diff --git a/aidge_core/__init__.py b/aidge_core/__init__.py index a89e2f6adb0bf56df5182783c388196679d1ad42..3a8e4ff6b8ac4f69d3bc140de9de2edcb8f12c1b 100644 --- a/aidge_core/__init__.py +++ b/aidge_core/__init__.py @@ -7,6 +7,7 @@ http://www.eclipse.org/legal/epl-2.0. SPDX-License-Identifier: EPL-2.0 """ -from .aidge_core import * -from .export import ExportNode, generate_file, generate_str +from .aidge_core import * # import so generated by PyBind +from .export_utils import ExportNode, generate_file, generate_str +from .aidge_export_aidge import * from . import utils diff --git a/aidge_core/aidge_export_aidge/__init__.py b/aidge_core/aidge_export_aidge/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..c5d6f96b3300c0e86147baac30d7cae8a3a0b798 --- /dev/null +++ b/aidge_core/aidge_export_aidge/__init__.py @@ -0,0 +1,8 @@ +from pathlib import Path + +# Constants +FILE = Path(__file__).resolve() +ROOT_EXPORT = FILE.parents[0] + +from .operator_export import * +from .export import export diff --git a/aidge_core/aidge_export_aidge/export.py b/aidge_core/aidge_export_aidge/export.py new file mode 100644 index 0000000000000000000000000000000000000000..b0e859b71e77bb03b95acb6ca75dcf09a8af0722 --- /dev/null +++ b/aidge_core/aidge_export_aidge/export.py @@ -0,0 +1,104 @@ +import aidge_core +import shutil +import os +from pathlib import Path +from .utils import supported_operators, OPERATORS_REGISTRY +from . import ROOT_EXPORT + + +from aidge_core import ExportNode, generate_file + + + +def export(export_folder: str, + graph_view: aidge_core.GraphView, + enable_python_binding: bool = True, + ): + export_folder_path = Path(export_folder) + export_name = export_folder_path.name + + ### Creating export folder ### + # Create export directory + os.makedirs(export_folder, exist_ok=True) + + ### Cpy static files ### + shutil.copytree(ROOT_EXPORT / "static/include", + export_folder_path / "include", dirs_exist_ok=True) + shutil.copytree(ROOT_EXPORT / "static/cmake", + export_folder_path / "cmake", dirs_exist_ok=True) + shutil.copyfile(ROOT_EXPORT / "static/CMakeLists.txt", + export_folder_path / "CMakeLists.txt") + shutil.copyfile(ROOT_EXPORT / "static/version.txt", + export_folder_path / "version.txt") + shutil.copyfile(ROOT_EXPORT / "static/README.md", + export_folder_path / "README.md") + shutil.copyfile(ROOT_EXPORT / "static/main.cpp", + export_folder_path / "main.cpp") + shutil.copyfile(ROOT_EXPORT / "static/export-config.cmake.in", + export_folder_path / f"{export_name}-config.cmake.in") + + # Create project_name file + with open(export_folder_path / "project_name.txt", "w") as f: + f.write(export_name) + + # Add files related to python binding if + if enable_python_binding: + os.makedirs(export_folder_path / "python_binding", exist_ok=True) + generate_file( + export_folder_path / "python_binding/pybind.cpp", + ROOT_EXPORT / "templates/pybind.jinja", + name=export_name, + ) + # TODO: Add a main.py file ? + + ### Generating an export for each nodes and dnn file ### + list_configs = [] # List of headers to include in dnn.cpp to access attribute and parameters + list_actions = [] # List of string to construct graph + set_operator = set() + # Queue of Aidge nodes to explore, guarantee a topological exploration of the graph + open_nodes = list(graph_view.get_input_nodes()) + # List of Aidge nodes already explored + closed_nodes = [] + + while open_nodes: + node = open_nodes.pop(0) + if node in closed_nodes: + continue # Node already converted, moving on ... + parents_not_converted = False + # Check all parents have been converted + for parent in node.get_parents(): + if parent is not None and \ + parent not in closed_nodes: + # If parents have not been converted, push back current node + if not parents_not_converted: + open_nodes.insert(0, node) + parents_not_converted = True + # Add to the stack the not converted parent as next node to convert + open_nodes.insert(0, parent) + if parents_not_converted: + + continue + # Next nodes to treat are children of current node + open_nodes += list(node.get_children()) + + if node.type() in supported_operators(): + set_operator.add(node.type()) + op = OPERATORS_REGISTRY[node.type()](node) + + # TODO: list_configs and list_actions don't need to be passed by argument + # Export the configuration + list_configs = op.export(export_folder_path, list_configs) + + # Add forward kernel + list_actions = op.forward(list_actions) + else: + raise RuntimeError(f"Operator: {node.type()} is not supported") + closed_nodes.append(node) + # Generate full dnn.cpp + aidge_core.generate_file( + export_folder_path / "src/dnn.cpp", + ROOT_EXPORT / "templates/dnn.jinja", + headers=list_configs, + operators=set_operator, + actions=list_actions, + ) diff --git a/aidge_core/aidge_export_aidge/operator_export/__init__.py b/aidge_core/aidge_export_aidge/operator_export/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..37d674ac84f72d643ba1a628a86fbcde9780f4a4 --- /dev/null +++ b/aidge_core/aidge_export_aidge/operator_export/__init__.py @@ -0,0 +1,14 @@ +""" +Copyright (c) 2023 CEA-List + +This program and the accompanying materials are made available under the +terms of the Eclipse Public License 2.0 which is available at +http://www.eclipse.org/legal/epl-2.0. + +SPDX-License-Identifier: EPL-2.0 +""" +from pathlib import Path + +DIR_PATH = Path(__file__).parent +modules = [Path(module).stem for module in DIR_PATH.glob("*.py")] +__all__ = [ f for f in modules if f != "__init__"] diff --git a/aidge_core/aidge_export_aidge/operator_export/conv.py b/aidge_core/aidge_export_aidge/operator_export/conv.py new file mode 100644 index 0000000000000000000000000000000000000000..fb7092fb18982a3cc3f11a1ca47394ce2f77d0b6 --- /dev/null +++ b/aidge_core/aidge_export_aidge/operator_export/conv.py @@ -0,0 +1,31 @@ +from aidge_core.aidge_export_aidge.utils import operator_register, parse_node_input +from aidge_core.aidge_export_aidge import ROOT_EXPORT +from aidge_core import ExportNode, generate_file, generate_str +from pathlib import Path + +@operator_register("Conv") +class Conv(ExportNode): + def __init__(self, node): + super().__init__(node) + + def export(self, export_folder:Path, list_configs:list): + include_path = f"attributes/{self.name}.hpp" + filepath = export_folder / f"include/{include_path}" + + generate_file( + filepath, + ROOT_EXPORT / "templates/attributes/conv.jinja", + name=self.name, + **self.attributes + ) + list_configs.append(include_path) + return list_configs + + def forward(self, list_actions:list): + list_actions.append(generate_str( + ROOT_EXPORT /"templates/graph_ctor/conv.jinja", + name=self.name, + inputs=parse_node_input(self.node.inputs()), + **self.attributes + )) + return list_actions diff --git a/aidge_core/aidge_export_aidge/operator_export/fc.py b/aidge_core/aidge_export_aidge/operator_export/fc.py new file mode 100644 index 0000000000000000000000000000000000000000..fcd528528707dc6eec917790b46e509c2984fa66 --- /dev/null +++ b/aidge_core/aidge_export_aidge/operator_export/fc.py @@ -0,0 +1,37 @@ +from aidge_core.aidge_export_aidge.utils import operator_register,parse_node_input +from aidge_core.aidge_export_aidge import ROOT_EXPORT +from aidge_core import ExportNode, generate_file, generate_str +from pathlib import Path + +@operator_register("FC") +class FC(ExportNode): + def __init__(self, node): + super().__init__(node) + + + def export(self, export_folder:Path, list_configs:list): + + + include_path = f"attributes/{self.name}.hpp" + filepath = export_folder / f"include/{include_path}" + + + generate_file( + filepath, + ROOT_EXPORT / "templates/attributes/fc.jinja", + name=self.name, + InChannels=self.inputs_dims[1][1], + OutChannels=self.operator.out_channels(), + **self.attributes + ) + list_configs.append(include_path) + return list_configs + + def forward(self, list_actions:list): + list_actions.append(generate_str( + ROOT_EXPORT / "templates/graph_ctor/fc.jinja", + name=self.name, + inputs=parse_node_input(self.node.inputs()), + **self.attributes + )) + return list_actions diff --git a/aidge_core/aidge_export_aidge/operator_export/maxpooling.py b/aidge_core/aidge_export_aidge/operator_export/maxpooling.py new file mode 100644 index 0000000000000000000000000000000000000000..0c63e71b423b90f62536cafd25c61101e76e0562 --- /dev/null +++ b/aidge_core/aidge_export_aidge/operator_export/maxpooling.py @@ -0,0 +1,32 @@ +from aidge_core.aidge_export_aidge.utils import operator_register, parse_node_input +from aidge_core.aidge_export_aidge import ROOT_EXPORT +from aidge_core import ExportNode, generate_file, generate_str +from pathlib import Path + +@operator_register("MaxPooling") +class MaxPooling(ExportNode): + def __init__(self, node): + super().__init__(node) + + + def export(self, export_folder:Path, list_configs:list): + include_path = f"attributes/{self.name}.hpp" + filepath = export_folder / f"include/{include_path}" + + generate_file( + filepath, + ROOT_EXPORT / "templates/attributes/maxpooling.jinja", + name=self.name, + **self.attributes + ) + list_configs.append(include_path) + return list_configs + + def forward(self, list_actions:list): + list_actions.append(generate_str( + ROOT_EXPORT / "templates/graph_ctor/maxpooling.jinja", + name=self.name, + inputs=parse_node_input(self.node.inputs()), + **self.attributes + )) + return list_actions diff --git a/aidge_core/aidge_export_aidge/operator_export/producer.py b/aidge_core/aidge_export_aidge/operator_export/producer.py new file mode 100644 index 0000000000000000000000000000000000000000..d082e9726b7ca33fbe6f4692bf7b55930b69cb9d --- /dev/null +++ b/aidge_core/aidge_export_aidge/operator_export/producer.py @@ -0,0 +1,65 @@ +from aidge_core.aidge_export_aidge.utils import operator_register +from aidge_core.aidge_export_aidge import ROOT_EXPORT +from aidge_core import dtype, ExportNode, generate_file, generate_str +import numpy as np +from pathlib import Path + +# Convert aidge datatype to C++ type +datatype_converter = { + dtype.float64 : "double", + dtype.float32 : "float", + dtype.float16 : "half_float::half", + dtype.int8 : "int8_t", + dtype.int16 : "int16_t", + dtype.int32 : "int32_t", + dtype.int64 : "int64_t", + dtype.uint8 : "uint8_t", + dtype.uint16 : "uint16_t", + dtype.uint32 : "uint32_t", + dtype.uint64 : "uint64_t" +} + + +@operator_register("Producer") +class Producer(ExportNode): + """ + If there is a standardization of the export operators + then this class should be just a inheritance of ProducerCPP + """ + def __init__(self, node): + super().__init__(node) + child, in_idx = self.node.output(0)[0] + self.tensor_name = f"{child.name()}_{in_idx}" + self.values = np.array(self.operator.get_output(0)) + + def export(self, export_folder:Path, list_configs:list): + assert(len(self.node.output(0)) == 1) + + include_path = f"parameters/{self.tensor_name}.hpp" + filepath = export_folder / f"include/{include_path}" + + aidge_tensor = self.operator.get_output(0) + aidge_type = aidge_tensor.dtype() + if aidge_type in datatype_converter: + datatype = datatype_converter[aidge_type] + else: + raise RuntimeError(f"No conversion found for data type {aidge_type}.") + generate_file( + filepath, + ROOT_EXPORT / "templates/parameter.jinja", + dims = aidge_tensor.dims(), + data_t = datatype, # TODO : get data from producer + name = self.tensor_name, + values = str(aidge_tensor) + ) + list_configs.append(include_path) + return list_configs + + def forward(self, list_actions:list): + list_actions.append(generate_str( + ROOT_EXPORT / "templates/graph_ctor/producer.jinja", + name=self.name, + tensor_name=self.tensor_name, + **self.attributes + )) + return list_actions diff --git a/aidge_core/aidge_export_aidge/operator_export/relu.py b/aidge_core/aidge_export_aidge/operator_export/relu.py new file mode 100644 index 0000000000000000000000000000000000000000..c0f4f6afdc35737a8967f51c1859bda0c9773f88 --- /dev/null +++ b/aidge_core/aidge_export_aidge/operator_export/relu.py @@ -0,0 +1,21 @@ +from aidge_core.aidge_export_aidge.utils import operator_register, parse_node_input +from aidge_core import ExportNode, generate_str +from aidge_core.aidge_export_aidge import ROOT_EXPORT +from pathlib import Path + +@operator_register("ReLU") +class ReLU(ExportNode): + def __init__(self, node): + super().__init__(node) + + def export(self, export_folder:Path, list_configs:list): + return list_configs + + def forward(self, list_actions:list): + list_actions.append(generate_str( + ROOT_EXPORT / "templates/graph_ctor/relu.jinja", + name=self.name, + inputs=parse_node_input(self.node.inputs()), + **self.attributes + )) + return list_actions diff --git a/aidge_core/aidge_export_aidge/operator_export/sub.py b/aidge_core/aidge_export_aidge/operator_export/sub.py new file mode 100644 index 0000000000000000000000000000000000000000..efcdd0924fbcf6944b0fb95a967e1a3e16ccc3c5 --- /dev/null +++ b/aidge_core/aidge_export_aidge/operator_export/sub.py @@ -0,0 +1,21 @@ +from aidge_core.aidge_export_aidge.utils import operator_register, parse_node_input +from aidge_core import ExportNode, generate_str +from aidge_core.aidge_export_aidge import ROOT_EXPORT +from pathlib import Path + +@operator_register("Sub") +class Sub(ExportNode): + def __init__(self, node): + super().__init__(node) + + def export(self, export_folder:Path, list_configs:list): + return list_configs + + def forward(self, list_actions:list): + list_actions.append(generate_str( + ROOT_EXPORT / "templates/graph_ctor/sub.jinja", + name=self.name, + inputs=parse_node_input(self.node.inputs()), + **self.attributes + )) + return list_actions diff --git a/aidge_core/aidge_export_aidge/static/CMakeLists.txt b/aidge_core/aidge_export_aidge/static/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..c52e09e82699b1f2c0f8e10ed9f4ab83fbb0f10f --- /dev/null +++ b/aidge_core/aidge_export_aidge/static/CMakeLists.txt @@ -0,0 +1,148 @@ +cmake_minimum_required(VERSION 3.15) + + +file(STRINGS "${CMAKE_SOURCE_DIR}/version.txt" version) +file(STRINGS "${CMAKE_SOURCE_DIR}/project_name.txt" project) + +message(STATUS "Project name: ${project}") +message(STATUS "Project version: ${version}") + +# Note : project name is {project} and python module name is also {project} +set(module_name _${project}) # target name + +project(${project}) +set(CXX_STANDARD 14) + +############################################## +# Define options +option(PYBIND "python binding" ON) +option(WERROR "Warning as error" OFF) +option(TEST "Enable tests" ON) +option(COVERAGE "Enable coverage" OFF) +option(ENABLE_ASAN "Enable ASan (AddressSanitizer) for runtime analysis of memory use (over/underflow, memory leak, ...)" OFF) + +############################################## +# Import utils CMakeLists +set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_SOURCE_DIR}/cmake") +include(PybindModuleCreation) + +if(CMAKE_COMPILER_IS_GNUCXX AND COVERAGE) + Include(CodeCoverage) +endif() + +############################################## +# Find system dependencies +find_package(aidge_core REQUIRED) +# Example of adding dependency to backend CPU +# find_package(aidge_backend_cpu REQUIRED) + +############################################## +# Create target and set properties +file(GLOB_RECURSE src_files "src/*.cpp") +file(GLOB_RECURSE inc_files "include/*.hpp") + +add_library(${module_name} ${src_files} ${inc_files}) +target_link_libraries(${module_name} + PUBLIC + _aidge_core # _ is added because we link the target not the project + # _aidge_backend_cpu # Example of adding dependency to backend CPUs +) + +#Set target properties +set_property(TARGET ${module_name} PROPERTY POSITION_INDEPENDENT_CODE ON) + +if( ${ENABLE_ASAN} ) + message("Building ${module_name} with ASAN.") + set(SANITIZE_FLAGS -fsanitize=address -fno-omit-frame-pointer) + target_link_libraries(${module_name} + PUBLIC + -fsanitize=address + ) + target_compile_options(${module_name} + PRIVATE + ${SANITIZE_FLAGS} + ) +endif() + +target_include_directories(${module_name} + PUBLIC + $<INSTALL_INTERFACE:include> + $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include> + PRIVATE + ${CMAKE_CURRENT_SOURCE_DIR}/src +) + +# PYTHON BINDING +if (PYBIND) + generate_python_binding(${project} ${module_name}) + + # Handles Python + pybind11 headers dependencies + target_link_libraries(${module_name} + PUBLIC + pybind11::pybind11 + ) +endif() + +target_compile_features(${module_name} PRIVATE cxx_std_14) + +target_compile_options(${module_name} PRIVATE + $<$<OR:$<CXX_COMPILER_ID:Clang>,$<CXX_COMPILER_ID:AppleClang>,$<CXX_COMPILER_ID:GNU>>: + -Wall -Wextra -Wold-style-cast -Winline -pedantic -Werror=narrowing -Wshadow $<$<BOOL:${WERROR}>:-Werror>>) +target_compile_options(${module_name} PRIVATE + $<$<CXX_COMPILER_ID:MSVC>: + /W4>) + +if(CMAKE_COMPILER_IS_GNUCXX AND COVERAGE) + append_coverage_compiler_flags() +endif() + +############################################## +# Installation instructions + +include(GNUInstallDirs) +set(INSTALL_CONFIGDIR ${CMAKE_INSTALL_LIBDIR}/cmake/${project}) + +install(TARGETS ${module_name} EXPORT ${project}-targets + LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR} + ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR} + RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR} +) + +install(DIRECTORY include/ DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}) + +#Export the targets to a script + +install(EXPORT ${project}-targets + FILE "${project}-targets.cmake" + DESTINATION ${INSTALL_CONFIGDIR} + COMPONENT ${module_name} +) + +#Create a ConfigVersion.cmake file +include(CMakePackageConfigHelpers) +write_basic_package_version_file( + "${CMAKE_CURRENT_BINARY_DIR}/${project}-config-version.cmake" + VERSION ${version} + COMPATIBILITY AnyNewerVersion +) + +configure_package_config_file("${project}-config.cmake.in" + "${CMAKE_CURRENT_BINARY_DIR}/${project}-config.cmake" + INSTALL_DESTINATION ${INSTALL_CONFIGDIR} +) + +#Install the config, configversion and custom find modules +install(FILES + "${CMAKE_CURRENT_BINARY_DIR}/${project}-config.cmake" + "${CMAKE_CURRENT_BINARY_DIR}/${project}-config-version.cmake" + DESTINATION ${INSTALL_CONFIGDIR} +) + +############################################## +## Exporting from the build tree +export(EXPORT ${project}-targets + FILE "${CMAKE_CURRENT_BINARY_DIR}/${project}-targets.cmake") + +# Compile executable +add_executable(main main.cpp) +target_link_libraries(main PUBLIC _aidge_core ${module_name}) diff --git a/aidge_core/aidge_export_aidge/static/README.md b/aidge_core/aidge_export_aidge/static/README.md new file mode 100644 index 0000000000000000000000000000000000000000..1ce48d5274cbc2f007bde7c7be01e41e617cb19a --- /dev/null +++ b/aidge_core/aidge_export_aidge/static/README.md @@ -0,0 +1,5 @@ +To compile: + +> mkdir build && cd build +> cmake -DCMAKE_INSTALL_PREFIX:PATH=/data1/is156025/cm264821/anaconda3/envs/aidge_demo/lib/libAidge .. +> make all install diff --git a/aidge_core/aidge_export_aidge/static/cmake/PybindModuleCreation.cmake b/aidge_core/aidge_export_aidge/static/cmake/PybindModuleCreation.cmake new file mode 100644 index 0000000000000000000000000000000000000000..87e70fc38c9e4ec4ddb44cbe5d7fb2a31c2e94d6 --- /dev/null +++ b/aidge_core/aidge_export_aidge/static/cmake/PybindModuleCreation.cmake @@ -0,0 +1,21 @@ +function(generate_python_binding name target_to_bind) + add_definitions(-DPYBIND) + Include(FetchContent) + + FetchContent_Declare( + PyBind11 + GIT_REPOSITORY https://github.com/pybind/pybind11.git + GIT_TAG v2.10.4 # or a later release + ) + + # Use the New FindPython mode, recommanded. Requires CMake 3.15+ + find_package(Python COMPONENTS Interpreter Development) + FetchContent_MakeAvailable(PyBind11) + + message(STATUS "Creating binding for module ${name}") + file(GLOB_RECURSE pybind_src_files "python_binding/*.cpp") + + pybind11_add_module(${name} MODULE ${pybind_src_files} "NO_EXTRAS") # NO EXTRA recquired for pip install + target_include_directories(${name} PUBLIC "python_binding") + target_link_libraries(${name} PUBLIC ${target_to_bind}) +endfunction() diff --git a/aidge_core/aidge_export_aidge/static/export-config.cmake.in b/aidge_core/aidge_export_aidge/static/export-config.cmake.in new file mode 100644 index 0000000000000000000000000000000000000000..f3604be11c27d86caf1ad8a48b333b9bd8f30625 --- /dev/null +++ b/aidge_core/aidge_export_aidge/static/export-config.cmake.in @@ -0,0 +1,3 @@ +include(${CMAKE_CURRENT_LIST_DIR}/aidge_backend_cpu-config-version.cmake) + +include(${CMAKE_CURRENT_LIST_DIR}/aidge_backend_cpu-targets.cmake) diff --git a/aidge_core/aidge_export_aidge/static/include/dnn.hpp b/aidge_core/aidge_export_aidge/static/include/dnn.hpp new file mode 100644 index 0000000000000000000000000000000000000000..3a4d5c02eceee1054c93b8ad635a71d3d04ac2fc --- /dev/null +++ b/aidge_core/aidge_export_aidge/static/include/dnn.hpp @@ -0,0 +1,17 @@ +#ifndef DNN_HPP +#define DNN_HPP +#include <aidge/graph/GraphView.hpp> +/** + * @brief This file contains all of what is related to the construction of the + * neural network + * + */ + +/** + * @brief This function generate the exported Aidge::GraphView. + * + * @return std::shared_ptr<Aidge::GraphView> + */ +std::shared_ptr<Aidge::GraphView> generateModel(); + +#endif /* DNN_HPP */ diff --git a/aidge_core/aidge_export_aidge/static/main.cpp b/aidge_core/aidge_export_aidge/static/main.cpp new file mode 100644 index 0000000000000000000000000000000000000000..ab8bac1851b6d2dae4bf97bd3af10e19e0b71c1e --- /dev/null +++ b/aidge_core/aidge_export_aidge/static/main.cpp @@ -0,0 +1,16 @@ +#include <iostream> +#include <aidge/backend/cpu.hpp> + +#include "include/dnn.hpp" + +int main() +{ + + std::cout << "BEGIN" << std::endl; + + std::shared_ptr<Aidge::GraphView> graph = generateModel(); + + std::cout << "END" << std::endl; + + return 0; +} diff --git a/aidge_core/aidge_export_aidge/static/project_name.txt b/aidge_core/aidge_export_aidge/static/project_name.txt new file mode 100644 index 0000000000000000000000000000000000000000..d5637593fe045bb602bd181bf0f242f0943fb9fd --- /dev/null +++ b/aidge_core/aidge_export_aidge/static/project_name.txt @@ -0,0 +1 @@ +export diff --git a/aidge_core/aidge_export_aidge/static/python_binding/pybind.cpp b/aidge_core/aidge_export_aidge/static/python_binding/pybind.cpp new file mode 100644 index 0000000000000000000000000000000000000000..072fc4cd6012996a4fcda1d18b8244209c69797a --- /dev/null +++ b/aidge_core/aidge_export_aidge/static/python_binding/pybind.cpp @@ -0,0 +1,14 @@ +#include <pybind11/pybind11.h> + +#include "dnn.hpp" + +namespace py = pybind11; + + +void init_export(py::module& m){ + m.def("generate_model", generateModel); +} + +PYBIND11_MODULE(export, m) { + init_export(m); +} diff --git a/aidge_core/aidge_export_aidge/static/version.txt b/aidge_core/aidge_export_aidge/static/version.txt new file mode 100644 index 0000000000000000000000000000000000000000..77d6f4ca23711533e724789a0a0045eab28c5ea6 --- /dev/null +++ b/aidge_core/aidge_export_aidge/static/version.txt @@ -0,0 +1 @@ +0.0.0 diff --git a/aidge_core/aidge_export_aidge/templates/attributes/conv.jinja b/aidge_core/aidge_export_aidge/templates/attributes/conv.jinja new file mode 100644 index 0000000000000000000000000000000000000000..48d07e8db8d5fb116148e9d41100fffa01fcf622 --- /dev/null +++ b/aidge_core/aidge_export_aidge/templates/attributes/conv.jinja @@ -0,0 +1,17 @@ +#ifndef EXPORT_ATTRIBUTES_{{name|upper}}_H +#define EXPORT_ATTRIBUTES_{{name|upper}}_H + +#define _{{name|upper}}_IN_CHANNELS {{InChannels}} +#define _{{name|upper}}_OUT_CHANNELS {{OutChannels}} + +{% for i in range(KernelDims|length) %} +#define _{{name|upper}}_KERNEL_{{i}} {{KernelDims[i]}} +{%- endfor %} +{% for i in range(StrideDims|length) %} +#define _{{name|upper}}_STRIDE_{{i}} {{StrideDims[i]}} +{%- endfor %} +{% for i in range(DilationDims|length) %} +#define _{{name|upper}}_DILATION_{{i}} {{DilationDims[i]}} +{%- endfor %} + +#endif /* EXPORT_ATTRIBUTES_{{name|upper}}_H */ diff --git a/aidge_core/aidge_export_aidge/templates/attributes/fc.jinja b/aidge_core/aidge_export_aidge/templates/attributes/fc.jinja new file mode 100644 index 0000000000000000000000000000000000000000..e292f9b611978877c47b15e91f926f30d27a1cc5 --- /dev/null +++ b/aidge_core/aidge_export_aidge/templates/attributes/fc.jinja @@ -0,0 +1,7 @@ +#ifndef EXPORT_ATTRIBUTES_{{name|upper}}_H +#define EXPORT_ATTRIBUTES_{{name|upper}}_H + +#define _{{name|upper}}_IN_CHANNELS {{InChannels}} +#define _{{name|upper}}_OUT_CHANNELS {{OutChannels}} + +#endif /* EXPORT_ATTRIBUTES_{{name|upper}}_H */ diff --git a/aidge_core/aidge_export_aidge/templates/attributes/maxpooling.jinja b/aidge_core/aidge_export_aidge/templates/attributes/maxpooling.jinja new file mode 100644 index 0000000000000000000000000000000000000000..d258f580e6ff9c523a87b834fdccf2f3b14fb133 --- /dev/null +++ b/aidge_core/aidge_export_aidge/templates/attributes/maxpooling.jinja @@ -0,0 +1,13 @@ +#ifndef EXPORT_ATTRIBUTES_{{name|upper}}_H +#define EXPORT_ATTRIBUTES_{{name|upper}}_H + +{% for i in range(KernelDims|length) %} +#define _{{name|upper}}_KERNEL_{{i}} {{KernelDims[i]}} +{%- endfor %} +{% for i in range(StrideDims|length) %} +#define _{{name|upper}}_STRIDE_{{i}} {{StrideDims[i]}} +{%- endfor %} + +#define _{{name|upper}}_CEIL_MODE {{CeilMode|int}} + +#endif /* EXPORT_ATTRIBUTES_{{name|upper}}_H */ diff --git a/aidge_core/aidge_export_aidge/templates/dnn.jinja b/aidge_core/aidge_export_aidge/templates/dnn.jinja new file mode 100644 index 0000000000000000000000000000000000000000..5da46b2d8a439a359dfb1c7ec8ebc18e8d516767 --- /dev/null +++ b/aidge_core/aidge_export_aidge/templates/dnn.jinja @@ -0,0 +1,36 @@ +/******************************************************************************** + * This file has been generated by the Aidge export. + ********************************************************************************/ + +/*** STD INCLUDES ***/ +#include <memory> // std::shared_ptr + +/*** AIDGE INCLUDES ***/ +#include <aidge/graph/GraphView.hpp> // Aidge::GraphView +#include <aidge/graph/Node.hpp> // Aidge::Node +#include <aidge/graph/OpArgs.hpp> // Aidge::Sequential + +/*** AIDGE OPERATORS ***/ +{%- for operator in operators %} +#include <aidge/operator/{{operator}}.hpp> +{%- endfor %} + +/*** OPERATOR ATTRIBUTES & PARAMETERS ***/ +{%- for header in headers %} +#include "{{ header }}" +{%- endfor %} + +/*** HEADER ***/ +#include "dnn.hpp" + + +std::shared_ptr<Aidge::GraphView> generateModel() { + /*** BUILDING GRAPH ***/ + std::shared_ptr<Aidge::GraphView> graph = std::make_shared<Aidge::GraphView>(); + + {%- for action in actions %} + {{ action }} + {%- endfor %} + + return graph; +} diff --git a/aidge_core/aidge_export_aidge/templates/graph_ctor/_set_input.jinja b/aidge_core/aidge_export_aidge/templates/graph_ctor/_set_input.jinja new file mode 100644 index 0000000000000000000000000000000000000000..8e841ea2a10c71b884736dcbd7cfd03b52c5ad4f --- /dev/null +++ b/aidge_core/aidge_export_aidge/templates/graph_ctor/_set_input.jinja @@ -0,0 +1,7 @@ +{# NOTE: Trying a shorter notation like {%- for input in inputs if input[0] %} +will mess up loop.index as the input set up at None will not increment ! #} +{%- for input in inputs %} +{%- if input[0] %} +{{input[0]}}->addChild({{name}}, {{input[1]}}, {{loop.index - 1}}); {# NOTE: loop.index begin at 1 #} +{%- endif %} +{%- endfor %} diff --git a/aidge_core/aidge_export_aidge/templates/graph_ctor/conv.jinja b/aidge_core/aidge_export_aidge/templates/graph_ctor/conv.jinja new file mode 100644 index 0000000000000000000000000000000000000000..a805f8065e87244bf0546ca42d294b86f144a26d --- /dev/null +++ b/aidge_core/aidge_export_aidge/templates/graph_ctor/conv.jinja @@ -0,0 +1,26 @@ +{% filter indent(width=4, first=False) %} +/*** {{name|upper}} ***/ +std::shared_ptr<Aidge::Node> {{name}} = + Aidge::Conv( + _{{name|upper}}_IN_CHANNELS, + _{{name|upper}}_OUT_CHANNELS, + { + {%- for i in range(KernelDims|length) -%} + _{{name|upper}}_KERNEL_{{i}}{%- if not loop.last %}, {% endif -%} + {%- endfor -%} + }, + "{{name}}", + { + {%- for i in range(StrideDims|length) -%} + _{{name|upper}}_STRIDE_{{i}} {%- if not loop.last %}, {% endif -%} + {%- endfor -%} + }, + { + {%- for i in range(DilationDims|length) -%} + _{{name|upper}}_DILATION_{{i}} {%- if not loop.last %}, {% endif -%} + {%- endfor -%} + } + ); +{% include "./_set_input.jinja" %} +graph->add({{name}}); +{% endfilter %} diff --git a/aidge_core/aidge_export_aidge/templates/graph_ctor/fc.jinja b/aidge_core/aidge_export_aidge/templates/graph_ctor/fc.jinja new file mode 100644 index 0000000000000000000000000000000000000000..df6dbc83492174fc49348b8073deb47a5deca313 --- /dev/null +++ b/aidge_core/aidge_export_aidge/templates/graph_ctor/fc.jinja @@ -0,0 +1,11 @@ +{% filter indent(width=4, first=False) %} +/*** {{name|upper}} ***/ +std::shared_ptr<Aidge::Node> {{name}} = + Aidge::FC( + _{{name|upper}}_IN_CHANNELS, + _{{name|upper}}_OUT_CHANNELS, + "{{name}}" + ); +{% include "./_set_input.jinja" %} +graph->add({{name}}); +{% endfilter %} diff --git a/aidge_core/aidge_export_aidge/templates/graph_ctor/maxpooling.jinja b/aidge_core/aidge_export_aidge/templates/graph_ctor/maxpooling.jinja new file mode 100644 index 0000000000000000000000000000000000000000..c6587c128509712e1a8e903e7484476548e9347d --- /dev/null +++ b/aidge_core/aidge_export_aidge/templates/graph_ctor/maxpooling.jinja @@ -0,0 +1,20 @@ +{% filter indent(width=4, first=False) %} +/*** {{name|upper}} ***/ +std::shared_ptr<Aidge::Node> {{name}} = + Aidge::MaxPooling( + { + {%- for i in range(KernelDims|length) -%} + _{{name|upper}}_KERNEL_{{i}}{%- if not loop.last %}, {% endif -%} + {%- endfor -%} + }, + "{{name}}", + { + {%- for i in range(StrideDims|length) -%} + _{{name|upper}}_STRIDE_{{i}} {%- if not loop.last %}, {% endif -%} + {%- endfor -%} + }, + _{{name|upper}}_CEIL_MODE + ); +{% include "./_set_input.jinja" %} +graph->add({{name}}); +{% endfilter %} diff --git a/aidge_core/aidge_export_aidge/templates/graph_ctor/producer.jinja b/aidge_core/aidge_export_aidge/templates/graph_ctor/producer.jinja new file mode 100644 index 0000000000000000000000000000000000000000..8e0a465a044ebfcc249206f9f5886c7a38fc3252 --- /dev/null +++ b/aidge_core/aidge_export_aidge/templates/graph_ctor/producer.jinja @@ -0,0 +1,9 @@ +{% filter indent(width=4, first=False) %} +/*** {{name|upper}} ***/ +std::shared_ptr<Aidge::Node> {{name}} = + Aidge::Producer( + {{tensor_name}}, + "{{name}}" + ); +graph->add({{name}}); +{% endfilter %} diff --git a/aidge_core/aidge_export_aidge/templates/graph_ctor/relu.jinja b/aidge_core/aidge_export_aidge/templates/graph_ctor/relu.jinja new file mode 100644 index 0000000000000000000000000000000000000000..8fd58a30bddd39647dd3b25b2982e67174220381 --- /dev/null +++ b/aidge_core/aidge_export_aidge/templates/graph_ctor/relu.jinja @@ -0,0 +1,9 @@ +{% filter indent(width=4, first=False) %} +/*** {{name|upper}} ***/ +std::shared_ptr<Aidge::Node> {{name}} = + Aidge::ReLU( + "{{name}}" + ); +{% include "./_set_input.jinja" %} +graph->add({{name}}); +{% endfilter %} diff --git a/aidge_core/aidge_export_aidge/templates/graph_ctor/sub.jinja b/aidge_core/aidge_export_aidge/templates/graph_ctor/sub.jinja new file mode 100644 index 0000000000000000000000000000000000000000..d9417751e4117cb296ec874d946b93c2c64df614 --- /dev/null +++ b/aidge_core/aidge_export_aidge/templates/graph_ctor/sub.jinja @@ -0,0 +1,9 @@ +{% filter indent(width=4, first=False) %} +/*** {{name|upper}} ***/ +std::shared_ptr<Aidge::Node> {{name}} = + Aidge::Sub( + "{{name}}" + ); +{% include "./_set_input.jinja" %} +graph->add({{name}}); +{% endfilter %} diff --git a/aidge_core/aidge_export_aidge/templates/parameter.jinja b/aidge_core/aidge_export_aidge/templates/parameter.jinja new file mode 100644 index 0000000000000000000000000000000000000000..11a407cc89f72f24167871a594decc6d90ab489d --- /dev/null +++ b/aidge_core/aidge_export_aidge/templates/parameter.jinja @@ -0,0 +1,11 @@ +#ifndef EXPORT_PARAMETERS_{{name|upper}}_H +#define EXPORT_PARAMETERS_{{name|upper}}_H + +#include <aidge/data/Tensor.hpp> +#include <memory> + +std::shared_ptr<Aidge::Tensor> {{name}} = std::make_shared<Aidge::Tensor>(Aidge::Array{{dims|length}}D<{{data_t}}, {{ dims|join(", ") }}> { +{{ values }} +}); + +#endif /* EXPORT_PARAMETERS_{{name|upper}}_H */ diff --git a/aidge_core/aidge_export_aidge/templates/pybind.jinja b/aidge_core/aidge_export_aidge/templates/pybind.jinja new file mode 100644 index 0000000000000000000000000000000000000000..9b48cc97f242813cc33b77bfc028e85c08b0cec7 --- /dev/null +++ b/aidge_core/aidge_export_aidge/templates/pybind.jinja @@ -0,0 +1,14 @@ +#include <pybind11/pybind11.h> + +#include "dnn.hpp" + +namespace py = pybind11; + + +void init_{{name}}(py::module& m){ + m.def("generate_model", generateModel); +} + +PYBIND11_MODULE({{name}}, m) { + init_{{name}}(m); +} diff --git a/aidge_core/aidge_export_aidge/utils/__init__.py b/aidge_core/aidge_export_aidge/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..ecdf2aec2692a48e108d5f4ad05ed05803319525 --- /dev/null +++ b/aidge_core/aidge_export_aidge/utils/__init__.py @@ -0,0 +1,11 @@ +from .operator_registry import * + +def parse_node_input(node_inputs: list) -> list: + """Parse node intputs in order to adapt the list for Jinja. + + :param node_inputs: return of node.inputs() + :type node_inputs: list of tuple of aidge_core.Node, output idx. + :return: list of tuple of node name, output idx. + :rtype: list + """ + return [None if parent_node is None else (parent_node.name(), outId) for parent_node, outId in node_inputs] diff --git a/aidge_core/aidge_export_aidge/utils/operator_registry.py b/aidge_core/aidge_export_aidge/utils/operator_registry.py new file mode 100644 index 0000000000000000000000000000000000000000..dd6fbaaceeba9c2125b38354eca9cc116acd29b1 --- /dev/null +++ b/aidge_core/aidge_export_aidge/utils/operator_registry.py @@ -0,0 +1,18 @@ +OPERATORS_REGISTRY = {} + +def operator_register(*args): + + key_list = [arg for arg in args] + + def decorator(operator): + def wrapper(*args, **kwargs): + return operator(*args, **kwargs) + + for key in key_list: + OPERATORS_REGISTRY[key] = operator + + return wrapper + return decorator + +def supported_operators(): + return list(OPERATORS_REGISTRY.keys()) diff --git a/aidge_core/export/code_generation.py b/aidge_core/export/code_generation.py deleted file mode 100644 index b18b5476f8e083bcbe3d4f6c4a57132ebe7b780f..0000000000000000000000000000000000000000 --- a/aidge_core/export/code_generation.py +++ /dev/null @@ -1,47 +0,0 @@ -import os -from jinja2 import Environment, FileSystemLoader - - -def generate_file(file_path: str, template_path: str, **kwargs) -> None: - """Generate a file at `file_path` using the jinja template located at `file_path`. - - kwargs are used to fill the template. - - :param file_path: path where to generate the file - :type file_path: str - :param template_path: Path to the template to use for code generation - :type template_path: str - """ - # Get directory name of the file - dirname = os.path.dirname(file_path) - - # If directory doesn't exist, create it - if not os.path.exists(dirname): - os.makedirs(dirname) - - # Get directory name and name of the template - template_dir = os.path.dirname(template_path) - template_name = os.path.basename(template_path) - - # Select template - template = Environment(loader=FileSystemLoader( - template_dir)).get_template(template_name) - - # Generate file - content = template.render(kwargs) - with open(file_path, mode="w", encoding="utf-8") as message: - message.write(content) - -def generate_str(template_path:str, **kwargs) -> str: - """Generate a string using the jinja template located at `file_path`. - kwargs are used to fill the template. - - :param template_path: Path to the template to use for code generation - :type template_path: str - :return: A string of the interpreted template - :rtype: str - """ - dirname = os.path.dirname(template_path) - filename = os.path.basename(template_path) - template = Environment(loader=FileSystemLoader(dirname)).get_template(filename) - return template.render(kwargs) diff --git a/aidge_core/export/__init__.py b/aidge_core/export_utils/__init__.py similarity index 100% rename from aidge_core/export/__init__.py rename to aidge_core/export_utils/__init__.py diff --git a/aidge_core/export_utils/code_generation.py b/aidge_core/export_utils/code_generation.py new file mode 100644 index 0000000000000000000000000000000000000000..a02fc0966702cec7a2cbe33f8411bb71e3035e90 --- /dev/null +++ b/aidge_core/export_utils/code_generation.py @@ -0,0 +1,46 @@ +from pathlib import Path +from jinja2 import Environment, FileSystemLoader +from typing import Union + + +def generate_file(file_path: Union[Path, str], template_path: Union[Path, str], **kwargs) -> None: + """Generate a file at `file_path` using the jinja template located at `file_path`. + + kwargs are used to fill the template. + + :param file_path: path where to generate the file + :type file_path: pathlib.Path or str + :param template_path: Path to the template to use for code generation + :type template_path: pathlib.Path or str + """ + # Convert str -> Path for compatibility ! + if isinstance(file_path, str): + file_path = Path(file_path) + if isinstance(template_path, str): + template_path = Path(template_path) + # Make dir + file_path.parent.mkdir(parents=True, exist_ok=True) + + # Select template + template = Environment(loader=FileSystemLoader( + template_path.parent)).get_template(template_path.name) + + # Generate file + with open(file_path, mode="w", encoding="utf-8") as file: + file.write(template.render(kwargs)) + + +def generate_str(template_path: Union[Path, str], **kwargs) -> str: + """Generate a string using the jinja template located at `file_path`. + kwargs are used to fill the template. + + :param template_path: Path to the template to use for code generation + :type template_path: pathlib.Path or str + :return: A string of the interpreted template + :rtype: str + """ + # Convert str -> Path for compatibility ! + if isinstance(template_path, str): + template_path = Path(template_path) + return Environment(loader=FileSystemLoader( + template_path.parent)).get_template(template_path.name).render(kwargs) diff --git a/aidge_core/export/node_export.py b/aidge_core/export_utils/node_export.py similarity index 87% rename from aidge_core/export/node_export.py rename to aidge_core/export_utils/node_export.py index b009aa46e6660d3af063b0314ca2a393388e2635..7aceaa0ccc1f07674241d6f35bbeff90330f2596 100644 --- a/aidge_core/export/node_export.py +++ b/aidge_core/export_utils/node_export.py @@ -20,10 +20,7 @@ class ExportNode(ABC): self.node = aidge_node self.operator = aidge_node.get_operator() self.name = self.node.name() - self.attributes = {} # Attributes are auto fetched from aidge operators - if isinstance(self.operator, Attributes): - for attr_name in self.operator.get_attrs_name(): - self.attributes[attr_name] = self.operator.get_attr(attr_name) + self.attributes = self.operator.attr.dict() if self.operator.attr is not None else {} # Attributes are auto fetched from aidge operators # rename is_leaf ? self.is_last = len(self.node.get_children()) == 0 diff --git a/aidge_core/unit_tests/static/main.cpp b/aidge_core/unit_tests/static/main.cpp new file mode 100644 index 0000000000000000000000000000000000000000..06171e2a036a18b0dea3dca40de34c296d99222d --- /dev/null +++ b/aidge_core/unit_tests/static/main.cpp @@ -0,0 +1,19 @@ +/* +Example main.cpp used to test aidge export. +This file is copied in the test export. +*/ +#include <iostream> + +#include "include/dnn.hpp" + +int main() +{ + + std::cout << "BEGIN" << std::endl; + + std::shared_ptr<Aidge::GraphView> graph = generateModel(); + + std::cout << "END" << std::endl; + + return 0; +} diff --git a/aidge_core/unit_tests/test_export.py b/aidge_core/unit_tests/test_export.py new file mode 100644 index 0000000000000000000000000000000000000000..3061d7940603b8eeca2c07368bc1bbd6756fa1f3 --- /dev/null +++ b/aidge_core/unit_tests/test_export.py @@ -0,0 +1,83 @@ +""" +Copyright (c) 2023 CEA-List + +This program and the accompanying materials are made available under the +terms of the Eclipse Public License 2.0 which is available at +http://www.eclipse.org/legal/epl-2.0. + +SPDX-License-Identifier: EPL-2.0 +""" + +import unittest +import aidge_core +from functools import reduce +import pathlib +import os +import sys +import subprocess +import shutil +import numpy as np + +def initFiller(model): + # Initialize parameters (weights and biases) + for node in model.get_nodes(): + if node.type() == "Producer": + prod_op = node.get_operator() + value = prod_op.get_output(0) + value.set_backend("cpu") + tuple_out = node.output(0)[0] + # No conv in current network + if tuple_out[0].type() == "Conv" and tuple_out[1]==1: + # Conv weight + aidge_core.xavier_uniform_filler(value) + elif tuple_out[0].type() == "Conv" and tuple_out[1]==2: + # Conv bias + aidge_core.constant_filler(value, 0.01) + elif tuple_out[0].type() == "FC" and tuple_out[1]==1: + # FC weight + aidge_core.normal_filler(value) + elif tuple_out[0].type() == "FC" and tuple_out[1]==2: + # FC bias + aidge_core.constant_filler(value, 0.01) + else: + pass + + +class test_export(unittest.TestCase): + """Test aidge export + """ + def setUp(self): + self.EXPORT_PATH = pathlib.Path("myexport") + def tearDown(self): + pass + + def test_generate_export(self): + # Create model + + model = aidge_core.sequential([ + aidge_core.FC(in_channels=32*32*3, out_channels=512, name="InputNode"), + aidge_core.ReLU(name="Relu0"), + aidge_core.FC(in_channels=512, out_channels=256, name="FC1"), + aidge_core.ReLU(name="Relu1"), + aidge_core.FC(in_channels=256, out_channels=128, name="FC2"), + aidge_core.ReLU(name="Relu2"), + aidge_core.FC(in_channels=128, out_channels=10, name="OutputNode"), + ]) + + initFiller(model) + + # Export model + aidge_core.export(self.EXPORT_PATH, model) + self.assertTrue(self.EXPORT_PATH.is_dir(), "Export folder has not been generated") + os.makedirs(self.EXPORT_PATH / "build", exist_ok=True) + + # Test compilation of export + install_path = os.path.join(sys.prefix, "lib", "libAidge") if "AIDGE_INSTALL" not in os.environ else os.environ["AIDGE_INSTALL"] + + shutil.copyfile(pathlib.Path(__file__).parent / "static/main.cpp", self.EXPORT_PATH / "main.cpp") + + subprocess.check_call(['cmake', str(self.EXPORT_PATH.absolute()), f'-DCMAKE_INSTALL_PREFIX:PATH={install_path}'], cwd=str(self.EXPORT_PATH / "build")) + subprocess.check_call(['make', 'all', 'install'], cwd=str(self.EXPORT_PATH / "build")) + +if __name__ == '__main__': + unittest.main() diff --git a/aidge_core/unit_tests/test_impl.py b/aidge_core/unit_tests/test_impl.py index 6e0c1f9b9a0828e266ef3bf19ee75df3e275b282..26d60f2fbaf0f3903baf191cf0a2ad5550fb3275 100644 --- a/aidge_core/unit_tests/test_impl.py +++ b/aidge_core/unit_tests/test_impl.py @@ -41,6 +41,7 @@ class test_OperatorImpl(unittest.TestCase): generic_matmul_op = matmul.get_operator() generic_matmul_op.set_forward_dims(lambda x: x) generic_matmul_op.set_impl(testImpl(generic_matmul_op)) + generic_matmul_op.set_input(0, aidge_core.Tensor(np.arange(18).reshape(1,2,3,3))) generic_matmul_op.forward() self.assertEqual(GLOBAL_CPT, 1) diff --git a/aidge_core/unit_tests/test_operator_binding.py b/aidge_core/unit_tests/test_operator_binding.py index 164aee726255e0478b629ee853d9a1f619945f3a..5b25eb7975d439816dbf91cc95b462f217fd0227 100644 --- a/aidge_core/unit_tests/test_operator_binding.py +++ b/aidge_core/unit_tests/test_operator_binding.py @@ -30,42 +30,39 @@ class test_operator_binding(unittest.TestCase): self.assertNotEqual(gop.name(), "") def test_param_bool(self): - self.generic_operator.add_attr("bool", True) - self.assertEqual(self.generic_operator.has_attr("bool"), True) - self.assertEqual(self.generic_operator.get_attr("bool"), True) - self.assertEqual(self.generic_operator.get_attr_type("bool"), "bool") - self.assertEqual(self.generic_operator.get_attrs_name(), {"bool"}) - self.generic_operator.del_attr("bool") - self.assertEqual(self.generic_operator.has_attr("bool"), False) - self.assertEqual(len(self.generic_operator.get_attrs_name()), 0) + self.generic_operator.attr.add_attr("bool", True) + self.assertEqual(self.generic_operator.attr.has_attr("bool"), True) + self.assertEqual(self.generic_operator.attr.get_attr("bool"), True) + self.generic_operator.attr.del_attr("bool") + self.assertEqual(self.generic_operator.attr.has_attr("bool"), False) def test_param_int(self): - self.generic_operator.add_attr("int", 1) - self.assertEqual(self.generic_operator.get_attr("int"), 1) + self.generic_operator.attr.add_attr("int", 1) + self.assertEqual(self.generic_operator.attr.get_attr("int"), 1) def test_param_float(self): - self.generic_operator.add_attr("float", 2.0) - self.assertEqual(self.generic_operator.get_attr("float"), 2.0) + self.generic_operator.attr.add_attr("float", 2.0) + self.assertEqual(self.generic_operator.attr.get_attr("float"), 2.0) def test_param_str(self): - self.generic_operator.add_attr("str", "value") - self.assertEqual(self.generic_operator.get_attr("str"), "value") + self.generic_operator.attr.add_attr("str", "value") + self.assertEqual(self.generic_operator.attr.get_attr("str"), "value") def test_param_l_int(self): - self.generic_operator.add_attr("l_int", [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]) - self.assertEqual(self.generic_operator.get_attr("l_int"), [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]) + self.generic_operator.attr.add_attr("l_int", [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]) + self.assertEqual(self.generic_operator.attr.get_attr("l_int"), [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]) def test_param_l_bool(self): - self.generic_operator.add_attr("l_bool", [True, False, False, True]) - self.assertEqual(self.generic_operator.get_attr("l_bool"), [True, False, False, True]) + self.generic_operator.attr.add_attr("l_bool", [True, False, False, True]) + self.assertEqual(self.generic_operator.attr.get_attr("l_bool"), [True, False, False, True]) def test_param_l_float(self): - self.generic_operator.add_attr("l_float", [2.0, 1.0]) - self.assertEqual(self.generic_operator.get_attr("l_float"), [2.0, 1.0]) + self.generic_operator.attr.add_attr("l_float", [2.0, 1.0]) + self.assertEqual(self.generic_operator.attr.get_attr("l_float"), [2.0, 1.0]) def test_param_l_str(self): - self.generic_operator.add_attr("l_str", ["ok"]) - self.assertEqual(self.generic_operator.get_attr("l_str"), ["ok"]) + self.generic_operator.attr.add_attr("l_str", ["ok"]) + self.assertEqual(self.generic_operator.attr.get_attr("l_str"), ["ok"]) def test_dynamicattribute_binding(self): # Check original C++ attributes are binded @@ -76,20 +73,20 @@ class test_operator_binding(unittest.TestCase): self.assertEqual(attrs.get_attr("b"), "test") self.assertEqual(attrs.has_attr("c"), True) self.assertEqual(attrs.get_attr("c"), [True, False, True]) - self.assertEqual(attrs.get_attrs_name(), {"a", "b", "c"}) + self.assertEqual(attrs.dict().keys(), {"a", "b", "c"}) self.assertEqual(attrs.has_attr("d"), False) # Add Python attributes attrs.add_attr("d", 18.56) self.assertEqual(attrs.get_attr("d"), 18.56) self.assertEqual(attrs.has_attr("d"), True) - self.assertEqual(attrs.get_attrs_name(), {"a", "b", "c", "d"}) + self.assertEqual(attrs.dict().keys(), {"a", "b", "c", "d"}) self.assertEqual(attrs.has_attr("e"), False) # Check that added Python attribute is accessible in C++ # Return the value of an attribute named "d" of type float64 (double in C++) self.assertEqual(aidge_core.test_DynamicAttributes_binding_check(attrs), 18.56) - attrs.set_attr("d", 23.89) + attrs.d = 23.89 self.assertEqual(aidge_core.test_DynamicAttributes_binding_check(attrs), 23.89) def test_forward_dims(self): @@ -129,18 +126,18 @@ class test_operator_binding(unittest.TestCase): myVar = 2 myBool = True # Test dynamic attribute set - gop = aidge_core.GenericOperator("test", 1, 0, 1, "FictiveName", myVar=myVar).get_operator() - gop.myBool = myBool + gop = aidge_core.GenericOperator("test", 1, 0, 1, "FictiveName", my_var=myVar).get_operator() + gop.attr.my_bool = myBool # Test variable set by kwargs - self.assertEqual(gop.myVar, myVar) + self.assertEqual(gop.attr.my_var, myVar) # Test set attr - self.assertEqual(gop.myBool, myBool) + self.assertEqual(gop.attr.my_bool, myBool) # Test static attribute set ! prod = aidge_core.Producer([1]).get_operator() - self.assertEqual(prod.Constant, False) - prod.Constant = True # By default Constant is False - self.assertEqual(prod.Constant, True) + self.assertEqual(prod.attr.constant, False) + prod.attr.constant = True # By default Constant is False + self.assertEqual(prod.attr.constant, True) diff --git a/aidge_core/unit_tests/test_parameters.py b/aidge_core/unit_tests/test_parameters.py index e4d2cb4faca3dda64cff6aea541c30787c23d0ad..7c3bc0f6f68506c02af1723b263455a9c72b1f3a 100644 --- a/aidge_core/unit_tests/test_parameters.py +++ b/aidge_core/unit_tests/test_parameters.py @@ -27,17 +27,15 @@ class test_attributes(unittest.TestCase): out_channels = 8 k_dims = [2, 2] conv_op = aidge_core.Conv2D(in_channels , out_channels, k_dims).get_operator() - self.assertEqual(conv_op.get_attr("InChannels"), in_channels) - self.assertEqual(conv_op.get_attr("OutChannels"), out_channels) - self.assertEqual(conv_op.get_attr("KernelDims"), k_dims) + self.assertEqual(conv_op.in_channels(), in_channels) + self.assertEqual(conv_op.out_channels(), out_channels) + self.assertEqual(conv_op.attr.get_attr("kernel_dims"), k_dims) def test_fc(self): in_channels = 4 out_channels = 8 - nb_bias = True - fc_op = aidge_core.FC(in_channels, out_channels, nb_bias).get_operator() - self.assertEqual(fc_op.get_attr("OutChannels"), out_channels) - self.assertEqual(fc_op.get_attr("NoBias"), nb_bias) + fc_op = aidge_core.FC(in_channels, out_channels).get_operator() + self.assertEqual(fc_op.out_channels(), out_channels) def test_producer_1D(self): dims = [5] @@ -67,7 +65,7 @@ class test_attributes(unittest.TestCase): def test_leaky_relu(self): negative_slope = 0.25 leakyrelu_op = aidge_core.LeakyReLU(negative_slope).get_operator() - self.assertEqual(leakyrelu_op.get_attr("NegativeSlope"), negative_slope) + self.assertEqual(leakyrelu_op.attr.get_attr("negative_slope"), negative_slope) if __name__ == '__main__': unittest.main() diff --git a/aidge_core/unit_tests/test_recipes.py b/aidge_core/unit_tests/test_recipes.py index 240bcd9501aa1fd64985fa59c87f01dfdf9343aa..8a0a470221e118fd450be7a7bf1bf6ede2df6178 100644 --- a/aidge_core/unit_tests/test_recipes.py +++ b/aidge_core/unit_tests/test_recipes.py @@ -49,23 +49,19 @@ class test_recipes(unittest.TestCase): add0 = aidge_core.Add(2, name="Add0") matmul1 = aidge_core.MatMul(name="MatMul1") add1 = aidge_core.Add(2, name="Add1") - - graph_view = aidge_core.sequential([matmul0, add0, matmul1, add1]) - w0 = aidge_core.Producer([1, 1], name="W0") - w0.add_child(matmul0, 0, 1) - graph_view.add(w0) - + w0.add_child(matmul0, 0, 0) b0 = aidge_core.Producer([1], name="B0") b0.add_child(add0, 0, 1) - graph_view.add(b0) - w1 = aidge_core.Producer([1, 1], name="W1") - w1.add_child(matmul1, 0, 1) - graph_view.add(w1) - + w1.add_child(matmul1, 0, 0) b1 = aidge_core.Producer([1], name="B1") b1.add_child(add1, 0, 1) + + graph_view = aidge_core.sequential([matmul0, add0, matmul1, add1]) + graph_view.add(w0) + graph_view.add(b0) + graph_view.add(w1) graph_view.add(b1) old_nodes = graph_view.get_nodes() diff --git a/aidge_core/unit_tests/test_tensor.py b/aidge_core/unit_tests/test_tensor.py index d479c98b20534daa804f6019b63d528883c2b568..6348ba8dd1a635ce0299760b6fd31dcef58716cf 100644 --- a/aidge_core/unit_tests/test_tensor.py +++ b/aidge_core/unit_tests/test_tensor.py @@ -42,7 +42,7 @@ class test_tensor(unittest.TestCase): np_array = np.arange(9).reshape(1,1,3,3).astype(np.int32) # Numpy -> Tensor t = aidge_core.Tensor(np_array) - self.assertEqual(t.dtype(), aidge_core.DataType.Int32) + self.assertEqual(t.dtype(), aidge_core.dtype.int32) for i_t, i_n in zip(t, np_array.flatten()): self.assertTrue(i_t == i_n) for i,j in zip(t.dims(), np_array.shape): @@ -62,7 +62,7 @@ class test_tensor(unittest.TestCase): np_array = np.arange(9).reshape(1,1,3,3).astype(np.int64) # Numpy -> Tensor t = aidge_core.Tensor(np_array) - self.assertEqual(t.dtype(), aidge_core.DataType.Int64) + self.assertEqual(t.dtype(), aidge_core.dtype.int64) for i_t, i_n in zip(t, np_array.flatten()): self.assertTrue(i_t == i_n) for i,j in zip(t.dims(), np_array.shape): @@ -73,7 +73,7 @@ class test_tensor(unittest.TestCase): np_array = np.random.rand(1, 1, 3, 3).astype(np.float32) # Numpy -> Tensor t = aidge_core.Tensor(np_array) - self.assertEqual(t.dtype(), aidge_core.DataType.Float32) + self.assertEqual(t.dtype(), aidge_core.dtype.float32) for i_t, i_n in zip(t, np_array.flatten()): self.assertTrue(i_t == i_n) # TODO : May need to change this to a difference for i,j in zip(t.dims(), np_array.shape): diff --git a/include/aidge/aidge.hpp b/include/aidge/aidge.hpp index 931b1b26a04e8886c211d77f8b0147c2140d350a..651a5de69596ee867a97b06ba683f49b05a41303 100644 --- a/include/aidge/aidge.hpp +++ b/include/aidge/aidge.hpp @@ -59,9 +59,12 @@ #include "aidge/operator/ReduceMean.hpp" #include "aidge/operator/ReLU.hpp" #include "aidge/operator/Reshape.hpp" +#include "aidge/operator/Resize.hpp" +#include "aidge/operator/Shape.hpp" #include "aidge/operator/Scaling.hpp" #include "aidge/operator/Slice.hpp" #include "aidge/operator/Softmax.hpp" +#include "aidge/operator/Split.hpp" #include "aidge/operator/Sqrt.hpp" #include "aidge/operator/Sub.hpp" #include "aidge/operator/Transpose.hpp" diff --git a/include/aidge/backend/TensorImpl.hpp b/include/aidge/backend/TensorImpl.hpp index f3fa4ef5164a2eed7caaa7baa7f83e7ed00403b8..57c6c385d5fdcc9f2439983bd04cc8ece0d8d8f5 100644 --- a/include/aidge/backend/TensorImpl.hpp +++ b/include/aidge/backend/TensorImpl.hpp @@ -182,6 +182,17 @@ public: */ inline std::size_t size() const noexcept { return mNbElts; } + /** + * @brief Return the current capacity of the tensor, i.e. the actual memory + * currently being allocated. It can be different from the size: + * - Capacity can be 0 if the tensor memory was not yet initialized (because + * of lazy initialization, memory is allocated only when it needs to be + * accessed the first time). + * - Capacity can be > size if the tensor was downsized but memory was not + * reallocated. + */ + virtual std::size_t capacity() const noexcept = 0; + /** * @brief Return the size (in bytes) of one element (scalar). */ @@ -190,9 +201,7 @@ public: /** * @brief Set every element of the implementation to zero. */ - virtual void zeros() { - AIDGE_THROW_OR_ABORT(std::runtime_error, "Function not implented"); - } + virtual void zeros() = 0; const std::string backend() const { return mBackend; } diff --git a/include/aidge/backend/cpu/data/TensorImpl.hpp b/include/aidge/backend/cpu/data/TensorImpl.hpp index 7cd8c67262221fbf9c1b2415ebf98db56274cce5..ff5a4fc4b8fe728efd517a74d3a9613a97e8809b 100644 --- a/include/aidge/backend/cpu/data/TensorImpl.hpp +++ b/include/aidge/backend/cpu/data/TensorImpl.hpp @@ -43,6 +43,8 @@ public: return std::make_shared<TensorImpl_cpu<T>>(device, dims); } + inline std::size_t capacity() const noexcept override final { return mData.size(); } + inline std::size_t scalarSize() const noexcept override final { return sizeof(T); } void zeros() override final; @@ -51,16 +53,16 @@ public: const T* srcT = static_cast<const T *>(src); T* dstT = static_cast<T *>(rawPtr(offset)); - AIDGE_ASSERT(length <= mData.size() || length <= mNbElts, "copy length is above capacity"); - AIDGE_ASSERT(dstT < srcT || dstT >= srcT + length, "overlapping copy is not supported"); + AIDGE_ASSERT(length <= mData.size() || length <= mNbElts, "TensorImpl_cpu<{}>::copy(): copy length ({}) is above capacity ({})", typeid(T).name(), length, mNbElts); + AIDGE_ASSERT(dstT < srcT || dstT >= srcT + length, "TensorImpl_cpu<{}>::copy(): overlapping copy is not supported", typeid(T).name()); std::copy(srcT, srcT + length, dstT); } void copyCast(const void *src, const DataType srcDt, NbElts_t length, NbElts_t offset = 0) override final; void copyFromDevice(const void *src, const std::pair<std::string, DeviceIdx_t>& device, NbElts_t length, NbElts_t offset = 0) override final { - AIDGE_ASSERT(device.first == Backend, "backend must match"); - AIDGE_ASSERT(device.second == 0, "device cannot be != 0 for CPU backend"); + AIDGE_ASSERT(device.first == Backend, "TensorImpl_cpu<{}>::copyFromDevice(): backend must match", typeid(T).name()); + AIDGE_ASSERT(device.second == 0, "TensorImpl_cpu<{}>::copyFromDevice(): device ({}) cannot be != 0 for CPU backend", typeid(T).name(), device.second); copy(src, length, offset); } @@ -70,7 +72,7 @@ public: void copyToHost(void *dst, NbElts_t length, NbElts_t offset = 0) const override final { const T* src = static_cast<const T*>(rawPtr(offset)); - AIDGE_ASSERT(length <= mData.size() || length <= mNbElts, "copy length is above capacity"); + AIDGE_ASSERT(length <= mData.size() || length <= mNbElts, "TensorImpl_cpu<{}>::copyToHost(): copy length ({}) is above capacity ({})", typeid(T).name(), length, mNbElts); std::copy(src, src + length, static_cast<T *>(dst)); } @@ -80,7 +82,7 @@ public: }; const void *rawPtr(NbElts_t offset = 0) const override final { - AIDGE_ASSERT(mData.size() >= mNbElts, "accessing uninitialized const rawPtr"); + AIDGE_ASSERT(mData.size() >= mNbElts, "TensorImpl_cpu<{}>::rawPtr(): accessing uninitialized const rawPtr", typeid(T).name()); return (mData.data() + offset); }; @@ -90,12 +92,12 @@ public: }; const void *hostPtr(NbElts_t offset = 0) const override final { - AIDGE_ASSERT(mData.size() >= mNbElts, "accessing uninitialized const hostPtr"); + AIDGE_ASSERT(mData.size() >= mNbElts, "TensorImpl_cpu<{}>::hostPtr(): accessing uninitialized const hostPtr", typeid(T).name()); return (mData.data() + offset); }; void setRawPtr(void *ptr, NbElts_t length) override final { - AIDGE_ASSERT(length >= mNbElts, "trying to set raw pointer of insufficient capacity"); + AIDGE_ASSERT(length >= mNbElts, "TensorImpl_cpu<{}>::setRawPtr(): trying to set raw pointer (length: {}) of insufficient capacity (required: {})", typeid(T).name(), length, mNbElts); mData = future_std::span<T>(static_cast<T *>(ptr), length); mDataOwner.reset(); }; @@ -106,7 +108,7 @@ private: void lazyInit() { if (mData.size() < mNbElts) { // Need more data, a re-allocation will occur - AIDGE_ASSERT(mData.empty() || mDataOwner != nullptr, "trying to enlarge non-owned data"); + AIDGE_ASSERT(mData.empty() || mDataOwner != nullptr, "TensorImpl_cpu<{}>: trying to enlarge non-owned data", typeid(T).name()); mDataOwner.reset(new T[mNbElts]); mData = future_std::span<T>(mDataOwner.get(), mNbElts); } @@ -125,9 +127,9 @@ static Registrar<Tensor> registrarTensorImpl_cpu_Float32( static Registrar<Tensor> registrarTensorImpl_cpu_Float16( {"cpu", DataType::Float16}, Aidge::TensorImpl_cpu<half_float::half>::create); static Registrar<Tensor> registrarTensorImpl_cpu_Int64( - {"cpu", DataType::Int64}, Aidge::TensorImpl_cpu<long>::create); + {"cpu", DataType::Int64}, Aidge::TensorImpl_cpu<int64_t>::create); static Registrar<Tensor> registrarTensorImpl_cpu_Int32( - {"cpu", DataType::Int32}, Aidge::TensorImpl_cpu<int>::create); + {"cpu", DataType::Int32}, Aidge::TensorImpl_cpu<int32_t>::create); static Registrar<Tensor> registrarTensorImpl_cpu_Int16( {"cpu", DataType::Int16}, Aidge::TensorImpl_cpu<int16_t>::create); static Registrar<Tensor> registrarTensorImpl_cpu_UInt16( diff --git a/include/aidge/data/Data.hpp b/include/aidge/data/Data.hpp index a6ff03d36b662f4420424f930401844de25036d2..eaadc7a7ca5fa85672619fb2d3b5b17590fd3778 100644 --- a/include/aidge/data/Data.hpp +++ b/include/aidge/data/Data.hpp @@ -12,6 +12,12 @@ #ifndef AIDGE_DATA_H_ #define AIDGE_DATA_H_ +#include <cstdint> +#include <fmt/format.h> +#include <string> +#include <tuple> +#include <array> + #include "aidge/data/half.hpp" #include "aidge/utils/Attributes.hpp" @@ -45,6 +51,67 @@ enum class DataType { UInt64 }; +enum class DataFormat { + Default, + NCHW, + NHWC, + CHWN, + NCDHW, + NDHWC, + CDHWN +}; + +using DataFormatTranspose = std::array<size_t, 5>; +// Permutation arrays dict to obtain DataFormat (same order as DataFormat enum) +constexpr std::array<DataFormatTranspose, 7> DataFormatTransposeDict = {{ + // Important: in this array only, dimension index must start at 1, not 0! + // (0 is the default value) + {}, + {1, 2, 3, 4}, + {1, 3, 4, 2}, + {2, 3, 4, 1}, + {1, 2, 3, 4, 5}, + {1, 3, 4, 5, 2}, + {2, 3, 4, 5, 1} +}}; + +/** + * Get the DataFormatTranspose array to transpose data from src to dst DataFormat. + * @param src Source DataFormat + * @param dst Destinatin DataFormat + * @return DataFormatTranspose Permutation array to achieve a transposition + * from src to dst DataFormat. +*/ +constexpr inline DataFormatTranspose getDataFormatTranspose(const DataFormat& src, const DataFormat& dst) { + // Permutation array from default format to src format + const auto srcDefToFormat = DataFormatTransposeDict[static_cast<int>(src)]; + // Permutation array from default format to dst format + const auto dstDefToFormat = DataFormatTransposeDict[static_cast<int>(dst)]; + // Compute permutation array from src format to default format: + DataFormatTranspose srcFormatToDef{}; + for (size_t i = 0; i < srcDefToFormat.size(); ++i) { + if (srcDefToFormat[i] > 0) { + srcFormatToDef[srcDefToFormat[i] - 1] = i; + } + else { + srcFormatToDef[i] = i; + } + } + + // Compute permutation array from src format to dst format: + DataFormatTranspose srcToDst{}; + for (size_t i = 0; i < dstDefToFormat.size(); ++i) { + if (dstDefToFormat[srcFormatToDef[i]] > 0) { + srcToDst[i] = dstDefToFormat[srcFormatToDef[i]] - 1; + } + else { + srcToDst[i] = i; + } + } + + return srcToDst; +} + class Data { public: Data(const std::string& type): mType(type) {}; @@ -64,14 +131,14 @@ template <typename T> struct NativeType { static const Aidge::DataType type; }; template <> const Aidge::DataType NativeType<double>::type = Aidge::DataType::Float64; template <> const Aidge::DataType NativeType<float>::type = Aidge::DataType::Float32; template <> const Aidge::DataType NativeType<half_float::half>::type = Aidge::DataType::Float16; -template <> const Aidge::DataType NativeType<int8_t>::type = Aidge::DataType::Int8; -template <> const Aidge::DataType NativeType<int16_t>::type = Aidge::DataType::Int16; -template <> const Aidge::DataType NativeType<int32_t>::type = Aidge::DataType::Int32; -template <> const Aidge::DataType NativeType<int64_t>::type = Aidge::DataType::Int64; -template <> const Aidge::DataType NativeType<uint8_t>::type = Aidge::DataType::UInt8; -template <> const Aidge::DataType NativeType<uint16_t>::type = Aidge::DataType::UInt16; -template <> const Aidge::DataType NativeType<uint32_t>::type = Aidge::DataType::UInt32; -template <> const Aidge::DataType NativeType<uint64_t>::type = Aidge::DataType::UInt64; +template <> const Aidge::DataType NativeType<std::int8_t>::type = Aidge::DataType::Int8; +template <> const Aidge::DataType NativeType<std::int16_t>::type = Aidge::DataType::Int16; +template <> const Aidge::DataType NativeType<std::int32_t>::type = Aidge::DataType::Int32; +template <> const Aidge::DataType NativeType<std::int64_t>::type = Aidge::DataType::Int64; +template <> const Aidge::DataType NativeType<std::uint8_t>::type = Aidge::DataType::UInt8; +template <> const Aidge::DataType NativeType<std::uint16_t>::type = Aidge::DataType::UInt16; +template <> const Aidge::DataType NativeType<std::uint32_t>::type = Aidge::DataType::UInt32; +template <> const Aidge::DataType NativeType<std::uint64_t>::type = Aidge::DataType::UInt64; template <> const char* const EnumStrings<Aidge::DataType>::data[] @@ -79,10 +146,33 @@ const char* const EnumStrings<Aidge::DataType>::data[] "Int2", "Int3", "Int4", "Int5", "Int6", "Int7", "Int8", "Int16", "Int32", "Int64", "UInt2", "UInt3", "UInt4", "UInt5", "UInt6", "UInt7", "UInt8", "UInt16", "UInt32", "UInt64"}; + +template <> +const char* const EnumStrings<Aidge::DataFormat>::data[] + = {"Default", "NCHW", "NHWC", "CHWN", "NCDHW", "NDHWC", "CDHWN"}; + +template <Aidge::DataType D> struct cpptype { + using type = void; // Placeholder +}; +template <> struct cpptype<Aidge::DataType::Float16> { using type = half_float::half; }; +template <> struct cpptype<Aidge::DataType::Float32> { using type = float; }; +template <> struct cpptype<Aidge::DataType::Float64> { using type = double; }; +template <> struct cpptype<Aidge::DataType::Int8> { using type = std::int8_t; }; +template <> struct cpptype<Aidge::DataType::Int16> { using type = std::int16_t; }; +template <> struct cpptype<Aidge::DataType::Int32> { using type = std::int32_t; }; +template <> struct cpptype<Aidge::DataType::Int64> { using type = std::int64_t; }; +template <> struct cpptype<Aidge::DataType::UInt8> { using type = std::uint8_t; }; +template <> struct cpptype<Aidge::DataType::UInt16> { using type = std::uint16_t; }; +template <> struct cpptype<Aidge::DataType::UInt32> { using type = std::uint32_t; }; +template <> struct cpptype<Aidge::DataType::UInt64> { using type = std::uint64_t; }; + +template <Aidge::DataType D> using cpptype_t = typename cpptype<D>::type; } + namespace Aidge { inline auto format_as(DataType dt) { return EnumStrings<Aidge::DataType>::data[static_cast<int>(dt)]; } +inline auto format_as(DataFormat df) { return EnumStrings<Aidge::DataFormat>::data[static_cast<int>(df)]; } } #endif /* AIDGE_DATA_H_ */ diff --git a/include/aidge/data/Tensor.hpp b/include/aidge/data/Tensor.hpp index 3dbf54a5fa58be40b08f58d760f3991586203825..80f8408a01be5a9b1f485251af0b13b8069404c5 100644 --- a/include/aidge/data/Tensor.hpp +++ b/include/aidge/data/Tensor.hpp @@ -24,10 +24,7 @@ #include "aidge/backend/TensorImpl.hpp" #include "aidge/data/Data.hpp" -#include "aidge/operator/Add.hpp" -#include "aidge/operator/Div.hpp" -#include "aidge/operator/Mul.hpp" -#include "aidge/operator/Sub.hpp" + #include "aidge/utils/Registrar.hpp" #include "aidge/utils/Types.h" #include "aidge/utils/ArrayHelpers.hpp" @@ -42,6 +39,7 @@ class Tensor : public Data, public Registrable<Tensor, std::tuple<std::string, DataType>, std::shared_ptr<TensorImpl>(DeviceIdx_t device, std::vector<DimSize_t> dims)> { private: DataType mDataType = DataType::Float32; /** enum to specify data type. */ + DataFormat mDataFormat = DataFormat::Default; /** enum to specify data format. */ std::vector<DimSize_t> mDims; /** Dimensions of the tensor. */ std::vector<DimSize_t> mStrides; /** Stride dimensions of the tensor. */ std::shared_ptr<TensorImpl> mImpl = nullptr; /** Pointer to the actual data implementation. */ @@ -61,9 +59,10 @@ class Tensor : public Data, * @brief Construct a new empty Tensor object. * It has the features of an undefined scalar. */ - Tensor(DataType dtype = DataType::Float32) + Tensor(DataType dtype = DataType::Float32, DataFormat dformat = DataFormat::Default) : Data(Type), mDataType(dtype), + mDataFormat(dformat), mDims(std::vector<DimSize_t>({})), mStrides({1}), mSize(1) @@ -83,6 +82,7 @@ class Tensor : public Data, Tensor(T val) : Data(Type), mDataType(NativeType<VT>::type), + mDataFormat(DataFormat::Default), mDims({}), mStrides({1}), mImpl(Registrar<Tensor>::create({"cpu", NativeType<VT>::type})(0, std::vector<std::size_t>())), @@ -112,6 +112,7 @@ class Tensor : public Data, constexpr Tensor(Array1D<T, SIZE_0> &&arr) : Data(Type), mDataType(NativeType<T>::type), + mDataFormat(DataFormat::Default), mDims({SIZE_0}), mStrides({1}), mImpl(Registrar<Tensor>::create({"cpu", NativeType<T>::type})(0, {SIZE_0})), @@ -130,6 +131,7 @@ class Tensor : public Data, constexpr Tensor(Array2D<T, SIZE_0, SIZE_1> &&arr) : Data(Type), mDataType(NativeType<T>::type), + mDataFormat(DataFormat::Default), mDims({SIZE_0, SIZE_1}), mStrides({SIZE_1, 1}), mImpl(Registrar<Tensor>::create({"cpu", NativeType<T>::type})(0, {SIZE_0, SIZE_1})), @@ -148,6 +150,7 @@ class Tensor : public Data, constexpr Tensor(Array3D<T, SIZE_0, SIZE_1, SIZE_2> &&arr) : Data(Type), mDataType(NativeType<T>::type), + mDataFormat(DataFormat::Default), mDims({SIZE_0, SIZE_1, SIZE_2}), mStrides({SIZE_1 * SIZE_2, SIZE_2, 1}), mImpl(Registrar<Tensor>::create({"cpu", NativeType<T>::type})(0, {SIZE_0, SIZE_1, SIZE_2})), @@ -167,6 +170,7 @@ class Tensor : public Data, constexpr Tensor(Array4D<T, SIZE_0, SIZE_1, SIZE_2, SIZE_3> &&arr) : Data(Type), mDataType(NativeType<T>::type), + mDataFormat(DataFormat::Default), mDims({SIZE_0, SIZE_1, SIZE_2, SIZE_3}), mStrides({SIZE_1 * SIZE_2 * SIZE_3, SIZE_2 * SIZE_3, SIZE_3, 1}), mImpl(Registrar<Tensor>::create({"cpu", NativeType<T>::type})(0, {SIZE_0, SIZE_1, SIZE_2, SIZE_3})), @@ -244,19 +248,7 @@ class Tensor : public Data, * @param other * @return Tensor */ - Tensor operator+(const Tensor& other) const { - AIDGE_ASSERT(hasImpl() && other.hasImpl(), "At least one Tensor cannot perform any binary operation because it has no implementation."); - AIDGE_ASSERT(mImpl->backend() == other.mImpl->backend(), "Tensors must have the same backend"); - AIDGE_ASSERT(dataType() == other.dataType(), "Tensors must have the same backend"); - auto add_ = Add_Op(2); - add_.associateInput(0, std::make_shared<Tensor>(*this)); - add_.associateInput(1, std::make_shared<Tensor>(other)); - add_.setDataType(dataType()); - add_.setBackend(mImpl->backend()); - add_.forward(); - // using add_backend = std::remove_reference_t<decltype(*Registrar<Add_Op>::create("cpu")(std::declval<const Add_Op&>()))>; - return add_.getOutput(0)->clone(); - } + Tensor operator+(const Tensor& other) const; /** * @brief Element-wise substraction operation for two ``Tensor``s. @@ -267,19 +259,7 @@ class Tensor : public Data, * @param other * @return Tensor */ - Tensor operator-(const Tensor& other) const { - AIDGE_ASSERT(hasImpl() && other.hasImpl(), "At least one Tensor cannot perform any binary operation because it has no implementation."); - AIDGE_ASSERT(mImpl->backend() == other.mImpl->backend(), "Tensors must have the same backend"); - AIDGE_ASSERT(dataType() == other.dataType(), "Tensors must have the same backend"); - auto sub_ = Sub_Op(); - sub_.associateInput(0, std::make_shared<Tensor>(*this)); - sub_.associateInput(1, std::make_shared<Tensor>(other)); - sub_.setDataType(dataType()); - sub_.setBackend(mImpl->backend()); - sub_.forward(); - // using add_backend = std::remove_reference_t<decltype(*Registrar<Add_Op>::create("cpu")(std::declval<const Add_Op&>()))>; - return sub_.getOutput(0)->clone(); - } + Tensor operator-(const Tensor& other) const; /** * @brief Element-wise multiplication operation for two ``Tensor``s. @@ -290,19 +270,7 @@ class Tensor : public Data, * @param other * @return Tensor */ - Tensor operator*(const Tensor& other) const { - AIDGE_ASSERT(hasImpl() && other.hasImpl(), "At least one Tensor cannot perform any binary operation because it has no implementation."); - AIDGE_ASSERT(mImpl->backend() == other.mImpl->backend(), "Tensors must have the same backend"); - AIDGE_ASSERT(dataType() == other.dataType(), "Tensors must have the same backend"); - auto mul_ = Mul_Op(); - mul_.associateInput(0, std::make_shared<Tensor>(*this)); - mul_.associateInput(1, std::make_shared<Tensor>(other)); - mul_.setDataType(dataType()); - mul_.setBackend(mImpl->backend()); - mul_.forward(); - // using add_backend = std::remove_reference_t<decltype(*Registrar<Add_Op>::create("cpu")(std::declval<const Add_Op&>()))>; - return mul_.getOutput(0)->clone(); - } + Tensor operator*(const Tensor& other) const; /** * @brief Element-wise division operation for two ``Tensor``s. @@ -313,19 +281,13 @@ class Tensor : public Data, * @param other * @return Tensor */ - Tensor operator/(const Tensor& other) const { - AIDGE_ASSERT(hasImpl() && other.hasImpl(), "At least one Tensor cannot perform any binary operation because it has no implementation."); - AIDGE_ASSERT(mImpl->backend() == other.mImpl->backend(), "Tensors must have the same backend"); - AIDGE_ASSERT(dataType() == other.dataType(), "Tensors must have the same backend"); - auto div_ = Div_Op(); - div_.associateInput(0, std::make_shared<Tensor>(*this)); - div_.associateInput(1, std::make_shared<Tensor>(other)); - div_.setDataType(dataType()); - div_.setBackend(mImpl->backend()); - div_.forward(); - // using add_backend = std::remove_reference_t<decltype(*Registrar<Add_Op>::create("cpu")(std::declval<const Add_Op&>()))>; - return div_.getOutput(0)->clone(); - } + Tensor operator/(const Tensor& other) const; + + /** + * @brief Element-wise sqrt operation for Tensor. + * @return Tensor + */ + Tensor sqrt() const; ~Tensor() noexcept; @@ -390,6 +352,12 @@ public: */ constexpr DataType dataType() const noexcept { return mDataType; } + /** + * @brief Get the data format enum. + * @return constexpr DataFormat + */ + constexpr DataFormat dataFormat() const noexcept { return mDataFormat; } + /** * @brief Set the DataType of the Tensor and converts data * if the Tensor has already been initialized and copyCast is true. @@ -408,6 +376,23 @@ public: mDataType = dt; } + /** + * @brief Set the DataFormat of the Tensor and transpose data, only + * if the Tensor has already been initialized and copyTrans is true. + * In this case, a transposition occurs only if both previous format and + * new format are different from DataFormat::Default. + * @param df New DataFormat + * @param copyTrans If true (default), when both previous format and new + * format are different from DataFormat::Default, previous + * data is copy-transposed. + */ + void setDataFormat(const DataFormat df, bool copyTrans = true) { + if (mImpl && copyTrans && (dataFormat() != df) && df != DataFormat::Default && dataFormat() != DataFormat::Default) { + copyTranspose(*this, getDataFormatTranspose(dataFormat(), df)); + } + mDataFormat = df; + } + /** * @brief Get the Impl object * @return constexpr const std::shared_ptr<TensorImpl>& @@ -474,6 +459,18 @@ public: */ constexpr std::size_t size() const noexcept { return mSize; } + /** + * @brief Return the current capacity of the tensor, i.e. the actual memory + * currently being allocated. It can be different from the size: + * - Capacity can be 0 if the tensor memory was not yet initialized (because + * of lazy initialization, memory is allocated only when it needs to be + * accessed the first time). + * - Capacity can be > size if the tensor was downsized but memory was not + * reallocated. + */ + inline std::size_t capacity() const noexcept { return mImpl->capacity(); } + + /** * @brief Change the dimensions of the Tensor object according to the given argument. * If the overall size is not changed (meaning we actually only performed a @@ -553,31 +550,30 @@ public: inline void print() const { fmt::print("{}\n", toString()); } - std::shared_ptr<Tensor> grad() { - return mGrad; - } - void setGrad(std::shared_ptr<Tensor> newGrad) { - mGrad = newGrad; - } - /** - * @brief Associate the gradient with a Tensor instance and set its implementation - * if none was previously set. + * @brief Get the gradient Tensor. If not initialized, set a Tensor instance + * and set its implementation if none was previously set. * @note Dimensions for the Tensor instance are copied from the original current Tensor. * @note If a Tensor instance was already associated, only the implementation is created * with values set to 0. * @note If Tensor instance and implementation already existed for the gradient * nothing is done. */ - void initGrad() { + std::shared_ptr<Tensor> grad() { if (!mGrad) { mGrad = std::make_shared<Tensor>(mDims); } if (!mGrad->hasImpl()) { mGrad->setDataType(dataType()); + mGrad->setDataFormat(dataFormat()); mGrad->setBackend(hasImpl() ? mImpl->backend() : "cpu"); mGrad->zeros(); } + return mGrad; + } + + void setGrad(std::shared_ptr<Tensor> newGrad) { + mGrad = newGrad; } /** @@ -686,6 +682,13 @@ public: */ void copyFrom(const Tensor& src); + /** + * Transpose data from another Tensor (which can be itself). + * @param src Source tensor to copy from. + */ + void copyTranspose(const Tensor& src, const std::vector<DimSize_t>& transpose); + void copyTranspose(const Tensor& src, const DataFormatTranspose& transpose); + /** * Copy-cast data from a Tensor. * @param src Source tensor to copy-cast from. diff --git a/include/aidge/graph/GraphView.hpp b/include/aidge/graph/GraphView.hpp index c9a4c11d780a41a1620518047d66a7de2d7b55fa..682634015376bf309a015046decfa40a36e2b177 100644 --- a/include/aidge/graph/GraphView.hpp +++ b/include/aidge/graph/GraphView.hpp @@ -20,9 +20,18 @@ #include <utility> #include <vector> +#ifdef PYBIND +#include <pybind11/pybind11.h> +#include <fmt/format.h> +#endif + #include "aidge/graph/Node.hpp" #include "aidge/utils/Types.h" +#ifdef PYBIND +namespace py = pybind11; +#endif + namespace Aidge { enum class DataType; @@ -103,6 +112,13 @@ public: */ bool inView(const NodePtr& nodePtr) const; + /** + * Check that a node is in the current GraphView. + * @param nodeName Name of the node to test the existence of. + * @return true if the GraphView contains a Node with the name ``nodeName``. + */ + bool inView(const std::string& nodeName) const; + inline NodePtr rootNode() const noexcept { return mRootNode; } @@ -208,14 +224,21 @@ public: /** * @brief Compute dimensions of input/output Tensors for each Operator of the - * GraphView object's Nodes. + * GraphView object's Nodes, by calling Node::forwardDims(). + * This function verifies the following conditions: + * - Every node will forwardDims() regardless of if dims were previously forwarded or not; + * - forwadDims() calls are made in node dependencies order, because if dims have changed + * at any point in the graph, it must de propagated correctly to all succeeding nodes; + * - It handles cyclic dependencies correctly (currently only induced by the Memorize_Op). */ bool forwardDims(const std::vector<std::vector<DimSize_t>>& dims = {}, bool allowDataDependency = false); /** @brief Set the same backend for each Operator of the GraphView object's Nodes. */ void setBackend(const std::string& backend, const DeviceIdx_t device = 0) const; - /** @brief Set the same backend for each Operator of the GraphView object's Nodes. */ + /** @brief Set the same data type for each Operator of the GraphView object's Nodes. */ void setDataType(const DataType& datatype) const; + /** @brief Set the same data format for each Operator of the GraphView object's Nodes. */ + void setDataFormat(const DataFormat& dataformat) const; /////////////////////////////////////////////////////// // TOPOLOGY @@ -252,7 +275,7 @@ public: * @brief Get the Nodes pointed to by the GraphView object. * @return std::set<NodePtr> */ - inline const std::set<NodePtr>& getNodes() const { return mNodes; } + inline const std::set<NodePtr>& getNodes() const noexcept { return mNodes; } /** * @brief Get the operator with the corresponding name if it is in the @@ -336,7 +359,8 @@ public: * @param other_graph GraphView containing the Nodes to include. * @return true if graph ordering is unique (meaning inputs/outputs order is well defined). */ - bool add(std::shared_ptr<GraphView> otherGraph); + bool add(std::shared_ptr<GraphView> otherGraph, + bool includeLearnableParam = true); /** * @brief Include a Node in the current GraphView and link it to another @@ -445,8 +469,8 @@ public: * @return true replacement has been performed * @return false no replacement has been performed */ - static bool replace(const std::shared_ptr<GraphView>& oldG, const std::shared_ptr<GraphView>& newG); static bool replace(const std::set<NodePtr>& oldNodes, const std::set<NodePtr>& newNodes); + static bool replace(const std::shared_ptr<GraphView>& oldG, const std::shared_ptr<GraphView>& newG); /** * @brief Clone the GraphView with shared Operators. It is a new GraphView, with cloned Nodes, but the new Nodes refer to the same Operators as the original ones. @@ -494,6 +518,11 @@ public: */ void updateInputsOutputs(); +#ifdef PYBIND + std::string repr() const { + return fmt::format("GraphView(name='{}', Nodes: {} (inputs: {}, outputs: {}))", name(), mNodes.size(), mInputNodes.size(), mOutputNodes.size()); + } +#endif private: /////////////////////////////////////////////////////// // TENSOR MANAGEMENT diff --git a/include/aidge/graph/Matching.hpp b/include/aidge/graph/Matching.hpp new file mode 100644 index 0000000000000000000000000000000000000000..31bae71e9b433d1b82ffe62d93837f440c8a936f --- /dev/null +++ b/include/aidge/graph/Matching.hpp @@ -0,0 +1,225 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#ifndef AIDGE_CORE_GRAPH_MATCHING_H_ +#define AIDGE_CORE_GRAPH_MATCHING_H_ + +#include <map> +#include <memory> +#include <set> + +#include "aidge/graph/Node.hpp" +#include "aidge/graph/GraphView.hpp" + +namespace Aidge { +/** + * A simple experimental graph matching class which works by direct, single pass + * parse and match, without constructing any intermediate representation. + * Due to its single pass nature, it has some constrains on how the queries must + * be formulated. +*/ +class SinglePassGraphMatching { +public: + struct Context { + std::string query; + bool firstSequence = true; + bool firstNode = true; + bool inSequence = false; + bool lookForChild = true; + bool singleOutput = true; + IOIndex_t edgeLeftIdx = 0; + IOIndex_t edgeRightIdx = 0; + + // For check & debug purpose: + size_t depth = 0; + std::set<std::string> anchors; + }; + + struct MatchingResult { + // Mutable is required to allow modifying MatchingResult members with a std::set + // iterator. Any change should not modify the set ordering. + // We use graph->rootNode() as the std::set key, which is garanteed + // to never change after insertion! + mutable std::shared_ptr<GraphView> graph; + mutable std::map<std::string, std::map<std::string, NodePtr>> anchors; + mutable NodePtr startNode; + + MatchingResult() { + graph = std::make_shared<GraphView>(); + } + + MatchingResult(const MatchingResult& result) { + graph = std::make_shared<GraphView>(*(result.graph.get())); + anchors = result.anchors; + startNode = result.startNode; + } + + MatchingResult& operator=(const MatchingResult& result) { + graph = std::make_shared<GraphView>(*(result.graph.get())); + anchors = result.anchors; + startNode = result.startNode; + return *this; + } + }; + + SinglePassGraphMatching(std::shared_ptr<GraphView> graph) : mGraph(graph) {} + + /** + * Matches a query by direct, single pass parse and match. + * The returned matches are non-ordered and therefore stored in a std::set. + * + * Some rules: + * - The first node of the first sequence is the root node and cannot be optional + * WRONG: Conv?