diff --git a/aidge_core/unit_tests/test_operator_binding.py b/aidge_core/unit_tests/test_operator_binding.py index 5b25eb7975d439816dbf91cc95b462f217fd0227..8d6f2686d9010ac4ebed80cd04f74effe763e977 100644 --- a/aidge_core/unit_tests/test_operator_binding.py +++ b/aidge_core/unit_tests/test_operator_binding.py @@ -73,15 +73,26 @@ class test_operator_binding(unittest.TestCase): self.assertEqual(attrs.get_attr("b"), "test") self.assertEqual(attrs.has_attr("c"), True) self.assertEqual(attrs.get_attr("c"), [True, False, True]) - self.assertEqual(attrs.dict().keys(), {"a", "b", "c"}) + self.assertEqual(attrs.dict().keys(), {"a", "b", "c", "mem", "impl"}) self.assertEqual(attrs.has_attr("d"), False) + self.assertEqual(attrs.has_attr("mem.a"), True) + self.assertEqual(attrs.get_attr("mem.a"), 1) + self.assertEqual(attrs.has_attr("mem.data.b"), True) + self.assertEqual(attrs.get_attr("mem.data.b"), 1.0) + self.assertEqual(attrs.get_attr("mem").get_attr("data").get_attr("b"), 1.0) + self.assertEqual(attrs.has_attr("impl.c"), True) + self.assertEqual(attrs.get_attr("impl.c"), "test") # Add Python attributes attrs.add_attr("d", 18.56) self.assertEqual(attrs.get_attr("d"), 18.56) self.assertEqual(attrs.has_attr("d"), True) - self.assertEqual(attrs.dict().keys(), {"a", "b", "c", "d"}) + self.assertEqual(attrs.dict().keys(), {"a", "b", "c", "d", "mem", "impl"}) self.assertEqual(attrs.has_attr("e"), False) + attrs.add_attr("mem.data.c", 19.36) + self.assertEqual(attrs.get_attr("mem.data.c"), 19.36) + self.assertEqual(attrs.has_attr("mem.data.c"), True) + self.assertEqual(attrs.dict().keys(), {"a", "b", "c", "d", "mem", "impl"}) # Check that added Python attribute is accessible in C++ # Return the value of an attribute named "d" of type float64 (double in C++) @@ -89,6 +100,23 @@ class test_operator_binding(unittest.TestCase): attrs.d = 23.89 self.assertEqual(aidge_core.test_DynamicAttributes_binding_check(attrs), 23.89) + op = aidge_core.GenericOperatorOp("any_type", 1,0,1) + with self.assertRaises(RuntimeError): + op.attr.something + + op.attr.something = aidge_core.DynamicAttributes() + try: + self.assertEqual(str(op.attr), "AttrDict({'something': AttrDict({})})") + except Exception: + self.fail("op.attr.something raised Exception unexpectedly!") + + op.attr.something.arg1 = 4 + self.assertEqual(op.attr.something.arg1, 4) + + # auto create the namespace another_thing (not enabled) + #op.attr.another_thing.arg = 44 + #self.assertEqual(op.attr.another_thing.arg, 44) + def test_forward_dims(self): in_dims=[25, 25] input = aidge_core.Producer(in_dims, name="In") diff --git a/include/aidge/backend/cpu/data/TensorImpl.hpp b/include/aidge/backend/cpu/data/TensorImpl.hpp index ff5a4fc4b8fe728efd517a74d3a9613a97e8809b..6454ed233c561e386199e4db40ca698ee9edad8a 100644 --- a/include/aidge/backend/cpu/data/TensorImpl.hpp +++ b/include/aidge/backend/cpu/data/TensorImpl.hpp @@ -132,10 +132,14 @@ static Registrar<Tensor> registrarTensorImpl_cpu_Int32( {"cpu", DataType::Int32}, Aidge::TensorImpl_cpu<int32_t>::create); static Registrar<Tensor> registrarTensorImpl_cpu_Int16( {"cpu", DataType::Int16}, Aidge::TensorImpl_cpu<int16_t>::create); -static Registrar<Tensor> registrarTensorImpl_cpu_UInt16( - {"cpu", DataType::UInt16}, Aidge::TensorImpl_cpu<uint16_t>::create); static Registrar<Tensor> registrarTensorImpl_cpu_Int8( {"cpu", DataType::Int8}, Aidge::TensorImpl_cpu<int8_t>::create); +static Registrar<Tensor> registrarTensorImpl_cpu_UInt64( + {"cpu", DataType::UInt64}, Aidge::TensorImpl_cpu<uint64_t>::create); +static Registrar<Tensor> registrarTensorImpl_cpu_UInt32( + {"cpu", DataType::UInt32}, Aidge::TensorImpl_cpu<uint32_t>::create); +static Registrar<Tensor> registrarTensorImpl_cpu_UInt16( + {"cpu", DataType::UInt16}, Aidge::TensorImpl_cpu<uint16_t>::create); static Registrar<Tensor> registrarTensorImpl_cpu_UInt8( {"cpu", DataType::UInt8}, Aidge::TensorImpl_cpu<uint8_t>::create); } // namespace diff --git a/include/aidge/data/Tensor.hpp b/include/aidge/data/Tensor.hpp index ffee8c41a6e5adc13bad1d884e840986e7a868bb..108f1f2b4af12b3501dbb247d17052e42ebb70ed 100644 --- a/include/aidge/data/Tensor.hpp +++ b/include/aidge/data/Tensor.hpp @@ -57,7 +57,8 @@ class Tensor : public Data, /** * @brief Construct a new empty Tensor object. - * It has the features of an undefined scalar. + * It is considered undefined, i.e. dims can't be forwarded from such a Tensor. + * @ref undefined() method for details */ Tensor(DataType dtype = DataType::Float32, DataFormat dformat = DataFormat::Default) : Data(Type), @@ -65,7 +66,7 @@ class Tensor : public Data, mDataFormat(dformat), mDims(std::vector<DimSize_t>({})), mStrides({1}), - mSize(1) + mSize(0) { // ctor } @@ -523,14 +524,30 @@ public: void resize(const std::vector<DimSize_t> &dims, std::vector<DimSize_t> strides = std::vector<DimSize_t>()); /** - * @brief Return if the Tensor object has at leastone element. - * @return true - * @return false + * @brief Return whether the Tensor object as a rank of 0, i.e. dimensions == {}. + * For defined Tensors, this implies that the Tensor is scalar. + * For backward compatibility reasons, it is valid to call this predicate + * even on undefined Tensors, in which case it returns true. + * Hence before test the rank with this method, always check that the + * Tensor is not undefined(). + * In particular for operations such as forwardDims(), one should always + * use undefined() to test whether the Tensor dimensions have been defined. + * In this case empty() can be used to distinguish scalars from N-D Tensors. + * @return true if rank is 0 or the tensor is undefined */ bool empty() const { return mDims.empty(); } - // bool newempty() const noexcept { - // return mSize == 0; - // } + + /** + * @brief Returns whether the Tensor object is undefined. + * An undefined Tensor is equivalent to a tensor for which dimensions have not + * been defined yet. Hence, dimensions forwarding can't be done from undefined tensors. + * The only cases where a tensor is undefined is after the default constructor + * and before any call to resize(). + * Also, as soon as the resize() method has been called, the Tensor is irreversibly defined. + * @ref empty() method for distinguishing an undefined from a scalar + * @return true if undefined + */ + bool undefined() const { return mSize == 0; } /** * @brief Set each element of the tensor to zero. diff --git a/include/aidge/operator/AvgPooling.hpp b/include/aidge/operator/AvgPooling.hpp index 06ee4327e2f2d4df32c2decd73841bdf5f79a739..920829473d856b2a4c14fc0859abcd4c3b70277a 100644 --- a/include/aidge/operator/AvgPooling.hpp +++ b/include/aidge/operator/AvgPooling.hpp @@ -119,8 +119,8 @@ extern template class Aidge::AvgPooling_Op<4>; namespace { template <> const char *const EnumStrings<Aidge::AvgPoolingAttr>::data[] = { - "StrideDims", - "KernelDims" + "stride_dims", + "kernel_dims" }; } diff --git a/include/aidge/operator/BatchNorm.hpp b/include/aidge/operator/BatchNorm.hpp index b5b64eb428d709e804dd9f6711530b348e0be747..08d1f6a88d394e34dd6e351f500429113a52c9fa 100644 --- a/include/aidge/operator/BatchNorm.hpp +++ b/include/aidge/operator/BatchNorm.hpp @@ -111,7 +111,7 @@ extern template std::shared_ptr<Aidge::Node> Aidge::BatchNorm<4>(const DimSize_t namespace { template <> -const char *const EnumStrings<Aidge::BatchNormAttr>::data[] = { "Epsilon", "Momentum" }; +const char *const EnumStrings<Aidge::BatchNormAttr>::data[] = { "epsilon", "momentum" }; } #endif //AIDGE_CORE_OPERATOR_BATCHNORM_H_ diff --git a/include/aidge/operator/Cast.hpp b/include/aidge/operator/Cast.hpp index 6911053932afff6675be4eb2c713d8d3cd34b462..291669b7c57c14a77ffa6b40fa2aefab8d281fc7 100644 --- a/include/aidge/operator/Cast.hpp +++ b/include/aidge/operator/Cast.hpp @@ -93,7 +93,7 @@ inline std::shared_ptr<Node> Cast(const DataType targetType, const std::string& namespace { template <> -const char* const EnumStrings<Aidge::CastAttr>::data[] = { "TargetType" }; +const char* const EnumStrings<Aidge::CastAttr>::data[] = { "target_type" }; } #endif /* AIDGE_CORE_OPERATOR_CAST_H_ */ diff --git a/include/aidge/operator/Concat.hpp b/include/aidge/operator/Concat.hpp index 8341a93fe66d260ae3687170629b8759d0305a9c..ab14bf527dd9949f3bb2b6157619e58c7c7580ee 100644 --- a/include/aidge/operator/Concat.hpp +++ b/include/aidge/operator/Concat.hpp @@ -108,7 +108,7 @@ inline std::shared_ptr<Node> Concat(const IOIndex_t nbIn, const std::int32_t axi namespace { template <> const char* const EnumStrings<Aidge::ConcatAttr>::data[] = { - "Axis" + "axis" }; } diff --git a/include/aidge/operator/Conv.hpp b/include/aidge/operator/Conv.hpp index 87ff5854b310ca472994bd6b68fd6ae58d31e806..e89c94f968ab89f43e6ef2d95a40a6f557cc41c7 100644 --- a/include/aidge/operator/Conv.hpp +++ b/include/aidge/operator/Conv.hpp @@ -178,9 +178,9 @@ extern template class Aidge::Conv_Op<2>; namespace { template <> const char *const EnumStrings<Aidge::ConvAttr>::data[] = { - "StrideDims", - "DilationDims", - "KernelDims" + "stride_dims", + "dilation_dims", + "kernel_dims" }; } diff --git a/include/aidge/operator/ConvDepthWise.hpp b/include/aidge/operator/ConvDepthWise.hpp index c8a83ff7de62a61e8125eac29d61c3938115cd09..1acf240bfcdd256953cd96b92e3622a265aafa0b 100644 --- a/include/aidge/operator/ConvDepthWise.hpp +++ b/include/aidge/operator/ConvDepthWise.hpp @@ -140,8 +140,8 @@ extern template class Aidge::ConvDepthWise_Op<2>; namespace { template <> -const char *const EnumStrings<Aidge::ConvDepthWiseAttr>::data[] = {"StrideDims", "DilationDims", - "KernelDims"}; +const char *const EnumStrings<Aidge::ConvDepthWiseAttr>::data[] = {"stride_dims", "dilation_dims", + "kernel_dims"}; } #endif /* AIDGE_CORE_OPERATOR_CONVDEPTHWISE_H_ */ diff --git a/include/aidge/operator/Fold.hpp b/include/aidge/operator/Fold.hpp index 28127f9efe437531a64d228f7ed9c168edc39eb6..caf904e870425c000687ccd95397c92744020eec 100644 --- a/include/aidge/operator/Fold.hpp +++ b/include/aidge/operator/Fold.hpp @@ -133,10 +133,10 @@ extern template class Aidge::Fold_Op<2>; namespace { template <> const char *const EnumStrings<Aidge::FoldAttr>::data[] = { - "OutputDims", - "StrideDims", - "DilationDims", - "KernelDims" + "output_dims", + "stride_dims", + "dilation_dims", + "kernel_dims" }; } diff --git a/include/aidge/operator/Gather.hpp b/include/aidge/operator/Gather.hpp index 3e9b780732fa9144f2e58bef854d1b42d063d0bf..5f3917e486e2e2188bfd23bd58a13b51d5fc7a59 100644 --- a/include/aidge/operator/Gather.hpp +++ b/include/aidge/operator/Gather.hpp @@ -114,7 +114,7 @@ inline std::shared_ptr<Node> Gather(std::int8_t axis = 0, const std::vector<int6 namespace { template <> -const char *const EnumStrings<Aidge::GatherAttr>::data[] = {"Axis", "Indices", "GatheredShape"}; +const char *const EnumStrings<Aidge::GatherAttr>::data[] = {"axis", "indices", "gathered_shape"}; } #endif /* AIDGE_CORE_OPERATOR_GATHER_H_ */ diff --git a/include/aidge/operator/Identity.hpp b/include/aidge/operator/Identity.hpp index 393798da2fc26b3ef3f5e4cfe54f69fd82174a5f..e07df59d888993cb33da9c20393d897ab9cf1804 100644 --- a/include/aidge/operator/Identity.hpp +++ b/include/aidge/operator/Identity.hpp @@ -76,7 +76,7 @@ public: * @return false Input has no dimensions or is a nullptr. */ bool dimsForwarded() const override final { - return mInputs[0] ? (mInputs[0]->empty() ? false : mInputs[0]->dims() == mOutputs[0]->dims()) : false; + return mInputs[0] ? (mInputs[0]->undefined() ? false : mInputs[0]->dims() == mOutputs[0]->dims()) : false; } diff --git a/include/aidge/operator/LeakyReLU.hpp b/include/aidge/operator/LeakyReLU.hpp index 294e7ebb009ff184c9150d2aa18067a15deeba22..3057b99f70fa3693f7e434be29dcd40fb98d4bea 100644 --- a/include/aidge/operator/LeakyReLU.hpp +++ b/include/aidge/operator/LeakyReLU.hpp @@ -99,7 +99,7 @@ inline std::shared_ptr<Node> LeakyReLU(float negativeSlope = 0.0f, const std::st namespace { template <> const char* const EnumStrings<Aidge::LeakyReLUAttr>::data[] - = {"NegativeSlope"}; + = {"negative_slope"}; } #endif /* AIDGE_CORE_OPERATOR_RELU_H_ */ diff --git a/include/aidge/operator/MaxPooling.hpp b/include/aidge/operator/MaxPooling.hpp index 082aa26bbdf1d55dcae29d1ffb2b9810db8b17d0..7e2c68681e645133812103a94e4c39ab9d1dc970 100644 --- a/include/aidge/operator/MaxPooling.hpp +++ b/include/aidge/operator/MaxPooling.hpp @@ -156,7 +156,7 @@ inline std::shared_ptr<Node> MaxPooling( namespace { template <> -const char *const EnumStrings<Aidge::MaxPoolingAttr>::data[] = {"StrideDims", "KernelDims", "CeilMode"}; +const char *const EnumStrings<Aidge::MaxPoolingAttr>::data[] = {"stride_dims", "kernel_dims", "ceil_mode"}; } #endif /* AIDGE_CORE_OPERATOR_MAXPOOLING_H_ */ diff --git a/include/aidge/operator/Memorize.hpp