diff --git a/include/aidge/aidge.hpp b/include/aidge/aidge.hpp index 9c516575690fbca947496920c7068874bda6bf63..84d77e9f1370977e899331bad27f2ade4b2178f3 100644 --- a/include/aidge/aidge.hpp +++ b/include/aidge/aidge.hpp @@ -64,6 +64,7 @@ #include "aidge/stimuli/Stimulus.hpp" #include "aidge/recipes/Recipes.hpp" +#include "aidge/filler/Filler.hpp" #include "aidge/utils/Attributes.hpp" #include "aidge/utils/StaticAttributes.hpp" diff --git a/include/aidge/data/Data.hpp b/include/aidge/data/Data.hpp index d8412dbd4ddb4ec371649d180bce10a80dd624f3..a6ff03d36b662f4420424f930401844de25036d2 100644 --- a/include/aidge/data/Data.hpp +++ b/include/aidge/data/Data.hpp @@ -52,6 +52,7 @@ public: return mType; } virtual ~Data() = default; + virtual std::string toString() const = 0; private: const std::string mType; @@ -84,4 +85,4 @@ namespace Aidge { inline auto format_as(DataType dt) { return EnumStrings<Aidge::DataType>::data[static_cast<int>(dt)]; } } -#endif /* AIDGE_DATA_H_ */ \ No newline at end of file +#endif /* AIDGE_DATA_H_ */ diff --git a/include/aidge/data/Tensor.hpp b/include/aidge/data/Tensor.hpp index b82ec89d0096d47644e1bb4bd3819536ce7ccd66..1f9c5a5ec14cca4469b0329f2f968cf9dbc7b0de 100644 --- a/include/aidge/data/Tensor.hpp +++ b/include/aidge/data/Tensor.hpp @@ -445,7 +445,7 @@ public: set<expectedType>(getStorageIdx(coordIdx), value); } - std::string toString() const; + std::string toString() const override; inline void print() const { fmt::print("{}\n", toString()); } diff --git a/include/aidge/filler/Filler.hpp b/include/aidge/filler/Filler.hpp new file mode 100644 index 0000000000000000000000000000000000000000..51d01d87f338d1c8eb33b7b3ec6194390bfe13bf --- /dev/null +++ b/include/aidge/filler/Filler.hpp @@ -0,0 +1,63 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#ifndef AIDGE_CORE_FILLER_H_ +#define AIDGE_CORE_FILLER_H_ + +#include <memory> +#include <random> // normal_distribution, uniform_real_distribution + +#include "aidge/data/Tensor.hpp" + +namespace Aidge { + +inline void calculateFanInFanOut(std::shared_ptr<Tensor> tensor, + unsigned int& fanIn, unsigned int& fanOut) { + AIDGE_ASSERT( + tensor->nbDims() == 4, + "Tensor need to have 4 dimensions to compute FanIn and FanOut."); + // Warning: This function suppose NCXX data layout. + // Aidge currently only support NCHW but this maybe not be true in the + // future. + DimSize_t batchSize = tensor->dims()[0]; + DimSize_t channelSize = tensor->dims()[1]; + AIDGE_ASSERT(batchSize != 0, + "Cannot calculate FanIn if tensor batch size is 0."); + AIDGE_ASSERT(channelSize != 0, + "Cannot calculate FanOut if tensor channel size is 0."); + fanIn = static_cast<unsigned int>(tensor->size() / batchSize); + fanOut = static_cast<unsigned int>(tensor->size() / channelSize); +} +enum VarianceNorm { FanIn, Average, FanOut }; + +template <typename T> +void constantFiller(std::shared_ptr<Tensor> tensor, T constantValue); + +template <typename T> +void normalFiller(std::shared_ptr<Tensor> tensor, double mean = 0.0, + double stdDev = 1.0); + +template <typename T> +void uniformFiller(std::shared_ptr<Tensor> tensor, T min, T max); + +template <typename T> +void xavierUniformFiller(std::shared_ptr<Tensor> tensor, T scaling = 1.0, + VarianceNorm varianceNorm = FanIn); +template <typename T> +void xavierNormalFiller(std::shared_ptr<Tensor> tensor, T scaling = 1.0, + VarianceNorm varianceNorm = FanIn); + +template <typename T> +void heFiller(std::shared_ptr<Tensor> tensor, VarianceNorm varianceNorm = FanIn, + T meanNorm = 0.0, T scaling = 1.0); +} // namespace Aidge + +#endif /* AIDGE_CORE_FILLER_H_ */ diff --git a/include/aidge/graph/GraphView.hpp b/include/aidge/graph/GraphView.hpp index 46fa56ef0e7d63ce10bb3c96a8d7e1c42b191322..0c6b7f03326491711fd57ed939642d1eec80b0d8 100644 --- a/include/aidge/graph/GraphView.hpp +++ b/include/aidge/graph/GraphView.hpp @@ -98,6 +98,8 @@ public: */ void save(const std::string& path, bool verbose = false, bool showProducers = true) const; + void logOutputs(const std::string& dirName) const; + /** * Check that a node is in the current GraphView. * @param nodePtr Node to check @@ -283,7 +285,7 @@ public: * added to the list, and so on. * - Any remaining nodes have no path to the root node and are added in * arbitrary order. In this case, the ranking is not garanteed to be unique. - * + * * If the ranking cannot be garanteed to be unique, the second item indicates * the rank from which unicity cannot be garanteed. * @return std::pair<std::vector<NodePtr>, size_t> Pair with the list of ranked diff --git a/include/aidge/operator/Conv.hpp b/include/aidge/operator/Conv.hpp index 82cd5df8e24457bd9f5e07c89826904c7d2283ad..517af5b050daa200e7d608aa71660c86b17701b0 100644 --- a/include/aidge/operator/Conv.hpp +++ b/include/aidge/operator/Conv.hpp @@ -27,21 +27,31 @@ #include "aidge/utils/Types.h" namespace Aidge { -enum class ConvAttr { StrideDims, DilationDims, InChannels, OutChannels, KernelDims }; +enum class ConvAttr { StrideDims, DilationDims, InChannels, OutChannels, KernelDims, NoBias }; template <DimIdx_t DIM> class Conv_Op : public OperatorTensor, public Registrable<Conv_Op<DIM>, std::string, std::shared_ptr<OperatorImpl>(const Conv_Op<DIM> &)>, - public StaticAttributes<ConvAttr, std::array<DimSize_t, DIM>, std::array<DimSize_t, DIM>, DimSize_t, - DimSize_t, std::array<DimSize_t, DIM>> { + public StaticAttributes<ConvAttr, + std::array<DimSize_t, DIM>, + std::array<DimSize_t, DIM>, + DimSize_t, + DimSize_t, + std::array<DimSize_t, DIM>, + bool> { public: static const std::string Type; Conv_Op() = delete; - using Attributes_ = StaticAttributes<ConvAttr, std::array<DimSize_t, DIM>, std::array<DimSize_t, DIM>, - DimSize_t, DimSize_t, std::array<DimSize_t, DIM>>; + using Attributes_ = StaticAttributes<ConvAttr, + std::array<DimSize_t, DIM>, + std::array<DimSize_t, DIM>, + DimSize_t, + DimSize_t, + std::array<DimSize_t, DIM>, + bool>; template <ConvAttr e> using attr = typename Attributes_::template attr<e>; @@ -49,13 +59,15 @@ public: DimSize_t outChannels, const std::array<DimSize_t, DIM> &kernelDims, const std::array<DimSize_t, DIM> &strideDims = create_array<DimSize_t,DIM>(1), - const std::array<DimSize_t, DIM> &dilationDims = create_array<DimSize_t,DIM>(1)) + const std::array<DimSize_t, DIM> &dilationDims = create_array<DimSize_t,DIM>(1), + bool noBias = false) : OperatorTensor(Type, 1, 2, 1), Attributes_(attr<ConvAttr::StrideDims>(strideDims), attr<ConvAttr::DilationDims>(dilationDims), attr<ConvAttr::InChannels>(inChannels), attr<ConvAttr::OutChannels>(outChannels), - attr<ConvAttr::KernelDims>(kernelDims)) {} + attr<ConvAttr::KernelDims>(kernelDims), + attr<ConvAttr::NoBias>(noBias)) {} /** * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated). @@ -163,15 +175,17 @@ std::vector<std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>> co