->ReLU (will throw an error) + * GOOD: ReLU<-Conv? + * + * - The first node of any further sequence must be an existing anchor + * (the anchor cannot be in the middle of the sequence) + * WRONG: Conv->ReLU;Pad->Conv (will throw an error) + * Pad->Conv;Conv->ReLU (will throw an error) + * GOOD: Conv#->ReLU;Conv#<-Pad + * Pad->Conv#;Conv#->ReLU + * + * - Any node already matched cannot be matched again (except for anchors) + * + * - By default, an edge matches the first output to the first input. + * EXAMPLE: ReLU->Conv is equivalent to ReLU-0-0>Conv + * To match the second input, use ReLU-0-1>Conv (or ReLU-1>Conv) + * To match the second output, use ReLU-1-0>Conv + * To match any input and/or any output, use *, like ReLU-1-*>Conv + * or ReLU-*-0>Conv or ReLU-*-*>Conv + * The same is true for the "<-" edge syntax. + * + * - When several nodes could match for a given node query, the first one + * not already in the matching result is matched, following the + * childs/parents ordered node list + * EXAMPLE: Producer in "Conv<*-Producer" will match the weights Producer first + * EXAMPLE: Producer in "Conv#<1-.;Conv#<*-Producer" will match the bias Producer + * because the weights Producer has already been matched + * + * - One always matches a sub-graph: additional connections can exist anywhere + * in the matched sub-graph + * EXAMPLE: "Add<*-." will match the Add operator and its first input, any + * additional inputs will not be included in the result + * EXAMPLE: "(Add#<*-.)+" will match the Add operator and all of its inputs + * Note that the anchor is required since we intend to match several + * inputs of the same node! + * + * - In Aidge, a node output can be connected to multiple other nodes. In + * your query, you can allow it or not, with the "~" or "-" modifier. + * EXAMPLE: "Conv->ReLU" will match the Conv that are **only** connected + * to a ReLU node at their output #0. + * "Conv~>ReLU" will match all the Conv connected to a ReLU even + * if they are also connected to other nodes at the same output #0. + * When implementing a match & replace recipe, beware that you don't break + * branches in the middle of your matching result if you use "~"! + * + * - The matching results can be overlapping, meaning that some nodes may be + * found in multiple results. Some results may be subsets of other results. + * EXAMPLE: assume graph Conv#1->ReLU#1->Conv#2->ReLU#2 + * "Conv->ReLU?->Conv?->ReLU?" will return both + * Conv#1->ReLU#1->Conv#2->ReLU#2 and Conv#2->ReLU#2 + * To avoid this behavior, set the disjoint argument to true. In this case, + * only Conv#1->ReLU#1->Conv#2->ReLU#2 will be kept in the example above. + * + * - Whitespaces are allowed anywhere in the query + * + * QUERY = SEQ | NODE_OR_BLOCK (';' (SEQ | NODE_OR_BLOCK))* + * + * @param query The query to search. + * @param disjoint If true, only keep the longuest disjoint (non-overlapping) matches. + * @return Set of matches, each stored in a MatchingResult struct. + */ + std::set<MatchingResult> match(const std::string& query, bool disjoint = false); + + /** + * Filter to keep only the longuest disjoint (non-overlapping) matches. + */ + std::set<MatchingResult> filterLonguestDisjoint(const std::set<MatchingResult>& matches); + + inline void addNodeLambda(const std::string& name, bool(func)(const NodePtr&)) { + mLambda[name] = func; + } + +private: + std::shared_ptr<GraphView> mGraph; + std::map<std::string, bool(*)(const NodePtr&)> mLambda; + + /** + * QUANTIFIER = '?' | '*' | '+' | ('{' [0-9]+ '}') + * NODE_OR_BLOCK = (BLOCK | NODE) QUANTIFIER? + */ + bool matchNodeOrBlock(Context& ctx, std::set<MatchingResult>& matches); + + /** + * BLOCK = '(' SEQ | PAR | BLOCK | ALT | NODE ')' + */ + bool matchBlock(Context& ctx, std::set<MatchingResult>& matches); + + /** + * SEQ = NODE_OR_BLOCK (EDGE NODE_OR_BLOCK)+ + */ + bool matchSequence(Context& ctx, std::set<MatchingResult>& matches); + + /** + * PAR = NODE_OR_BLOCK ('&' NODE_OR_BLOCK)+ + */ + bool matchParallel(Context& ctx, std::set<MatchingResult>& matches); + + /** + * ALT = NODE_OR_BLOCK ('|' NODE_OR_BLOCK)+ + */ + bool matchAlternative(Context& ctx, std::set<MatchingResult>& matches); + + /** + * IO_INDEX_ANY = '*' + * IO_INDEX = IO_INDEX_ANY | [0-9]+ + * CHILD_EDGE = ('-' | '~') (IO_INDEX '-')? IO_INDEX? '>' + * PARENT_EDGE = '<' (IO_INDEX '-')? IO_INDEX? ('-' | '~') + * EDGE = CHILD_EDGE | PARENT_EDGE + */ + bool matchEdge(Context& ctx, std::set<MatchingResult>& matches); + + /** + * TYPE = [A-Za-z0-9_]+ + * ANCHOR = [A-Za-z0-9_]+ + * LAMBDA = [A-Za-z0-9_]+ + * NODE = (TYPE | '.') ('#' ANCHOR)? ('[' LAMBDA ']')? + */ + bool matchNode(Context& ctx, std::set<MatchingResult>& matches); + + inline void removeWhiteSpace(std::string& str) { + str.erase(str.begin(), + std::find_if(str.begin(), + str.end(), + [](char c) { return !std::isspace(c); })); + } + + struct CompareMatchingResultSize { + bool operator()(const MatchingResult& lhs, const MatchingResult& rhs) const { + // Some matches size could be the same + if (lhs.graph->getNodes().size() == rhs.graph->getNodes().size()) { + // In this case, use rootNode which is garanteed to be different! + return lhs.graph->rootNode() < rhs.graph->rootNode(); + } + + return lhs.graph->getNodes().size() > rhs.graph->getNodes().size(); + } + }; +}; + +inline bool operator<(const Aidge::SinglePassGraphMatching::MatchingResult& lhs, const Aidge::SinglePassGraphMatching::MatchingResult& rhs) { + // Matches rootNode are garanteed to be different! + return lhs.graph->rootNode() < rhs.graph->rootNode(); +} +} // namespace Aidge + +#endif /* AIDGE_CORE_GRAPH_MATCHING_H_ */ diff --git a/include/aidge/graph/Node.hpp b/include/aidge/graph/Node.hpp index 2a0a4a3b703670c8ace05e03fc5c797fe861a423..f694a1234b6037a0ae75a89380af9747765e290c 100644 --- a/include/aidge/graph/Node.hpp +++ b/include/aidge/graph/Node.hpp @@ -19,10 +19,19 @@ #include <vector> #include <utility> +#ifdef PYBIND +#include <pybind11/pybind11.h> +#include <fmt/format.h> +#endif + #include "aidge/graph/Connector.hpp" #include "aidge/operator/Operator.hpp" #include "aidge/utils/Types.h" +#ifdef PYBIND +namespace py = pybind11; +#endif + namespace Aidge { using NodePtr = std::shared_ptr<Node>; @@ -100,6 +109,17 @@ public: */ void setName(const std::string &name); + /** + * @brief Given the parameter name generate a new name which is unique + * in all the GraphView which contains this node. + * To generate the new name the method is called recursively and append + * the caracter ``_``. + * If no duplicate return name, this is the exit condition. + * @param name Base name to make unique. + * @return A unique name in all the GraphView which contains this one. + */ + std::string createUniqueName(std::string name); + /** * @brief Type of the node. * @return std::string @@ -173,9 +193,14 @@ public: */ inline IOIndex_t getFirstFreeDataInput() const { IOIndex_t i = 0; - for (; (i < nbData()) && (input(i).second != gk_IODefaultIndex); ++i) {} - // assert((i<nbData()) && "No free data input for Node"); - return (i < nbData()) ? i : gk_IODefaultIndex; + for (; i < nbInputs(); ++i) { + if ((inputCategory(i) == InputCategory::Data || inputCategory(i) == InputCategory::OptionalData) + && input(i).second == gk_IODefaultIndex) + { + break; + } + } + return (i < nbInputs()) ? i : gk_IODefaultIndex; } @@ -207,13 +232,12 @@ public: inline IOIndex_t nbInputs() const noexcept { return getOperator()->nbInputs(); } /** - * @brief Number of input specifically for data. + * @brief Category of a specific input (Data or Param, optional or not). * Data inputs exclude inputs expecting parameters (weights or bias). - * @details [data, data, weight, bias] => 2 - * @return IOIndex_t + * @return InputCategory */ - inline IOIndex_t nbData() const noexcept { - return getOperator()->nbData(); + inline InputCategory inputCategory(IOIndex_t idx) const { + return getOperator()->inputCategory(idx); } /** @@ -241,7 +265,9 @@ public: inline std::set<std::shared_ptr<GraphView>> views() const noexcept { std::set<std::shared_ptr<GraphView>> res; for (const auto &v : mViews) { - res.insert(v.lock()); + if (auto p = v.lock()) { + res.insert(p); + } } return res; } @@ -406,6 +432,27 @@ public: std::set<NodePtr> getNodeDelta(int delta,std::set<Aidge::NodePtr> nodeSee); +#ifdef PYBIND + std::string repr() const { + std::string nodeString{fmt::format("Node(name='{}', optype='{}'", name(), type())}; + if (mParents.size() > 0) { + std::vector<std::int8_t> connectedParents(mParents.size(), 0); + for (std::size_t i = 0; i < nbInputs(); ++i) { + if (mParents[i]) + connectedParents[i] = std::int8_t(1); + } + nodeString = fmt::format("{}, parents: {}", nodeString, connectedParents); + } + if (mChildren.size() > 0) { + std::vector<std::vector<std::int8_t>> connectedChildren{}; + for (std::size_t i = 0; i < nbOutputs(); ++i) { + connectedChildren.push_back(std::vector<std::int8_t>(mChildren[i].size(), std::int8_t(1))); + } + nodeString = fmt::format("{}, children: {}", nodeString, connectedChildren); + } + return fmt::format("{})", nodeString); + } +#endif private: /////////////////////////////////////////////////////// diff --git a/include/aidge/operator/Add.hpp b/include/aidge/operator/Add.hpp index 4ac14bdaecd16e90586d14699f3b6f1bd6d88cab..0e709afe9f175443a28947be7f4c3f5b01f5e362 100644 --- a/include/aidge/operator/Add.hpp +++ b/include/aidge/operator/Add.hpp @@ -29,7 +29,7 @@ public: static const std::string Type; Add_Op(const IOIndex_t nbIn) - : OperatorTensor(Type, nbIn, 0, 1) + : OperatorTensor(Type, std::vector<InputCategory>(nbIn, InputCategory::Data), 1) { if (nbIn == 0) { AIDGE_THROW_OR_ABORT(std::runtime_error, "Add operator should have at least one input."); diff --git a/include/aidge/operator/AvgPooling.hpp b/include/aidge/operator/AvgPooling.hpp index af2993d67f16df498f13a0489a3837a8f9fc4a75..06ee4327e2f2d4df32c2decd73841bdf5f79a739 100644 --- a/include/aidge/operator/AvgPooling.hpp +++ b/include/aidge/operator/AvgPooling.hpp @@ -28,27 +28,31 @@ enum class AvgPoolingAttr { StrideDims, KernelDims }; template <DimIdx_t DIM> class AvgPooling_Op : public OperatorTensor, - public Registrable<AvgPooling_Op<DIM>, std::string, std::shared_ptr<OperatorImpl>(const AvgPooling_Op<DIM> &)>, - public StaticAttributes<AvgPoolingAttr, - std::array<DimSize_t, DIM>, - std::array<DimSize_t, DIM>> { + public Registrable<AvgPooling_Op<DIM>, std::string, std::shared_ptr<OperatorImpl>(const AvgPooling_Op<DIM> &)> { public: static const std::string Type; - AvgPooling_Op() = delete; - +private: using Attributes_ = StaticAttributes<AvgPoolingAttr, std::array<DimSize_t, DIM>, std::array<DimSize_t, DIM>>; template <AvgPoolingAttr e> using attr = typename Attributes_::template attr<e>; + const std::shared_ptr<Attributes_> mAttributes; + +public: + + AvgPooling_Op() = delete; + constexpr AvgPooling_Op(const std::array<DimSize_t, DIM> &kernel_dims, const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1)) - : OperatorTensor(Type, 1, 0, 1), - Attributes_(attr<AvgPoolingAttr::StrideDims>(stride_dims), - attr<AvgPoolingAttr::KernelDims>(kernel_dims)) {} + : OperatorTensor(Type, {InputCategory::Data}, 1), + mAttributes(std::make_shared<Attributes_>( + attr<AvgPoolingAttr::StrideDims>(stride_dims), + attr<AvgPoolingAttr::KernelDims>(kernel_dims))) + {} /** * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated). @@ -76,6 +80,10 @@ public: void setBackend(const std::string &name, DeviceIdx_t device = 0) override final; + inline std::shared_ptr<Attributes> attributes() const override { return mAttributes; } + inline std::array<DimSize_t, DIM>& strideDims() const { return mAttributes->template getAttr<AvgPoolingAttr::StrideDims>(); } + inline std::array<DimSize_t, DIM>& kernelDims() const { return mAttributes->template getAttr<AvgPoolingAttr::KernelDims>(); } + static const std::vector<std::string> getInputsName() { return {"data_input"}; } @@ -101,18 +109,19 @@ inline std::shared_ptr<Node> AvgPooling( static_assert(DIM<=MaxDim,"Too many kernel dimensions required by AvgPooling, not supported"); return AvgPooling(to_array(kernel_dims), name, stride_dims); } +} // namespace Aidge extern template class Aidge::AvgPooling_Op<1>; extern template class Aidge::AvgPooling_Op<2>; extern template class Aidge::AvgPooling_Op<3>; extern template class Aidge::AvgPooling_Op<4>; -} // namespace Aidge - namespace { template <> -const char *const EnumStrings<Aidge::AvgPoolingAttr>::data[] = {"StrideDims", - "KernelDims"}; +const char *const EnumStrings<Aidge::AvgPoolingAttr>::data[] = { + "StrideDims", + "KernelDims" +}; } #endif /* AIDGE_CORE_OPERATOR_AVGPOOLING_H_ */ diff --git a/include/aidge/operator/BatchNorm.hpp b/include/aidge/operator/BatchNorm.hpp index aa53f8c43f0be2a0e094946d66fd263bc19e39f5..b5b64eb428d709e804dd9f6711530b348e0be747 100644 --- a/include/aidge/operator/BatchNorm.hpp +++ b/include/aidge/operator/BatchNorm.hpp @@ -28,21 +28,31 @@ enum class BatchNormAttr { Epsilon, Momentum }; template <DimIdx_t DIM> class BatchNorm_Op : public OperatorTensor, - public Registrable<BatchNorm_Op<DIM>, std::string, std::shared_ptr<OperatorImpl>(const BatchNorm_Op<DIM> &)>, - public StaticAttributes<BatchNormAttr, float, float> { + public Registrable<BatchNorm_Op<DIM>, std::string, std::shared_ptr<OperatorImpl>(const BatchNorm_Op<DIM> &)> { public: static const std::string Type; - BatchNorm_Op() = delete; - +private: using Attributes_ = StaticAttributes<BatchNormAttr, float, float>; template <BatchNormAttr e> using attr = typename Attributes_::template attr<e>; + const std::shared_ptr<Attributes_> mAttributes; + +public: + + BatchNorm_Op() = delete; constexpr BatchNorm_Op(float epsilon, float momentum) - : OperatorTensor(Type, 1, 4, 1), - Attributes_(attr<BatchNormAttr::Epsilon>(epsilon), - attr<BatchNormAttr::Momentum>(momentum)) {} + : OperatorTensor(Type, + {InputCategory::Data, + InputCategory::Param, + InputCategory::Param, + InputCategory::Param, + InputCategory::Param}, + 