diff --git a/include/aidge/operator/AvgPooling.hpp b/include/aidge/operator/AvgPooling.hpp index e73387ce1daf7b08d087faecf5a30edaffc6d54d..367435fe7dd62a071d701ef69c36d56ce2f7a940 100644 --- a/include/aidge/operator/AvgPooling.hpp +++ b/include/aidge/operator/AvgPooling.hpp @@ -290,5 +290,9 @@ extern template class Aidge::AvgPooling_Op<2>; extern template class Aidge::AvgPooling_Op<3>; extern template class Aidge::AvgPooling_Op<4>; +<<<<<<< HEAD +======= + +>>>>>>> 9b3579590d612d89cd36f42d47bb396670ef14af #endif /* AIDGE_CORE_OPERATOR_AVGPOOLING_H_ */ diff --git a/python_binding/operator/pybind_MetaOperatorDefs.cpp b/python_binding/operator/pybind_MetaOperatorDefs.cpp index 8058cd2a23c6c1bf91b44b347af9df57aac0635a..2b2cdea12fee04e88ccb715abebf9da768758de3 100644 --- a/python_binding/operator/pybind_MetaOperatorDefs.cpp +++ b/python_binding/operator/pybind_MetaOperatorDefs.cpp @@ -50,7 +50,7 @@ template <DimIdx_t DIM> void declare_PaddedConvOp(py::module &m) { R"mydelimiter( Initialize a node containing a Padded Convolution operator. - This operator performs a convolution operation with explicit padding. It applies a + This operator performs a convolution operation with explicit padding. It applies a kernel filter over an input tensor with specified stride and dilation settings. :param in_channels: Number of input channels. @@ -92,8 +92,8 @@ template <DimIdx_t DIM> void declare_PaddedConvOp(py::module &m) { R"mydelimiter( Initialize a Padded Convolution operator. - This function defines a convolution operation that includes explicit padding before - applying the kernel. The padding allows control over output dimensions while maintaining + This function defines a convolution operation that includes explicit padding before + applying the kernel. The padding allows control over output dimensions while maintaining receptive field properties. :param kernel_dims: The size of the convolutional kernel for each dimension. @@ -135,8 +135,8 @@ template <DimIdx_t DIM> void declare_PaddedConvDepthWiseOp(py::module &m) { R"mydelimiter( Initialize a node containing a Depthwise Padded Convolution operator. - This operator performs a depthwise convolution operation, where each input channel is - convolved separately with a different kernel. The operation includes explicit padding, + This operator performs a depthwise convolution operation, where each input channel is + convolved separately with a different kernel. The operation includes explicit padding, stride control, and dilation options. :param nb_channels: Number of input channels (also the number of output channels since depthwise convolution does not mix channels). @@ -176,8 +176,8 @@ template <DimIdx_t DIM> void declare_PaddedConvDepthWiseOp(py::module &m) { R"mydelimiter( Initialize a Depthwise Padded Convolution operator. - This function defines a depthwise convolution operation that includes explicit padding - before applying the kernel. Depthwise convolution applies a separate filter to each + This function defines a depthwise convolution operation that includes explicit padding + before applying the kernel. Depthwise convolution applies a separate filter to each input channel, preserving channel independence. :param kernel_dims: The size of the convolutional kernel for each dimension. @@ -216,7 +216,7 @@ template <DimIdx_t DIM> void declare_PaddedAvgPoolingOp(py::module &m) { R"mydelimiter( Initialize a node containing a Padded Average Pooling operator. - This operator performs an average pooling operation with explicit padding. The output value + This operator performs an average pooling operation with explicit padding. The output value is computed as the average of input values within a defined kernel window. :param kernel_dims: The size of the pooling kernel for each dimension. @@ -255,7 +255,7 @@ template <DimIdx_t DIM> void declare_PaddedAvgPoolingOp(py::module &m) { R"mydelimiter( Initialize a Padded Average Pooling operator. - This function defines an average pooling operation with explicit padding before pooling is applied. + This function defines an average pooling operation with explicit padding before pooling is applied. The operation computes the average of the elements inside each kernel window. :param kernel_dims: The size of the pooling kernel for each dimension. @@ -296,7 +296,7 @@ template <DimIdx_t DIM> void declare_PaddedMaxPoolingOp(py::module &m) { R"mydelimiter( Initialize a node containing a Padded Max Pooling operator. - This operator performs a max pooling operation with explicit padding before pooling is applied. + This operator performs a max pooling operation with explicit padding before pooling is applied. The output value is computed as the maximum of input values within a defined kernel window. :param kernel_dims: The size of the pooling kernel for each dimension. @@ -335,7 +335,7 @@ template <DimIdx_t DIM> void declare_PaddedMaxPoolingOp(py::module &m) { R"mydelimiter( Initialize a Padded Max Pooling operator. - This function defines a max pooling operation with explicit padding before pooling is applied. + This function defines a max pooling operation with explicit padding before pooling is applied. The operation computes the maximum of the elements inside each kernel window. :param kernel_dims: The size of the pooling kernel for each dimension. @@ -364,8 +364,8 @@ void declare_LSTMOp(py::module &m) { R"mydelimiter( Initialize a node containing an LSTM (Long Short-Term Memory) operator. - The LSTM operator is a recurrent neural network (RNN) variant designed to model sequential data - while addressing the vanishing gradient problem. It includes gating mechanisms to control + The LSTM operator is a recurrent neural network (RNN) variant designed to model sequential data + while addressing the vanishing gradient problem. It includes gating mechanisms to control information flow through time. :param in_channels: The number of input features per time step. @@ -388,7 +388,7 @@ void declare_LSTMOp(py::module &m) { R"mydelimiter( Initialize an LSTM operation. - This function sets up an LSTM operator to process sequential data. The LSTM maintains hidden + This function sets up an LSTM operator to process sequential data. The LSTM maintains hidden states over time steps, allowing it to learn long-range dependencies. :param seq_length: The length of the input sequence. @@ -402,7 +402,7 @@ void declare_LSTMOp(py::module &m) { void declare_LeakyOp(py::module &m) { - m.def("Leaky", &Leaky, + m.def("Leaky", &Leaky, py::arg("nb_timesteps"), py::arg("beta"), py::arg("threshold") = 1.0, @@ -410,7 +410,7 @@ void declare_LeakyOp(py::module &m) { R"mydelimiter( Initialize a Leaky neuron operator. - The Leaky operator introduces a decay factor, allowing neuron states to "leak" over time instead of resetting + The Leaky operator introduces a decay factor, allowing neuron states to "leak" over time instead of resetting abruptly. This helps in maintaining temporal memory. :param nb_timesteps: The number of time steps for the operation.