std::vector<DimSize_t> weightIdxDims = std::vector<DimSize_t>(DIM+2, 0); weightIdxDims[0] = firstEltDims[1]; - // Bias - const std::vector<DimSize_t> biasDims{outputDims[1]}; // the number of output channel - const std::vector<DimSize_t> biasIdxDims{firstEltDims[1]}; - // Result std::vector<std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>> res; res.push_back(std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>(inputIdxDims, inputDims)); res.push_back(std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>(weightIdxDims, weightDims)); - res.push_back(std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>(biasIdxDims, biasDims)); + + // Bias + if (! this->template getAttr<ConvAttr::NoBias>()){ + const std::vector<DimSize_t> biasDims{outputDims[1]}; // the number of output channel + const std::vector<DimSize_t> biasIdxDims{firstEltDims[1]}; + res.push_back(std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>(biasIdxDims, biasDims)); + } return res; } AIDGE_THROW_OR_ABORT(std::runtime_error, "Given outputDim out of range or output dim not forwarded yet."); @@ -215,12 +229,14 @@ inline std::shared_ptr<Node> Conv(DimSize_t inChannels, const std::array<DimSize_t, DIM> &kernelDims, const std::string& name = "", const std::array<DimSize_t, DIM> &strideDims = create_array<DimSize_t,DIM>(1), - const std::array<DimSize_t, DIM> &dilationDims = create_array<DimSize_t,DIM>(1)) { + const std::array<DimSize_t, DIM> &dilationDims = create_array<DimSize_t,DIM>(1), + bool noBias = false) { // FIXME: properly handle default w&b initialization in every cases static_assert(DIM<=MaxDim,"Too many kernel dimensions required by Conv, not supported"); - auto conv = std::make_shared<Node>(std::make_shared<Conv_Op<static_cast<DimIdx_t>(DIM)>>(inChannels, outChannels, kernelDims, strideDims, dilationDims), name); + auto conv = std::make_shared<Node>(std::make_shared<Conv_Op<static_cast<DimIdx_t>(DIM)>>(inChannels, outChannels, kernelDims, strideDims, dilationDims, noBias), name); addProducer(conv, 1, append(outChannels, append(inChannels, kernelDims)), "w"); - addProducer(conv, 2, {outChannels}, "b"); + addProducer(conv, 2, {(noBias ? 0 : outChannels)}, "b"); // already sets bias dims + return conv; } @@ -232,9 +248,10 @@ inline std::shared_ptr<Node> Conv( DimSize_t const (&kernelDims)[DIM], const std::string& name = "", const std::array<DimSize_t, DIM> &strideDims = create_array<DimSize_t,DIM>(1), - const std::array<DimSize_t, DIM> &dilationDims = create_array<DimSize_t,DIM>(1)) { + const std::array<DimSize_t, DIM> &dilationDims = create_array<DimSize_t,DIM>(1), + bool noBias = false) { static_assert(DIM<=MaxDim,"Too many kernel dimensions required by Conv, not supported"); - return Conv(inChannels, outChannels, to_array(kernelDims), name, strideDims, dilationDims); + return Conv(inChannels, outChannels, to_array(kernelDims), name, strideDims, dilationDims, noBias); } } // namespace Aidge @@ -245,7 +262,8 @@ const char *const EnumStrings<Aidge::ConvAttr>::data[] = { "DilationDims", "InChannels", "OutChannels", - "KernelDims" + "KernelDims", + "NoBias" }; } diff --git a/include/aidge/operator/ConvDepthWise.hpp b/include/aidge/operator/ConvDepthWise.hpp index 7fa9124d4c750cee53d9c4a402a2fa6196ac8158..035bd84b647bc7b4c57daa14d20ebe60e59e83c2 100644 --- a/include/aidge/operator/ConvDepthWise.hpp +++ b/include/aidge/operator/ConvDepthWise.hpp @@ -26,7 +26,7 @@ #include "aidge/utils/Types.h" namespace Aidge { -enum class ConvDepthWiseAttr { StrideDims, DilationDims, Channels, KernelDims }; +enum class ConvDepthWiseAttr { StrideDims, DilationDims, Channels, KernelDims, NoBias }; template <DimIdx_t DIM> class ConvDepthWise_Op : public OperatorTensor, @@ -35,7 +35,8 @@ class ConvDepthWise_Op : public OperatorTensor, std::array<DimSize_t, DIM>, std::array<DimSize_t, DIM>, DimSize_t, - std::array<DimSize_t, DIM>> { + std::array<DimSize_t, DIM>, + bool> { public: static const std::string Type; @@ -45,19 +46,22 @@ public: std::array<DimSize_t, DIM>, std::array<DimSize_t, DIM>, DimSize_t, - std::array<DimSize_t, DIM>>; + std::array<DimSize_t, DIM>, + bool>; template <ConvDepthWiseAttr e> using attr = typename Attributes_::template attr<e>; constexpr ConvDepthWise_Op(const DimSize_t nbChannels, const std::array<DimSize_t, DIM> &kernel_dims, const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), - const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1)) + const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1), + bool no_bias=false) : OperatorTensor(Type, 1, 2, 1), Attributes_(attr<ConvDepthWiseAttr::StrideDims>(stride_dims), attr<ConvDepthWiseAttr::DilationDims>(dilation_dims), attr<ConvDepthWiseAttr::Channels>(nbChannels), - attr<ConvDepthWiseAttr::KernelDims>(kernel_dims)) {} + attr<ConvDepthWiseAttr::KernelDims>(kernel_dims), + attr<ConvDepthWiseAttr::NoBias>(no_bias)) {} /** * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated). @@ -157,15 +161,17 @@ public: std::vector<DimSize_t> weightIdxDims = std::vector<DimSize_t>(DIM+2, 0); weightIdxDims[0] = firstEltDims[1]; - // Bias - const std::vector<DimSize_t> biasDims{outputDims[1]}; // the number of output channel - const std::vector<DimSize_t> biasIdxDims{firstEltDims[1]}; // Result std::vector<std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>> res; res.push_back(std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>(inputIdxDims, inputDims)); res.push_back(std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>(weightIdxDims, weightDims)); - res.push_back(std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>(biasIdxDims, biasDims)); + // Bias + if (! this->template getAttr<ConvDepthWiseAttr::NoBias>()){ + const std::vector<DimSize_t> biasDims{outputDims[1]}; // the number of output channel + const std::vector<DimSize_t> biasIdxDims{firstEltDims[1]}; + res.push_back(std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>(biasIdxDims, biasDims)); + } return res; } AIDGE_THROW_OR_ABORT(std::runtime_error, "Given outputDim out of range or output dim not forwarded yet."); @@ -196,12 +202,13 @@ inline std::shared_ptr<Node> ConvDepthWise(const DimSize_t nbChannels, const std::array<DimSize_t, DIM> &kernelDims, const std::string& name = "", const std::array<DimSize_t, DIM> &strideDims = create_array<DimSize_t,DIM>(1), - const std::array<DimSize_t, DIM> &dilationDims = create_array<DimSize_t,DIM>(1)) { + const std::array<DimSize_t, DIM> &dilationDims = create_array<DimSize_t,DIM>(1), + bool noBias=false) { // FIXME: properly handle default w&b initialization in every cases static_assert(DIM<=MaxDim,"Too many kernel dimensions required by ConvDepthWise, not supported"); - auto convDW = std::make_shared<Node>(std::make_shared<ConvDepthWise_Op<static_cast<DimIdx_t>(DIM)>>(nbChannels, kernelDims, strideDims, dilationDims), name); + auto convDW = std::make_shared<Node>(std::make_shared<ConvDepthWise_Op<static_cast<DimIdx_t>(DIM)>>(nbChannels, kernelDims, strideDims, dilationDims, noBias), name); addProducer(convDW, 1, append(nbChannels, append(DimSize_t(1), kernelDims)), "w"); - addProducer(convDW, 2, {nbChannels}, "b"); + addProducer(convDW, 2, {(noBias ? 