1), + mAttributes(std::make_shared<Attributes_>( + attr<BatchNormAttr::Epsilon>(epsilon), + attr<BatchNormAttr::Momentum>(momentum))) {} /** * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated). @@ -72,6 +82,10 @@ public: void setBackend(const std::string &name, DeviceIdx_t device = 0) override final; + inline std::shared_ptr<Attributes> attributes() const override { return mAttributes; } + inline float& epsilon() const { return mAttributes->template getAttr<BatchNormAttr::Epsilon>(); } + inline float& momentum() const { return mAttributes->template getAttr<BatchNormAttr::Momentum>(); } + static const std::vector<std::string> getInputsName() { return {"data_input", "scale", "shift", "mean", "variance"}; } diff --git a/include/aidge/operator/Cast.hpp b/include/aidge/operator/Cast.hpp index 6efbc0a214dde3ca969226f734b5ee903fe5ab50..6911053932afff6675be4eb2c713d8d3cd34b462 100644 --- a/include/aidge/operator/Cast.hpp +++ b/include/aidge/operator/Cast.hpp @@ -19,8 +19,8 @@ #include "aidge/utils/Registrar.hpp" #include "aidge/operator/OperatorTensor.hpp" #include "aidge/backend/OperatorImpl.hpp" -#include "aidge/data/Tensor.hpp" #include "aidge/graph/Node.hpp" +#include "aidge/utils/StaticAttributes.hpp" #include "aidge/utils/Types.h" namespace Aidge { @@ -30,21 +30,31 @@ public: void forward() override; }; +enum class CastAttr { TargetType }; + class Cast_Op : public OperatorTensor, public Registrable<Cast_Op, std::string, std::unique_ptr<OperatorImpl>(const Cast_Op&)> { public: static const std::string Type; - Cast_Op() : OperatorTensor(Type, 1, 0, 1) { - mImpl = std::make_shared<Cast_OpImpl>(*this); - } +private: + using Attributes_ = StaticAttributes<CastAttr, DataType>; + template <CastAttr e> + using attr = typename Attributes_::template attr<e>; + const std::shared_ptr<Attributes_> mAttributes; + +public: + Cast_Op() = delete; + + Cast_Op(const DataType targetType); /** * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated). * @param op Operator to copy. */ Cast_Op(const Cast_Op& op) - : OperatorTensor(op) + : OperatorTensor(op), + mAttributes(op.mAttributes) { if (!op.backend().empty()) { SET_IMPL_MACRO(Cast_Op, *this, op.backend()); @@ -64,6 +74,9 @@ public: void setBackend(const std::string& name, DeviceIdx_t device = 0) override; + inline std::shared_ptr<Attributes> attributes() const override { return mAttributes; } + inline DataType& targetType() const { return mAttributes->template getAttr<CastAttr::TargetType>(); } + static const std::vector<std::string> getInputsName(){ return {"data_input"}; } @@ -72,9 +85,15 @@ public: } }; -inline std::shared_ptr<Node> Cast(const std::string& name = "") { - return std::make_shared<Node>(std::make_shared<Cast_Op>(), name); + +inline std::shared_ptr<Node> Cast(const DataType targetType, const std::string& name = "") { + return std::make_shared<Node>(std::make_shared<Cast_Op>(targetType), name); } +} // namespace Aidge + +namespace { +template <> +const char* const EnumStrings<Aidge::CastAttr>::data[] = { "TargetType" }; } -#endif /* AIDGE_CORE_OPERATOR_CAST_H_ */ \ No newline at end of file +#endif /* AIDGE_CORE_OPERATOR_CAST_H_ */ diff --git a/include/aidge/operator/Concat.hpp b/include/aidge/operator/Concat.hpp index a9a4c9253f3af9f9cd82390256ec70d066017cc5..8341a93fe66d260ae3687170629b8759d0305a9c 100644 --- a/include/aidge/operator/Concat.hpp +++ b/include/aidge/operator/Concat.hpp @@ -28,25 +28,32 @@ namespace Aidge { class Concat_OpImpl : public OperatorImpl { public: - Concat_OpImpl(const Operator& op, const std::string& backend = ""): OperatorImpl(op, backend) {} + Concat_OpImpl(const Operator& op, const std::string& backend = "") + : OperatorImpl(op, backend) + {} void forward() override; }; enum class ConcatAttr { Axis }; class Concat_Op : public OperatorTensor, - public Registrable<Concat_Op, std::string, std::shared_ptr<OperatorImpl>(const Concat_Op&)>, - public StaticAttributes<ConcatAttr, DimSize_t> { + public Registrable<Concat_Op, std::string, std::shared_ptr<OperatorImpl>(const Concat_Op&)> { public: static const std::string Type; - using Attributes_ = StaticAttributes<ConcatAttr, DimSize_t>; +private: + using Attributes_ = StaticAttributes<ConcatAttr, std::int32_t>; template <ConcatAttr e> using attr = typename Attributes_::template attr<e>; + const std::shared_ptr<Attributes_> mAttributes; - Concat_Op(const IOIndex_t nbIn, const DimSize_t axis) - : OperatorTensor(Type, nbIn, 0, 1), - Attributes_(attr<ConcatAttr::Axis>(axis)) +public: + Concat_Op() = delete; + + Concat_Op(const IOIndex_t nbIn, const std::int32_t axis) + : OperatorTensor(Type, std::vector<InputCategory>(nbIn, InputCategory::Data), 1), + mAttributes(std::make_shared<Attributes_>( + attr<ConcatAttr::Axis>(axis))) { if (nbIn == 0) { AIDGE_THROW_OR_ABORT(std::runtime_error, "Add operator should have at least one input."); @@ -60,7 +67,7 @@ public: */ Concat_Op(const Concat_Op& op) : OperatorTensor(op), - Attributes_(op) + mAttributes(op.mAttributes) { if (!op.backend().empty()) { SET_IMPL_MACRO(Concat_Op, *this, op.backend()); @@ -82,6 +89,9 @@ public: void setBackend(const std::string& name, DeviceIdx_t device = 0) override; + inline std::shared_ptr<Attributes> attributes() const override { return mAttributes; } + inline std::int32_t& axis() const { return mAttributes->template getAttr<ConcatAttr::Axis>(); } + static const std::vector<std::string> getInputsName(){ return {"data_input_0", "data_input_n"}; } @@ -90,7 +100,7 @@ public: } }; -inline std::shared_ptr<Node> Concat(const IOIndex_t nbIn, const DimIdx_t axis = 0, const std::string& name = "") { +inline std::shared_ptr<Node> Concat(const IOIndex_t nbIn, const std::int32_t axis = 0, const std::string& name = "") { return std::make_shared<Node>(std::make_shared<Concat_Op>(nbIn, axis), name); } } diff --git a/include/aidge/operator/Conv.hpp b/include/aidge/operator/Conv.hpp index d6a0df5ab472c4a728e5b5042258d6d2bd34f871..87ff5854b310ca472994bd6b68fd6ae58d31e806 100644 --- a/include/aidge/operator/Conv.hpp +++ b/include/aidge/operator/Conv.hpp @@ -30,62 +30,42 @@ #include "aidge/utils/Types.h" namespace Aidge { -enum class ConvAttr { StrideDims, DilationDims, InChannels, OutChannels, KernelDims, NoBias }; +enum class ConvAttr { StrideDims, DilationDims, KernelDims }; template <DimIdx_t DIM> class Conv_Op : public OperatorTensor, - public Registrable<Conv_Op<DIM>, std::string, std::shared_ptr<OperatorImpl>(const Conv_Op<DIM> &)>, - public StaticAttributes<ConvAttr, - std::array<DimSize_t, DIM>, - std::array<DimSize_t, DIM>, - DimSize_t, - DimSize_t, - std::array<DimSize_t, DIM>, - bool> { + public Registrable<Conv_Op<DIM>, std::string, std::shared_ptr<OperatorImpl>(const Conv_Op<DIM> &)> { public: static const std::string Type; - Conv_Op() = delete; - +private: using Attributes_ = StaticAttributes<ConvAttr, std::array<DimSize_t, DIM>, std::array<DimSize_t, DIM>, - DimSize_t, - DimSize_t, - std::array<DimSize_t, DIM>, - bool>; + std::array<DimSize_t, DIM>>; template <ConvAttr e> using attr = typename Attributes_::template attr<e>; + const std::shared_ptr<Attributes_> mAttributes; - constexpr Conv_Op(DimSize_t inChannels, - DimSize_t outChannels, - const std::array<DimSize_t, DIM> &kernelDims, +public: + Conv_Op() = delete; + + constexpr Conv_Op(const std::array<DimSize_t, DIM> &kernelDims, const std::array<DimSize_t, DIM> &strideDims = create_array<DimSize_t,DIM>(1), - const std::array<DimSize_t, DIM> &dilationDims = create_array<DimSize_t,DIM>(1), - bool noBias = false) - : OperatorTensor(Type, 1, 2, 1), - Attributes_(attr<ConvAttr::StrideDims>(strideDims), - attr<ConvAttr::DilationDims>(dilationDims), - attr<ConvAttr::InChannels>(inChannels), - attr<ConvAttr::OutChannels>(outChannels), - attr<ConvAttr::KernelDims>(kernelDims), - attr<ConvAttr::NoBias>(noBias)) {} + const std::array<DimSize_t, DIM> &dilationDims = create_array<DimSize_t,DIM>(1)) + : OperatorTensor(Type, {InputCategory::Data, InputCategory::Param, InputCategory::OptionalParam}, 1), + mAttributes(std::make_shared<Attributes_>( + attr<ConvAttr::StrideDims>(strideDims), + attr<ConvAttr::DilationDims>(dilationDims), + attr<ConvAttr::KernelDims>(kernelDims))) + {} /** * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated). * @param op Operator to copy. */ - Conv_Op(const Conv_Op<DIM>& op) - : OperatorTensor(op), - Attributes_(op) - { - if (op.mImpl) { - SET_IMPL_MACRO(Conv_Op<DIM>, *this, op.backend()); - } else { - mImpl = nullptr; - } - } + Conv_Op(const Conv_Op<DIM>& op); /** * @brief Clone the operator using its copy-constructor. @@ -108,116 +88,35 @@ public: // } - bool forwardDims(bool /*allowDataDependency*/ = false) override final { - // check inputs have been associated - bool associated = true; - for (IOIndex_t i = 0; i < 3; ++i) { - if (!getInput(i)) { - AIDGE_THROW_OR_ABORT(std::runtime_error, "{}: input #{} should be associated with a Tensor", type(), i); - } - associated &= !(getInput(i)->empty()); - } - if (associated) { - AIDGE_ASSERT((getInput(0)->nbDims() == (DIM+2)) && - (getInput(0)->template dims<DIM+2>()[1] == this->template getAttr<ConvAttr::InChannels>()), - "Wrong input size for Conv operator."); - AIDGE_ASSERT((getInput(1)->nbDims() == (DIM+2)) && - (getInput(1)->template dims<DIM+2>()[1] == this->template getAttr<ConvAttr::InChannels>()) && - (getInput(1)->template dims<DIM+2>()[0] == this->template getAttr<ConvAttr::OutChannels>()), - "Wrong weight size for Conv operator."); - if(!this->template getAttr<ConvAttr::NoBias>()) - AIDGE_ASSERT((getInput(2)->nbDims() == (1)) && - (getInput(2)->template dims<1>()[0] == this->template getAttr<ConvAttr::OutChannels>()), - "Wrong bias size for Conv operator."); - std::array<DimSize_t, DIM + 2> outputDims{}; - const std::array<DimSize_t, DIM + 2> inputDims(getInput(0)->template dims<DIM+2>()); + bool forwardDims(bool /*allowDataDependency*/ = false) override final; - for (std::size_t dim = 0; dim < this->template getAttr<ConvAttr::KernelDims>().size() ; ++dim) { - const DimSize_t kernelExtent = this->template getAttr<ConvAttr::DilationDims>()[dim] * - (this->template getAttr<ConvAttr::KernelDims>()[dim] - 1) + - 1; - - outputDims[dim+2] = 1 + static_cast<DimSize_t>( - floor(static_cast<float>(inputDims[dim+2] - kernelExtent) / - static_cast<float>(this->template getAttr<ConvAttr::StrideDims>()[dim]))); - } - - outputDims[1] = this->template getAttr<ConvAttr::OutChannels>(); - outputDims[0] = inputDims[0]; - mOutputs[0]->resize(outputDims); - } - - return associated; - } - - std::vector<std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>> + std::vector<std::pair<std::vector<DimSize_t>, std::vector<DimSize_t>>> computeReceptiveField(const std::vector<DimSize_t>& firstEltDims, const std::vector<DimSize_t>& outputDims, - const IOIndex_t outputIdx = 0) const override { - if (outputIdx != 0) { - AIDGE_THROW_OR_ABORT(std::runtime_error, "Conv_Op Operator has got only one output Tensor."); - } - if (firstEltDims.size() != outputDims.size()) { - AIDGE_THROW_OR_ABORT(std::runtime_error, "outputDims and firstEltDims should have the size of the output Tensor dimensions."); - } - if ((outputDims.size() == (DIM+2)) && dimsForwarded()) { - // Offset - auto inputIdxDims = firstEltDims; // batch idx is the same - inputIdxDims[1] = 0; // each channel is used so start with the first one - - for (DimIdx_t i = 0; i < (DIM+2); ++i) { - if (((outputDims[i] + firstEltDims[i]) > mOutputs[0]->template dims<DIM+2>()[i]) || (outputDims[i] == 0)) { - AIDGE_THROW_OR_ABORT(std::runtime_error, "Given outputDim out of range for dimension {} ({} + {})", static_cast<std::size_t>(i), firstEltDims[i], outputDims[i]); - } - } - - // padding is not a parameter of Conv_Op. It is handled in Pad_Op Operator - // Input - // same batch value, every input channel is used - std::vector<DimSize_t> inputDims{outputDims[0], getInput(0)->dims()[1]}; - for (DimIdx_t i = 0; i < DIM; ++i) { - inputDims.push_back((outputDims[2+static_cast<std::size_t>(i)] - 1) - * this->template getAttr<ConvAttr::StrideDims>()[static_cast<std::size_t>(i)] - + 1 - + (this->template getAttr<ConvAttr::KernelDims>()[static_cast<std::size_t>(i)] - 1) - * this->template getAttr<ConvAttr::DilationDims>()[static_cast<std::size_t>(i)]); - inputIdxDims[2+i] *= this->template getAttr<ConvAttr::StrideDims>()[static_cast<std::size_t>(i)]; - } + const IOIndex_t outputIdx = 0) const override; - // Weight - // same output value, every input channel is used - std::vector<DimSize_t> weightDims{outputDims[1], getInput(0)->dims()[1]}; - for (std::size_t i = 0; i < DIM; ++i) { - weightDims.push_back(this->template getAttr<ConvAttr::KernelDims>()[i]); - } - std::vector<DimSize_t> weightIdxDims = std::vector<DimSize_t>(DIM+2, 0); - weightIdxDims[0] = firstEltDims[1]; - // Result - std::vector<std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>> res; - res.push_back(std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>(inputIdxDims, inputDims)); - res.push_back(std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>(weightIdxDims, weightDims)); + void setBackend(const std::string &name, DeviceIdx_t device = 0) override; - // Bias - if (! this->template getAttr<ConvAttr::NoBias>()){ - const std::vector<DimSize_t> biasDims{outputDims[1]}; // the number of output channel - const std::vector<DimSize_t> biasIdxDims{firstEltDims[1]}; - res.push_back(std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>(biasIdxDims, biasDims)); - } - return res; + DimSize_t inChannels() const { + if (!getInput(1)) { + AIDGE_THROW_OR_ABORT(std::runtime_error, "Convolution operator has no weight Tensor associated so no specific number of input channel imposed."); } - AIDGE_THROW_OR_ABORT(std::runtime_error, "Given outputDim out of range or output dim not forwarded yet."); + return getInput(1)->template dims<DIM+2>()[1]; } + DimSize_t outChannels() const { + if (!getInput(1)) { + AIDGE_THROW_OR_ABORT(std::runtime_error, "Convolution operator has no weight Tensor associated so no specific number of output channel imposed."); + } + return getInput(1)->template dims<DIM+2>()[0]; + } - void setBackend(const std::string &name, DeviceIdx_t device = 0) override { - SET_IMPL_MACRO(Conv_Op<DIM>, *this, name); - mOutputs[0]->setBackend(name, device); + inline std::shared_ptr<Attributes> attributes() const override { return mAttributes; } + inline std::array<DimSize_t, DIM>& strideDims() const { return mAttributes->template getAttr<ConvAttr::StrideDims>(); } + inline std::array<DimSize_t, DIM>& dilationDims() const { return mAttributes->template getAttr<ConvAttr::DilationDims>(); } + inline std::array<DimSize_t, DIM>& kernelDims() const { return mAttributes->template getAttr<ConvAttr::KernelDims>(); } - // By default, automatically set backend for weight and bias inputs - getInput(1)->setBackend(name, device); - getInput(2)->setBackend(name, device); - } static const std::vector<std::string> getInputsName(){ return {"data_input", "weight", "bias"}; @@ -227,8 +126,6 @@ public: } }; -template <DimIdx_t DIM> -const std::string Conv_Op<DIM>::Type = "Conv"; /** * @brief Perform a convolution on the input Tensor. @@ -252,10 +149,11 @@ inline std::shared_ptr<Node> Conv(DimSize_t inChannels, bool noBias = false) { // FIXME: properly handle default w&b initialization in every cases static_assert(DIM<=MaxDim,"Too many kernel dimensions required by Conv, not supported"); - auto conv = std::make_shared<Node>(std::make_shared<Conv_Op<static_cast<DimIdx_t>(DIM)>>(inChannels, outChannels, kernelDims, strideDims, dilationDims, noBias), name); + auto conv = std::make_shared<Node>(std::make_shared<Conv_Op<static_cast<DimIdx_t>(DIM)>>(kernelDims, strideDims, dilationDims), name); addProducer(conv, 1, append(outChannels, append(inChannels, kernelDims)), "w"); - addProducer(conv, 2, {(noBias ? 