph/Matching.cpp @@ -1,11 +1,43 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + #include "aidge/graph/Matching.hpp" +#include <algorithm> // std::find_if +#include <cctype> // std::isspace +#include <cstddef> // std::size_t +#include <memory> +#include <set> +#include <string> // std::stoi +#include <utility> // std::pair +#include <vector> + #include <fmt/color.h> +#include "aidge/graph/GraphView.hpp" +#include "aidge/graph/Node.hpp" + +static void removeLeadingWhitespace(std::string& str) { + str.erase(str.begin(), + std::find_if(str.cbegin(), + str.cend(), + [](char c) { return !std::isspace(c); })); +} + +//////////////////////////////////////////////////////////// + Aidge::SinglePassGraphMatching::Context::Context() = default; Aidge::SinglePassGraphMatching::Context::Context(const Context& other) = default; Aidge::SinglePassGraphMatching::Context& Aidge::SinglePassGraphMatching::Context::operator=(const Context& other) = default; -Aidge::SinglePassGraphMatching::Context::~Context() = default; +Aidge::SinglePassGraphMatching::Context::~Context() noexcept = default; //////////////////////////////////////////////////////////// @@ -35,7 +67,7 @@ std::set<Aidge::SinglePassGraphMatching::MatchingResult> Aidge::SinglePassGraphM std::set<MatchingResult> matches; while (matchSequence(ctx, matches) || matchNodeOrBlock(ctx, matches)) { - removeWhiteSpace(ctx.query); + removeLeadingWhitespace(ctx.query); if (!ctx.query.empty() && ctx.query[0] == ';') { ctx.query.erase(0, 1); } @@ -44,7 +76,7 @@ std::set<Aidge::SinglePassGraphMatching::MatchingResult> Aidge::SinglePassGraphM } } - removeWhiteSpace(ctx.query); + removeLeadingWhitespace(ctx.query); if (!ctx.query.empty()) { Log::warn("Syntax error, unable to parse remaining query: {}", ctx.query); } @@ -56,14 +88,14 @@ std::set<Aidge::SinglePassGraphMatching::MatchingResult> Aidge::SinglePassGraphM return matches; } -Aidge::SinglePassGraphMatching::MatchingResult Aidge::SinglePassGraphMatching::matchFrom(NodePtr startNode, const std::string& query) { +Aidge::SinglePassGraphMatching::MatchingResult Aidge::SinglePassGraphMatching::matchFrom(std::shared_ptr<Node> startNode, const std::string& query) { Context ctx; ctx.query = query; ctx.startNode = startNode; std::set<MatchingResult> matches; while (matchSequence(ctx, matches) || matchNodeOrBlock(ctx, matches)) { - removeWhiteSpace(ctx.query); + removeLeadingWhitespace(ctx.query); if (!ctx.query.empty() && ctx.query[0] == ';') { ctx.query.erase(0, 1); } @@ -72,7 +104,7 @@ Aidge::SinglePassGraphMatching::MatchingResult Aidge::SinglePassGraphMatching::m } } - removeWhiteSpace(ctx.query); + removeLeadingWhitespace(ctx.query); if (!ctx.query.empty()) { Log::warn("Syntax error, unable to parse remaining query: {}", ctx.query); } @@ -123,8 +155,8 @@ bool Aidge::SinglePassGraphMatching::matchNodeOrBlock(Context& ctx, std::set<Mat // QUANTIFIER? bool matchMore = false; - size_t matchQuantity = 0; - removeWhiteSpace(newCtx.query); + std::size_t matchQuantity = 0; + removeLeadingWhitespace(newCtx.query); if (!newCtx.query.empty() && (newCtx.query[0] == '?' || newCtx.query[0] == '*')) { AIDGE_ASSERT(!(ctx.firstSequence && ctx.firstNode), "Ill-formed query; the root node cannot be optional in query at: {}", ctx.query); @@ -155,7 +187,7 @@ bool Aidge::SinglePassGraphMatching::matchNodeOrBlock(Context& ctx, std::set<Mat else if (!newCtx.query.empty() && newCtx.query[0] == '{') { newCtx.query.erase(0, 1); - removeWhiteSpace(newCtx.query); + removeLeadingWhitespace(newCtx.query); const auto endQuantity = std::find_if(newCtx.query.begin(), newCtx.query.end(), [](char c) { return !isdigit(c); }); if (endQuantity != newCtx.query.begin()) { @@ -172,7 +204,7 @@ bool Aidge::SinglePassGraphMatching::matchNodeOrBlock(Context& ctx, std::set<Mat return false; } - removeWhiteSpace(newCtx.query); + removeLeadingWhitespace(newCtx.query); if (!newCtx.query.empty() && newCtx.query[0] == '}') { newCtx.query.erase(0, 1); } @@ -231,7 +263,7 @@ bool Aidge::SinglePassGraphMatching::matchBlock(Context& ctx, std::set<MatchingR ++newCtx.depth; // '(' - removeWhiteSpace(newCtx.query); + removeLeadingWhitespace(newCtx.query); if (!newCtx.query.empty() && newCtx.query[0] == '(') { newCtx.query.erase(0, 1); } @@ -252,7 +284,7 @@ bool Aidge::SinglePassGraphMatching::matchBlock(Context& ctx, std::set<MatchingR } // ')' - removeWhiteSpace(newCtx.query); + removeLeadingWhitespace(newCtx.query); if (!newCtx.query.empty() && newCtx.query[0] == ')') { newCtx.query.erase(0, 1); } @@ -337,7 +369,7 @@ bool Aidge::SinglePassGraphMatching::matchParallel(Context& ctx, std::set<Matchi