0 : nbChannels)}, "b"); return convDW; } @@ -212,16 +219,17 @@ inline std::shared_ptr<Node> ConvDepthWise( DimSize_t const (&kernelDims)[DIM], const std::string& name = "", const std::array<DimSize_t, DIM> &strideDims = create_array<DimSize_t,DIM>(1), - const std::array<DimSize_t, DIM> &dilationDims = create_array<DimSize_t,DIM>(1)) { + const std::array<DimSize_t, DIM> &dilationDims = create_array<DimSize_t,DIM>(1), + bool noBias=false) { static_assert(DIM<=MaxDim,"Too many kernel dimensions required by ConvDepthWise, not supported"); - return ConvDepthWise(nbChannels, to_array(kernelDims), name, strideDims, dilationDims); + return ConvDepthWise(nbChannels, to_array(kernelDims), name, strideDims, dilationDims, noBias); } } // namespace Aidge namespace { template <> const char *const EnumStrings<Aidge::ConvDepthWiseAttr>::data[] = {"StrideDims", "DilationDims", "Channels", - "KernelDims"}; + "KernelDims", "NoBias"}; } #endif /* AIDGE_CORE_OPERATOR_CONVDEPTHWISE_H_ */ diff --git a/include/aidge/operator/MetaOperatorDefs.hpp b/include/aidge/operator/MetaOperatorDefs.hpp index 8f1de7c0e92558a4b47962c3a375764e1bd1c2ee..fb3aa6384fc703d758cb8753dcf54c4694f96bd4 100644 --- a/include/aidge/operator/MetaOperatorDefs.hpp +++ b/include/aidge/operator/MetaOperatorDefs.hpp @@ -35,11 +35,12 @@ inline std::shared_ptr<Node> PaddedConv(DimSize_t in_channels, const std::string& name = "", const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), const std::array<DimSize_t, 2*DIM> &padding_dims = create_array<DimSize_t,2*DIM>(0), - const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1)) + const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1), + bool no_bias = false) { // Construct micro-graph auto pad = Pad<DIM>(padding_dims, (!name.empty()) ? name + "_pad" : "", PadBorderType::Constant, 0.0); - auto conv = std::make_shared<Node>(std::make_shared<Conv_Op<static_cast<DimIdx_t>(DIM)>>(in_channels, out_channels, kernel_dims, stride_dims, dilation_dims), (!name.empty()) ? name + "_conv" : ""); + auto conv = std::make_shared<Node>(std::make_shared<Conv_Op<static_cast<DimIdx_t>(DIM)>>(in_channels, out_channels, kernel_dims, stride_dims, dilation_dims, no_bias), (!name.empty()) ? name + "_conv" : ""); auto metaOp = MetaOperator("PaddedConv", Sequential({pad, conv}), name); addProducer(metaOp, 1, append(out_channels, append(in_channels, kernel_dims)), "w"); @@ -56,9 +57,10 @@ inline std::shared_ptr<Node> PaddedConv( const std::string& name = "", const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), const std::array<DimSize_t, 2*DIM> &padding_dims = create_array<DimSize_t,2*DIM>(0), - const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1)) + const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1), + bool no_bias = false) { - return PaddedConv(in_channels, out_channels, to_array(kernel_dims), name, stride_dims, padding_dims, dilation_dims); + return PaddedConv(in_channels, out_channels, to_array(kernel_dims), name, stride_dims, padding_dims, dilation_dims, no_bias); } template <std::array<DimSize_t, 1>::size_type DIM> @@ -67,11 +69,12 @@ inline std::shared_ptr<Node> PaddedConvDepthWise(const DimSize_t nb_channels, const std::string& name = "", const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), const std::array<DimSize_t, 2*DIM> &padding_dims = create_array<DimSize_t,2*DIM>(0), - const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1)) + const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1), + bool no_bias = false) { // Construct micro-graph auto pad = Pad<DIM>(padding_dims, (!name.empty()) ? name + "_pad" : "", PadBorderType::Constant, 0.0); - auto conv = std::make_shared<Node>(std::make_shared<ConvDepthWise_Op<static_cast<DimIdx_t>(DIM)>>(nb_channels, kernel_dims, stride_dims, dilation_dims), (!name.empty()) ? name + "_conv" : ""); + auto conv = std::make_shared<Node>(std::make_shared<ConvDepthWise_Op<static_cast<DimIdx_t>(DIM)>>(nb_channels, kernel_dims, stride_dims, dilation_dims, no_bias), (!name.empty()) ? name + "_conv" : ""); auto metaOp = MetaOperator("PaddedConvDepthWise", Sequential({pad, conv}), name); addProducer(metaOp, 1, append(nb_channels, append(DimSize_t(1), kernel_dims)), "w"); @@ -87,9 +90,10 @@ inline std::shared_ptr<Node> PaddedConvDepthWise( const std::string& name = "", const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), const std::array<DimSize_t, 2*DIM> &padding_dims = create_array<DimSize_t,2*DIM>(0), - const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1)) + const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1), + bool no_bias = false) { - return PaddedConvDepthWise(nb_channels, to_array(kernel_dims), name, stride_dims, padding_dims, dilation_dims); + return PaddedConvDepthWise(nb_channels, to_array(kernel_dims), name, stride_dims, padding_dims, dilation_dims, no_bias); } template <std::array<DimSize_t, 1>::size_type DIM> diff --git a/include/aidge/utils/Directories.hpp b/include/aidge/utils/Directories.hpp new file mode 100644 index 0000000000000000000000000000000000000000..3bc07b9dd58e472096102c1b0c66971164d632a3 --- /dev/null +++ b/include/aidge/utils/Directories.hpp @@ -0,0 +1,83 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + + +#ifndef AIDGE_DIRECTORIES_H_ +#define AIDGE_DIRECTORIES_H_ + + +#include <string> // std::string +#include <sstream> // std::stringstream +#include <iostream> +#include <sys/stat.h> +#include <errno.h> + +#ifdef WIN32 +#include <direct.h> +#else +#include <sys/types.h> +#include <unistd.h> +#endif + +namespace Aidge { + + bool isNotValidFilePath(int c) { + return (iscntrl(c) + || c == '<' + || c == '>' + || c == ':' + || c == '"' + || c == '|' + || c == '?' + || c == '*'); + } + + std::string filePath(const std::string& str) { + std::string filePath(str); + std::replace_if(filePath.begin(), filePath.end(), + isNotValidFilePath, '_'); + return filePath; + } + + + bool createDirectories(const std::string& dirName) + { + std::stringstream path(dirName); + std::string dir; + std::string pathToDir(""); + int status = 0; + + while (std::getline(path, dir, '/') && status == 0) { + pathToDir += dir + '/'; + struct stat fileStat; + if (stat(pathToDir.c_str(), &fileStat) != 0) { + // Directory does not exist + #ifdef WIN32 + status = _mkdir(pathToDir.c_str()); + #else + #if defined(S_IRWXU) + status = mkdir(pathToDir.c_str(), S_IRWXU | S_IRWXG | S_IRWXO); + #else + status = mkdir(pathToDir.c_str()); + #endif + #endif + } else if (!S_ISDIR(fileStat.st_mode)) { + status = -1; + } + } + return (status == 0 || errno == EEXIST); + } + + +} + +#endif //AIDGE_DIRECTORIES_H_ + diff --git a/include/aidge/utils/Random.hpp b/include/aidge/utils/Random.hpp index 704609c0c778c7065a580b86fc67aea7e9d3525d..73cbd1453b3d840d6da2c58eadd5c5f47e9e9070 100644 --- a/include/aidge/utils/Random.hpp +++ b/include/aidge/utils/Random.hpp @@ -9,23 +9,53 @@ * ********************************************************************************/ - #ifndef AIDGE_RANDOM_H_ #define AIDGE_RANDOM_H_ - #include <algorithm> -#include <vector> #include <random> +#include <vector> +namespace Aidge { namespace Random { - void randShuffle(std::vector<unsigned int>& vec) { - std::random_device rd; - std::mt19937 g(rd()); - std::shuffle(vec.begin(), vec.end(), g); - } - +/** + * @brief Generator is a class created to handle only one Mersenne Twister + * pseudo-random number generator for the whole Aidge framework. + * + * All of its method are static. You can set a random seed and access the + * generator. + * By default, the random seed is set to 0 but selected randomly. + * + */ +class Generator { + public: + /** + * @brief Set a seed to the pseudo-random number generator. + * + * @return std::mt19937& + */ + static void setSeed(unsigned int seed); + static unsigned int getSeed() { return seed; }; + /** + * @brief Return a Mersenne Twister pseudo-random number generator. + * You can set the seed of this generator using ``setSeed`` method. + * + * @return std::mt19937& + */ + static std::mt19937& get() { return generator; }; + + private: + // Mersenne Twister pseudo-random number generator + static std::mt19937 generator; + static unsigned int seed; +}; + +inline void randShuffle(std::vector<unsigned int>& vec) { + std::shuffle(vec.begin(), vec.end(), Aidge::Random::Generator::get()); } -#endif //AIDGE_RANDOM_H_ \ No newline at end of file +} // namespace Random +} // namespace Aidge + +#endif // AIDGE_RANDOM_H_ diff --git a/python_binding/data/pybind_Data.cpp b/python_binding/data/pybind_Data.cpp index df3792fd784a2ef2b9418628959629ac59c04094..bca246c94434b280a12d070526ad4ffb2c7fbe7b 100644 --- a/python_binding/data/pybind_Data.cpp +++ b/python_binding/data/pybind_Data.cpp @@ -26,12 +26,11 @@ void init_Data(py::module& m){ .value("Int64", DataType::Int64) .value("UInt8", DataType::UInt8) .value("UInt32", DataType::UInt32) - .value("UInt64", DataType::UInt64) + .value("UInt64", DataType::UInt64) ; - py::class_<Data, std::shared_ptr<Data>>(m,"Data") - .def(py::init<const std::string&>()); + py::class_<Data, std::shared_ptr<Data>>(m,"Data"); + - } } diff --git a/python_binding/filler/pybind_Filler.cpp b/python_binding/filler/pybind_Filler.cpp new file mode 100644 index 0000000000000000000000000000000000000000..a85c0d6cd6fa0367dfc26328d214c99a4288a3be --- /dev/null +++ b/python_binding/filler/pybind_Filler.cpp @@ -0,0 +1,147 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <pybind11/pybind11.h> + +#include "aidge/data/Tensor.hpp" +#include "aidge/filler/Filler.hpp" + +namespace py = pybind11; + +namespace Aidge { + +void init_Filler(py::module &m) { + py::enum_<enum VarianceNorm>(m, "VarianceNorm") + .value("FanIn", VarianceNorm::FanIn) + .value("Average", VarianceNorm::Average) + .value("FanOut", VarianceNorm::FanOut) + .export_values(); + + m.def( + "constant_filler", + [](std::shared_ptr<Tensor> tensor, py::object value) -> void { + switch (tensor->dataType()) { + case DataType::Float64: + constantFiller<double>(tensor, value.cast<double>()); + break; + case DataType::Float32: + constantFiller<float>(tensor, value.cast<float>()); + break; + default: + AIDGE_THROW_OR_ABORT( + py::value_error, + "Data type is not supported for Constant filler."); + } + }, + py::arg("tensor"), py::arg("value")) + .def( + "normal_filler", + [](std::shared_ptr<Tensor> tensor, double mean, + double stdDev) -> void { + switch (tensor->dataType()) { + case DataType::Float64: + normalFiller<double>(tensor, mean, stdDev); + break; + case DataType::Float32: + normalFiller<float>(tensor, mean, stdDev); + break; + default: + AIDGE_THROW_OR_ABORT( + py::value_error, + "Data type is not supported for Normal filler."); + } + }, + py::arg("tensor"), py::arg("mean") = 0.0, py::arg("stdDev") = 1.0) + .def( + "uniform_filler", + [](std::shared_ptr<Tensor> tensor, double min, double max) -> void { + switch (tensor->dataType()) { + case DataType::Float64: + uniformFiller<double>(tensor, min, max); + break; + case DataType::Float32: + uniformFiller<float>(tensor, min, max); + break; + default: + AIDGE_THROW_OR_ABORT( + py::value_error, + "Data type is not supported for Uniform filler."); + } + }, + py::arg("tensor"), py::arg("min"), py::arg("max")) + .def( + "xavier_uniform_filler", + [](std::shared_ptr<Tensor> tensor, py::object scaling, + VarianceNorm varianceNorm) -> void { + switch (tensor->dataType()) { + case DataType::Float64: + xavierUniformFiller<double>( + tensor, scaling.cast<double>(), varianceNorm); + break; + case DataType::Float32: + xavierUniformFiller<float>( + tensor, scaling.cast<float>(), varianceNorm); + break; + default: + AIDGE_THROW_OR_ABORT( + py::value_error, + "Data type is not supported for Uniform filler."); + } + }, + py::arg("tensor"), py::arg("scaling") = 1.0, + py::arg("varianceNorm") = VarianceNorm::FanIn) + .def( + "xavier_normal_filler", + [](std::shared_ptr<Tensor> tensor, py::object scaling, + VarianceNorm varianceNorm) -> void { + switch (tensor->dataType()) { + case DataType::Float64: + xavierNormalFiller<double>( + tensor, scaling.cast<double>(), varianceNorm); + break; + case DataType::Float32: + xavierNormalFiller<float>(tensor, scaling.cast<float>(), + varianceNorm); + break; + default: + AIDGE_THROW_OR_ABORT( + py::value_error, + "Data type is not supported for Uniform filler."); + } + }, + py::arg("tensor"), py::arg("scaling") = 1.0, + py::arg("varianceNorm") = VarianceNorm::FanIn) + .def( + "he_filler", + [](std::shared_ptr<Tensor> tensor, VarianceNorm varianceNorm, + py::object meanNorm, py::object scaling) -> void { + switch (tensor->dataType()) { + case DataType::Float64: + heFiller<double>(tensor, varianceNorm, + meanNorm.cast<double>(), + scaling.cast<double>()); + break; + case DataType::Float32: + heFiller<float>(tensor, varianceNorm, + meanNorm.cast<float>(), + scaling.cast<float>()); + break; + default: + AIDGE_THROW_OR_ABORT( + py::value_error, + "Data type is not supported for Uniform filler."); + } + }, + py::arg("tensor"), py::arg("varianceNorm") = VarianceNorm::FanIn, + py::arg("meanNorm") = 0.0, py::arg("scaling") = 1.0) + ; +} +} // namespace Aidge diff --git a/python_binding/graph/pybind_GraphView.cpp b/python_binding/graph/pybind_GraphView.cpp index a41d0d92835be2b5ef07d30c4a5233da1e3906b7..eae05d8e2c04a877e5942600d7120024f20c4788 100644 --- a/python_binding/graph/pybind_GraphView.cpp +++ b/python_binding/graph/pybind_GraphView.cpp @@ -30,7 +30,7 @@ void init_GraphView(py::module& m) { :param path: save location :type path: str )mydelimiter") - + .def("log_outputs", &GraphView::logOutputs, py::arg("path")) .def("get_output_nodes", &GraphView::outputNodes, R"mydelimiter( Get set of output Nodes. diff --git a/python_binding/operator/pybind_BatchNorm.cpp b/python_binding/operator/pybind_BatchNorm.cpp index 7020c35f63880e77ecd3c2011a1b3c74bed847ed..087c232dc6a2977169e19ce4bdf0807adfc13d93 100644 --- a/python_binding/operator/pybind_BatchNorm.cpp +++ b/python_binding/operator/pybind_BatchNorm.cpp @@ -23,6 +23,9 @@ template <DimSize_t DIM> void declare_BatchNormOp(py::module& m) { const std::string pyClassName("BatchNormOp" + std::to_string(DIM) + "D"); py::class_<BatchNorm_Op<DIM>, std::shared_ptr<BatchNorm_Op<DIM>>, Attributes, OperatorTensor>(m, pyClassName.c_str(), py::multiple_inheritance()) + .def(py::init<float, float>(), + py::arg("epsilon"), + py::arg("momentum")) .def("get_inputs_name", &BatchNorm_Op<DIM>::getInputsName) .def("get_outputs_name", &BatchNorm_Op<DIM>::getOutputsName) .def("attributes_name", &BatchNorm_Op<DIM>::staticGetAttrsName); diff --git a/python_binding/operator/pybind_Conv.cpp b/python_binding/operator/pybind_Conv.cpp index aea402017622655a577ac4f9e207141bff01d70d..d1016869c3fec9cbc10f2d2c86f685f8787b1d3b 100644 --- a/python_binding/operator/pybind_Conv.cpp +++ b/python_binding/operator/pybind_Conv.cpp @@ -33,12 +33,14 @@ template <DimIdx_t DIM> void declare_ConvOp(py::module &m) { DimSize_t, const std::array<DimSize_t, DIM> &, const std::array<DimSize_t, DIM> &, - const std::array<DimSize_t, DIM> &>(), + const std::array<DimSize_t, DIM> &, + bool>(), py::arg("in_channels"), py::arg("out_channels"), py::arg("kernel_dims"), py::arg("stride_dims"), - py::arg("dilation_dims")) + py::arg("dilation_dims"), + py::arg("no_bias")) .def("get_inputs_name", &Conv_Op<DIM>::getInputsName) .def("get_outputs_name", &Conv_Op<DIM>::getOutputsName) .def("attributes_name", &Conv_Op<DIM>::staticGetAttrsName) @@ -51,18 +53,20 @@ template <DimIdx_t DIM> void declare_ConvOp(py::module &m) { const std::vector<DimSize_t>& kernel_dims, const std::string& name, const std::vector<DimSize_t> &stride_dims, - const std::vector<DimSize_t> &dilation_dims) { + const std::vector<DimSize_t> &dilation_dims, + bool noBias) { AIDGE_ASSERT(kernel_dims.size() == DIM, "kernel_dims size [{}] does not match DIM [{}]", kernel_dims.size(), DIM); AIDGE_ASSERT(stride_dims.size() == DIM, "stride_dims size [{}] does not match DIM [{}]", stride_dims.size(), DIM); AIDGE_ASSERT(dilation_dims.size() == DIM, "dilation_dims size [{}] does not match DIM [{}]", dilation_dims.size(), DIM); - return Conv<DIM>(in_channels, out_channels, to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()), to_array<DIM>(dilation_dims.begin())); + return Conv<DIM>(in_channels, out_channels, to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()), to_array<DIM>(dilation_dims.begin()), noBias); }, py::arg("in_channels"), py::arg("out_channels"), py::arg("kernel_dims"), py::arg("name") = "", py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1), - py::arg("dilation_dims") = std::vector<DimSize_t>(DIM,1)); + py::arg("dilation_dims") = std::vector<DimSize_t>(DIM,1), + py::arg("no_bias") = false); } diff --git a/python_binding/operator/pybind_ConvDepthWise.cpp b/python_binding/operator/pybind_ConvDepthWise.cpp index 83eac8742628bf2e0921e6a17dd46226c46fbea1..bbb94c3773e825cd5ee852243fa8db7a5bd763da 100644 --- a/python_binding/operator/pybind_ConvDepthWise.cpp +++ b/python_binding/operator/pybind_ConvDepthWise.cpp @@ -33,11 +33,13 @@ template <DimIdx_t DIM> void declare_ConvDepthWiseOp(py::module &m) { .def(py::init<const DimSize_t, const std::array<DimSize_t, DIM> &, const std::array<DimSize_t, DIM> &, - const std::array<DimSize_t, DIM> &>(), + const std::array<DimSize_t, DIM> &, + bool>(), py::arg("nb_channels"), py::arg("kernel_dims"), py::arg("stride_dims"), - py::arg("dilation_dims")) + py::arg("dilation_dims"), + py::arg("no_bias")) .def("get_inputs_name", &ConvDepthWise_Op<DIM>::getInputsName) .def("get_outputs_name", &ConvDepthWise_Op<DIM>::getOutputsName) .def("attributes_name", &ConvDepthWise_Op<DIM>::staticGetAttrsName); @@ -46,17 +48,19 @@ template <DimIdx_t DIM> void declare_ConvDepthWiseOp(py::module &m) { const std::vector<DimSize_t>& kernel_dims, const std::string& name, const std::vector<DimSize_t> &stride_dims, - const std::vector<DimSize_t> &dilation_dims) { + const std::vector<DimSize_t> &dilation_dims, + bool no_bias) { AIDGE_ASSERT(kernel_dims.size() == DIM, "kernel_dims size [{}] does not match DIM [{}]", kernel_dims.size(), DIM); AIDGE_ASSERT(stride_dims.size() == DIM, "stride_dims size [{}] does not match DIM [{}]", stride_dims.size(), DIM); AIDGE_ASSERT(dilation_dims.size() == DIM, "dilation_dims size [{}] does not match DIM [{}]", dilation_dims.size(), DIM); - return ConvDepthWise<DIM>(nb_channels, to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()), to_array<DIM>(dilation_dims.begin())); + return ConvDepthWise<DIM>(nb_channels, to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()), to_array<DIM>(dilation_dims.begin()), no_bias); }, py::arg("nb_channenls"), py::arg("kernel_dims"), py::arg("name") = "", py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1), - py::arg("dilation_dims") = std::vector<DimSize_t>(DIM,1)); + py::arg("dilation_dims") = std::vector<DimSize_t>(DIM,1), + py::arg("no_bias")= false); } diff --git a/python_binding/operator/pybind_MetaOperatorDefs.cpp b/python_binding/operator/pybind_MetaOperatorDefs.cpp index 20a620cee737db5380ee7641b161cf6296ef7e5b..20cd3f156996c98bb64502a90ab98535f87cc2a3 100644 --- a/python_binding/operator/pybind_MetaOperatorDefs.cpp +++ b/python_binding/operator/pybind_MetaOperatorDefs.cpp @@ -30,21 +30,23 @@ template <DimIdx_t DIM> void declare_PaddedConvOp(py::module &m) { const std::string& name, const std::vector<DimSize_t> &stride_dims, const std::vector<DimSize_t> &padding_dims, - const std::vector<DimSize_t> &dilation_dims) + const std::vector<DimSize_t> &dilation_dims, + bool no_bias) { AIDGE_ASSERT(kernel_dims.size() == DIM, "kernel_dims size [{}] does not match DIM [{}]", kernel_dims.size(), DIM); AIDGE_ASSERT(stride_dims.size() == DIM, "stride_dims size [{}] does not match DIM [{}]", stride_dims.size(), DIM); AIDGE_ASSERT(padding_dims.size() == 2*DIM, "padding_dims size [{}] does not match DIM [{}]", padding_dims.size(), 2*DIM); AIDGE_ASSERT(dilation_dims.size() == DIM, "dilation_dims size [{}] does not match DIM [{}]", dilation_dims.size(), DIM); - return PaddedConv<DIM>(in_channels, out_channels, to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()), to_array<2*DIM>(padding_dims.begin()), to_array<DIM>(dilation_dims.begin())); + return