b/include/aidge/operator/Memorize.hpp index d6af56f2faad18b9e39c793ea68e39eac4dd2f01..bb652e833ad06df37f55d3582afd0e66cc3e97c8 100644 --- a/include/aidge/operator/Memorize.hpp +++ b/include/aidge/operator/Memorize.hpp @@ -113,9 +113,9 @@ inline std::shared_ptr<Node> Memorize(const std::uint32_t endStep, const std::st namespace { template <> const char *const EnumStrings<Aidge::MemorizeAttr>::data[] = { - "ScheduleStep", - "ForwardStep", - "EndStep" + "schedule_step", + "forward_step", + "end_step" }; } diff --git a/include/aidge/operator/Operator.hpp b/include/aidge/operator/Operator.hpp index adec17d07f39727a0c75d32fa24bcc624aa66e1a..f1e25b7a1f0ba3c07d656d4170a4b2d2bc045e5b 100644 --- a/include/aidge/operator/Operator.hpp +++ b/include/aidge/operator/Operator.hpp @@ -109,7 +109,7 @@ public: * The pointer itself is not changed, thus keeping the current connections. * @param inputIdx Index of the input to set. */ - virtual void setOutput(const IOIndex_t outputIdx, const std::shared_ptr<Data>& data) = 0; + virtual void setOutput(const IOIndex_t outputIdx, const std::shared_ptr<Data>& data) const = 0; virtual std::shared_ptr<Data> getRawOutput(const IOIndex_t outputIdx) const = 0; std::shared_ptr<Hook> getHook(const std::string& hookName) { diff --git a/include/aidge/operator/OperatorTensor.hpp b/include/aidge/operator/OperatorTensor.hpp index 657a6d8ab6124b8919a3ac8fea5b6bfa6c4254b9..1097454fce62f645eb83c491498031738847e96c 100644 --- a/include/aidge/operator/OperatorTensor.hpp +++ b/include/aidge/operator/OperatorTensor.hpp @@ -62,7 +62,7 @@ public: std::shared_ptr<Data> getRawInput(const IOIndex_t inputIdx) const override final; // output management - void setOutput(const IOIndex_t outputIdx, const std::shared_ptr<Data>& data) override; + void setOutput(const IOIndex_t outputIdx, const std::shared_ptr<Data>& data) const override; virtual const std::shared_ptr<Tensor>& getOutput(const IOIndex_t outputIdx) const; std::shared_ptr<Aidge::Data> getRawOutput(const Aidge::IOIndex_t outputIdx) const override final; /////////////////////////////////////////////////// diff --git a/include/aidge/operator/Pad.hpp b/include/aidge/operator/Pad.hpp index 5fd0f93986206e6cd958a85055159783eeb8bc8f..215fafb7fee10587dec38e77685d705f7c1bb980 100644 --- a/include/aidge/operator/Pad.hpp +++ b/include/aidge/operator/Pad.hpp @@ -139,7 +139,7 @@ extern template class Aidge::Pad_Op<2>; namespace { template <> -const char *const EnumStrings<Aidge::PadAttr>::data[] = {"BeginEndBorders", "BorderType", "BorderValue"}; +const char *const EnumStrings<Aidge::PadAttr>::data[] = {"begin_end_borders", "border_type", "border_value"}; template <> const char *const EnumStrings<Aidge::PadBorderType>::data[] = {"Constant", "Edge", "Reflect", "Wrap"}; diff --git a/include/aidge/operator/Pop.hpp b/include/aidge/operator/Pop.hpp index 575d56b455940ea98571110dbaa9a83de09fef37..fb3b32eeacf2e199df88b6bd0256cf6cbdaa1065 100644 --- a/include/aidge/operator/Pop.hpp +++ b/include/aidge/operator/Pop.hpp @@ -100,7 +100,7 @@ inline std::shared_ptr<Node> Pop(const std::string& name = "") { namespace { template <> const char *const EnumStrings<Aidge::PopAttr>::data[] = { - "ForwardStep" + "forward_step" }; } diff --git a/include/aidge/operator/Producer.hpp b/include/aidge/operator/Producer.hpp index 9e3bdd1ba2f601da27dea3a6a01131a0c8191eb4..1647c563d38ab4931cc3a0c2a4281555215f990e 100644 --- a/include/aidge/operator/Producer.hpp +++ b/include/aidge/operator/Producer.hpp @@ -115,7 +115,7 @@ public: // fmt::print("Basic Producer backward() function.\n"); } - void setOutput(const Aidge::IOIndex_t outputIdx, const std::shared_ptr<Aidge::Data>& data) override { + void setOutput(const Aidge::IOIndex_t outputIdx, const std::shared_ptr<Aidge::Data>& data) const override { if (mAttributes->template getAttr<ProdAttr::Constant>()) { AIDGE_THROW_OR_ABORT(std::runtime_error, "Producer is constant, cannot update output."); } @@ -160,7 +160,7 @@ std::shared_ptr<Node> addProducer(std::shared_ptr<Node>& otherNode, const IOInde namespace { template <> const char *const EnumStrings<Aidge::ProdAttr>::data[] = { - "Constant" + "constant" }; } #endif /* AIDGE_CORE_OPERATOR_PRODUCER_H_ */ diff --git a/include/aidge/operator/ReduceMean.hpp b/include/aidge/operator/ReduceMean.hpp index 3fcf19ffd13645fb28b6efcfefaf8e347b148c89..000607c60e4e3c85671e70a941bd11f3427333dd 100644 --- a/include/aidge/operator/ReduceMean.hpp +++ b/include/aidge/operator/ReduceMean.hpp @@ -127,7 +127,7 @@ inline std::shared_ptr<Node> ReduceMean(const std::vector<std::int32_t> &axes, namespace { template <> -const char *const EnumStrings<Aidge::ReduceMeanAttr>::data[] = {"Axes", "KeepDims"}; +const char *const EnumStrings<Aidge::ReduceMeanAttr>::data[] = {"axes", "keep_dims"}; } #endif /* AIDGE_CORE_OPERATOR_REDUCEMEAN_H_ */ diff --git a/include/aidge/operator/Reshape.hpp b/include/aidge/operator/Reshape.hpp index 4ea0cca30089555ff7979f141f94e5c84f04ffa1..29a08c76c248018fff87a5f765a0b62cbd23b6b7 100644 --- a/include/aidge/operator/Reshape.hpp +++ b/include/aidge/operator/Reshape.hpp @@ -107,7 +107,7 @@ inline std::shared_ptr<Node> Reshape(const std::vector<std::int64_t>& shape = {} namespace { template <> -const char *const EnumStrings<Aidge::ReshapeAttr>::data[] = { "Shape", "AllowZero" }; +const char *const EnumStrings<Aidge::ReshapeAttr>::data[] = { "shape", "allow_zero" }; } #endif /* AIDGE_CORE_OPERATOR_RESHAPE_H_ */ diff --git a/include/aidge/operator/Scaling.hpp b/include/aidge/operator/Scaling.hpp index 7d8e11b31546cd87a8d6b2d36e2929c9ef6df7a2..0683a26f6e9d8ef462c2af4693f372b43c33a144 100644 --- a/include/aidge/operator/Scaling.hpp +++ b/include/aidge/operator/Scaling.hpp @@ -105,7 +105,7 @@ inline std::shared_ptr<Node> Scaling(float scalingFactor = 1.0f, namespace { template <> const char* const EnumStrings<Aidge::ScalingAttr>::data[] - = {"ScalingFactor", "QuantizedNbBits", "IsOutputUnsigned"}; + = {"scaling_factor", "quantized_nb_bits", "is_output_unsigned"}; } #endif /* AIDGE_CORE_OPERATOR_SCALING_H_ */ diff --git a/include/aidge/operator/Shape.hpp b/include/aidge/operator/Shape.hpp index 6d2d1b5e7c212fafa5ad6457d9e0a260e96b1c90..94f237726e79d8fe7824ff2c9b2f7640bbfc716f 100644 --- a/include/aidge/operator/Shape.hpp +++ b/include/aidge/operator/Shape.hpp @@ -105,7 +105,7 @@ inline std::shared_ptr<Node> Shape(const std::int64_t start = 0, const std::int6 namespace { template <> -const char *const EnumStrings<Aidge::ShapeAttr>::data[] = {"Start", "End"}; +const char *const EnumStrings<Aidge::ShapeAttr>::data[] = {"start", "end"}; } #endif /* AIDGE_CORE_OPERATOR_SHAPE_H_ */ diff --git a/include/aidge/operator/Slice.hpp b/include/aidge/operator/Slice.hpp index 7d425a0f3589e74b54ee0834fdc4291ea7f49bad..04a67fe98f7682737bff6df18f28d568ee33e093 100644 --- a/include/aidge/operator/Slice.hpp +++ b/include/aidge/operator/Slice.hpp @@ -115,7 +115,7 @@ inline std::shared_ptr<Node> Slice(const std::vector<std::int64_t>& starts = {}, namespace { template <> -const char *const EnumStrings<Aidge::SliceAttr>::data[] = { "Starts", "Ends", "Axes", "Steps" }; +const char *const EnumStrings<Aidge::SliceAttr>::data[] = { "starts", "ends", "axes", "steps" }; } #endif /* AIDGE_CORE_OPERATOR_RELU_H_ */ diff --git a/include/aidge/operator/Softmax.hpp b/include/aidge/operator/Softmax.hpp index 70f3a561ae5c9ba4720de8419bcd5aaf32a51e47..0b7a8e57193439872c6fcc2699b9f5e55c643961 100644 --- a/include/aidge/operator/Softmax.hpp +++ b/include/aidge/operator/Softmax.hpp @@ -92,7 +92,7 @@ inline std::shared_ptr<Node> Softmax(std::int32_t axis, const std::string& name namespace { template <> -const char *const EnumStrings<Aidge::SoftmaxAttr>::data[] = {"Axis"}; +const char *const EnumStrings<Aidge::SoftmaxAttr>::data[] = {"axis"}; } #endif /* AIDGE_CORE_OPERATOR_SOFTMAX_H_ */ diff --git a/include/aidge/operator/Split.hpp b/include/aidge/operator/Split.hpp index 42baf66e6722c6f9a0d3f40f12d4f4685fcc6980..7bdec1579c8a8f46640de5caf42c01568d208059 100644 --- a/include/aidge/operator/Split.hpp +++ b/include/aidge/operator/Split.hpp @@ -34,20 +34,24 @@ enum class SplitAttr { Axis, Split }; class Split_Op : public OperatorTensor, - public Registrable<Split_Op, std::string, std::shared_ptr<OperatorImpl>(const Split_Op &)>, - public StaticAttributes<SplitAttr, std::int8_t, std::vector<DimSize_t>> { + public Registrable<Split_Op, std::string, std::shared_ptr<OperatorImpl>(const Split_Op &)> { public: static const std::string Type; +private: + using Attributes_ = StaticAttributes<SplitAttr, std::int8_t, std::vector<DimSize_t>>; + template <SplitAttr e> using attr = typename Attributes_::template attr<e>; + const std::shared_ptr<Attributes_> mAttributes; + +public: Split_Op() = delete; - using Attributes_ = StaticAttributes<SplitAttr, std::int8_t, std::vector<DimSize_t>>; - template <SplitAttr e> using attr = typename Attributes_::template attr<e>; Split_Op( std::int8_t axis, DimSize_t nbOutputs, const std::vector<DimSize_t>& split) : OperatorTensor(Type, {InputCategory::Data, InputCategory::OptionalData}, nbOutputs), - Attributes_(attr<SplitAttr::Axis>(axis), - attr<SplitAttr::Split>(split)) + mAttributes(std::make_shared<Attributes_>( + attr<SplitAttr::Axis>(axis), + attr<SplitAttr::Split>(split))) { mImpl = std::make_shared<Split_OpImpl>(*this); } @@ -60,7 +64,7 @@ public: */ Split_Op(const Split_Op &op) : OperatorTensor(op), - Attributes_(op) + mAttributes(op.mAttributes) { if (!op.backend().empty()) { SET_IMPL_MACRO(Split_Op, *this, op.backend()); @@ -81,6 +85,10 @@ public: void setBackend(const std::string &name, DeviceIdx_t device = 0) override; + inline std::shared_ptr<Attributes> attributes() const override { return mAttributes; } + inline std::int8_t& axis() const { return mAttributes->template getAttr<SplitAttr::Axis>(); } + inline std::vector<DimSize_t>& split() const { return mAttributes->template getAttr<SplitAttr::Split>(); } + static const std::vector<std::string> getInputsName(){ return {"data_input", "split"}; } @@ -105,7 +113,7 @@ inline std::shared_ptr<Node> Split(DimSize_t nbOutput, namespace { template <> -const char *const EnumStrings<Aidge::SplitAttr>::data[] = { "Axis", "Split" }; +const char *const EnumStrings<Aidge::SplitAttr>::data[] = { "axis", "split" }; } #endif /* AIDGE_CORE_OPERATOR_SPLIT_H_ */ diff --git a/include/aidge/operator/Transpose.hpp b/include/aidge/operator/Transpose.hpp index 72096448ebf0e00d73e33bdab094ca7f0b7d0633..efd9e1792d530f45754809913a7c648d82c7985e 100644 --- a/include/aidge/operator/Transpose.hpp +++ b/include/aidge/operator/Transpose.hpp @@ -105,7 +105,7 @@ inline std::shared_ptr<Node> Transpose(const std::vector<DimSize_t> &outputDimsO namespace { template <> -const char *const EnumStrings<Aidge::TransposeAttr>::data[] = {"OutputDimsOrder"}; +const char *const EnumStrings<Aidge::TransposeAttr>::data[] = {"output_dims_order"}; } #endif /* AIDGE_CORE_OPERATOR_TRANSPOSE_H_ */ diff --git a/include/aidge/operator/Unfold.hpp b/include/aidge/operator/Unfold.hpp index 169fbb05ebeff0e5d38eb9606133d6279cc31cd8..58cbcd2d756ad44ef2ec6a38d46909a114b187c2 100644 --- a/include/aidge/operator/Unfold.hpp +++ b/include/aidge/operator/Unfold.hpp @@ -137,9 +137,9 @@ extern template class Aidge::Unfold_Op<2>; namespace { template <> const char *const EnumStrings<Aidge::UnfoldAttr>::data[] = { - "StrideDims", - "DilationDims", - "KernelDims" + "stride_dims", + "dilation_dims", + "kernel_dims" }; } diff --git a/include/aidge/utils/Attributes.hpp b/include/aidge/utils/Attributes.hpp index c1f6a8a7f704b4bd813983cb178d9e5acba5a5e1..7dce3d327d42de15dc2589788b4643742ed1a463 100644 --- a/include/aidge/utils/Attributes.hpp +++ b/include/aidge/utils/Attributes.hpp @@ -42,32 +42,6 @@ constexpr std::size_t size(T (&)[N]) { return N; } * Attributes in the binding code. */ class Attributes { -protected: - /** - * @brief Convert snake_case to PascalCase. - * @param snakeCase string to convert. - */ - static std::string snakeToPascal(const std::string& snakeCase); - - - /** - * @brief Convert PascalCase to snake_case. - * @param pascalCase string to convert. - */ - static std::string pascalToSnake(const std::string& pascalCase); - - /** - * @brief Check whether a given string is in PascalCase. - * @param str String to check. - */ - static bool isPascalCase(const std::string& str); - - /** - * @brief Check whether a given string is in snake_case. - * @param str String to check. - */ - static bool isSnakeCase(const std::string& str); - public: /** * @brief Check if the attribute exists. diff --git a/include/aidge/utils/DynamicAttributes.hpp b/include/aidge/utils/DynamicAttributes.hpp index c5054eb2fd2e8bfa5e7fca898f343ce630643dbd..cf7f048dbe5999f433277c46e4e3cb9798c43674 100644 --- a/include/aidge/utils/DynamicAttributes.hpp +++ b/include/aidge/utils/DynamicAttributes.hpp @@ -46,40 +46,35 @@ public: * exist * \note at() throws if the Attribute does not exist, using find to test for Attribute existance */ - template<class T> T& getAttr(const std::string& name) + template<class T> const T& getAttr(const std::string& name) const { - AIDGE_ASSERT(isPascalCase(name), "Aidge standard requires PascalCase for C++ Attributes."); + const auto dot = name.find('.'); + if (dot == name.npos) { #ifdef PYBIND - // If attribute does not exist in C++, it might have been created or modified in Python - auto it = mAttrs.find(name); - if (it == mAttrs.end()) { - auto itPy = mAttrsPy.find(pascalToSnake(name)); - if (itPy != mAttrsPy.end()) { - // Insert the attribute back in C++ - mAttrs.emplace(std::make_pair(name, future_std::any(itPy->second.cast<T>()))); + // If attribute does not exist in C++, it might have been created or modified in Python + auto it = mAttrs.find(name); + if (it == mAttrs.end()) { + auto itPy = mAttrsPy.find(name); + if (itPy != mAttrsPy.end()) { + // Insert the attribute back in C++ + mAttrs.emplace(std::make_pair(name, future_std::any(itPy->second.cast<T>()))); + } } - } #endif - return future_std::any_cast<T&>(mAttrs.at(name)); - } - - template<class T> const T& getAttr(const std::string& name) const - { - AIDGE_ASSERT(isPascalCase(name), "Aidge standard requires PascalCase for C++ Attributes."); -#ifdef PYBIND - // If attribute does not exist in C++, it might have been created or modified in Python - auto it = mAttrs.find(name); - if (it == mAttrs.end()) { - auto itPy = mAttrsPy.find(pascalToSnake(name)); - if (itPy != mAttrsPy.end()) { - // Insert the attribute back in C++ - mAttrs.emplace(std::make_pair(name, future_std::any(itPy->second.cast<T>()))); - } + return future_std::any_cast<const T&>(mAttrs.at(name)); } -#endif + else { + const auto ns = name.substr(0, dot); + const auto nsName = name.substr(dot + 1); + return future_std::any_cast<const DynamicAttributes&>(mAttrs.at(ns)).getAttr<T>(nsName); + } + } - return future_std::any_cast<const T&>(mAttrs.at(name)); + template<class T> T& getAttr(const std::string& name) { + // Scott Meyers' solution to avoid code duplication + return const_cast<T&>( + static_cast<const DynamicAttributes&>(*this).getAttr<T>(name)); } ///\brief Add a new Attribute, identified by its name. If it already exists, asserts. @@ -88,17 +83,26 @@ public: ///\param value Attribute value template<class T> void addAttr(const std::string& name, const T& value) { - AIDGE_ASSERT(isPascalCase(name), "Aidge standard requires PascalCase for C++ Attributes."); - const auto& res = mAttrs.emplace(std::make_pair(name, future_std::any(value))); - AIDGE_ASSERT(res.second, "attribute already exists"); + const auto dot = name.find('.'); + if (dot == name.npos) { + const auto& res = mAttrs.emplace(std::make_pair(name, future_std::any(value))); + AIDGE_ASSERT(res.second, "addAttr(): attribute \"{}\" already exists. Use setAttr() if this is expected.", name); #ifdef PYBIND - // We cannot handle Python object if the Python interpreter is not running - if (Py_IsInitialized()) { - // Keep a copy of the attribute in py::object that is updated everytime - mAttrsPy.emplace(std::make_pair(pascalToSnake(name), py::cast(value))); - } + // We cannot handle Python object if the Python interpreter is not running + if (Py_IsInitialized()) { + // Keep a copy of the attribute in py::object that is updated everytime + const auto& resPy = mAttrsPy.emplace(std::make_pair(name, py::cast(value))); + AIDGE_ASSERT(resPy.second, "addAttr(): attribute \"{}\" already exists (added in Python). Use setAttr() if this is expected.", name); + } #endif + } + else { + const auto ns = name.substr(0, dot); + const auto nsName = name.substr(dot + 1); + const auto& res = mAttrs.emplace(std::make_pair(ns, future_std::any(DynamicAttributes()))); + future_std::any_cast<DynamicAttributes&>(res.first->second).addAttr(nsName, value); + } } ///\brief Set an Attribute value, identified by its name. If it already exists, its value (and type, if different) is changed. @@ -107,56 +111,94 @@ public: ///\param value Attribute value template<class T> void setAttr(const std::string& name, const T& value) { - auto res = mAttrs.emplace(std::make_pair(name, future_std::any(value))); - if (!res.second) - res.first->second = future_std::any(value); + const auto dot = name.find('.'); + if (dot == name.npos) { + auto res = mAttrs.emplace(std::make_pair(name, future_std::any(value))); + if (!res.second) + res.first->second = future_std::any(value); #ifdef PYBIND - // We cannot handle Python object if the Python interpreter is not running - if (Py_IsInitialized()) { - // Keep a copy of the attribute in py::object that is updated everytime - auto resPy = mAttrsPy.emplace(std::make_pair(name, py::cast(value))); - if (!resPy.second) - resPy.first->second = std::move(py::cast(value)); - } + // We cannot handle Python object if the Python interpreter is not running + if (Py_IsInitialized()) { + // Keep a copy of the attribute in py::object that is updated everytime + auto resPy = mAttrsPy.emplace(std::make_pair(name, py::cast(value))); + if (!resPy.second) + resPy.first->second = std::move(py::cast(value)); + } #endif + } + else { + const auto ns = name.substr(0, dot); + const auto nsName = name.substr(dot + 1); + auto res = mAttrs.emplace(std::make_pair(ns, future_std::any(DynamicAttributes()))); + future_std::any_cast<DynamicAttributes&>(res.first->second).setAttr<T>(nsName, value); + } } void delAttr(const std::string& name) { - mAttrs.erase(name); + const auto dot = name.find('.'); + if (dot == name.npos) { + mAttrs.erase(name); #ifdef PYBIND - mAttrsPy.erase(name); + mAttrsPy.erase(name); #endif + } + else { + const auto ns = name.substr(0, dot); + const auto nsName = name.substr(dot + 1); + future_std::any_cast<DynamicAttributes&>(mAttrs.at(ns)).delAttr(nsName); + } } #ifdef PYBIND void addAttrPy(const std::string& name, py::object&& value) { - AIDGE_ASSERT(isSnakeCase(name), "Aidge standard requires snake_case for Attributes with Python."); - auto it = mAttrs.find(snakeToPascal(name)); - AIDGE_ASSERT(it == mAttrs.end(), "attribute already exists"); + const auto dot = name.find('.'); + if (dot == name.npos) { + auto it = mAttrs.find(name); + AIDGE_ASSERT(it == mAttrs.end(), "add_attr(): attribute \"{}\" already exists (added in C++). Use set_attr() if this is expected.", name); + + const auto& res = mAttrsPy.emplace(std::make_pair(name, value)); + AIDGE_ASSERT(res.second, "add_attr(): attribute \"{}\" already exists. Use set_attr() if this is expected.", name); + } + else { + const auto ns = name.substr(0, dot); + const auto nsName = name.substr(dot + 1); + const auto& res = mAttrs.emplace(std::make_pair(ns, DynamicAttributes())); - const auto& res = mAttrsPy.emplace(std::make_pair(name, value)); - AIDGE_ASSERT(res.second, "attribute already exists"); + future_std::any_cast<DynamicAttributes&>(res.first->second).addAttrPy(nsName, std::move(value)); + } } void setAttrPy(const std::string& name, py::object&& value) override final { - AIDGE_ASSERT(isSnakeCase(name), "Aidge standard requires snake_case for Attributes with Python."); - auto resPy = mAttrsPy.emplace(std::make_pair(name, value)); - if (!resPy.second) - resPy.first->second = std::move(value); - - // Force getAttr() to take attribute value from mAttrsPy and update mAttrs - const std::string pascalName = snakeToPascal(name); - mAttrs.erase(pascalName); + const auto dot = name.find('.'); + if (dot == name.npos) { + auto resPy = mAttrsPy.emplace(std::make_pair(name, value)); + if (!resPy.second) + resPy.first->second = std::move(value); + + // Force getAttr() to take attribute value from mAttrsPy and update mAttrs + mAttrs.erase(name); + } + else { + const auto ns = name.substr(0, dot); + const auto nsName = name.substr(dot + 1); + const auto& res = mAttrs.emplace(std::make_pair(ns, DynamicAttributes())); + + future_std::any_cast<DynamicAttributes&>(res.first->second).setAttrPy(nsName, std::move(value)); + } } py::dict dict() const override { py::dict attributes; + for (const auto& elt : mAttrs) { + if (elt.second.type() == typeid(DynamicAttributes)) { + attributes[elt.first.c_str()] = future_std::any_cast<const DynamicAttributes&>(elt.second).dict(); + } + } for (const auto& elt : mAttrsPy) { - const std::string snakeName = pascalToSnake(elt.first); - attributes[snakeName.c_str()] = elt.second; + attributes[elt.first.c_str()] = elt.second; } return attributes; } @@ -177,15 +219,46 @@ public: /// Generic Attributes API ////////////////////////////////////// bool hasAttr(const std::string& name) const override final { - AIDGE_ASSERT(isPascalCase(name), "Aidge standard requires PascalCase for C++ Attributes."); - return (mAttrs.find(name) != mAttrs.cend()); + const auto dot = name.find('.'); + if (dot == name.npos) { +#ifdef PYBIND + return (mAttrs.find(name) != mAttrs.cend() || mAttrsPy.find(name) != mAttrsPy.cend()); + +#else + return (mAttrs.find(name) != mAttrs.cend()); +#endif + } + else { + const auto ns = name.substr(0, dot); + const auto it = mAttrs.find(ns); + if (it != mAttrs.cend()) { + const auto nsName = name.substr(dot + 1); + return future_std::any_cast<const DynamicAttributes&>(it->second).hasAttr(nsName); + } + else { + return false; + } + } } #ifdef PYBIND bool hasAttrPy(const std::string& name) const override final { - AIDGE_ASSERT(isSnakeCase(name), "Aidge standard requires snake_case for Attributes with Python."); - // Attributes might have been created in Python, the second condition is necessary. - return (mAttrs.find(snakeToPascal(name)) != mAttrs.cend() || mAttrsPy.find(name) != mAttrsPy.cend()); + const auto dot = name.find('.'); + if (dot == name.npos) { + // Attributes might have been created in Python, the second condition is necessary. + return (mAttrs.find(name) != mAttrs.cend() || mAttrsPy.find(name) != mAttrsPy.cend()); + } + else { + const auto ns = name.substr(0, dot); + const auto it = mAttrs.find(ns); + if (it != mAttrs.cend()) { + const auto nsName = name.substr(dot + 1); + return future_std::any_cast<const DynamicAttributes&>(it->second).hasAttrPy(nsName); + } + else { + return false; + } + } } #endif @@ -193,18 +266,26 @@ public: // In order to remain consistent between C++ and Python, with or without PyBind, the name of the type is: // - C-style for C++ created attributes // - Python-style for Python created attributes + const auto dot = name.find('.'); + if (dot == name.npos) { #ifdef PYBIND - // If attribute does not exist in C++, it might have been created in Python - auto it = mAttrs.find(name); - if (it == mAttrs.end()) { - auto itPy = mAttrsPy.find(name); - if (itPy != mAttrsPy.end()) { - return std::string(Py_TYPE(itPy->second.ptr())->tp_name); + // If attribute does not exist in C++, it might have been created in Python + auto it = mAttrs.find(name); + if (it == mAttrs.end()) { + auto itPy = mAttrsPy.find(name); + if (itPy != mAttrsPy.end()) { + return std::string(Py_TYPE(itPy->second.ptr())->tp_name); + } } - } #endif - return mAttrs.at(name).type().name(); + return mAttrs.at(name).type().name(); + } + else { + const auto ns = name.substr(0, dot); + const auto nsName = name.substr(dot + 1); + return future_std::any_cast<const DynamicAttributes&>(mAttrs.at(ns)).getAttrType(nsName); + } } std::set<std::string> getAttrsName() const override final { @@ -226,7 +307,24 @@ public: * The strategy here is to keep a copy of each attribute in py::object that is updated everytime. */ inline py::object getAttrPy(const std::string& name) const override final { - return mAttrsPy.at(name); + const auto dot = name.find('.'); + if (dot == name.npos) { + auto itPy = mAttrsPy.find(name); + if (itPy == mAttrsPy.end()) { + // Attribute may be a namespace + auto it = mAttrs.find(name); + AIDGE_ASSERT(it != mAttrs.end() && it->second.type() == typeid(DynamicAttributes), "get_attr(): attribute \"{}\" not found", name); + return py::cast(future_std::any_cast<const DynamicAttributes&>(it->second)); + } + else { + return itPy->second; + } + } + else { + const auto ns = name.substr(0, dot); + const auto nsName = name.substr(dot + 1); + return future_std::any_cast<const DynamicAttributes&>(mAttrs.at(ns)).getAttrPy(nsName); + } }; #endif diff --git a/include/aidge/utils/Log.hpp b/include/aidge/utils/Log.hpp index a400f8046d07df4ff4493470737f5c4d42945db7..f198e83fbacdc2cceee1c947d0c17244d4c9953e 100644 --- a/include/aidge/utils/Log.hpp +++ b/include/aidge/utils/Log.hpp @@ -145,6 +145,14 @@ public: mConsoleLevel = level; } + /** + * Set or disable colors on console. + * Initial value should be assumed