while (true) { // ('&' NODE_OR_BLOCK)+ // '&' - removeWhiteSpace(newCtx.query); + removeLeadingWhitespace(newCtx.query); if (!newCtx.query.empty() && newCtx.query[0] == '&') { newCtx.query.erase(0, 1); found = true; @@ -402,7 +434,7 @@ bool Aidge::SinglePassGraphMatching::matchAlternative(Context& ctx, std::set<Mat while (true) { // ('|' NODE_OR_BLOCK)+ // '|' - removeWhiteSpace(newCtx.query); + removeLeadingWhitespace(newCtx.query); if (!newCtx.query.empty() && newCtx.query[0] == '|') { newCtx.query.erase(0, 1); found = true; @@ -446,7 +478,7 @@ bool Aidge::SinglePassGraphMatching::matchEdge(Context& ctx, std::set<MatchingRe Log::debug("{}edge", std::string(2*newCtx.depth, ' ')); // ('-' | '~') or '<' - removeWhiteSpace(newCtx.query); + removeLeadingWhitespace(newCtx.query); if (!newCtx.query.empty() && (newCtx.query[0] == '-' || newCtx.query[0] == '~')) { newCtx.singleOutput = (newCtx.query[0] == '-'); newCtx.query.erase(0, 1); // drop '-' @@ -550,7 +582,7 @@ bool Aidge::SinglePassGraphMatching::matchNode(Context& ctx, std::set<MatchingRe auto newMatches = matches; // (TYPE | '.' | '$') - removeWhiteSpace(newCtx.query); + removeLeadingWhitespace(newCtx.query); if (newCtx.query.empty()) { Log::debug("{}{}", std::string(2*ctx.depth, ' '), fmt::styled("×", fmt::fg(fmt::color::red))); return false; @@ -833,3 +865,8 @@ bool Aidge::SinglePassGraphMatching::matchNode(Context& ctx, std::set<MatchingRe matches = newMatches; return true; } + +bool Aidge::operator<(const Aidge::SinglePassGraphMatching::MatchingResult& lhs, const Aidge::SinglePassGraphMatching::MatchingResult& rhs) { + // Matching rootNode are guaranteed to be different! + return lhs.graph->rootNode() < rhs.graph->rootNode(); +} \ No newline at end of file diff --git a/src/graph/Node.cpp b/src/graph/Node.cpp index 92ae463085a3583dfe894a1b9f6119fa0b099287..384e946c674641f7d498d8c5745dcc745f34d751 100644 --- a/src/graph/Node.cpp +++ b/src/graph/Node.cpp @@ -35,6 +35,7 @@ Aidge::Node::Node(std::shared_ptr<Operator> op, std::shared_ptr<DynamicAttribute mForward.push_back([this](){ this->mOperator->forward(); return true; }); // mForward.push_back(std::bind(&Operator::forward, mOperator.get())); mBackward.push_back([this](){ this->mOperator->backward(); return true; }); + op->setInheritedAttrs(attrs); } // Aidge::Node::Node(std::shared_ptr<Operator> op, const DynamicAttributes& attrs) @@ -225,6 +226,16 @@ Aidge::IOIndex_t Aidge::Node::nbValidOutputs() const { return counter; } +std::set<std::shared_ptr<Aidge::GraphView>> Aidge::Node::views() const noexcept { + std::set<std::shared_ptr<GraphView>> res; + for (const auto &v : mViews) { + if (auto p = v.lock()) { + res.insert(p); + } + } + return res; +} + void Aidge::Node::setInputId(const IOIndex_t inId, const IOIndex_t newNodeoutId) { AIDGE_ASSERT(inId != gk_IODefaultIndex && inId < nbInputs(), "Input index ({}) is out of bound ({}) for node {} (of type {})", diff --git a/src/graph/StaticAnalysis.cpp b/src/graph/StaticAnalysis.cpp index 033e51022842983caacba9385248c9f02c1e5568..4309c5c37b72dea9f07f8e5a2e7ce7678090b2e2 100644 --- a/src/graph/StaticAnalysis.cpp +++ b/src/graph/StaticAnalysis.cpp @@ -11,13 +11,31 @@ #include "aidge/graph/StaticAnalysis.hpp" +#include <cstddef> // std::size_t +#include <memory> +#include <numeric> // std::accumulate +#include <set> + +#include <fmt/core.h> // fmt::println +#include <fmt/format.h> +#include <fmt/ranges.h> + +#include "aidge/data/Data.hpp" // Aidge::isDataTypeFloatingPoint +#include "aidge/data/Tensor.hpp" +#include "aidge/graph/GraphView.hpp" +#include "aidge/graph/Node.hpp" +#include "aidge/operator/Operator.hpp" +#include "aidge/operator/OperatorTensor.hpp" + Aidge::OperatorStats::OperatorStats(const Operator& op) : mOp(op) { //ctor } -size_t Aidge::OperatorStats::getNbArithmIntOps() const { +Aidge::OperatorStats::~OperatorStats() = default; + +std::size_t Aidge::OperatorStats::getNbArithmIntOps() const { const auto opTensor = dynamic_cast<const OperatorTensor*>(&mOp); if (opTensor) { if (!isDataTypeFloatingPoint(opTensor->getOutput(0)->dataType())) { @@ -27,23 +45,27 @@ size_t Aidge::OperatorStats::getNbArithmIntOps() const { return 0; } +//////////////////////////////////////////////////////////////////////////////// + Aidge::StaticAnalysis::StaticAnalysis(std::shared_ptr<GraphView> graph) : mGraph(graph) { //ctor } +Aidge::StaticAnalysis::~StaticAnalysis() = default; + void Aidge::StaticAnalysis::summary(bool incProducers) const { fmt::println("--------------------------------------------------------------------------------"); fmt::println(" Layer (type) Output Shape Param #"); fmt::println("================================================================================"); - size_t nbParams = 0; - size_t paramsSize = 0; // Size in bits - size_t fwdBwdSize = 0; // Size in bits + std::size_t nbParams = 0; + std::size_t paramsSize = 0; // Size in bits + std::size_t fwdBwdSize = 0; // Size in bits const auto namePtrTable = mGraph->getRankedNodesName("{0} ({1}#{3})"); - for (const auto node : mGraph->getOrderedNodes()) { + for (const auto& node : mGraph->getOrderedNodes()) { if (node->type() == Producer_Op::Type && !incProducers) { continue; } @@ -53,8 +75,8 @@ void Aidge::StaticAnalysis::summary(bool incProducers) const { if (opTensor) { const auto outputDims = opTensor->getOutput(0)->dims(); outputDimsStr = fmt::format("{: >27}", fmt::format("{}", outputDims)); - - for (size_t out = 0; out < node->nbOutputs(); ++out) { + + for (std::size_t out = 0; out < node->nbOutputs(); ++out) { const auto output = opTensor->getOutput(out); if (output && node->type() != Producer_Op::Type) { fwdBwdSize += output->size() @@ -69,8 +91,8 @@ void Aidge::StaticAnalysis::summary(bool incProducers) const { namePtrTable.at(node), outputDimsStr, getNbParams(node)); } - size_t inputSize = 0; // Size in bits - for (const auto input : mGraph->getOrderedInputs()) { + std::size_t inputSize = 0; // Size in bits + for (const auto& input : mGraph->getOrderedInputs()) { if (input.first) { auto opTensor = std::dynamic_pointer_cast<OperatorTensor>(input.first->getOperator()); if (opTensor && opTensor->getInput(input.second)) { @@ -90,13 +112,13 @@ void Aidge::StaticAnalysis::summary(bool incProducers) const { fmt::println("--------------------------------------------------------------------------------"); } -size_t Aidge::StaticAnalysis::getNbParams(std::shared_ptr<Node> node) const { +std::size_t Aidge::StaticAnalysis::getNbParams(std::shared_ptr<Node> node) const { const auto opTensor = std::dynamic_pointer_cast<OperatorTensor>(node->getOperator()); - size_t nbParams = 0; + std::size_t nbParams = 0; // Look for Producers directly attached to the node's inputs. - size_t i = 0; + std::size_t i = 0; for (auto parent : node->inputs()) { if (parent.first && mGraph->inView(parent.first)) { if (parent.first->type() == Producer_Op::Type && opTensor->getInput(i)) { @@ -109,7 +131,7 @@ size_t Aidge::StaticAnalysis::getNbParams(std::shared_ptr<Node> node) const { // Look for internal Producers, in case of meta-op. if (!node->getOperator()->isAtomic()) { const auto microGraph = std::dynamic_pointer_cast<MetaOperator_Op>(node->getOperator())->getMicroGraph(); - for (const auto internalNode : microGraph->getNodes()) { + for (const auto& internalNode : microGraph->getNodes()) { if (internalNode->type() == Producer_Op::Type) { const auto internalOpTensor = std::dynamic_pointer_cast<OperatorTensor>(internalNode->getOperator()); nbParams += internalOpTensor->getOutput(0)->size(); @@ -120,14 +142,14 @@ size_t Aidge::StaticAnalysis::getNbParams(std::shared_ptr<Node> node) const { return nbParams; } -size_t Aidge::StaticAnalysis::getParamsSize(std::shared_ptr<Node> node) const { +std::size_t Aidge::StaticAnalysis::getParamsSize(std::shared_ptr<Node> node) const { const auto opTensor = std::dynamic_pointer_cast<OperatorTensor>(node->getOperator()); - size_t paramsSize = 0; + std::size_t paramsSize = 0; // Look for Producers directly attached to the node's inputs. - size_t i = 0; - for (auto parent : node->inputs()) { + std::size_t i = 0; + for (const auto& parent : node->inputs()) { if (parent.first && mGraph->inView(parent.first)) { if (parent.first->type() == Producer_Op::Type && opTensor->getInput(i)) { paramsSize += opTensor->getInput(i)->size() @@ -140,7 +162,7 @@ size_t Aidge::StaticAnalysis::getParamsSize(std::shared_ptr<Node> node) const { // Look for internal Producers, in case of meta-op. if (!node->getOperator()->isAtomic()) { const auto microGraph = std::dynamic_pointer_cast<MetaOperator_Op>(node->getOperator())->getMicroGraph(); - for (const auto internalNode : microGraph->getNodes()) { + for (const auto& internalNode : microGraph->getNodes()) { if (internalNode->type() == Producer_Op::Type) { const auto internalOpTensor = std::dynamic_pointer_cast<OperatorTensor>(internalNode->getOperator()); paramsSize += internalOpTensor->getOutput(0)->size() @@ -160,12 +182,32 @@ std::shared_ptr<Aidge::OperatorStats> Aidge::StaticAnalysis::getOpStats(std::sha : std::make_shared<MetaOpStats>(*(node->getOperator())); } -size_t Aidge::StaticAnalysis::accumulate(size_t (OperatorStats::*func)() const) const { +std::size_t Aidge::StaticAnalysis::getNbArithmOps() const { return accumulate(&OperatorStats::getNbArithmOps); } +std::size_t Aidge::StaticAnalysis::getNbLogicOps() const { return accumulate(&OperatorStats::getNbLogicOps); } +std::size_t Aidge::StaticAnalysis::getNbCompOps() const { return accumulate(&OperatorStats::getNbCompOps); } +std::size_t Aidge::StaticAnalysis::getNbNLOps() const { return accumulate(&OperatorStats::getNbNLOps); } +std::size_t Aidge::StaticAnalysis::getNbOps() const { return accumulate(&OperatorStats::getNbOps); } +std::size_t Aidge::StaticAnalysis::getNbArithmIntOps() const { return accumulate(&OperatorStats::getNbArithmIntOps); } +std::size_t Aidge::StaticAnalysis::getNbArithmFpOps() const { return accumulate(&OperatorStats::getNbArithmFpOps); } +std::size_t Aidge::StaticAnalysis::getNbMACOps() const { return accumulate(&OperatorStats::getNbMACOps); } + +std::size_t Aidge::StaticAnalysis::accumulate(std::size_t (OperatorStats::*func)() const) const { return std::accumulate( mGraph->getNodes().cbegin(), mGraph->getNodes().cend(), std::size_t(0), - [this, func](const size_t& lhs, const std::shared_ptr<Node>& rhs) { + [this, func](const std::size_t& lhs, const std::shared_ptr<Node>& rhs) { return lhs + (this->getOpStats(rhs).get()->*func)(); }); } + +//////////////////////////////////////////////////////////////////////////////// + +Aidge::MetaOpStats::~MetaOpStats() = default; + +std::size_t Aidge::MetaOpStats::getNbArithmOps() const { return StaticAnalysis(dynamic_cast<const MetaOperator_Op&>(mOp).getMicroGraph()).getNbArithmOps(); } +std::size_t Aidge::MetaOpStats::getNbLogicOps() const { return StaticAnalysis(dynamic_cast<const MetaOperator_Op&>(mOp).getMicroGraph()).getNbLogicOps(); } +std::size_t Aidge::MetaOpStats::getNbCompOps() const { return StaticAnalysis(dynamic_cast<const MetaOperator_Op&>(mOp).getMicroGraph()).getNbCompOps(); } +std::size_t Aidge::MetaOpStats::getNbNLOps() const { return StaticAnalysis(dynamic_cast<const MetaOperator_Op&>(mOp).getMicroGraph()).getNbNLOps(); } +std::size_t Aidge::MetaOpStats::getNbArithmIntOps() const { return StaticAnalysis(dynamic_cast<const MetaOperator_Op&>(mOp).getMicroGraph()).getNbArithmIntOps(); } +std::size_t Aidge::MetaOpStats::getNbMACOps() const { return StaticAnalysis(dynamic_cast<const MetaOperator_Op&>(mOp).getMicroGraph()).getNbMACOps(); } \ No newline at end of file diff --git a/src/operator/ArgMax.cpp b/src/operator/ArgMax.cpp index 4808b730d2261ba0c1ea6d0d09871b1f322fc8fb..531c41596ed4ef553a4b7ec7d2642b778044cc66 100644 --- a/src/operator/ArgMax.cpp +++ b/src/operator/ArgMax.cpp @@ -14,7 +14,6 @@ #include <cstddef> // std::size_t #include <cstdint> // std::int32_t #include <memory> -#include <stdexcept> // std::runtime_error #include <string> #include <vector> @@ -25,6 +24,21 @@ const std::string Aidge::ArgMax_Op::Type = "ArgMax"; +Aidge::ArgMax_Op::ArgMax_Op(const Aidge::ArgMax_Op& op) + : OperatorTensor(op), + mAttributes(op.mAttributes) +{ + if (op.mImpl){ + SET_IMPL_MACRO(ArgMax_Op, *this, op.backend()); + } else { + mImpl = nullptr; + } +} + +std::shared_ptr<Aidge::Operator> Aidge::ArgMax_Op::clone() const { + return std::make_shared<ArgMax_Op>(*this); +} + bool Aidge::ArgMax_Op::forwardDims(bool /*allowDataDependency*/) { if (inputsAssociated()) { // make Axis attribute positive @@ -55,3 +69,12 @@ void Aidge::ArgMax_Op::setBackend(const std::string& name, Aidge::DeviceIdx_t de std::set<std::string> Aidge::ArgMax_Op::getAvailableBackends() const { return Registrar<ArgMax_Op>::getKeys(); } + +//////////////////////////////////////////////////////////////////////////////// + +std::shared_ptr<Aidge::Node> Aidge::ArgMax(std::int32_t axis, + bool keep_dims, + bool select_last_index, + const std::string& name) { + return std::make_shared<Node>(std::make_shared<ArgMax_Op>(axis, keep_dims, select_last_index), name); +} \ No newline at end of file diff --git a/src/operator/OperatorTensor.cpp b/src/operator/OperatorTensor.cpp index 3bdb4b17127eb8a9115f8dec045db32bf041b00b..873e93f3296bae6c5eae8cf2b5ec7bacc82c45ce 100644 --- a/src/operator/OperatorTensor.cpp +++ b/src/operator/OperatorTensor.cpp @@ -92,6 +92,12 @@ const std::shared_ptr<Aidge::Tensor>& Aidge::OperatorTensor::getOutput(const Aid return mOutputs[outputIdx]; } +const std::vector<std::shared_ptr<Aidge::Tensor>>& Aidge::OperatorTensor::getOutputs() const{ + return mOutputs; +} +const std::vector<std::shared_ptr<Aidge::Tensor>>& Aidge::OperatorTensor::getInputs() const{ + return