PaddedConv<DIM>(in_channels, out_channels, to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()), to_array<2*DIM>(padding_dims.begin()), to_array<DIM>(dilation_dims.begin()), no_bias); }, py::arg("in_channels"), py::arg("out_channels"), py::arg("kernel_dims"), py::arg("name") = "", py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1), py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0), - py::arg("dilation_dims") = std::vector<DimSize_t>(DIM,1)); + py::arg("dilation_dims") = std::vector<DimSize_t>(DIM,1), + py::arg("no_bias")= false); } template <DimIdx_t DIM> void declare_PaddedConvDepthWiseOp(py::module &m) { @@ -53,20 +55,22 @@ template <DimIdx_t DIM> void declare_PaddedConvDepthWiseOp(py::module &m) { const std::string& name, const std::vector<DimSize_t> &stride_dims, const std::vector<DimSize_t> &padding_dims, - const std::vector<DimSize_t> &dilation_dims) + const std::vector<DimSize_t> &dilation_dims, + bool no_bias) { AIDGE_ASSERT(kernel_dims.size() == DIM, "kernel_dims size [{}] does not match DIM [{}]", kernel_dims.size(), DIM); AIDGE_ASSERT(stride_dims.size() == DIM, "stride_dims size [{}] does not match DIM [{}]", stride_dims.size(), DIM); AIDGE_ASSERT(padding_dims.size() == 2*DIM, "padding_dims size [{}] does not match DIM [{}]", padding_dims.size(), 2*DIM); AIDGE_ASSERT(dilation_dims.size() == DIM, "dilation_dims size [{}] does not match DIM [{}]", dilation_dims.size(), DIM); - return PaddedConvDepthWise<DIM>(nb_channels, to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()), to_array<2*DIM>(padding_dims.begin()), to_array<DIM>(dilation_dims.begin())); + return PaddedConvDepthWise<DIM>(nb_channels, to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()), to_array<2*DIM>(padding_dims.begin()), to_array<DIM>(dilation_dims.begin()), no_bias); }, py::arg("nb_channels"), py::arg("kernel_dims"), py::arg("name") = "", py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1), py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0), - py::arg("dilation_dims") = std::vector<DimSize_t>(DIM,1)); + py::arg("dilation_dims") = std::vector<DimSize_t>(DIM,1), + py::arg("no_bias") = false); } diff --git a/python_binding/pybind_core.cpp b/python_binding/pybind_core.cpp index 52863735ca431e797fab3426d7e61796a8725dd2..5ffa8f6b460b720581fb8196d45ad84e1ef350f2 100644 --- a/python_binding/pybind_core.cpp +++ b/python_binding/pybind_core.cpp @@ -11,12 +11,12 @@ #include <pybind11/pybind11.h> -#include "aidge/backend/cpu/data/TensorImpl.hpp" // This include add Tensor - +#include "aidge/backend/cpu/data/TensorImpl.hpp" // This include add Tensor namespace py = pybind11; namespace Aidge { +void init_Random(py::module&); void init_Data(py::module&); void init_Database(py::module&); void init_DataProvider(py::module&); @@ -71,9 +71,11 @@ void init_Recipes(py::module&); void init_Scheduler(py::module&); void init_TensorUtils(py::module&); +void init_Filler(py::module&); +void init_Aidge(py::module& m) { + init_Random(m); -void init_Aidge(py::module& m){ init_Data(m); init_Database(m); init_DataProvider(m); @@ -129,9 +131,8 @@ void init_Aidge(py::module& m){ init_Recipes(m); init_Scheduler(m); init_TensorUtils(m); + init_Filler(m); } -PYBIND11_MODULE(aidge_core, m) { - init_Aidge(m); -} -} +PYBIND11_MODULE(aidge_core, m) { init_Aidge(m); } +} // namespace Aidge diff --git a/python_binding/utils/pybind_Random.cpp b/python_binding/utils/pybind_Random.cpp new file mode 100644 index 0000000000000000000000000000000000000000..a1956d2d1e398cdb81673e7760a92bcde46e2de6 --- /dev/null +++ b/python_binding/utils/pybind_Random.cpp @@ -0,0 +1,24 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <pybind11/pybind11.h> +#include "aidge/utils/Random.hpp" + +namespace py = pybind11; + +namespace Aidge { + +void init_Random(py::module &m) { + auto mRand = m.def_submodule("random", "Random module."); + py::class_<Random::Generator>(mRand, "Generator") + .def_static("set_seed", Random::Generator::setSeed); +} +} // namespace Aidge diff --git a/src/data/DataProvider.cpp b/src/data/DataProvider.cpp index 7783ed86cf4ae1d8672cc6a35a97ca9a996457b6..5c3d1d7ef3b3dd8c779cf9cda737f1a2b2f6e01f 100644 --- a/src/data/DataProvider.cpp +++ b/src/data/DataProvider.cpp @@ -41,8 +41,8 @@ Aidge::DataProvider::DataProvider(const Aidge::Database& database, const std::si } // Compute the number of bacthes depending on mDropLast boolean - mNbBatch = (mDropLast) ? - static_cast<std::size_t>(std::floor(mNbItems / mBatchSize)) : + mNbBatch = (mDropLast) ? + static_cast<std::size_t>(std::floor(mNbItems / mBatchSize)) : static_cast<std::size_t>(std::ceil(mNbItems / mBatchSize)); } @@ -98,7 +98,7 @@ std::vector<std::shared_ptr<Aidge::Tensor>> Aidge::DataProvider::readBatch() con void Aidge::DataProvider::setBatches(){ - + mBatches.clear(); mBatches.resize(mNbItems); std::iota(mBatches.begin(), @@ -106,7 +106,7 @@ void Aidge::DataProvider::setBatches(){ 0U); if (mShuffle){ - Random::randShuffle(mBatches); + Aidge::Random::randShuffle(mBatches); } if (mNbItems % mBatchSize !=0){ // The last batch is not full diff --git a/src/filler/ConstantFiller.cpp b/src/filler/ConstantFiller.cpp new file mode 100644 index 0000000000000000000000000000000000000000..e7db5e4d02b2031e7f5cf6a0203e3c7acbd3b93e --- /dev/null +++ b/src/filler/ConstantFiller.cpp @@ -0,0 +1,40 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ +#include <memory> +#include <random> // normal_distribution, uniform_real_distribution + +#include "aidge/filler/Filler.hpp" +#include "aidge/data/Tensor.hpp" + + +template<typename T> +void Aidge::constantFiller(std::shared_ptr<Aidge::Tensor> tensor, T constantValue){ + AIDGE_ASSERT(tensor->getImpl(), + "Tensor got no implementation, cannot fill it."); + AIDGE_ASSERT(NativeType<T>::type == tensor->dataType(), "Wrong data type"); + + std::shared_ptr<Aidge::Tensor> cpyTensor; + // Create cpy only if tensor not on CPU + Aidge::Tensor& tensorWithValues = + tensor->refCastFrom(cpyTensor, tensor->dataType(), "cpu"); + + // Setting values + for (std::size_t idx = 0; idx < tensorWithValues.size(); ++idx) { + tensorWithValues.set<T>(idx, constantValue); + } + + // Copy values back to the original tensors (actual copy only if needed) + tensor->copyCastFrom(tensorWithValues); +} + + +template void Aidge::constantFiller<float>(std::shared_ptr<Aidge::Tensor>, float); +template void Aidge::constantFiller<double>(std::shared_ptr<Aidge::Tensor>, double); diff --git a/src/filler/HeFiller.cpp b/src/filler/HeFiller.cpp new file mode 100644 index 0000000000000000000000000000000000000000..74d681f1a05c15045d27a0fe678aa676d16af077 --- /dev/null +++ b/src/filler/HeFiller.cpp @@ -0,0 +1,59 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ +#include <memory> +#include <random> // normal_distribution, uniform_real_distribution + +#include "aidge/data/Tensor.hpp" +#include "aidge/filler/Filler.hpp" +#include "aidge/utils/Random.hpp" + +template <typename T> +void Aidge::heFiller(std::shared_ptr<Aidge::Tensor> tensor, + Aidge::VarianceNorm varianceNorm, T meanNorm, T scaling) { + AIDGE_ASSERT(tensor->getImpl(), + "Tensor got no implementation, cannot fill it."); + AIDGE_ASSERT(NativeType<T>::type == tensor->dataType(), "Wrong data type"); + + unsigned int fanIn, fanOut = 0; + Aidge::calculateFanInFanOut(tensor, fanIn, fanOut); + + const T n((varianceNorm == Aidge::VarianceNorm::FanIn) ? fanIn + : (varianceNorm == Aidge::VarianceNorm::Average) + ? (fanIn + fanOut) / 2.0 + : fanOut); + + const T stdDev(std::sqrt(2.0 / n)); + + const T mean(varianceNorm == Aidge::VarianceNorm::FanIn ? meanNorm / fanIn + : (varianceNorm == Aidge::VarianceNorm::Average) + ? meanNorm / ((fanIn + fanOut) / 2.0) + : meanNorm / fanOut); + + std::normal_distribution<T> normalDist(mean, stdDev); + + std::shared_ptr<Tensor> cpyTensor; + // Create cpy only if tensor not on CPU + Tensor& tensorWithValues = + tensor->refCastFrom(cpyTensor, tensor->dataType(), "cpu"); + + // Setting values + for (std::size_t idx = 0; idx < tensorWithValues.size(); ++idx) { + tensorWithValues.set<T>(idx, scaling*normalDist(Aidge::Random::Generator::get())); + } + + // Copy values back to the original tensors (actual copy only if needed) + tensor->copyCastFrom(tensorWithValues); +} + +template void Aidge::heFiller<float>(std::shared_ptr<Aidge::Tensor>, + Aidge::VarianceNorm, float, float); +template void Aidge::heFiller<double>(std::shared_ptr<Aidge::Tensor>, + Aidge::VarianceNorm, double, double); diff --git a/src/filler/NormalFiller.cpp b/src/filler/NormalFiller.cpp new file mode 100644 index 0000000000000000000000000000000000000000..f30b32431cf466b10c1b10df8e0e5ccec9f483b6 --- /dev/null +++ b/src/filler/NormalFiller.cpp @@ -0,0 +1,44 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ +#include <memory> +#include <random> // normal_distribution, uniform_real_distribution + +#include "aidge/data/Tensor.hpp" +#include "aidge/filler/Filler.hpp" +#include "aidge/utils/Random.hpp" + +template <typename T> +void Aidge::normalFiller(std::shared_ptr<Aidge::Tensor> tensor, double mean, + double stdDev) { + AIDGE_ASSERT(tensor->getImpl(), + "Tensor got no implementation, cannot fill it."); + AIDGE_ASSERT(NativeType<T>::type == tensor->dataType(), "Wrong data type"); + + std::normal_distribution<T> normalDist(mean, stdDev); + + std::shared_ptr<Tensor> cpyTensor; + // Create cpy only if tensor not on CPU + Tensor& tensorWithValues = + tensor->refCastFrom(cpyTensor, tensor->dataType(), "cpu"); + + // Setting values + for (std::size_t idx = 0; idx < tensorWithValues.size(); ++idx) { + tensorWithValues.set<T>(idx, normalDist(Aidge::Random::Generator::get())); + } + + // Copy values back to the original tensors (actual copy only if needed) + tensor->copyCastFrom(tensorWithValues); +} + +template void Aidge::normalFiller<float>(std::shared_ptr<Aidge::Tensor>, double, + double); +template void Aidge::normalFiller<double>(std::shared_ptr<Aidge::Tensor>, + double, double); diff --git a/src/filler/UniformFiller.cpp b/src/filler/UniformFiller.cpp new file mode 100644 index 0000000000000000000000000000000000000000..a942f59d717fd8d7b541ee28868a7fb9f2e7cd95 --- /dev/null +++ b/src/filler/UniformFiller.cpp @@ -0,0 +1,44 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ +#include <memory> +#include <random> // normal_distribution, uniform_real_distribution + +#include "aidge/data/Tensor.hpp" +#include "aidge/filler/Filler.hpp" +#include "aidge/utils/Random.hpp" + +template <typename T> +void Aidge::uniformFiller(std::shared_ptr<Aidge::Tensor> tensor, T min, T max) { + AIDGE_ASSERT(tensor->getImpl(), + "Tensor got no implementation, cannot fill it."); + AIDGE_ASSERT(NativeType<T>::type == tensor->dataType(), "Wrong data type"); + + + std::uniform_real_distribution<T> uniformDist(min, max); + + std::shared_ptr<Aidge::Tensor> cpyTensor; + // Create cpy only if tensor not on CPU + Aidge::Tensor& tensorWithValues = + tensor->refCastFrom(cpyTensor, tensor->dataType(), "cpu"); + + // Setting values + for (std::size_t idx = 0; idx < tensorWithValues.size(); ++idx) { + tensorWithValues.set<T>(idx, uniformDist(Aidge::Random::Generator::get())); + } + + // Copy values back to the original tensors (actual copy only if needed) + tensor->copyCastFrom(tensorWithValues); +} + +template void Aidge::uniformFiller<float>(std::shared_ptr<Aidge::Tensor>, float, + float); +template void Aidge::uniformFiller<double>(std::shared_ptr<Aidge::Tensor>, + double, double); diff --git a/src/filler/XavierFiller.cpp b/src/filler/XavierFiller.cpp new file mode 100644 index 0000000000000000000000000000000000000000..a1de15971ca8063e504e270fa6d2275d93270460 --- /dev/null +++ b/src/filler/XavierFiller.cpp @@ -0,0 +1,90 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ +#include <memory> +#include <random> // normal_distribution, uniform_real_distribution + +#include "aidge/data/Tensor.hpp" +#include "aidge/filler/Filler.hpp" +#include "aidge/utils/Random.hpp" + +template <typename T> +void Aidge::xavierUniformFiller(std::shared_ptr<Aidge::Tensor> tensor, + T scaling, Aidge::VarianceNorm varianceNorm) { + AIDGE_ASSERT(tensor->getImpl(), + "Tensor got no implementation, cannot fill it."); + AIDGE_ASSERT(NativeType<T>::type == tensor->dataType(), "Wrong data type"); + + unsigned int fanIn, fanOut = 0; + Aidge::calculateFanInFanOut(tensor, fanIn, fanOut); + + const T n((varianceNorm == Aidge::VarianceNorm::FanIn) ? fanIn + : (varianceNorm == Aidge::VarianceNorm::Average) + ? (fanIn + fanOut) / 2.0 + : fanOut); + const T scale(std::sqrt(3.0 / n)); + + std::uniform_real_distribution<T> uniformDist(-scale, scale); + + std::shared_ptr<Aidge::Tensor> cpyTensor; + // Create cpy only if tensor not on CPU + Aidge::Tensor& tensorWithValues = + tensor->refCastFrom(cpyTensor, tensor->dataType(), "cpu"); + // Setting values + for (std::size_t idx = 0; idx < tensorWithValues.size(); ++idx) { + tensorWithValues.set<T>( + idx, scaling * uniformDist(Aidge::Random::Generator::get())); + } + + // Copy values back to the original tensors (actual copy only if needed) + tensor->copyCastFrom(tensorWithValues); +} +template <typename T> +void Aidge::xavierNormalFiller(std::shared_ptr<Aidge::Tensor> tensor, T scaling, + Aidge::VarianceNorm varianceNorm) { + AIDGE_ASSERT(tensor->getImpl(), + "Tensor got no implementation, cannot fill it."); + AIDGE_ASSERT(NativeType<T>::type == tensor->dataType(), "Wrong data type"); + + unsigned int fanIn, fanOut = 0; + Aidge::calculateFanInFanOut(tensor, fanIn, fanOut); + + const T n((varianceNorm == Aidge::VarianceNorm::FanIn) ? fanIn + : (varianceNorm == Aidge::VarianceNorm::Average) + ? (fanIn + fanOut) / 2.0 + : fanOut); + const double stdDev(std::sqrt(1.0 / n)); + + std::normal_distribution<T> normalDist(0.0, stdDev); + + std::shared_ptr<Aidge::Tensor> cpyTensor; + // Create cpy only if tensor not on CPU + Aidge::Tensor& tensorWithValues = + tensor->refCastFrom(cpyTensor, tensor->dataType(), "cpu"); + + // Setting values + for (std::size_t idx = 0; idx < tensorWithValues.size(); ++idx) { + tensorWithValues.set<T>( + idx, scaling * normalDist(Aidge::Random::Generator::get())); + } + + // Copy values back to the original tensors (actual copy only if needed) + tensor->copyCastFrom(tensorWithValues); +} + +template void Aidge::xavierUniformFiller<float>(std::shared_ptr<Aidge::Tensor>, + float, Aidge::VarianceNorm); +template void Aidge::xavierUniformFiller<double>(std::shared_ptr<Aidge::Tensor>, + double, Aidge::VarianceNorm); + +template void Aidge::xavierNormalFiller<float>(std::shared_ptr<Aidge::Tensor>, + float, Aidge::VarianceNorm); +template void Aidge::xavierNormalFiller<double>(std::shared_ptr<Aidge::Tensor>, + double, Aidge::VarianceNorm); diff --git a/src/graph/GraphView.cpp b/src/graph/GraphView.cpp index 9ae6c6450917942bbf335b442d64b97650eb3de0..f80e51d49eff94c16107df16baf3db816beaf1ca 100644 --- a/src/graph/GraphView.cpp +++ b/src/graph/GraphView.cpp @@ -26,6 +26,7 @@ #include "aidge/operator/GenericOperator.hpp" #include "aidge/operator/MetaOperator.hpp" #include "aidge/utils/ErrorHandling.hpp" +#include "aidge/utils/Directories.hpp" /////////////////////////////////////////////////////// // FUNCTIONAL DESCRIPTION @@ -193,6 +194,29 @@ void Aidge::GraphView::save(const std::string& path, bool verbose, bool showProd fmt::print(fp.get(), "\n"); } +void Aidge::GraphView::logOutputs(const std::string& dirName) const { + if (!Aidge::createDirectories(dirName)){ + AIDGE_THROW_OR_ABORT(std::runtime_error, "Failed to create directory: {}.", dirName); + } + for (std::shared_ptr<Node> nodePtr : getNodes()) { + + const std::string& nodePath = dirName + "/" + Aidge::filePath(nodePtr->name()) +"/"; + if (!Aidge::createDirectories(nodePath)){ + AIDGE_THROW_OR_ABORT(std::runtime_error, "Failed to create directory: {}.", nodePath); + } + + for (IOIndex_t outIdx = 0; outIdx < nodePtr->nbOutputs(); ++outIdx) { + const std::string& inputPath = nodePath +"output_" + std::to_string(outIdx) + ".log"; + auto fp = std::unique_ptr<FILE, decltype(&std::fclose)>(std::fopen(inputPath.c_str(), "w"), &std::fclose); + if (!fp) { + AIDGE_THROW_OR_ABORT(std::runtime_error, + "Could not create graph view log file: {}", inputPath); + } + fmt::print(fp.get(), "{}\n", nodePtr->getOperator()->getRawOutput(outIdx)->toString().c_str()); + } + } +} + void Aidge::GraphView::setRootNode(NodePtr node) { AIDGE_ASSERT(mNodes.find(node) != mNodes.end(), "Root node is not in the GraphView!"); mRootNode = node; @@ -356,7 +380,7 @@ void Aidge::GraphView::forwardDims(const std::vector<std::vector<Aidge::DimSize_ } } else { AIDGE_ASSERT(nodePtr->getOperator()->getRawInput(i) - && !std::static_pointer_cast<Tensor>(nodePtr->getOperator()->getRawInput(i))->empty(), + && !std::static_pointer_cast<Tensor>(nodePtr->getOperator()->getRawInput(i))->empty(), "Missing input#{} for node {} ({})", i, nodePtr->name(), nodePtr->type()); } diff --git a/src/graphRegex/GraphRegex.cpp b/src/graphRegex/GraphRegex.cpp index 00a031e3fa9b03ff1870446b9ae58e8d3eb65bf7..ca15ff8dec5ff5ebd4ea69141c6e286849162bb5 100644 --- a/src/graphRegex/GraphRegex.cpp +++ b/src/graphRegex/GraphRegex.cpp @@ -117,6 +117,8 @@ std::set<std::shared_ptr<MatchSolution>> GraphRegex::match(std::shared_ptr<Graph std::vector<std::shared_ptr<MatchSolution>> solution = fsm->test(combination); solutions.insert(solutions.end(), solution.begin(), solution.end()); } + + } return _findLargestCompatibleSet(solutions); } @@ -142,7 +144,10 @@ void GraphRegex::setNodeKey(const std::string key,std::function<bool(NodePtr)> f throw std::runtime_error(key + " is define"); } mAllLambda[key] = f; + _majConditionalInterpreterLambda(); + //we add the lambda as key by default + setNodeKey(key, key + "($)==true"); } void GraphRegex::_majConditionalInterpreterLambda(){ diff --git a/src/nodeTester/ConditionalLexer.cpp b/src/nodeTester/ConditionalLexer.cpp index 9379bd8409f8f7ec4bae3e0122f88de79718e9dd..e70772fc1a5d6136fb56f5981d73bf6cb0622991 100644 --- a/src/nodeTester/ConditionalLexer.cpp +++ b/src/nodeTester/ConditionalLexer.cpp @@ -120,7 +120,7 @@ std::shared_ptr<ParsingToken<ConditionalTokenTypes>> ConditionalLexer::getNextTo } - if (std::regex_match(currentChars,std::regex("(true|false)"))){ + if (std::regex_match(currentChars,std::regex("(true|false|True|False)"))){ return std::make_shared<ParsingToken<ConditionalTokenTypes>>(ConditionalTokenTypes::BOOL,currentChars); } else if (isLambda){ diff --git a/src/utils/Random.cpp b/src/utils/Random.cpp new file mode 100644 index 0000000000000000000000000000000000000000..0c3dc61df54e16d129638c66b4c245d6141e819c --- /dev/null +++ b/src/utils/Random.cpp @@ -0,0 +1,22 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include "aidge/utils/Random.hpp" + +#include <random> // normal_distribution, uniform_real_distribution + +std::mt19937 Aidge::Random::Generator::generator{std::random_device{}()}; +unsigned int Aidge::Random::Generator::seed = 0; + +void Aidge::Random::Generator::setSeed(unsigned int new_seed) { + seed = new_seed; + generator.seed(seed); +} diff --git a/unit_tests/graphRegex/Test_GraphRegex.cpp b/unit_tests/graphRegex/Test_GraphRegex.cpp index bcd6d0f4cd9ba32ee4318188343b7e6360670d3b..a62b9a8602b494f26fb47061b899eaba41129a1f 100644 --- a/unit_tests/graphRegex/Test_GraphRegex.cpp +++ b/unit_tests/graphRegex/Test_GraphRegex.cpp @@ -18,6 +18,32 @@ using namespace Aidge; TEST_CASE("GraphRegexUser") { + + SECTION("Match using custom lambda") { + + std::shared_ptr<GraphView> g1 = std::make_shared<GraphView>("TestGraph"); + std::shared_ptr<Node> conv = GenericOperator("Conv", 1, 0, 1, "c"); + std::shared_ptr<Node> fc = GenericOperator("FC", 1, 0, 1, "c1"); + std::shared_ptr<Node> conv2 = GenericOperator("Conv", 1, 0, 1, "c2"); + std::shared_ptr<Node> fc2 = GenericOperator("FC", 1, 0, 1, "c3"); + + g1->add(conv); + g1->addChild(fc, "c"); + g1->addChild(conv2, "c1"); + g1->addChild(fc2, "c2"); + + /// + std::shared_ptr<GraphRegex> sut = std::make_shared<GraphRegex>(); + sut->setNodeKey("C",+[](NodePtr NodeOp){return NodeOp->type() == "FC";}); + + sut->setNodeKey("A","C($)==True"); + sut->addQuery("A"); + auto match = sut->match(g1); + REQUIRE(match.size() == 2); + + } + + SECTION("INIT") { const std::string query = "Conv->FC"; diff --git a/version.txt b/version.txt index 17e51c385ea382d4f2ef124b7032c1604845622d..0ea3a944b399d25f7e1b8fe684d754eb8da9fe7f 100644 --- a/version.txt +++ b/version.txt @@ -1 +1 @@ -0.1.1 +0.2.0