true. + */ + static void setConsoleColor(bool enabled) { + mConsoleColor = enabled; + } + /** * Set the minimum log level saved in the log file. */ @@ -173,6 +181,7 @@ private: static void initFile(const std::string& fileName); static Level mConsoleLevel; + static bool mConsoleColor; static Level mFileLevel; static std::string mFileName; static std::unique_ptr<FILE, decltype(&std::fclose)> mFile; diff --git a/include/aidge/utils/StaticAttributes.hpp b/include/aidge/utils/StaticAttributes.hpp index 8fc88ff79c50751ba7b79662fc9fc430d4ed601d..3bb41b5bb0d9c2727d95a2656a1a2d5b96ff950b 100644 --- a/include/aidge/utils/StaticAttributes.hpp +++ b/include/aidge/utils/StaticAttributes.hpp @@ -180,7 +180,6 @@ public: ////////////////////////////////////// // Runtime existance check with name bool hasAttr(const std::string& name) const override final { - AIDGE_ASSERT(isPascalCase(name), "Aidge standard requires PascalCase for C++ Attributes."); for (std::size_t i = 0; i < size(EnumStrings<ATTRS_ENUM>::data); ++i) { if (name == EnumStrings<ATTRS_ENUM>::data[i]) { return true; @@ -192,10 +191,8 @@ public: #ifdef PYBIND bool hasAttrPy(const std::string& name) const override final { - AIDGE_ASSERT(isSnakeCase(name), "Aidge standard requires snake_case for Attributes with Python, got '{}'.", name); - const std::string pascalName = snakeToPascal(name); for (std::size_t i = 0; i < size(EnumStrings<ATTRS_ENUM>::data); ++i) { - if (pascalName == EnumStrings<ATTRS_ENUM>::data[i]) { + if (name == EnumStrings<ATTRS_ENUM>::data[i]) { return true; } } @@ -234,7 +231,7 @@ public: static std::set<std::string> staticGetAttrsName() { std::set<std::string> attrsName; for (std::size_t i = 0; i < size(EnumStrings<ATTRS_ENUM>::data); ++i) { - attrsName.insert(pascalToSnake(std::string(EnumStrings<ATTRS_ENUM>::data[i]))); + attrsName.insert(std::string(EnumStrings<ATTRS_ENUM>::data[i])); } return attrsName; } @@ -244,10 +241,9 @@ public: if (name == "__dict__") { return py::none(); } - AIDGE_ASSERT(isSnakeCase(name), "Aidge standard requires snake_case for Attributes with Python, got '{}'.", name); - const std::string pascalName = snakeToPascal(name); + for (std::size_t i = 0; i < size(EnumStrings<ATTRS_ENUM>::data); ++i) { - if (pascalName == EnumStrings<ATTRS_ENUM>::data[i]) { + if (name == EnumStrings<ATTRS_ENUM>::data[i]) { // https://github.com/pybind/pybind11/blob/f3e0602802c7840992c97f4960515777cad6a5c7/include/pybind11/pytypes.h#L1119-L1138 // Normal accessor would not work as we convert the tuple to a py::object which can be anything return py::detail::accessor_policies::tuple_item::get(py::cast(mAttrs), static_cast<py::size_t>(i)); @@ -264,10 +260,8 @@ public: void setAttrPy(const std::string& name, py::object&& value) override final{ - AIDGE_ASSERT(isSnakeCase(name), "Aidge standard requires snake_case for Attributes with Python, got '{}'.", name); - const std::string pascalName = snakeToPascal(name); for (std::size_t i = 0; i < size(EnumStrings<ATTRS_ENUM>::data); ++i) { - if (pascalName == EnumStrings<ATTRS_ENUM>::data[i]) { + if (name == EnumStrings<ATTRS_ENUM>::data[i]) { // Cannot update attribute using reference has it would require templating // Use a dirty auto tmpAttr = py::cast(mAttrs); @@ -282,10 +276,9 @@ public: py::dict dict() const override { py::dict attributes; for (std::size_t i = 0; i < size(EnumStrings<ATTRS_ENUM>::data); ++i) { - const std::string snakeName = pascalToSnake(EnumStrings<ATTRS_ENUM>::data[i]); - // https://github.com/pybind/pybind11/blob/f3e0602802c7840992c97f4960515777cad6a5c7/include/pybind11/pytypes.h#L1119-L1138 - // Normal accessor would not work as we convert the tuple to a py::object which can be anything - attributes[snakeName.c_str()] = py::detail::accessor_policies::tuple_item::get(py::cast(mAttrs), static_cast<py::size_t>(i)); + // https://github.com/pybind/pybind11/blob/f3e0602802c7840992c97f4960515777cad6a5c7/include/pybind11/pytypes.h#L1119-L1138 + // Normal accessor would not work as we convert the tuple to a py::object which can be anything + attributes[EnumStrings<ATTRS_ENUM>::data[i]] = py::detail::accessor_policies::tuple_item::get(py::cast(mAttrs), static_cast<py::size_t>(i)); } return attributes; } @@ -306,8 +299,7 @@ public: // AttrDict get_a() const { // py::dict attributes_; // for (std::size_t i = 0; i < size(EnumStrings<ATTRS_ENUM>::data); ++i) { - // const std::string snakeName = pascalToSnake(std::string(EnumStrings<ATTRS_ENUM>::data[i])); - // attributes_[snakeName.c_str()] = py::detail::accessor_policies::tuple_item::get(py::cast(mAttrs), static_cast<py::size_t>(i)); + // attributes_[EnumStrings<ATTRS_ENUM>::data[i]] = py::detail::accessor_policies::tuple_item::get(py::cast(mAttrs), static_cast<py::size_t>(i)); // } // return AttrDict(attributes_); // } diff --git a/python_binding/data/pybind_Data.cpp b/python_binding/data/pybind_Data.cpp index c6595360b17ee08eaa82d483987914adc67b60a8..1d4eae0776b66a16e6472a51661b22fe281e6f6b 100644 --- a/python_binding/data/pybind_Data.cpp +++ b/python_binding/data/pybind_Data.cpp @@ -17,20 +17,42 @@ namespace py = pybind11; namespace Aidge { void init_Data(py::module& m){ - // TODO : extend with more values ! - py::enum_<DataType>(m, "dtype") - .value("float64", DataType::Float64) - .value("float32", DataType::Float32) - .value("float16", DataType::Float16) - .value("int8", DataType::Int8) - .value("int16", DataType::Int16) - .value("int32", DataType::Int32) - .value("int64", DataType::Int64) - .value("uint8", DataType::UInt8) - .value("uint16", DataType::UInt16) - .value("uint32", DataType::UInt32) - .value("uint64", DataType::UInt64) - ; + // Define enumeration names for python as lowercase dtype name + // This defined enum names compatible with basic numpy dtype + // name such as: float32, flot64, [u]int32, [u]int64, ... + auto python_enum_name = [](const DataType& dtype) { + auto str_lower = [](std::string& str) { + std::transform(str.begin(), str.end(), str.begin(), + [](unsigned char c){ + return std::tolower(c); + }); + }; + auto dtype_name = std::string(Aidge::format_as(dtype)); + str_lower(dtype_name); + return dtype_name; + }; + // Auto generate enumeration names from lowercase dtype strings + std::vector<std::string> enum_names; + for (auto dtype_str : EnumStrings<Aidge::DataType>::data) { + auto dtype = static_cast<DataType>(enum_names.size()); + auto enum_name = python_enum_name(dtype); + enum_names.push_back(enum_name); + } + + // Define python side enumeration aidge_core.dtype + auto e_dtype = py::enum_<DataType>(m, "dtype"); + + // Add enum value for each enum name + for (std::size_t idx = 0; idx < enum_names.size(); idx++) { + e_dtype.value(enum_names[idx].c_str(), static_cast<DataType>(idx)); + } + + // Define str() to return the bare enum name value, it allows + // to compare directly for instance str(tensor.dtype()) + // with str(nparray.dtype) + e_dtype.def("__str__", [enum_names](const DataType& dtype) { + return enum_names[static_cast<int>(dtype)]; + }, py::prepend());; py::class_<Data, std::shared_ptr<Data>>(m,"Data"); diff --git a/python_binding/data/pybind_Tensor.cpp b/python_binding/data/pybind_Tensor.cpp index 60283039b709b783484ba0b1cf821497e5bb3a8f..1d0f02a507514153621fac3dcc9681989b6f94ff 100644 --- a/python_binding/data/pybind_Tensor.cpp +++ b/python_binding/data/pybind_Tensor.cpp @@ -93,6 +93,7 @@ void init_Tensor(py::module& m){ .def("get_coord", &Tensor::getCoord) .def("get_idx", &Tensor::getIdx) .def_static("get_available_backends", &Tensor::getAvailableBackends) + .def("undefined", &Tensor::undefined) .def("__str__", [](Tensor& b) { if (b.empty()) { return std::string("{}"); diff --git a/python_binding/graph/pybind_Node.cpp b/python_binding/graph/pybind_Node.cpp index 06c171214d5df261e5df832179a0fa69420aab7d..1fa552ce153b2b0f655ca9f38d1d80f62390184b 100644 --- a/python_binding/graph/pybind_Node.cpp +++ b/python_binding/graph/pybind_Node.cpp @@ -169,7 +169,11 @@ void init_Node(py::module& m) { if (pybind11::isinstance<Connector>(arg)) { // Convert Python object to C++ object adn push it ot vector connectors.push_back(arg.cast<Connector>()); - } else { + } + else if (arg.is(py::none())) { + connectors.push_back(Connector()); + } + else { throw std::runtime_error("One of the arguments was not a Connector."); } } diff --git a/python_binding/operator/pybind_Operator.cpp b/python_binding/operator/pybind_Operator.cpp index 2b2f30f14931fd041bfb4ec1a712e5c9419fdf22..dbf71a3cad870d848fbc2f5f67c13d5347b38b89 100644 --- a/python_binding/operator/pybind_Operator.cpp +++ b/python_binding/operator/pybind_Operator.cpp @@ -37,7 +37,7 @@ void init_Operator(py::module& m){ py::class_<Operator, std::shared_ptr<Operator>>(m, "Operator") .def("__repr__", &Operator::repr) .def("backend", &Operator::backend) - .def("set_output", py::overload_cast<const IOIndex_t, const std::shared_ptr<Data>&>(&Operator::setOutput), py::arg("outputIdx"), py::arg("data")) + .def("set_output", py::overload_cast<const IOIndex_t, const std::shared_ptr<Data>&>(&Operator::setOutput, py::const_), py::arg("outputIdx"), py::arg("data")) .def("set_input", py::overload_cast<const IOIndex_t, const std::shared_ptr<Data>&>(&Operator::setInput), py::arg("inputIdx"), py::arg("data")) .def("get_raw_output", &Operator::getRawOutput, py::arg("outputIdx")) .def("set_input", py::overload_cast<const IOIndex_t, const std::shared_ptr<Data>&>(&Operator::setInput), py::arg("inputIdx"), py::arg("data")) diff --git a/python_binding/operator/pybind_OperatorTensor.cpp b/python_binding/operator/pybind_OperatorTensor.cpp index 4d4541ab36468bc6b531e0242888dd70c5afc71f..8c515e321207605c20acc9e5b02271906c9707d1 100644 --- a/python_binding/operator/pybind_OperatorTensor.cpp +++ b/python_binding/operator/pybind_OperatorTensor.cpp @@ -28,7 +28,7 @@ void init_OperatorTensor(py::module& m){ .def("get_output", &OperatorTensor::getOutput, py::arg("outputIdx")) .def("get_input", &OperatorTensor::getInput, py::arg("inputIdx")) - .def("set_output", (void (OperatorTensor::*)(const IOIndex_t, const std::shared_ptr<Data>&)) &OperatorTensor::setOutput, py::arg("outputIdx"), py::arg("data")) + .def("set_output", (void (OperatorTensor::*)(const IOIndex_t, const std::shared_ptr<Data>&) const) &OperatorTensor::setOutput, py::arg("outputIdx"), py::arg("data")) .def("set_input", (void (OperatorTensor::*)(const IOIndex_t, const std::shared_ptr<Data>&)) &OperatorTensor::setInput, py::arg("outputIdx"), py::arg("data")) .def("forward_dims", &OperatorTensor::forwardDims, py::arg("allow_data_dependency") = false) .def("dims_forwarded", &OperatorTensor::dimsForwarded) diff --git a/python_binding/operator/pybind_Split.cpp b/python_binding/operator/pybind_Split.cpp index 6efc123864f21bf8ea02008b29fe59f31685f17c..f63a01f9815aa59cfbad0aea36f148899f44c9ea 100644 --- a/python_binding/operator/pybind_Split.cpp +++ b/python_binding/operator/pybind_Split.cpp @@ -21,14 +21,13 @@ namespace py = pybind11; namespace Aidge { void init_Split(py::module& m) { - py::class_<Split_Op, std::shared_ptr<Split_Op>, Attributes, OperatorTensor>(m, "SplitOp", py::multiple_inheritance()) + py::class_<Split_Op, std::shared_ptr<Split_Op>, OperatorTensor>(m, "SplitOp", py::multiple_inheritance()) .def(py::init<DimSize_t, std::int8_t, std::vector<DimSize_t>&>(), py::arg("nb_outputs"), py::arg("axis"), py::arg("split")) .def_static("get_inputs_name", &Split_Op::getInputsName) - .def_static("get_outputs_name", &Split_Op::getOutputsName) - .def_static("attributes_name", &Split_Op::staticGetAttrsName); + .def_static("get_outputs_name", &Split_Op::getOutputsName); declare_registrable<Split_Op>(m, "SplitOp"); diff --git a/python_binding/utils/pybind_Attributes.cpp b/python_binding/utils/pybind_Attributes.cpp index 7f5dde63c4835eb694d5fd2d571d7c9c1fd5a9ac..bc0ccb3f4053e37c186acd919fcadae9d5d19a40 100644 --- a/python_binding/utils/pybind_Attributes.cpp +++ b/python_binding/utils/pybind_Attributes.cpp @@ -21,14 +21,17 @@ namespace Aidge { DynamicAttributes test_DynamicAttributes_binding() { DynamicAttributes attrs; - attrs.addAttr<int>("A", 42); - attrs.addAttr<std::string>("B", "test"); - attrs.addAttr<std::vector<bool>>("C", {true, false, true}); + attrs.addAttr<int>("a", 42); + attrs.addAttr<std::string>("b", "test"); + attrs.addAttr<std::vector<bool>>("c", {true, false, true}); + attrs.addAttr("mem.a", 1); + attrs.addAttr("mem.data.b", 1.0f); + attrs.addAttr("impl.c", std::string("test")); return attrs; } double test_DynamicAttributes_binding_check(DynamicAttributes& attrs) { - return attrs.getAttr<double>("D"); + return attrs.getAttr<double>("d"); } void init_Attributes(py::module& m){ @@ -44,6 +47,7 @@ void init_Attributes(py::module& m){ py::class_<DynamicAttributes, std::shared_ptr<DynamicAttributes>, Attributes>(m, "DynamicAttributes") + .def(py::init<>()) .def("add_attr", &DynamicAttributes::addAttrPy, py::arg("name"), py::arg("value")) .def("del_attr", &DynamicAttributes::delAttr, py::arg("name")); diff --git a/python_binding/utils/pybind_Log.cpp b/python_binding/utils/pybind_Log.cpp index 7b5e7548b3126ed2ebfe3d9243248dc070c54076..f70a4bfab54ee14194ea04f96efa33a6b8e04201 100644 --- a/python_binding/utils/pybind_Log.cpp +++ b/python_binding/utils/pybind_Log.cpp @@ -82,6 +82,14 @@ void init_Log(py::module& m){ :param level: Log level. :type level: Level )mydelimiter") + .def_static("set_console_color", &Log::setConsoleColor, py::arg("enabled"), + R"mydelimiter( + Enables or disable color output on comsole. + Initial value should be assumed True. + + :param enabled: Activate or deactivate colors on console. + :type enabled: bool + )mydelimiter") .def_static("set_file_level", &Log::setFileLevel, py::arg("level"), R"mydelimiter( Set the minimum log level saved in the log file. diff --git a/src/backend/OperatorImpl.cpp b/src/backend/OperatorImpl.cpp index de200300a99bb33180103608238855b2f5604145..d992703fedb224e6650ce2ad50317cda3bae650f 100644 --- a/src/backend/OperatorImpl.cpp +++ b/src/backend/OperatorImpl.cpp @@ -29,7 +29,7 @@ Aidge::OperatorImpl::OperatorImpl(const Operator& op, const std::string& backend Aidge::Elts_t Aidge::OperatorImpl::getNbRequiredData(const Aidge::IOIndex_t inputIdx) const { if (mOp.getRawInput(inputIdx)) { const auto input = std::static_pointer_cast<Tensor>(mOp.getRawInput(inputIdx)); - if (!input->empty()) { + if (!input->undefined()) { // Known amount of data: requires the whole tensor by default return Elts_t::DataElts(input->size()); } @@ -46,7 +46,7 @@ Aidge::Elts_t Aidge::OperatorImpl::getNbRequiredData(const Aidge::IOIndex_t inpu Aidge::Elts_t Aidge::OperatorImpl::getNbRequiredProtected(IOIndex_t inputIdx) const { if (mOp.getRawInput(inputIdx)) { const auto input = std::static_pointer_cast<Tensor>(mOp.getRawInput(inputIdx)); - if (!input->empty()) { + if (!input->undefined()) { // Known amount of data: protect the whole tensor by default return Elts_t::DataElts(input->size()); } @@ -67,7 +67,7 @@ Aidge::Elts_t Aidge::OperatorImpl::getRequiredMemory(const Aidge::IOIndex_t outp const std::vector<Aidge::DimSize_t> &/*inputsSize*/) const { if (mOp.getRawOutput(outputIdx)) { const auto output = std::static_pointer_cast<Tensor>(mOp.getRawOutput(outputIdx)); - if (!output->empty()) { + if (!output->undefined()) { // Known amount of data: requires the whole tensor by default, // regardless of available data on inputs return Elts_t::DataElts(output->size()); diff --git a/src/data/Tensor.cpp b/src/data/Tensor.cpp index 28fb90cebf8e387e69f1ec39c46a6a47c8a4d316..d1bf32594c9a79b6519613327c87370facc138ad 100644 --- a/src/data/Tensor.cpp +++ b/src/data/Tensor.cpp @@ -150,13 +150,12 @@ Aidge::Tensor::~Tensor() noexcept = default; void Aidge::Tensor::resize(const std::vector<Aidge::DimSize_t>& dims, std::vector<Aidge::DimSize_t> strides) { - // TODO: scalar Tensor not handled if (dims.empty()) { // scalar mDims = std::vector<DimSize_t>(0); mStrides = std::vector<DimSize_t>({1}); mContiguous = true; - computeSize(); + computeSize(); // will set mSize to 1 if (mImpl) { mImpl->resize(mDims); } @@ -214,7 +213,7 @@ void Aidge::Tensor::resize(const std::vector<Aidge::DimSize_t>& dims, std::string Aidge::Tensor::toString() const { AIDGE_ASSERT( - mImpl && (dims().empty() || (dims() == std::vector<DimSize_t>({0})) || + mImpl && (undefined() || (dims() == std::vector<DimSize_t>({0})) || (mImpl->hostPtr() != nullptr)), "tensor should have a valid host pointer"); diff --git a/src/graph/GraphView.cpp b/src/graph/GraphView.cpp index 9528e511be230cd8ac689876689f313782c9b0ab..4ec3334454034f20badb246b7030594bee0c0e48 100644 --- a/src/graph/GraphView.cpp +++ b/src/graph/GraphView.cpp @@ -152,7 +152,7 @@ void Aidge::GraphView::save(const std::string& path, bool verbose, bool showProd // Add-on to display the operator's output dimensions std::string dims = ""; const auto op = std::dynamic_pointer_cast<OperatorTensor>(node_ptr->getOperator()); - if (op && !op->getOutput(outputIdx)->dims().empty()) { + if (op && !op->getOutput(outputIdx)->undefined()) { dims += " " + fmt::format("{}", op->getOutput(outputIdx)->dims()); } @@ -198,7 +198,7 @@ void Aidge::GraphView::save(const std::string& path, bool verbose, bool showProd // Add-on to display the operator's output dimensions std::string dims = ""; const auto op = std::dynamic_pointer_cast<OperatorTensor>(output.first->getOperator()); - if (op && op->getOutput(output.second) && !op->getOutput(output.second)->dims().empty()) { + if (op && op->getOutput(output.second) && !op->getOutput(output.second)->undefined()) { dims += " " + fmt::format("{}", op->getOutput(output.second)->dims()); } @@ -441,8 +441,8 @@ bool Aidge::GraphView::forwardDims(const std::vector<std::vector<Aidge::DimSize_ // Input is missing AIDGE_ASSERT(nodePtr->getOperator()->getRawInput(i), "Missing input#{} for node {} ({})", i, nodePtr->name(), nodePtr->type()); - AIDGE_ASSERT(!std::static_pointer_cast<Tensor>(nodePtr->getOperator()->getRawInput(i))->empty(), - "Empty input#{} for node {} ({})", i, nodePtr->name(), nodePtr->type()); + AIDGE_ASSERT(!std::static_pointer_cast<Tensor>(nodePtr->getOperator()->getRawInput(i))->undefined(), + "Undefined input#{} for node {} ({})", i, nodePtr->name(), nodePtr->type()); } } diff --git a/src/operator/Concat.cpp b/src/operator/Concat.cpp index 16306cd875cf67963250c8bcd391e9d9c00a26f5..4649a954a095d239dbe7de7bcbebf1025a3b22c6 100644 --- a/src/operator/Concat.cpp +++ b/src/operator/Concat.cpp @@ -63,14 +63,8 @@ bool Aidge::Concat_Op::forwardDims(bool /*allowDataDependency*/) { return false; } const std::size_t nbDimsInput0 = getInput(0)->nbDims(); - if (nbDimsInput0 == 0) { - return false; - } - AIDGE_ASSERT(nbDimsInput0 > 0, "First input in {} Operator is empty", type()); + AIDGE_ASSERT(nbDimsInput0 > 0, "First input in {} Operator is scalar", type()); for (IOIndex_t i = 1; i < nbInputs(); ++i) { - if (getInput(i)->nbDims() == 0) { - return false; - } AIDGE_ASSERT(nbDimsInput0 == getInput(i)->nbDims(), "Input 0 and input {} in {} Operator have different number of dimensions: {} / {}", i, type(), nbDimsInput0, getInput(i)->nbDims()); diff --git a/src/operator/Gather.cpp b/src/operator/Gather.cpp index c28a0587a755ef0a910ec5bfdeb9caa2f1edc216..cd3c4357434ec4b49b6ea05e0d2633adfee7bfd0 100644 --- a/src/operator/Gather.cpp +++ b/src/operator/Gather.cpp @@ -51,7 +51,7 @@ void Aidge::Gather_OpImpl::forward() { const std::string Aidge::Gather_Op::Type = "Gather"; bool Aidge::Gather_Op::dimsForwarded() const { - if (getInput(1) && !getInput(1)->empty()) { + if (getInput(1) && !getInput(1)->undefined()) { // output dims are data dependent return false; } diff --git a/src/operator/MatMul.cpp b/src/operator/MatMul.cpp index 5abfff9d8202003cbe5a76a94fab9d9ab5176b6e..207229b93b0ae362f42c1bae6fb1455b5a2b9d3d 100644 --- a/src/operator/MatMul.cpp +++ b/src/operator/MatMul.cpp @@ -69,7 +69,10 @@ bool Aidge::MatMul_Op::forwardDims(bool /*allowDataDependency*/) { mOutputs[0]->resize(outDims); return true; + } else { + AIDGE_ASSERT(false, "Incompatible scalar and N-D sizes."); } + } return false; diff --git a/src/operator/Memorize.cpp b/src/operator/Memorize.cpp index adf79b5c69e991ad7979184c313448e4288a8ecb..88a182f2ae7d51abb059faa64058fb701a033b56 100644 --- a/src/operator/Memorize.cpp +++ b/src/operator/Memorize.cpp @@ -85,12 +85,12 @@ bool Aidge::Memorize_Op::forwardDims(bool /*allowDataDependency*/) { if (inputsAssociated(false)) { // Only require one of the input to have dims defined // Otherwise, forwardDims() won't converge! - if (!(getInput(0)->empty())) { + if (!(getInput(0)->undefined())) { const auto expectedDims = getInput(0)->dims(); mOutputs[0]->resize(expectedDims); return true; } - else if (!(getInput(1)->empty())) { + else if (!(getInput(1)->undefined())) { const auto expectedDims = getInput(1)->dims(); mOutputs[0]->resize(expectedDims); return true; @@ -105,7 +105,7 @@ bool Aidge::Memorize_Op::dimsForwarded() const { bool forwarded = true; // check outputs have been filled for (IOIndex_t i = 0; i < nbOutputs(); ++i) { - forwarded &= !(getOutput(i)->empty()); + forwarded &= !(getOutput(i)->undefined()); } return forwarded; } diff --git a/src/operator/OperatorTensor.cpp b/src/operator/OperatorTensor.cpp index 5df90020a43ad6cffebcd2345c075837f11462b1..ff6fb9ce4b6b8596477dfdd1f43f8927e534459b 100644 --- a/src/operator/OperatorTensor.cpp +++ b/src/operator/OperatorTensor.cpp @@ -73,7 +73,7 @@ const std::shared_ptr<Aidge::Tensor>& Aidge::OperatorTensor::getInput(const Aidg return mInputs[inputIdx]; } -void Aidge::OperatorTensor::setOutput(const Aidge::IOIndex_t outputIdx, const std::shared_ptr<Aidge::Data>& data) { +void Aidge::OperatorTensor::setOutput(const Aidge::IOIndex_t outputIdx, const std::shared_ptr<Aidge::Data>& data) const { AIDGE_ASSERT(data->type() == Tensor::Type, "{} Operator only accepts Tensors as inputs", type()); AIDGE_ASSERT(outputIdx < nbOutputs(), "{} Operator has {} outputs", type(), nbOutputs()); const auto& data_tensor = std::dynamic_pointer_cast<Tensor>(data); @@ -123,7 +123,7 @@ bool Aidge::OperatorTensor::inputsAssociated(bool checkNonEmpty) const { } if (checkNonEmpty && getInput(i)) { - associated &= !(getInput(i)->empty()); + associated &= !(getInput(i)->undefined()); } } @@ -152,13 +152,13 @@ bool Aidge::OperatorTensor::dimsForwarded() const { // check both inputs and outputs have been filled for (IOIndex_t i = 0; i < nbInputs(); ++i) { if (inputCategory(i) != InputCategory::OptionalData && inputCategory(i) != InputCategory::OptionalParam) { - forwarded &= mInputs[i] ? !(getInput(i)->empty()) : false; + forwarded &= mInputs[i] ? !(getInput(i)->undefined()) : false; } } for (IOIndex_t i = 0; i < nbOutputs(); ++i) { // If getOutput(i) is nullptr, ignore this output (it may be a dummy // output in a MetaOperator) - forwarded &= (getOutput(i)) ? !(getOutput(i)->empty()) : true; + forwarded &= (getOutput(i)) ? !(getOutput(i)->undefined()) : true; } return forwarded; } diff --git a/src/operator/Reshape.cpp b/src/operator/Reshape.cpp index 4184fc18abbc5490a1d6fbf7363fef817c7ecbc9..cc31eeea758853a4183569d58412c427bd32006c 100644 --- a/src/operator/Reshape.cpp +++ b/src/operator/Reshape.cpp @@ -31,7 +31,7 @@ void Aidge::Reshape_OpImpl::forward() { const std::string Aidge::Reshape_Op::Type = "Reshape"; bool Aidge::Reshape_Op::dimsForwarded() const { - if (getInput(1) && !getInput(1)->empty()) { + if (getInput(1) && !getInput(1)->undefined()) { // output dims are data dependent return false; } diff --git a/src/operator/Resize.cpp b/src/operator/Resize.cpp index 966e1c3e032e64e75d3606fca022b84f9da8fbaf..0d407d4f97a17b8a89378bc83c1039423d9b2949 100644 --- a/src/operator/Resize.cpp +++ b/src/operator/Resize.cpp @@ -27,9 +27,9 @@ const std::string Aidge::Resize_Op::Type = "Resize"; bool Aidge::Resize_Op::dimsForwarded() const { // in case of ROI add getInput(1) condition - if ((getInput(1) && !getInput(1)->empty()) - || (getInput(2) && !getInput(2)->empty()) - || (getInput(3) && !getInput(3)->empty()) + if ((getInput(1) && !getInput(1)->undefined()) + || (getInput(2) && !getInput(2)->undefined()) + || (getInput(3) && !getInput(3)->undefined()) ) { // output dims are data dependent @@ -44,9 +44,9 @@ bool Aidge::Resize_Op::forwardDims(bool allowDataDependency) { AIDGE_ASSERT(getInput(0)->nbDims() == 4, "input tensor must have dimensions = 4 (batch, channel, height, width)."); - const bool input1ROIPresent = getInput(1) && !getInput(1)->empty(); - const bool input2ScalesPresent = getInput(2) && !getInput(2)->empty(); - const bool input3SizesPresent = getInput(3) && !getInput(3)->empty(); + const bool input1ROIPresent = getInput(1) && !getInput(1)->undefined(); + const bool input2ScalesPresent = getInput(2) && !getInput(2)->undefined(); + const bool input3SizesPresent = getInput(3) && !getInput(3)->undefined(); AIDGE_ASSERT(input2ScalesPresent != input3SizesPresent, "Only one of scales and sizes can be specified.") @@ -118,4 +118,4 @@ void Aidge::Resize_Op::setBackend(const std::string& name, Aidge::DeviceIdx_t de if(getInput(3)) { getInput(3)->setBackend(name, device); } -} \ No newline at end of file +} diff --git a/src/operator/Shape.cpp b/src/operator/Shape.cpp index 8166712e1e5fd967bb9328e95ecf8c5388636ba7..39f5e2fe09b7ac750b8ea9d48d17fc2e97013c1a 100644 --- a/src/operator/Shape.cpp +++ b/src/operator/Shape.cpp @@ -34,17 +34,17 @@ const std::string Aidge::Shape_Op::Type = "Shape"; bool Aidge::Shape_Op::forwardDims(bool /*allowDataDependency*/) { if (inputsAssociated()) { - if (mAttributes->template getAttr<std::int64_t>("Start") < 0) - mAttributes->template getAttr<std::int64_t>("Start") += static_cast<std::int64_t>(getInput(0)->nbDims()); - if (mAttributes->template getAttr<std::int64_t>("End") < 0) - mAttributes->template getAttr<std::int64_t>("End") += static_cast<std::int64_t>(getInput(0)->nbDims()); + if (this->start() < 0) + this->start() += static_cast<std::int64_t>(getInput(0)->nbDims()); + if (this->end() < 0) + this->end() += static_cast<std::int64_t>(getInput(0)->nbDims()); - const auto start = mAttributes->template getAttr<std::int64_t>("Start"); - const auto end = mAttributes->template getAttr<std::int64_t>("End"); + const auto start = this->start(); + const auto end = this->end(); const auto nbDims = static_cast<std::int64_t>(getInput(0)->nbDims()); const DimSize_t roi = end - start + 1; - AIDGE_ASSERT(start < nbDims && end < nbDims, "'Start' and 'End' must be < {}", nbDims); + AIDGE_ASSERT(start < nbDims && end < nbDims, "'start' and 'end' must be < {}", nbDims); AIDGE_ASSERT(roi> 1, "Unvalid ROI for Shape"); mOutputs[0]->resize({roi}); diff --git a/src/operator/Slice.cpp b/src/operator/Slice.cpp index 3cc2de686435a304326e2a4a60dad6c12a50349c..4fcfd587a9b3d8858b2e8a71605743c6702cb310 100644 --- a/src/operator/Slice.cpp +++ b/src/operator/Slice.cpp @@ -29,10 +29,10 @@ const std::string Aidge::Slice_Op::Type = "Slice"; bool Aidge::Slice_Op::dimsForwarded() const { - if ((getInput(1) && !getInput(1)->empty()) - || (getInput(2) && !getInput(2)->empty()) - || (getInput(3) && !getInput(3)->empty()) - || (getInput(4) && !getInput(4)->empty())) + if ((getInput(1) && !getInput(1)->undefined()) + || (getInput(2) && !getInput(2)->undefined()) + || (getInput(3) && !getInput(3)->undefined()) + || (getInput(4) && !getInput(4)->undefined())) { // output dims are data dependent return false; diff --git a/src/operator/Split.cpp b/src/operator/Split.cpp index a0cb049b19e9411daf65bbe2a10319c62b32c1b8..af7474d8a21db9ece237440b46ecf57db9b270b4 100644 --- a/src/operator/Split.cpp +++ b/src/operator/Split.cpp @@ -28,8 +28,8 @@ void Aidge::Split_OpImpl::forward() { const Split_Op& op = dynamic_cast<const Split_Op&>(mOp); - const auto axis = op.template getAttr<std::int8_t>("Axis"); - const auto splits = op.template getAttr<std::vector<DimSize_t>>("Split"); + const auto axis = op.axis(); + const auto splits = op.split(); const auto dims = op.getInput(0)->dims(); //Compute pre/post axis strides @@ -55,7 +55,7 @@ void Aidge::Split_OpImpl::forward() { const std::string Aidge::Split_Op::Type = "Split"; bool Aidge::Split_Op::dimsForwarded() const { - if ((getInput(1) && !getInput(1)->empty())) + if ((getInput(1) && !getInput(1)->undefined())) { // output dims are data dependent return false; @@ -68,7 +68,7 @@ bool Aidge::Split_Op::forwardDims(bool allowDataDependency) { if (inputsAssociated()) { // Copy optional input #1, if present, to attribute Split if (getInput(1)) { - if (!this->template getAttr<SplitAttr::Split>().empty()) { + if (!this->split().empty()) { Log::notice("Split_Op: ignoring non-empty Split attribute because input#1 takes precedence"); } @@ -78,21 +78,22 @@ bool Aidge::Split_Op::forwardDims(bool allowDataDependency) { } std::shared_ptr<Tensor> fallback; - this->template getAttr<SplitAttr::Split>().reserve(getInput(1)->size()); + this->split().clear(); // If both are provided input would override attrs + this->split().reserve(getInput(1)->size()); const auto& splits = getInput(1)->refCastFrom(fallback, NativeType<DimSize_t>::type, "cpu"); std::copy_n(static_cast<DimSize_t*>(splits.getImpl()->hostPtr()), splits.size(), - std::back_inserter(this->template getAttr<SplitAttr::Split>())); + std::back_inserter(this->split())); } // Compute output dims - if (this->template getAttr<std::int8_t>("Axis") < 0) - this->template getAttr<std::int8_t>("Axis") += static_cast<std::int8_t>(getInput(0)->nbDims()); + if (this->axis() < 0) + this->axis() += static_cast<std::int8_t>(getInput(0)->nbDims()); - DimSize_t dimToSplit = getInput(0)->dims()[this->template getAttr<std::int8_t>("Axis")]; + DimSize_t dimToSplit = getInput(0)->dims()[this->axis()]; DimSize_t nbOutput = this->nbOutputs(); // Fill Split attr if empty - if(this->template getAttr<SplitAttr::Split>().empty()) { + if(this->split().empty()) { // In case the input Split is not provided, divide the dimension of Axis into equal slices AIDGE_ASSERT(dimToSplit > nbOutput, "Split_Op: Output number {} musn't be bigger than dimension {}.", nbOutput, dimToSplit); DimSize_t baseSliceSize = dimToSplit / nbOutput; @@ -100,12 +101,12 @@ bool Aidge::Split_Op::forwardDims(bool allowDataDependency) { DimSize_t remainder = dimToSplit % nbOutput; for (DimSize_t i = 0; i < static_cast<DimSize_t>(nbOutput -1); ++i) { - this->template getAttr<SplitAttr::Split>().push_back(baseSliceSize); + this->split().push_back(baseSliceSize); } - this->template getAttr<SplitAttr::Split>().push_back(baseSliceSize + remainder); + this->split().push_back(baseSliceSize + remainder); } - const auto splits = this->template getAttr<SplitAttr::Split>(); + const auto splits = this->split(); AIDGE_ASSERT(splits.size() == nbOutput, "Split_Op: number of slices {} must be equal to number of outputs {}", splits, nbOutput); DimSize_t totalSplitSize = std::accumulate(splits.cbegin(), splits.cend(), 0); AIDGE_ASSERT(totalSplitSize == dimToSplit, "Split_Op: Total chunks size {} is different from dimension size {}.", totalSplitSize, dimToSplit); @@ -113,7 +114,7 @@ bool Aidge::Split_Op::forwardDims(bool allowDataDependency) { std::vector<DimSize_t> outDims = getInput(0)->dims(); for (std::size_t i = 0; i < nbOutput; ++i) { - outDims[this->template getAttr<std::int8_t>("Axis")] = this->template getAttr<SplitAttr::Split>()[i]; + outDims[this->axis()] = this->split()[i]; mOutputs[i]->resize(outDims); } diff --git a/src/operator/Transpose.cpp b/src/operator/Transpose.cpp index 69820a924105acc8bea817aecb90e0aa278fce06..30372e44f8f9641734fc1109bf03a64794383a3e 100644 --- a/src/operator/Transpose.cpp +++ b/src/operator/Transpose.cpp @@ -32,6 +32,7 @@ const std::string Aidge::Transpose_Op::Type = "Transpose"; bool Aidge::Transpose_Op::forwardDims(bool /*allowDataDependency*/) { if (inputsAssociated()) { + AIDGE_ASSERT(!getInput(0)->empty(), "Not applicable on scalars."); std::vector<DimSize_t> outputDims; for (std::size_t i = 0; i < outputDimsOrder().size(); ++i) { outputDims.push_back(getInput(0)->dims()[outputDimsOrder()[i]]); diff --git a/src/utils/Attributes.cpp b/src/utils/Attributes.cpp deleted file mode 100644 index e79db53a60a955e3502e070cda5818d3d7b6c922..0000000000000000000000000000000000000000 --- a/src/utils/Attributes.cpp +++ /dev/null @@ -1,96 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#include "aidge/utils/Attributes.hpp" - -#include <cctype> // std::isdigit, std::islower, std::isupper, std::tolower, - // std::toupper -#include <string> - -std::string Aidge::Attributes::snakeToPascal(const std::string& snakeCase) { - std::string result; - bool to_upper = true; // Start with uppercase for PascalCase - - for (char ch : snakeCase) { - if (ch == '_') { - to_upper = true; // Next character should be uppercase - } else { - if (to_upper) { - result += std::toupper(ch); - to_upper = false; // Reset flag after making a character uppercase - } else { - result += ch; - } - } - } - return result; -} - -std::string Aidge::Attributes::pascalToSnake(const std::string& pascalCase) { - std::string result; - - for (char ch : pascalCase) { - if (std::isupper(ch)) { - if (!result.empty()) { - result += '_'; - } - result += std::tolower(ch); - } else { - result += ch; - } - } - return result; -} - -bool Aidge::Attributes::isPascalCase(const std::string& str) { - if (str.empty() || !std::isupper(str[0])) { - return false; - } - - bool expectUpper = false; - for (size_t i = 1; i < str.size(); ++i) { - if (str[i] == '_') { - return false; - } - if (std::isupper(str[i])) { - if (!expectUpper) { - return false; - } - expectUpper = false; - } else if (std::islower(str[i]) || std::isdigit(str[i])) { - expectUpper = true; - } else { - return false; - } - } - return true; -} - -bool Aidge::Attributes::isSnakeCase(const std::string& str) { - if (str.empty()) { - return false; - } - - bool lastCharWasUnderscore = false; - for (char ch : str) { - if (ch == '_') { - if (lastCharWasUnderscore) { - return false; - } - lastCharWasUnderscore = true; - } else if (!std::islower(ch) && !std::isdigit(ch)) { - return false; - } else { - lastCharWasUnderscore = false; - } - } - return true; -} diff --git a/src/utils/Log.cpp b/src/utils/Log.cpp index 54af888caca8dc2c4b512515ff70663f9437dd45..ae8816e78b6fc7b8f2288b6873642f0729e195b6 100644 --- a/src/utils/Log.cpp +++ b/src/utils/Log.cpp @@ -28,6 +28,16 @@ Aidge::Log::Level Aidge::Log::mConsoleLevel = []() { } return Info; }(); +bool Aidge::Log::mConsoleColor = []() { + const char* logColor = std::getenv("AIDGE_LOG_COLOR"); + if (logColor == nullptr) + return true; + auto logColorStr = std::string(logColor); + if (logColorStr == "off" || logColorStr == "OFF" || + logColorStr == "0") + return false; + return true; +}(); Aidge::Log::Level Aidge::Log::mFileLevel = []() { const char* logLevel = std::getenv("AIDGE_LOGLEVEL_FILE"); if (logLevel != nullptr) { @@ -55,7 +65,8 @@ void Aidge::Log::log(Level level, const std::string& msg) { // Styles that were already applied to msg with fmt are kept also in // the log file. const auto modifier - = (level == Debug) ? fmt::fg(fmt::color::gray) + = !mConsoleColor ? fmt::text_style() + : (level == Debug) ? fmt::fg(fmt::color::gray) : (level == Notice) ? fmt::fg(fmt::color::medium_purple) : (level == Warn) ? fmt::fg(fmt::color::orange) : (level == Error) ? fmt::fg(fmt::color::red) diff --git a/unit_tests/data/Test_Tensor.cpp b/unit_tests/data/Test_Tensor.cpp index 62e90dcbd7c20548019afae1a04f84b3e1d4484a..a536f113f7d11eb8cec81b5fdbf57909bd70611d 100644 --- a/unit_tests/data/Test_Tensor.cpp +++ b/unit_tests/data/Test_Tensor.cpp @@ -14,13 +14,14 @@ #include <cstdint> // std::uint8_t, std::uint16_t, std::int32_t #include <numeric> // std::accumulate, std::inner_product #include <functional> // std::multiplies -#include <random> // std::random_device, std::mt19937, +#include <random> // std::mt19937, // std::uniform_int_distribution, std::uniform_real_distribution #include <set> #include <string> #include <vector> #include <catch2/catch_test_macros.hpp> +#include <catch2/generators/catch_generators_random.hpp> #include "aidge/backend/cpu/data/TensorImpl.hpp" #include "aidge/data/Data.hpp" @@ -36,7 +37,7 @@ TEST_CASE("[core/data] Tensor(Construction)", "[Tensor][Constructor]") { Tensor T_default{}; REQUIRE(( (T_default.dataType() == DataType::Float32) && - (T_default.size() == 1) && + (T_default.size() == 0) && (T_default.dims() == std::vector<DimSize_t>({})) && (T_default.strides() == std::vector<DimSize_t>({1})) && (T_default.getImpl() == nullptr) && @@ -127,7 +128,7 @@ TEST_CASE("[core/data] Tensor(Construction)", "[Tensor][Constructor]") { constexpr std::uint16_t NBTRIALS = 10; // Create random number generators - std::random_device rd; + auto rd = Catch::Generators::Detail::getSeed; std::mt19937 gen(rd()); std::uniform_int_distribution<std::size_t> dimsDist(1, 10); std::uniform_int_distribution<std::size_t> nbDimsDist(1, 5); @@ -169,7 +170,7 @@ TEST_CASE("[core/data] Tensor(getter/setter)", "[Tensor][Getter][Setter]") { constexpr std::uint16_t NBTRIALS = 10; // Create random number generators - std::random_device rd; + auto rd = Catch::Generators::Detail::getSeed; std::mt19937 gen(rd()); std::uniform_int_distribution<std::size_t> dimsDist(1, 10); std::uniform_int_distribution<std::size_t> nbDimsDist(1, 5); @@ -261,7 +262,7 @@ TEST_CASE("[core/data] Tensor(other)", "[Tensor][extract][zeros][print]") { constexpr std::uint16_t NBTRIALS = 10; // Create random number generators - std::random_device rd; + auto rd = Catch::Generators::Detail::getSeed; std::mt19937 gen(rd()); std::uniform_int_distribution<std::size_t> dimsDist(1, 10); std::uniform_int_distribution<std::size_t> nbDimsDist(1, 5); diff --git a/unit_tests/graph/Test_GraphView.cpp b/unit_tests/graph/Test_GraphView.cpp index 8e9f5a27e275a5ce56ddf57fa092ec96cec84711..d9289c4aa3f4b44ce72d772c9a39dd8e66ab09e7 100644 --- a/unit_tests/graph/Test_GraphView.cpp +++ b/unit_tests/graph/Test_GraphView.cpp @@ -17,6 +17,7 @@ #include <string> #include <catch2/catch_test_macros.hpp> +#include <catch2/generators/catch_generators_random.hpp> #include "aidge/backend/OperatorImpl.hpp" #include "aidge/data/Tensor.hpp" @@ -35,7 +36,7 @@ TEST_CASE("genRandomGraph", "[GraphView][randomGen]") { size_t nbUnicity = 0; for (int test = 0; test < nbTests; ++test) { - std::random_device rd; + auto rd = Catch::Generators::Detail::getSeed; const std::mt19937::result_type seed(rd()); RandomGraph randGraph; @@ -81,7 +82,7 @@ TEST_CASE("clone", "[GraphView][clone]") { const size_t nbTests = 100; for (int test = 0; test < nbTests; ++test) { - std::random_device rd; + auto rd = Catch::Generators::Detail::getSeed; const std::mt19937::result_type seed(rd()); RandomGraph randGraph; @@ -155,7 +156,7 @@ TEST_CASE("remove", "[GraphView][remove]") { size_t nbTested = 0; for (int test = 0; test < nbTests; ++test) { - std::random_device rd; + auto rd = Catch::Generators::Detail::getSeed; const std::mt19937::result_type seed(rd()); RandomGraph randGraph; diff --git a/unit_tests/operator/Test_ConcatImpl.cpp b/unit_tests/operator/Test_ConcatImpl.cpp index 184c02d5208c99b903cf838784bb14fb65799111..fcdf3e8cc1bc07493cfa84608f200f9f334a29cc 100644 --- a/unit_tests/operator/Test_ConcatImpl.cpp +++ b/unit_tests/operator/Test_ConcatImpl.cpp @@ -18,6 +18,14 @@ using namespace Aidge; TEST_CASE("[cpu/operator] Concat(forward)", "[Concat][CPU]") { + SECTION("Concat scalar inputs") { + std::shared_ptr<Tensor> input1 = std::make_shared<Tensor>(2); + std::shared_ptr<Tensor> input2 = std::make_shared<Tensor>(4); + auto myConcat = Concat(2, 0); + myConcat->getOperator()->associateInput(0, input1); + myConcat->getOperator()->associateInput(1, input2); + REQUIRE_THROWS(myConcat->forward()); + } SECTION("Concat 1D inputs") { std::shared_ptr<Tensor> input1 = std::make_shared<Tensor>(Array1D<int,2>{{ 2, 3 }}); std::shared_ptr<Tensor> input2 = std::make_shared<Tensor>(Array1D<int,3>{{ 4, 5, 6 }}); @@ -140,4 +148,4 @@ TEST_CASE("[cpu/operator] Concat(forward)", "[Concat][CPU]") { REQUIRE(*std::static_pointer_cast<OperatorTensor>(myConcat->getOperator())->getOutput(0) == *expectedOutput); } -} \ No newline at end of file +} diff --git a/unit_tests/operator/Test_Div_Op.cpp b/unit_tests/operator/Test_Div_Op.cpp index d11f72474b0b70bf335dfee95d13a9b41cfe6efb..d35edec17cd9732119cfcaf249b5e7965a14ea65 100644 --- a/unit_tests/operator/Test_Div_Op.cpp +++ b/unit_tests/operator/Test_Div_Op.cpp @@ -10,9 +10,10 @@ ********************************************************************************/ #include <catch2/catch_test_macros.hpp> +#include <catch2/generators/catch_generators_random.hpp> #include <cstddef> // std::size_t #include <memory> -#include <random> // std::random_device, std::mt19937, std::uniform_int_distribution +#include <random> // std::mt19937, std::uniform_int_distribution #include <vector> #include "aidge/data/Tensor.hpp" @@ -24,7 +25,7 @@ TEST_CASE("[core/operator] Div_Op(forwardDims)", "[Div][forwardDims]") { constexpr std::uint16_t NBTRIALS = 10; // Create a random number generator - std::random_device rd; + auto rd = Catch::Generators::Detail::getSeed; std::mt19937 gen(rd()); std::uniform_int_distribution<std::size_t> dimsDist(1, 10); std::uniform_int_distribution<std::size_t> nbDimsDist(1, 5); @@ -44,54 +45,54 @@ TEST_CASE("[core/operator] Div_Op(forwardDims)", "[Div][forwardDims]") { * @todo Special case: scalar not handled yet by * ``OperatorTensor::forwardDims()`` */ - // SECTION("Scalar / Scalar") { - // // input_0 - // T0->resize({}); - - // // input_1 - // T1->resize({}); - - // REQUIRE_NOTHROW(op->forwardDims()); - // REQUIRE((op->getOutput(0)->dims() == std::vector<std::size_t>())); - // } - // SECTION("Scalar / +1-D") { - // // a scalar is compatible with any other Tensor - // // input_0 - // T0->resize({}); - - // for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { - - // // input_1 - // const std::size_t nb_dims = nbDimsDist(gen); - // std::vector<std::size_t> dims(nb_dims); - // for (std::size_t i = 0; i < nb_dims; ++i) { - // dims[i] = dimsDist(gen); - // } - // T1->resize(dims); - - // REQUIRE_NOTHROW(op->forwardDims()); - // REQUIRE((op->getOutput(0)->dims()) == dims); - // } - // } - // SECTION("+1-D / Scalar") { - // // a scalar is compatible with any other Tensor - // // input_1 - // T1->resize({}); - - // for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { - - // // input_0 - // const std::size_t nb_dims = nbDimsDist(gen); - // std::vector<std::size_t> dims(nb_dims); - // for (std::size_t i = 0; i < nb_dims; ++i) { - // dims[i] = dimsDist(gen); - // } - // T0->resize(dims); - - // REQUIRE_NOTHROW(op->forwardDims()); - // REQUIRE((op->getOutput(0)->dims()) == dims); - // } - // } + SECTION("Scalar / Scalar") { + // input_0 + T0->resize({}); + + // input_1 + T1->resize({}); + + REQUIRE_NOTHROW(op->forwardDims()); + REQUIRE((op->getOutput(0)->dims() == std::vector<std::size_t>())); + } + SECTION("Scalar / +1-D") { + // a scalar is compatible with any other Tensor + // input_0 + T0->resize({}); + + for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { + + // input_1 + const std::size_t nb_dims = nbDimsDist(gen); + std::vector<std::size_t> dims(nb_dims); + for (std::size_t i = 0; i < nb_dims; ++i) { + dims[i] = dimsDist(gen); + } + T1->resize(dims); + + REQUIRE_NOTHROW(op->forwardDims()); + REQUIRE((op->getOutput(0)->dims()) == dims); + } + } + SECTION("+1-D / Scalar") { + // a scalar is compatible with any other Tensor + // input_1 + T1->resize({}); + + for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { + + // input_0 + const std::size_t nb_dims = nbDimsDist(gen); + std::vector<std::size_t> dims(nb_dims); + for (std::size_t i = 0; i < nb_dims; ++i) { + dims[i] = dimsDist(gen); + } + T0->resize(dims); + + REQUIRE_NOTHROW(op->forwardDims()); + REQUIRE((op->getOutput(0)->dims()) == dims); + } + } SECTION("+1-D / +1-D") { // same size for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { diff --git a/unit_tests/operator/Test_GlobalAveragePooling_Op.cpp b/unit_tests/operator/Test_GlobalAveragePooling_Op.cpp index d20f689aba55d8cbaef553388d4666fd6c1d7172..15c714b63c2b86e156b43cdaec390ddf60eb7353 100644 --- a/unit_tests/operator/Test_GlobalAveragePooling_Op.cpp +++ b/unit_tests/operator/Test_GlobalAveragePooling_Op.cpp @@ -10,9 +10,10 @@ ********************************************************************************/ #include <catch2/catch_test_macros.hpp> +#include <catch2/generators/catch_generators_random.hpp> #include <cstddef> // std::size_t #include <memory> -#include <random> // std::random_device, std::mt19937, std::uniform_int_distribution +#include <random> // std::mt19937, std::uniform_int_distribution #include <vector> #include "aidge/data/Tensor.hpp" @@ -25,7 +26,7 @@ TEST_CASE("[core/operator] GlobalAveragePooling_Op(forwardDims)", "[GlobalAveragePooling][forwardDims]") { constexpr std::uint16_t NB_TRIALS = 10; // Create a random number generator - std::random_device rd; + auto rd = Catch::Generators::Detail::getSeed; std::mt19937 gen(rd()); std::uniform_int_distribution<std::size_t> dimsDist(1, 10); std::uniform_int_distribution<std::size_t> inf3DimsDistribution(1, 2); @@ -46,9 +47,7 @@ TEST_CASE("[core/operator] GlobalAveragePooling_Op(forwardDims)", SECTION("Connected Inputs") { SECTION("empty tensor") { for (uint16_t trial = 0; trial < NB_TRIALS; ++trial) { - const std::size_t nb_dims = 0; - std::vector<std::size_t> dims(nb_dims); - input_T->resize(dims); + // Test that on undefined input it does not fail REQUIRE_NOTHROW(op->forwardDims()); } } diff --git a/unit_tests/operator/Test_MatMul_Op.cpp b/unit_tests/operator/Test_MatMul_Op.cpp index bdd1de87c27351e943c59fa616c40dc4a0001abc..876c1ac764efe54475f6d45982acca76aacb7528 100644 --- a/unit_tests/operator/Test_MatMul_Op.cpp +++ b/unit_tests/operator/Test_MatMul_Op.cpp @@ -10,9 +10,10 @@ ********************************************************************************/ #include <catch2/catch_test_macros.hpp> +#include <catch2/generators/catch_generators_random.hpp> #include <cstddef> // std::size_t #include <memory> -#include <random> // std::random_device, std::mt19937, std::uniform_int_distribution +#include <random> // std::mt19937, std::uniform_int_distribution #include <vector> #include "aidge/data/Tensor.hpp" @@ -22,10 +23,11 @@ namespace Aidge { TEST_CASE("[core/operator] MatMul_Op(forwardDims)", "[MatMul][forwardDims]") { // Create a random number generator - std::random_device rd; + auto rd = Catch::Generators::Detail::getSeed; std::mt19937 gen(rd()); std::uniform_int_distribution<std::size_t> dist(1, 10); + std::cerr << "Test case start, random " << dist(gen) << " " << rd() << std::endl; // Create MatMul Operator std::shared_ptr<Node> myMatMul = MatMul(); auto op = std::static_pointer_cast<OperatorTensor>(myMatMul -> getOperator()); @@ -33,24 +35,24 @@ TEST_CASE("[core/operator] MatMul_Op(forwardDims)", "[MatMul][forwardDims]") { /** @todo Special case of scalar Tensor objects. * Not handled yet. */ - // SECTION("0-D / 0-D") { - // std::shared_ptr<Tensor> T0 = std::make_shared<Tensor>(); - // T0->resize({}); - // op -> associateInput(0,T0); + SECTION("0-D / 0-D") { + std::shared_ptr<Tensor> T0 = std::make_shared<Tensor>(); + T0->resize({}); + op -> associateInput(0,T0); - // // input_1 - right - // std::shared_ptr<Tensor> T1 = std::make_shared<Tensor>(); - // T1->resize({}); - // op -> associateInput(1,T1); + // input_1 - right + std::shared_ptr<Tensor> T1 = std::make_shared<Tensor>(); + T1->resize({}); + op -> associateInput(1,T1); - // REQUIRE_NOTHROW(op->forwardDims()); - // REQUIRE((op->getOutput(0)->dims()).empty()); + REQUIRE_NOTHROW(op->forwardDims()); + REQUIRE((op->getOutput(0)->dims()).empty()); - // // input_1 - wrong - // T1->resize({dist(gen)}); + // input_1 - wrong + T1->resize({dist(gen)}); - // REQUIRE_THROWS(op->forwardDims()); - // } + REQUIRE_THROWS(op->forwardDims()); + } SECTION("1-D / N-D") { // input_0 @@ -193,4 +195,4 @@ TEST_CASE("[core/operator] MatMul_Op(forwardDims)", "[MatMul][forwardDims]") { REQUIRE_THROWS(op -> forwardDims()); } } -} // namespace Aidge \ No newline at end of file +} // namespace Aidge diff --git a/unit_tests/operator/Test_Mul_Op.cpp b/unit_tests/operator/Test_Mul_Op.cpp index f3f8fb9522943d0a9574cb80cfc228135a973890..bee90d725b25508abf90813532bb5ca754d8fb9a 100644 --- a/unit_tests/operator/Test_Mul_Op.cpp +++ b/unit_tests/operator/Test_Mul_Op.cpp @@ -10,9 +10,10 @@ ********************************************************************************/ #include <catch2/catch_test_macros.hpp> +#include <catch2/generators/catch_generators_random.hpp> #include <cstddef> // std::size_t #include <memory> -#include <random> // std::random_device, std::mt19937, std::uniform_int_distribution +#include <random> // std::mt19937, std::uniform_int_distribution #include <vector> #include "aidge/data/Tensor.hpp" @@ -24,7 +25,7 @@ TEST_CASE("[core/operator] Mul_Op(forwardDims)", "[Mul][forwardDims]") { constexpr std::uint16_t NBTRIALS = 10; // Create a random number generator - std::random_device rd; + auto rd = Catch::Generators::Detail::getSeed; std::mt19937 gen(rd()); std::uniform_int_distribution<std::size_t> dimsDist(1, 10); std::uniform_int_distribution<std::size_t> nbDimsDist(1, 5); @@ -44,54 +45,54 @@ TEST_CASE("[core/operator] Mul_Op(forwardDims)", "[Mul][forwardDims]") { * @todo Special case: scalar not handled yet by * ``OperatorTensor::forwardDims()`` */ - // SECTION("Scalar / Scalar") { - // // input_0 - // T0->resize({}); - - // // input_1 - // T1->resize({}); - - // REQUIRE_NOTHROW(op->forwardDims()); - // REQUIRE((op->getOutput(0)->dims() == std::vector<std::size_t>())); - // } - // SECTION("Scalar / +1-D") { - // // a scalar is compatible with any other Tensor - // // input_0 - // T0->resize({}); - - // for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { - - // // input_1 - // const std::size_t nb_dims = nbDimsDist(gen); - // std::vector<std::size_t> dims(nb_dims); - // for (std::size_t i = 0; i < nb_dims; ++i) { - // dims[i] = dimsDist(gen); - // } - // T1->resize(dims); - - // REQUIRE_NOTHROW(op->forwardDims()); - // REQUIRE((op->getOutput(0)->dims()) == dims); - // } - // } - // SECTION("+1-D / Scalar") { - // // a scalar is compatible with any other Tensor - // // input_1 - // T1->resize({}); - - // for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { - - // // input_0 - // const std::size_t nb_dims = nbDimsDist(gen); - // std::vector<std::size_t> dims(nb_dims); - // for (std::size_t i = 0; i < nb_dims; ++i) { - // dims[i] = dimsDist(gen); - // } - // T0->resize(dims); - - // REQUIRE_NOTHROW(op->forwardDims()); - // REQUIRE((op->getOutput(0)->dims()) == dims); - // } - // } + SECTION("Scalar / Scalar") { + // input_0 + T0->resize({}); + + // input_1 + T1->resize({}); + + REQUIRE_NOTHROW(op->forwardDims()); + REQUIRE((op->getOutput(0)->dims() == std::vector<std::size_t>())); + } + SECTION("Scalar / +1-D") { + // a scalar is compatible with any other Tensor + // input_0 + T0->resize({}); + + for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { + + // input_1 + const std::size_t nb_dims = nbDimsDist(gen); + std::vector<std::size_t> dims(nb_dims); + for (std::size_t i = 0; i < nb_dims; ++i) { + dims[i] = dimsDist(gen); + } + T1->resize(dims); + + REQUIRE_NOTHROW(op->forwardDims()); + REQUIRE((op->getOutput(0)->dims()) == dims); + } + } + SECTION("+1-D / Scalar") { + // a scalar is compatible with any other Tensor + // input_1 + T1->resize({}); + + for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { + + // input_0 + const std::size_t nb_dims = nbDimsDist(gen); + std::vector<std::size_t> dims(nb_dims); + for (std::size_t i = 0; i < nb_dims; ++i) { + dims[i] = dimsDist(gen); + } + T0->resize(dims); + + REQUIRE_NOTHROW(op->forwardDims()); + REQUIRE((op->getOutput(0)->dims()) == dims); + } + } SECTION("+1-D / +1-D") { // same size for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { diff --git a/unit_tests/operator/Test_Pow_Op.cpp b/unit_tests/operator/Test_Pow_Op.cpp index 4a8d242a355cda58c7b36914efdb1304220f713a..274f7c00b9bd3c3ba57f0463dbe3a1b727141013 100644 --- a/unit_tests/operator/Test_Pow_Op.cpp +++ b/unit_tests/operator/Test_Pow_Op.cpp @@ -10,9 +10,10 @@ ********************************************************************************/ #include <catch2/catch_test_macros.hpp> +#include <catch2/generators/catch_generators_random.hpp> #include <cstddef> // std::size_t #include <memory> -#include <random> // std::random_device, std::mt19937, std::uniform_int_distribution +#include <random> // std::mt19937, std::uniform_int_distribution #include <vector> #include "aidge/data/Tensor.hpp" @@ -24,7 +25,7 @@ TEST_CASE("[core/operator] Pow_Op(forwardDims)", "[Pow][forwardDims]") { constexpr std::uint16_t NBTRIALS = 10; // Create a random number generator - std::random_device rd; + auto rd = Catch::Generators::Detail::getSeed; std::mt19937 gen(rd()); std::uniform_int_distribution<std::size_t> dimsDist(1, 10); std::uniform_int_distribution<std::size_t> nbDimsDist(1, 5); @@ -44,54 +45,54 @@ TEST_CASE("[core/operator] Pow_Op(forwardDims)", "[Pow][forwardDims]") { * @todo Special case: scalar not handled yet by * ``OperatorTensor::forwardDims()`` */ - // SECTION("Scalar / Scalar") { - // // input_0 - // T0->resize({}); - - // // input_1 - // T1->resize({}); - - // REQUIRE_NOTHROW(op->forwardDims()); - // REQUIRE((op->getOutput(0)->dims() == std::vector<std::size_t>())); - // } - // SECTION("Scalar / +1-D") { - // // a scalar is compatible with any other Tensor - // // input_0 - // T0->resize({}); - - // for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { - - // // input_1 - // const std::size_t nb_dims = nbDimsDist(gen); - // std::vector<std::size_t> dims(nb_dims); - // for (std::size_t i = 0; i < nb_dims; ++i) { - // dims[i] = dimsDist(gen); - // } - // T1->resize(dims); - - // REQUIRE_NOTHROW(op->forwardDims()); - // REQUIRE((op->getOutput(0)->dims()) == dims); - // } - // } - // SECTION("+1-D / Scalar") { - // // a scalar is compatible with any other Tensor - // // input_1 - // T1->resize({}); - - // for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { - - // // input_0 - // const std::size_t nb_dims = nbDimsDist(gen); - // std::vector<std::size_t> dims(nb_dims); - // for (std::size_t i = 0; i < nb_dims; ++i) { - // dims[i] = dimsDist(gen); - // } - // T0->resize(dims); - - // REQUIRE_NOTHROW(op->forwardDims()); - // REQUIRE((op->getOutput(0)->dims()) == dims); - // } - // } + SECTION("Scalar / Scalar") { + // input_0 + T0->resize({}); + + // input_1 + T1->resize({}); + + REQUIRE_NOTHROW(op->forwardDims()); + REQUIRE((op->getOutput(0)->dims() == std::vector<std::size_t>())); + } + SECTION("Scalar / +1-D") { + // a scalar is compatible with any other Tensor + // input_0 + T0->resize({}); + + for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { + + // input_1 + const std::size_t nb_dims = nbDimsDist(gen); + std::vector<std::size_t> dims(nb_dims); + for (std::size_t i = 0; i < nb_dims; ++i) { + dims[i] = dimsDist(gen); + } + T1->resize(dims); + + REQUIRE_NOTHROW(op->forwardDims()); + REQUIRE((op->getOutput(0)->dims()) == dims); + } + } + SECTION("+1-D / Scalar") { + // a scalar is compatible with any other Tensor + // input_1 + T1->resize({}); + + for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { + + // input_0 + const std::size_t nb_dims = nbDimsDist(gen); + std::vector<std::size_t> dims(nb_dims); + for (std::size_t i = 0; i < nb_dims; ++i) { + dims[i] = dimsDist(gen); + } + T0->resize(dims); + + REQUIRE_NOTHROW(op->forwardDims()); + REQUIRE((op->getOutput(0)->dims()) == dims); + } + } SECTION("+1-D / +1-D") { // same size for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { diff --git a/unit_tests/operator/Test_Sub_Op.cpp b/unit_tests/operator/Test_Sub_Op.cpp index 329f3da798854ddff3d1c1393d60c57ef180c70a..110cbbfe68b723a2a670abe590ca5392881170f3 100644 --- a/unit_tests/operator/Test_Sub_Op.cpp +++ b/unit_tests/operator/Test_Sub_Op.cpp @@ -10,9 +10,10 @@ ********************************************************************************/ #include <catch2/catch_test_macros.hpp> +#include <catch2/generators/catch_generators_random.hpp> #include <cstddef> // std::size_t #include <memory> -#include <random> // std::random_device, std::mt19937, std::uniform_int_distribution +#include <random> // std::mt19937, std::uniform_int_distribution #include <vector> #include "aidge/data/Tensor.hpp" @@ -24,7 +25,7 @@ TEST_CASE("[core/operator] Sub_Op(forwardDims)", "[Sub][forwardDims]") { constexpr std::uint16_t NBTRIALS = 10; // Create a random number generator - std::random_device rd; + auto rd = Catch::Generators::Detail::getSeed; std::mt19937 gen(rd()); std::uniform_int_distribution<std::size_t> dimsDist(1, 10); std::uniform_int_distribution<std::size_t> nbDimsDist(1, 5); @@ -44,54 +45,54 @@ TEST_CASE("[core/operator] Sub_Op(forwardDims)", "[Sub][forwardDims]") { * @todo Special case: scalar not handled yet by * ``OperatorTensor::forwardDims()`` */ - // SECTION("Scalar / Scalar") { - // // input_0 - // T0->resize({}); - - // // input_1 - // T1->resize({}); - - // REQUIRE_NOTHROW(op->forwardDims()); - // REQUIRE((op->getOutput(0)->dims() == std::vector<std::size_t>())); - // } - // SECTION("Scalar / +1-D") { - // // a scalar is compatible with any other Tensor - // // input_0 - // T0->resize({}); - - // for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { - - // // input_1 - // const std::size_t nb_dims = nbDimsDist(gen); - // std::vector<std::size_t> dims(nb_dims); - // for (std::size_t i = 0; i < nb_dims; ++i) { - // dims[i] = dimsDist(gen); - // } - // T1->resize(dims); - - // REQUIRE_NOTHROW(op->forwardDims()); - // REQUIRE((op->getOutput(0)->dims()) == dims); - // } - // } - // SECTION("+1-D / Scalar") { - // // a scalar is compatible with any other Tensor - // // input_1 - // T1->resize({}); - - // for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { - - // // input_0 - // const std::size_t nb_dims = nbDimsDist(gen); - // std::vector<std::size_t> dims(nb_dims); - // for (std::size_t i = 0; i < nb_dims; ++i) { - // dims[i] = dimsDist(gen); - // } - // T0->resize(dims); - - // REQUIRE_NOTHROW(op->forwardDims()); - // REQUIRE((op->getOutput(0)->dims()) == dims); - // } - // } + SECTION("Scalar / Scalar") { + // input_0 + T0->resize({}); + + // input_1 + T1->resize({}); + + REQUIRE_NOTHROW(op->forwardDims()); + REQUIRE((op->getOutput(0)->dims() == std::vector<std::size_t>())); + } + SECTION("Scalar / +1-D") { + // a scalar is compatible with any other Tensor + // input_0 + T0->resize({}); + + for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { + + // input_1 + const std::size_t nb_dims = nbDimsDist(gen); + std::vector<std::size_t> dims(nb_dims); + for (std::size_t i = 0; i < nb_dims; ++i) { + dims[i] = dimsDist(gen); + } + T1->resize(dims); + + REQUIRE_NOTHROW(op->forwardDims()); + REQUIRE((op->getOutput(0)->dims()) == dims); + } + } + SECTION("+1-D / Scalar") { + // a scalar is compatible with any other Tensor + // input_1 + T1->resize({}); + + for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { + + // input_0 + const std::size_t nb_dims = nbDimsDist(gen); + std::vector<std::size_t> dims(nb_dims); + for (std::size_t i = 0; i < nb_dims; ++i) { + dims[i] = dimsDist(gen); + } + T0->resize(dims); + + REQUIRE_NOTHROW(op->forwardDims()); + REQUIRE((op->getOutput(0)->dims()) == dims); + } + } SECTION("+1-D / +1-D") { // same size for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { diff --git a/unit_tests/operator/Test_TransposeImpl.cpp b/unit_tests/operator/Test_TransposeImpl.cpp index 8b6eafc70b7eefec6e1ccab9d0cfcde1eb4a09d5..18f0d68d87ac1ee66ffb1f24c4c130f9b020d56e 100644 --- a/unit_tests/operator/Test_TransposeImpl.cpp +++ b/unit_tests/operator/Test_TransposeImpl.cpp @@ -18,6 +18,16 @@ using namespace Aidge; TEST_CASE("[cpu/operator] Transpose(forward)") { + SECTION("Scalar Tensor") { + std::shared_ptr<Tensor> input = std::make_shared<Tensor>(2); + std::shared_ptr<Tensor> output = std::make_shared<Tensor>(2); + std::shared_ptr<Node> myTranspose = Transpose({}); + auto op = std::static_pointer_cast<OperatorTensor>(myTranspose -> getOperator()); + op->associateInput(0,input); + op->setDataType(DataType::Float32); + op->setBackend("cpu"); + REQUIRE_THROWS(myTranspose->forward()); + } SECTION("3D Tensor") { std::shared_ptr<Tensor> input = std::make_shared<Tensor>(Array3D<float,2,3,4> { { @@ -120,4 +130,4 @@ TEST_CASE("[cpu/operator] Transpose(forward)") { REQUIRE(*(op->getOutput(0)) == *output); } -} \ No newline at end of file +} diff --git a/unit_tests/scheduler/Test_Scheduler.cpp b/unit_tests/scheduler/Test_Scheduler.cpp index ceaa5e301c820ef54970a0e76004ad3467ae66da..3c3026ff09222f9623d886f9c4574bf23667cd9a 100644 --- a/unit_tests/scheduler/Test_Scheduler.cpp +++ b/unit_tests/scheduler/Test_Scheduler.cpp @@ -17,6 +17,7 @@ #include <string> #include <catch2/catch_test_macros.hpp> +#include <catch2/generators/catch_generators_random.hpp> #include "aidge/backend/OperatorImpl.hpp" #include "aidge/data/Tensor.hpp" @@ -35,7 +36,7 @@ TEST_CASE("randomScheduling", "[Scheduler][randomGen]") { std::uniform_int_distribution<std::size_t> nb_nodes_dist(100, 500); for (int test = 0; test < nbTests; ++test) { - std::random_device rd; + auto rd = Catch::Generators::Detail::getSeed; const std::mt19937::result_type seed(rd()); std::mt19937 gen(rd()); diff --git a/unit_tests/utils/Test_DynamicAttributes.cpp b/unit_tests/utils/Test_DynamicAttributes.cpp new file mode 100644 index 0000000000000000000000000000000000000000..b8a1264b3ad954e776a5ae4c47f03cd0c3fb82c9 --- /dev/null +++ b/unit_tests/utils/Test_DynamicAttributes.cpp @@ -0,0 +1,62 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <catch2/catch_test_macros.hpp> + +#include <string> +#include <vector> + +#include "aidge/utils/DynamicAttributes.hpp" + +using namespace Aidge; + +TEST_CASE("[core/attributes] DynamicAttributes") { + SECTION("TestAttr") { + DynamicAttributes attrs; + attrs.addAttr("a", 1); + attrs.addAttr("b", 1.0f); + attrs.addAttr("c", std::string("test")); + attrs.addAttr<std::vector<bool>>("d", {false, true, false}); + + REQUIRE(attrs.getAttr<int>("a") == 1); + REQUIRE(attrs.getAttr<float>("b") == 1.0f); + REQUIRE(attrs.getAttr<std::string>("c") == "test"); + REQUIRE(attrs.getAttr<std::vector<bool>>("d") == std::vector<bool>{{false, true, false}}); + + attrs.addAttr("e", DynamicAttributes()); + attrs.getAttr<DynamicAttributes>("e").addAttr("e1", 1.0f); + attrs.getAttr<DynamicAttributes>("e").addAttr("e2", std::string("test")); + + REQUIRE(attrs.getAttr<DynamicAttributes>("e").getAttr<float>("e1") == 1.0f); + REQUIRE(attrs.getAttr<DynamicAttributes>("e").getAttr<std::string>("e2") == "test"); + } + + SECTION("TestAttrNS") { + DynamicAttributes attrs; + attrs.addAttr("mem.a", 1); + attrs.addAttr("mem.data.b", 1.0f); + attrs.addAttr("impl.c", std::string("test")); + attrs.addAttr<std::vector<bool>>("d", {false, true, false}); + + REQUIRE(attrs.getAttr<int>("mem.a") == 1); + REQUIRE(attrs.getAttr<float>("mem.data.b") == 1.0f); + REQUIRE(attrs.getAttr<std::string>("impl.c") == "test"); + REQUIRE(attrs.getAttr<std::vector<bool>>("d") == std::vector<bool>{{false, true, false}}); + + attrs.getAttr<DynamicAttributes>("mem.data").addAttr("e", 2.0f); + attrs.getAttr<DynamicAttributes>("impl").addAttr("f", std::string("test2")); + REQUIRE(attrs.getAttr<float>("mem.data.e") == 2.0f); + REQUIRE(attrs.getAttr<std::string>("impl.f") == "test2"); + + REQUIRE(attrs.getAttr<DynamicAttributes>("mem.data").getAttr<float>("b") == 1.0f); + REQUIRE(attrs.getAttr<DynamicAttributes>("impl").getAttr<std::string>("c") == "test"); + } +}