mInputs; +} std::vector<std::pair<std::vector<Aidge::DimSize_t>, std::vector<Aidge::DimSize_t>>> Aidge::OperatorTensor::computeReceptiveField( const std::vector<DimSize_t>& firstEltDims, diff --git a/src/operator/Slice.cpp b/src/operator/Slice.cpp index 02dcad58c47fb804f50b9eb2e20be45a12e73fae..31c7c09c9ff41c163f5d505bd4ce6b3aeaf42872 100644 --- a/src/operator/Slice.cpp +++ b/src/operator/Slice.cpp @@ -101,8 +101,9 @@ void Aidge::Slice_OpImpl::forward() { int step = op.steps()[axisIdx]; start = start >= 0 ? start: start + inputDims[axisIdx]; + start = std::max(0, std::min(start, static_cast<int>(inputDims[axisIdx]))); end = end >= 0 ? end: end + inputDims[axisIdx]; - + end = std::max(0, std::min(end, static_cast<int>(inputDims[axisIdx]))); // Generate the range of indices for this axis for (int idx = start; (step > 0) ? (idx < end) : (idx > end); idx += step) { ranges[axisIdx].push_back(idx); @@ -253,12 +254,17 @@ bool Aidge::Slice_Op::forwardDims(bool allowDataDependency) { const DimIdx_t axis = this->axes()[i] >= 0 ? static_cast<DimIdx_t>(this->axes()[i]) : static_cast<DimIdx_t>(this->axes()[i] + static_cast<DimIdx_t>(getInput(0)->nbDims())); - const DimSize_t start = this->starts()[i] >= 0 ? + DimSize_t start = this->starts()[i] >= 0 ? static_cast<DimSize_t>(this->starts()[i]) : static_cast<DimSize_t>(this->starts()[i] + static_cast<DimSize_t>(getInput(0)->dims()[axis])); - const DimSize_t end = this->ends()[i] >= 0 ? + // Clamp start to the range [0, axis_dim] + start = std::max(static_cast<DimSize_t>(0), std::min(start, getInput(0)->dims()[axis]-1)); + + DimSize_t end = this->ends()[i] >= 0 ? static_cast<DimSize_t>(this->ends()[i]) : static_cast<DimSize_t>(this->ends()[i] + static_cast<DimSize_t>(getInput(0)->dims()[axis])); + // Clamp end to the range [0, axis_dim] + end = std::max(static_cast<DimSize_t>(0), std::min(end, getInput(0)->dims()[axis])); const std::int64_t step = this->steps()[i]; AIDGE_ASSERT(step != 0, "Slice_Op: Step ({}) must have a non-zero value on axis {}!", this->steps(), axis); @@ -309,4 +315,4 @@ std::shared_ptr<Aidge::Node> Aidge::Slice(const std::vector<std::int64_t>& start const std::vector<std::int64_t>& steps, const std::string &name) { return std::make_shared<Node>(std::make_shared<Slice_Op>(starts, ends, axes, steps), name); -} \ No newline at end of file +} diff --git a/src/operator/WeightInterleaving.cpp b/src/operator/WeightInterleaving.cpp new file mode 100644 index 0000000000000000000000000000000000000000..66af1d51f87c24b5b8d7d9c1f0ab3701f122515d --- /dev/null +++ b/src/operator/WeightInterleaving.cpp @@ -0,0 +1,121 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include "aidge/operator/WeightInterleaving.hpp" + +#include <memory> +#include <string> +#include <vector> + +#include "aidge/data/Data.hpp" +#include "aidge/data/Tensor.hpp" +#include "aidge/utils/ErrorHandling.hpp" +#include "aidge/utils/StaticAttributes.hpp" +#include "aidge/utils/Types.h" + +const std::string Aidge::WeightInterleaving_Op::Type = "WeightInterleaving"; + +/** + * @brief Copy-constructor. + * @param op WeightInterleaving_Op to copy. + * @details Copies the operator attributes and its output tensor(s), but not + * its input tensors. The new operator has no associated input. + */ +Aidge::WeightInterleaving_Op::WeightInterleaving_Op(const WeightInterleaving_Op& op) + : OperatorTensor(op) +{ + if (op.mImpl) { + SET_IMPL_MACRO(WeightInterleaving_Op, *this, op.backend()); + } else { + mImpl = nullptr; + } +} + + +std::shared_ptr<Aidge::Operator> Aidge::WeightInterleaving_Op::clone() const { + return std::make_shared<WeightInterleaving_Op>(*this); +} + + +bool Aidge::WeightInterleaving_Op::forwardDims(bool /*allowDataDependency*/) { + + if (inputsAssociated()) { + + // check input data format is NHWC + AIDGE_ASSERT((getInput(0)->dataFormat() == DataFormat::NHWC), + "Wrong Input tensor Data Format : {} for WeightInterleaving operator (should be DataFormat::NHWC for STM32).", getInput(0)->dataFormat()); + + // Take the last dimension of the tensor : It is the Channel dimension in format NHWC + // The weights will be compacted along side the channel dimension only + const DimSize_t& lastDim = getInput(0)->dims().back(); + + // Compute the last dimension size of the tensor after the weight interleaving compression + // TO DO : implement a mechanism to get the number of bits of the DataType + const DataType& dt = getInput(0)->dataType(); + + std::uint8_t nbBits = 0; + + switch (dt) { + case DataType::Int4: + nbBits=4; + break; + case DataType::Int3: + nbBits=3; + break; + case DataType::Int2: + nbBits=2; + break; + default: + AIDGE_ASSERT(true, "Unsupport type for WeightInterleaving {}", dt); + } + + + const auto lastDimCompression = compactDataSize(lastDim, nbBits); + + std::vector<DimSize_t> outputDims = getInput(0)->dims(); + outputDims.back() = lastDimCompression; + + // <batch, OutChannels> + mOutputs[0]->resize(outputDims); + + return true; + } + + return false; +} + + +void Aidge::WeightInterleaving_Op::setBackend(const std::string& name, DeviceIdx_t device) { + SET_IMPL_MACRO(WeightInterleaving_Op, *this, name); + mOutputs[0]->setBackend(name, device); +} + +std::set<std::string> Aidge::WeightInterleaving_Op::getAvailableBackends() const { + return Registrar<WeightInterleaving_Op>::getKeys(); +} + +std::shared_ptr<Aidge::Node> Aidge::WeightInterleaving(const std::string& name) { + return std::make_shared<Node>(std::make_shared<WeightInterleaving_Op>(), name); +} + + +std::size_t Aidge::WeightInterleaving_Op::compactDataSize(std::size_t dataSize, std::uint8_t nbBits) { + AIDGE_ASSERT(nbBits > 0 && nbBits < 8, "nbBits must be between 1 and 4"); // Ensure valid bit width + + // Calculate the number of `nbBits` segments that can fit in an 8-bit byte. + const unsigned int nbSlot = 8 / nbBits; + + // Calculate the number of compacted bytes needed to store all data elements. + // The formula (dataSize + nbSlot - 1) / nbSlot effectively rounds up the division, ensuring that any remaining elements that don't fully fill a byte are accounted for. + std::size_t requiredSize = (dataSize + nbSlot - 1) / nbSlot; + + return requiredSize; +} \ No newline at end of file diff --git a/src/recipes/ApplyWeightInterleaving.cpp b/src/recipes/ApplyWeightInterleaving.cpp new file mode 100644 index 0000000000000000000000000000000000000000..b9c042a538bc1ece754c5f659048e9c5f6c0d249 --- /dev/null +++ b/src/recipes/ApplyWeightInterleaving.cpp @@ -0,0 +1,119 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <memory> + +#include "aidge/data/Data.hpp" +#include "aidge/data/Tensor.hpp" +#include "aidge/graph/Node.hpp" +#include "aidge/graph/GraphView.hpp" +#include "aidge/operator/WeightInterleaving.hpp" +#include "aidge/operator/Transpose.hpp" +#include "aidge/operator/Producer.hpp" +#include "aidge/operator/OperatorTensor.hpp" +#include "aidge/recipes/Recipes.hpp" + + + + +void Aidge::applyWeightInterleaving(std::shared_ptr<Node> node){ + auto weightProducer = node->getParent(1); + AIDGE_ASSERT(weightProducer, "Cannot Apply Weight Interleaving on {} because it has no weights linked", node->name()) + + auto weightTensor = std::make_shared<Aidge::Tensor>(std::static_pointer_cast<Aidge::OperatorTensor>(weightProducer->getOperator())->getOutput(0)->clone()); + // auto backend = node->getOperator()->backend(); + // Cover the case of Generic Operators + auto backend = node->getOperator()->backend().empty() ? "cpu" : node->getOperator()->backend(); + + const Aidge::DataType weightDataType = weightTensor->dataType(); + + // 1 - Apply dataformat NHWC to match the custom kernel implementation for ARM cortexM + // Issue : If the dataFormat is Default then setting it to NHWC won't permute dimensions + // Fix : If the datatype is at default then set it to NCHW THEN set it to NHWC + + std::shared_ptr<Tensor> transposedWeightTensor; + + // Case 4D tensor (conv) + if (weightTensor->nbDims() == 4) + { + if (weightTensor->dataFormat() == Aidge::DataFormat::Default) { + weightTensor->setDataFormat(Aidge::DataFormat::NCHW); + } + + // Apply permutation for NHWC format + if (weightTensor->dataFormat() != Aidge::DataFormat::NHWC) { + weightTensor->setDataFormat(Aidge::DataFormat::NHWC); + } + + transposedWeightTensor = weightTensor; + + } + else if (weightTensor->nbDims() == 2) + { + std::shared_ptr<Node> myTranspose = Transpose({1, 0}); + auto op = std::static_pointer_cast<OperatorTensor>(myTranspose -> getOperator()); + op->associateInput(0,weightTensor); + op->setDataType(weightDataType); + op->setBackend("cpu"); + myTranspose->forward(); + + transposedWeightTensor = op->getOutput(0); + transposedWeightTensor->setDataFormat(Aidge::DataFormat::NHWC); + + } else { + AIDGE_THROW_OR_ABORT(std::runtime_error, "Cannot transpose {} weights.", node->name()); + } + + // 2 - Apply Weight interleaving + // Instanciate weight Interleaving operator + auto WIOp = WeightInterleaving_Op(); + + // Forward the Weight INterleaving op + WIOp.associateInput(0, transposedWeightTensor); + + switch (weightDataType) { + case Aidge::DataType::Int4: + WIOp.setDataType(Aidge::DataType::Dual_Int4); + break; + case Aidge::DataType::UInt4: + WIOp.setDataType(Aidge::DataType::Dual_UInt4); + break; + case Aidge::DataType::Int3: + WIOp.setDataType(Aidge::DataType::Dual_Int3); + break; + case Aidge::DataType::UInt3: + WIOp.setDataType(Aidge::DataType::Dual_UInt3); + break; + case Aidge::DataType::Int2: + WIOp.setDataType(Aidge::DataType::Quad_Int2); + break; + case Aidge::DataType::UInt2: + WIOp.setDataType(Aidge::DataType::Quad_UInt2); + break; + case Aidge::DataType::Binary: + WIOp.setDataType(Aidge::DataType::Octo_Binary); + break; + default: + AIDGE_THROW_OR_ABORT(std::runtime_error, "Data type {} not supported for weight interleaving.", weightDataType); + } + + WIOp.setDataFormat(Aidge::DataFormat::NHWC); + WIOp.setBackend(backend); + + WIOp.forward(); + + // 3 - Replace the Weight Producer + auto newProducer = {Producer(WIOp.getOutput(0), weightProducer->name())}; + auto oldProducer = {weightProducer}; + + GraphView::replace(oldProducer, newProducer); + +} \ No newline at end of file diff --git a/src/recipes/FuseBatchNorm.cpp b/src/recipes/FuseBatchNorm.cpp index 50c8f561c1732d6f7f37ae5b8d6f03c4e135939c..55be9636f4596b0deeb81d0174b717a91ff76644 100644 --- a/src/recipes/FuseBatchNorm.cpp +++ b/src/recipes/FuseBatchNorm.cpp @@ -117,7 +117,7 @@ void Aidge::fuseBatchNorm(std::shared_ptr<Aidge::Node> convNode, auto prod = addProducer(metaNode, inputIdx, {convNbOutChannels}, "b"); // Add the new bias node to the same views as the meta node - for (auto g : metaNode->views()) { + for (auto& g : metaNode->views()) { g->add(prod); } } @@ -126,12 +126,12 @@ void Aidge::fuseBatchNorm(std::shared_ptr<Aidge::Node> convNode, if (convNode->input(1).first) { // Add the new bias node to the same views as the weights node // if possible - for (auto g : convNode->input(1).first->views()) { + for (auto& g : convNode->input(1).first->views()) { g->add(prod); } } else { - for (auto g : convNode->views()) { + for (auto& g : convNode->views()) { g->add(prod); } } diff --git a/src/scheduler/MemoryManager.cpp b/src/scheduler/MemoryManager.cpp index ba805f919a607e0b2ae3272d173aa11360548fa7..05f461b82f16b6af4ed412b7336aa2328bcafbe1 100644 --- a/src/scheduler/MemoryManager.cpp +++ b/src/scheduler/MemoryManager.cpp @@ -634,152 +634,6 @@ void Aidge::MemoryManager::tick() ++mClock; } -void Aidge::MemoryManager::log(const std::string& fileName) const -{ - auto memData = std::unique_ptr<FILE, decltype(&std::fclose)>(std::fopen(fileName.c_str(), "w"), &std::fclose); - - if (!memData) { - AIDGE_THROW_OR_ABORT(std::runtime_error, - "Could not create memory layout log file: {}", fileName); - } - - auto gnuplot = std::unique_ptr<FILE, decltype(&std::fclose)>(std::fopen((fileName + "_plot.gnu").c_str(), "w"), &std::fclose); - - if (!gnuplot) { - AIDGE_THROW_OR_ABORT(std::runtime_error, - "Could not create memory layout log file: {}", (fileName + "_plot.gnu")); - } - - const Clock_T maxLifetime = getMaxLifetime(); - const unsigned int peakUsage = getPeakUsage(); - - fmt::print(gnuplot.get(), "#!/usr/bin/gnuplot\n"); - fmt::print(gnuplot.get(), "set term pngcairo size 1280,768 noenhanced\n"); - fmt::print(gnuplot.get(), "set output \"{}\"\n", fileName + "_plot.png"); - fmt::print(gnuplot.get(), "set xrange [{}:{}]\n", 0, maxLifetime + 1); - fmt::print(gnuplot.get(), "set yrange [{}:{}]\n", 0, 1.05 * (peakUsage / 1024.0)); - fmt::print(gnuplot.get(), "set xlabel \"Time\"\n"); - fmt::print(gnuplot.get(), "set ylabel \"Memory usage (KWords)\"\n"); - fmt::print(gnuplot.get(), "set grid\n"); - fmt::print(gnuplot.get(), "set xtics 1\n"); - fmt::print(gnuplot.get(), "unset key\n"); - fmt::print(gnuplot.get(), "set palette rgbformulae 30,31,32\n"); - fmt::print(gnuplot.get(), "unset colorbox\n"); - fmt::print(gnuplot.get(), "N={}\n", mMemPlanes.size() + 1); - - unsigned int objectId = 1; - unsigned int labelId = 1; - - for (std::map<std::shared_ptr<Node>, std::vector<MemoryPlane> > - ::const_iterator it = mMemPlanes.begin(), itEnd = mMemPlanes.end(); - it != itEnd; ++it) - { - const std::string name = (*it).first->name(); - fmt::print(memData.get(), "{}\n", name); - - double minX = -1; - unsigned int maxY = 0; - - for (std::vector<MemoryPlane>::const_iterator itPlanes - = (*it).second.begin(), itPlanesBegin = (*it).second.begin(), - itPlanesEnd = (*it).second.end(); itPlanes != itPlanesEnd; - ++itPlanes) - { - const unsigned int contiguousOffset - = (*itPlanes).getContiguousOffset(); - const unsigned int contiguousSize = (*itPlanes).getContiguousSize(); - const unsigned int wrappedOffset = (*itPlanes).getWrappedOffset(); - const unsigned int wrappedSize = (*itPlanes).getWrappedSize(); - - const Clock_T allocated = (*itPlanes).allocated; - const Clock_T released = (*itPlanes).memSpace->released; - const bool isReleased = (released >= 0 - && (*itPlanes).memSpace->dependencies.empty()); - - fmt::print(memData.get(), " {} {} ({:#08x}U) -> {} ({:#08x}U)", - (itPlanes - itPlanesBegin), contiguousOffset, contiguousOffset, - (contiguousOffset + contiguousSize), (contiguousOffset + contiguousSize)); - - if (wrappedSize > 0) { - fmt::print(memData.get(), " + {} ({:#08x}U) -> {} ({:#08x}U)", - wrappedOffset, wrappedOffset, - (wrappedOffset + wrappedSize), (wrappedOffset + wrappedSize)); - } - - fmt::print(memData.get(), " [{}] @ {}", (*itPlanes).getSize(), allocated); - - if (isReleased) { - fmt::print(memData.get(), " to {}", released); - } - - fmt::print(memData.get(), "\n"); - - // Gnuplot - const double startX = allocated; - - if (startX < minX || minX < 0) { - minX = startX; - maxY = contiguousOffset + contiguousSize; - } - - if ((*itPlanes).size != (*itPlanes).stride) { - for (unsigned int offset = contiguousOffset; - offset < contiguousOffset + contiguousSize; - offset += (*itPlanes).stride) - { - fmt::print(gnuplot.get(), "set object {} rectangle from {},{} to {},{} fc palette frac ({} * 1./N)\n", - (allocated * 100 + objectId), startX, (offset / 1024.0), - (((isReleased) ? released : maxLifetime) + 1), - (std::min((offset + (*itPlanes).size), - contiguousOffset + contiguousSize) / 1024.0), - labelId); - ++objectId; - } - } - else { - fmt::print(gnuplot.get(), "set object {} rectangle from {},{} to {},{} fc palette frac ({} * 1./N)\n", - (allocated * 100 + objectId), startX, (contiguousOffset / 1024.0), - (((isReleased) ? released : maxLifetime) + 1), - ((contiguousOffset + contiguousSize) / 1024.0), - labelId); - ++objectId; - } - - if (wrappedSize > 0) { - fmt::print(gnuplot.get(), "set object {} rectangle from {},{} to {},{} fc palette frac ({} * 1./N)\n", - (allocated * 100 + objectId), startX, (wrappedOffset / 1024.0), - (((isReleased) ? released : maxLifetime) + 1), - ((wrappedOffset + contiguousSize) / 1024.0), - labelId); - ++objectId; - - fmt::print(gnuplot.get(), "set arrow from {},{} to {},{} nohead\n", - startX, (contiguousOffset / 1024.0), - (startX + 0.1), (contiguousOffset / 1024.0)); - - fmt::print(gnuplot.get(), "set arrow from {},{} to {},{} nohead\n", - (startX + 0.05), ((contiguousOffset + contiguousSize) / 1024.0), - (startX + 0.05), (wrappedOffset / 1024.0)); - } - } - - fmt::print(gnuplot.get(), "set label {} '{}' at {},{} rotate by 30 font \",8\" offset char 0.5,0.5\n", - labelId, name, minX, (maxY / 1024.0)); - ++labelId; - - fmt::print(memData.get(), "\n"); - } - - fmt::print(gnuplot.get(), "set arrow from 0,{} to {},{} nohead lc rgb \"red\"\n", - (peakUsage / 1024.0), (maxLifetime + 1), - (peakUsage / 1024.0)); - - fmt::print(gnuplot.get(), "set label {} 'Peak usage = {} KWords' at 0,{} textcolor rgb \"red\" offset char 0.5,0.5\n", - labelId, (peakUsage / 1024.0), (peakUsage / 1024.0)); - - fmt::print(gnuplot.get(), "plot 0\n"); -} - unsigned int Aidge::MemoryManager::onStack(unsigned int size) { unsigned int offset = 0; diff --git a/unit_tests/scheduler/Test_MemoryManager.cpp b/unit_tests/scheduler/Test_MemoryManager.cpp index a4941203644b7ba291682f3932926a36fa83b745..b6cedfac47d53e0f8ab464fad8a2f6cc6c8dcc15 100644 --- a/unit_tests/scheduler/Test_MemoryManager.cpp +++ b/unit_tests/scheduler/Test_MemoryManager.cpp @@ -136,7 +136,6 @@ TEST_CASE("allocate1", "[MemoryManager]") { REQUIRE(memManager.getPlanes(node4).back().memSpace->allocated == 3); REQUIRE(memManager.getPlanes(node4).back().memSpace->released == 4); - memManager.log("MemoryManager_allocate1.log"); } TEST_CASE("allocate2", "[MemoryManager]") { @@ -281,7 +280,6 @@ TEST_CASE("allocate2", "[MemoryManager]") { REQUIRE(memManager.getPlanes(node4).back().memSpace->allocated == 3); REQUIRE(memManager.getPlanes(node4).back().memSpace->released == 4); - memManager.log("MemoryManager_allocate2.log"); } TEST_CASE("allocate3", "[MemoryManager]") { @@ -438,7 +436,6 @@ TEST_CASE("allocate3", "[MemoryManager]") { REQUIRE(memManager.getPlanes(node4).back().memSpace->allocated == 0); REQUIRE(memManager.getPlanes(node4).back().memSpace->released == 4); - memManager.log("MemoryManager_allocate3.log"); } TEST_CASE("allocate3_wrapAround", "[MemoryManager]") { @@ -595,5 +592,4 @@ TEST_CASE("allocate3_wrapAround", "[MemoryManager]") { REQUIRE(memManager.getPlanes(node4).back().memSpace->allocated == 0); REQUIRE(memManager.getPlanes(node4).back().memSpace->released == 4); - memManager.log("MemoryManager_allocate3_wrapAround.log"); }