0 : outChannels)}, "b"); // already sets bias dims - + if (!noBias) { + addProducer(conv, 2, {outChannels}, "b"); // already sets bias dims + } return conv; } @@ -274,15 +172,15 @@ inline std::shared_ptr<Node> Conv( } } // namespace Aidge +extern template class Aidge::Conv_Op<1>; +extern template class Aidge::Conv_Op<2>; + namespace { template <> const char *const EnumStrings<Aidge::ConvAttr>::data[] = { "StrideDims", "DilationDims", - "InChannels", - "OutChannels", - "KernelDims", - "NoBias" + "KernelDims" }; } diff --git a/include/aidge/operator/ConvDepthWise.hpp b/include/aidge/operator/ConvDepthWise.hpp index 2337ff66f00b932a190d5b1735d53df3da8ffdbf..c8a83ff7de62a61e8125eac29d61c3938115cd09 100644 --- a/include/aidge/operator/ConvDepthWise.hpp +++ b/include/aidge/operator/ConvDepthWise.hpp @@ -29,57 +29,42 @@ #include "aidge/utils/Types.h" namespace Aidge { -enum class ConvDepthWiseAttr { StrideDims, DilationDims, Channels, KernelDims, NoBias }; +enum class ConvDepthWiseAttr { StrideDims, DilationDims, KernelDims }; template <DimIdx_t DIM> class ConvDepthWise_Op : public OperatorTensor, - public Registrable<ConvDepthWise_Op<DIM>, std::string, std::shared_ptr<OperatorImpl>(const ConvDepthWise_Op<DIM> &)>, - public StaticAttributes<ConvDepthWiseAttr, - std::array<DimSize_t, DIM>, - std::array<DimSize_t, DIM>, - DimSize_t, - std::array<DimSize_t, DIM>, - bool> { + public Registrable<ConvDepthWise_Op<DIM>, std::string, std::shared_ptr<OperatorImpl>(const ConvDepthWise_Op<DIM> &)> { public: static const std::string Type; - ConvDepthWise_Op() = delete; - +private: using Attributes_ = StaticAttributes<ConvDepthWiseAttr, std::array<DimSize_t, DIM>, std::array<DimSize_t, DIM>, - DimSize_t, - std::array<DimSize_t, DIM>, - bool>; + std::array<DimSize_t, DIM>>; template <ConvDepthWiseAttr e> using attr = typename Attributes_::template attr<e>; + const std::shared_ptr<Attributes_> mAttributes; - constexpr ConvDepthWise_Op(const DimSize_t nbChannels, - const std::array<DimSize_t, DIM> &kernel_dims, +public: + + ConvDepthWise_Op() = delete; + + constexpr ConvDepthWise_Op(const std::array<DimSize_t, DIM> &kernel_dims, const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), - const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1), - bool no_bias=false) - : OperatorTensor(Type, 1, 2, 1), - Attributes_(attr<ConvDepthWiseAttr::StrideDims>(stride_dims), - attr<ConvDepthWiseAttr::DilationDims>(dilation_dims), - attr<ConvDepthWiseAttr::Channels>(nbChannels), - attr<ConvDepthWiseAttr::KernelDims>(kernel_dims), - attr<ConvDepthWiseAttr::NoBias>(no_bias)) {} + const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1)) + : OperatorTensor(Type, {InputCategory::Data, InputCategory::Param, InputCategory::OptionalParam}, 1), + mAttributes(std::make_shared<Attributes_>( + attr<ConvDepthWiseAttr::StrideDims>(stride_dims), + attr<ConvDepthWiseAttr::DilationDims>(dilation_dims), + attr<ConvDepthWiseAttr::KernelDims>(kernel_dims))) + {} /** * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated). * @param op Operator to copy. */ - ConvDepthWise_Op(const ConvDepthWise_Op<DIM>& op) - : OperatorTensor(op), - Attributes_(op) - { - if (op.mImpl){ - SET_IMPL_MACRO(ConvDepthWise_Op<DIM>, *this, op.backend()); - }else{ - mImpl = nullptr; - } - } + ConvDepthWise_Op(const ConvDepthWise_Op<DIM>& op); /** * @brief Clone the operator using its copy-constructor. @@ -90,106 +75,26 @@ public: } - bool forwardDims(bool /*allowDataDependency*/ = false) override final { - // check inputs have been associated - // TODO : add a check of inputs dimensions ? - bool associated = true; - for (IOIndex_t i = 0; i < 3; ++i) { - if (!getInput(i)) { - AIDGE_THROW_OR_ABORT(std::runtime_error, "{}: input #{} should be associated with a Tensor", type(), i); - } - associated &= !(getInput(i)->empty()); - } - if (associated) { - std::array<DimSize_t, DIM + 2> outputDims = {}; - const std::array<DimSize_t, DIM + 2> inputDims(getInput(0)->template dims<DIM+2>()); - - for (std::size_t dim = 0; dim < this->template getAttr<ConvDepthWiseAttr::KernelDims>().size() ; ++dim) { - const DimSize_t kernelExtent = this->template getAttr<ConvDepthWiseAttr::DilationDims>()[dim] * - (this->template getAttr<ConvDepthWiseAttr::KernelDims>()[dim] - 1) + - 1; - - outputDims[dim+2] = 1 + static_cast<DimSize_t>( - floor(static_cast<float>(inputDims[dim+2] - kernelExtent) / - static_cast<float>(this->template getAttr<ConvDepthWiseAttr::StrideDims>()[dim]))); - } - // std::array<DimSize_t, DIM+2> weightDims = append(mInputs[0]->dims()[1],append(1, this->template getAttr<ConvDepthWiseAttr::KernelDims>())); - // if (mInputs[1]->empty()) { - // mInputs[1]->resize(weightDims); - // } - // if (mInputs[2]->empty()) { - // mInputs[2]->resize({mInputs[0]->dims()[1]}); - // } - outputDims[1] = inputDims[1]; - outputDims[0] = inputDims[0]; - mOutputs[0]->resize(outputDims); - } + bool forwardDims(bool /*allowDataDependency*/ = false) override final; - return associated; - } + std::vector<std::pair<std::vector<DimSize_t>, std::vector<DimSize_t>>> + computeReceptiveField(const std::vector<DimSize_t>& firstEltDims, + const std::vector<DimSize_t>& outputDims, + const IOIndex_t outputIdx = 0) const override; - std::vector<std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>> computeReceptiveField(const std::vector<DimSize_t>& firstEltDims, const std::vector<DimSize_t>& outputDims, const IOIndex_t outputIdx = 0) const override { - if (outputIdx != 0) { - AIDGE_THROW_OR_ABORT(std::runtime_error, "Conv_Op Operator has got only one output Tensor."); - } - if (firstEltDims.size() != outputDims.size()) { - AIDGE_THROW_OR_ABORT(std::runtime_error, "outputDims and firstEltDims should have the size of the output Tensor dimensions."); - } - if ((outputDims.size() == (DIM+2)) && dimsForwarded()) { - // Offset - auto inputIdxDims = firstEltDims; // batch idx is the same - - for (DimIdx_t i = 0; i < (DIM+2); ++i) { - if (((outputDims[i] + firstEltDims[i]) > mOutputs[0]->template dims<DIM+2>()[i]) || (outputDims[i] == 0)) { - AIDGE_THROW_OR_ABORT(std::runtime_error, "Given outputDim out of range for dimension {} ({} + {})", static_cast<std::size_t>(i), firstEltDims[i], outputDims[i]); - } - } - - // padding is not a parameter of Conv_Op. It is handled in Pad_Op Operator - // Input - // same batch value - std::vector<DimSize_t> inputDims{outputDims[0], outputDims[1]}; - for (DimIdx_t i = 0; i < DIM; ++i) { - inputDims.push_back((outputDims[2+static_cast<std::size_t>(i)] - 1) - * this->template getAttr<ConvDepthWiseAttr::StrideDims>()[static_cast<std::size_t>(i)] - + 1 - + (this->template getAttr<ConvDepthWiseAttr::KernelDims>()[static_cast<std::size_t>(i)] - 1) - * this->template getAttr<ConvDepthWiseAttr::DilationDims>()[static_cast<std::size_t>(i)]); - inputIdxDims[2+i] *= this->template getAttr<ConvDepthWiseAttr::StrideDims>()[static_cast<std::size_t>(i)]; - } - - // Weight - std::vector<DimSize_t> weightDims{outputDims[1], 1}; - for (std::size_t i = 0; i < DIM; ++i) { - weightDims.push_back(this->template getAttr<ConvDepthWiseAttr::KernelDims>()[i]); - } - std::vector<DimSize_t> weightIdxDims = std::vector<DimSize_t>(DIM+2, 0); - weightIdxDims[0] = firstEltDims[1]; - - - // Result - std::vector<std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>> res; - res.push_back(std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>(inputIdxDims, inputDims)); - res.push_back(std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>(weightIdxDims, weightDims)); - // Bias - if (! this->template getAttr<ConvDepthWiseAttr::NoBias>()){ - const std::vector<DimSize_t> biasDims{outputDims[1]}; // the number of output channel - const std::vector<DimSize_t> biasIdxDims{firstEltDims[1]}; - res.push_back(std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>(biasIdxDims, biasDims)); - } - return res; + void setBackend(const std::string &name, DeviceIdx_t device = 0) override; + + DimSize_t nbChannels() const { + if (!getInput(1)) { + AIDGE_THROW_OR_ABORT(std::runtime_error, "Convolution operator has no weight Tensor associated so no specific number of channel imposed."); } - AIDGE_THROW_OR_ABORT(std::runtime_error, "Given outputDim out of range or output dim not forwarded yet."); + return getInput(1)->template dims<DIM+2>()[0]; } - void setBackend(const std::string &name, DeviceIdx_t device = 0) override { - SET_IMPL_MACRO(ConvDepthWise_Op<DIM>, *this, name); - mOutputs[0]->setBackend(name, device); - - // By default, automatically set backend for weight and bias inputs - getInput(1)->setBackend(name, device); - getInput(2)->setBackend(name, device); - } + inline std::shared_ptr<Attributes> attributes() const override { return mAttributes; } + inline std::array<DimSize_t, DIM>& strideDims() const { return mAttributes->template getAttr<ConvDepthWiseAttr::StrideDims>(); } + inline std::array<DimSize_t, DIM>& dilationDims() const { return mAttributes->template getAttr<ConvDepthWiseAttr::DilationDims>(); } + inline std::array<DimSize_t, DIM>& kernelDims() const { return mAttributes->template getAttr<ConvDepthWiseAttr::KernelDims>(); } static const std::vector<std::string> getInputsName(){ return {"data_input", "weight", "bias"}; @@ -199,9 +104,6 @@ public: } }; -template <DimIdx_t DIM> -const std::string ConvDepthWise_Op<DIM>::Type = "ConvDepthWise"; - template <std::array<DimSize_t, 1>::size_type DIM> inline std::shared_ptr<Node> ConvDepthWise(const DimSize_t nbChannels, const std::array<DimSize_t, DIM> &kernelDims, @@ -211,9 +113,11 @@ inline std::shared_ptr<Node> ConvDepthWise(const DimSize_t nbChannels, bool noBias=false) { // FIXME: properly handle default w&b initialization in every cases static_assert(DIM<=MaxDim,"Too many kernel dimensions required by ConvDepthWise, not supported"); - auto convDW = std::make_shared<Node>(std::make_shared<ConvDepthWise_Op<static_cast<DimIdx_t>(DIM)>>(nbChannels, kernelDims, strideDims, dilationDims, noBias), name); + auto convDW = std::make_shared<Node>(std::make_shared<ConvDepthWise_Op<static_cast<DimIdx_t>(DIM)>>(kernelDims, strideDims, dilationDims), name); addProducer(convDW, 1, append(nbChannels, append(DimSize_t(1), kernelDims)), "w"); - addProducer(convDW, 2, {(noBias ? 0 : nbChannels)}, "b"); + if (!noBias) { + addProducer(convDW, 2, {nbChannels}, "b"); + } return convDW; } @@ -231,10 +135,13 @@ inline std::shared_ptr<Node> ConvDepthWise( } } // namespace Aidge +extern template class Aidge::ConvDepthWise_Op<1>; +extern template class Aidge::ConvDepthWise_Op<2>; + namespace { template <> -const char *const EnumStrings<Aidge::ConvDepthWiseAttr>::data[] = {"StrideDims", "DilationDims", "Channels", - "KernelDims", "NoBias"}; +const char *const EnumStrings<Aidge::ConvDepthWiseAttr>::data[] = {"StrideDims", "DilationDims", + "KernelDims"}; } #endif /* AIDGE_CORE_OPERATOR_CONVDEPTHWISE_H_ */ diff --git a/include/aidge/operator/Div.hpp b/include/aidge/operator/Div.hpp index 566f4a6ae69b090b3a035b034406d463eeb77317..3edb4a28851cffe060886a4660d6b524eb9b814a 100644 --- a/include/aidge/operator/Div.hpp +++ b/include/aidge/operator/Div.hpp @@ -30,7 +30,7 @@ class Div_Op : public OperatorTensor, public: static const std::string Type; - Div_Op() : OperatorTensor(Type, 2, 0, 1) {} + Div_Op() : OperatorTensor(Type, {InputCategory::Data, InputCategory::Data}, 1) {} /** * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated). diff --git a/include/aidge/operator/Erf.hpp b/include/aidge/operator/Erf.hpp index 5ec10522e889bb1188b2304940fd892c0928b414..f615fedeef6fea59d2177cf886e8d910f064f5c2 100644 --- a/include/aidge/operator/Erf.hpp +++ b/include/aidge/operator/Erf.hpp @@ -29,7 +29,7 @@ class Erf_Op : public OperatorTensor, public: static const std::string Type; - Erf_Op() : OperatorTensor(Type, 1, 0, 1) {} + Erf_Op() : OperatorTensor(Type, {InputCategory::Data}, 1) {} /** * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated). diff --git a/include/aidge/operator/FC.hpp b/include/aidge/operator/FC.hpp index b97874f4e0deafd685453b3ce9865e65fafe7561..01da37a05414c5994ace767770e7c26fc8cd4646 100644 --- a/include/aidge/operator/FC.hpp +++ b/include/aidge/operator/FC.hpp @@ -24,26 +24,15 @@ #include "aidge/utils/Registrar.hpp" namespace Aidge { -enum class FCAttr { OutChannels, NoBias }; - class FC_Op : public OperatorTensor, public Registrable<FC_Op, std::string, - std::shared_ptr<OperatorImpl>(const FC_Op &)>, - public StaticAttributes<FCAttr, DimSize_t, bool> { + std::shared_ptr<OperatorImpl>(const FC_Op &)> { public: static const std::string Type; - FC_Op() = delete; - - using Attributes_ = StaticAttributes<FCAttr, DimSize_t, bool>; - template <FCAttr e> using attr = typename Attributes_::template attr<e>; - - FC_Op(DimSize_t out_channels, bool noBias) - : OperatorTensor(Type, 1, 2, 1), - Attributes_( - attr<FCAttr::OutChannels>(out_channels), - attr<FCAttr::NoBias>(noBias)) + FC_Op() + : OperatorTensor(Type, {InputCategory::Data, InputCategory::Param, InputCategory::OptionalParam}, 1) {} /** @@ -51,12 +40,11 @@ public: * @param op Operator to copy. */ FC_Op(const FC_Op& op) - : OperatorTensor(op), - Attributes_(op) + : OperatorTensor(op) { - if (op.mImpl){ + if (op.mImpl) { SET_IMPL_MACRO(FC_Op, *this, op.backend()); - }else{ + } else { mImpl = nullptr; } } @@ -75,6 +63,13 @@ public: void setBackend(const std::string& name, DeviceIdx_t device = 0) override; + DimSize_t outChannels() const { + if (!getInput(1)) { + AIDGE_THROW_OR_ABORT(std::runtime_error, "Fully Connected (FC) operator has no weight Tensor associated so no specific number of output channel imposed."); + } + return getInput(1)->template dims<2>()[0]; + } + static const std::vector<std::string> getInputsName() { return {"data_input", "weight", "bias"}; } @@ -83,19 +78,15 @@ public: } }; -inline std::shared_ptr<Node> FC(DimSize_t inChannels, DimSize_t outChannels, bool noBias = false, const std::string& name = "") { +inline std::shared_ptr<Node> FC(const DimSize_t inChannels, const DimSize_t outChannels, bool noBias = false, const std::string& name = "") { // FIXME: properly handle default w&b initialization in every cases - auto fc = std::make_shared<Node>(std::make_shared<FC_Op>(outChannels, noBias), name); + auto fc = std::make_shared<Node>(std::make_shared<FC_Op>(), name); addProducer(fc, 1, {outChannels, inChannels}, "w"); - addProducer(fc, 2, {(noBias ? 0 : outChannels)}, "b"); // already sets bias dims + if (!noBias) { + addProducer(fc, 2, {outChannels}, "b"); // already sets bias dims + } return fc; } } // namespace Aidge -namespace { -template <> -const char *const EnumStrings<Aidge::FCAttr>::data[] = {"OutChannels", - "NoBias"}; -} - #endif /* AIDGE_CORE_OPERATOR_FC_H_ */ diff --git a/include/aidge/operator/Gather.hpp b/include/aidge/operator/Gather.hpp index 7534b66951cc9d8074d0af7742ba5165013431f5..3e9b780732fa9144f2e58bef854d1b42d063d0bf 100644 --- a/include/aidge/operator/Gather.hpp +++ b/include/aidge/operator/Gather.hpp @@ -12,7 +12,7 @@ #ifndef AIDGE_CORE_OPERATOR_GATHER_H_ #define AIDGE_CORE_OPERATOR_GATHER_H_ -#include <cstdint> // std::int64_t +#include <cstdint> // std::int8_t, std::int64_t #include <memory> #include <string> #include <vector> @@ -31,27 +31,36 @@ public: void forward() override; }; -enum class GatherAttr { Indices, GatheredShape, Axis }; +enum class GatherAttr { Axis, Indices, GatheredShape }; class Gather_Op : public OperatorTensor, public Registrable<Gather_Op, std::string, - std::shared_ptr<OperatorImpl>(const Gather_Op&)>, - public StaticAttributes<GatherAttr, std::vector<std::int64_t>, std::vector<DimSize_t>, std::int64_t> { - + std::shared_ptr<OperatorImpl>(const Gather_Op&)> { public: static const std::string Type; + using Attributes_ = StaticAttributes<GatherAttr, + std::int8_t, + std::vector<int64_t>, + std::vector<DimSize_t>>; +private: + template <GatherAttr e> + using attr = typename Attributes_::template attr<e>; + const std::shared_ptr<Attributes_> mAttributes; + +public: + Gather_Op() = delete; - using Attributes_ = StaticAttributes<GatherAttr, std::vector<std::int64_t>, std::vector<DimSize_t>, std::int64_t>; - template <GatherAttr e> using attr = typename Attributes_::template attr<e>; - Gather_Op(const std::vector<std::int64_t>& indices, const std::vector<DimSize_t>& gatheredShape, std::int64_t axis) - : OperatorTensor(Type, 1, 0, 1), - Attributes_( - attr<GatherAttr::Indices>(indices), - attr<GatherAttr::GatheredShape>(gatheredShape), - attr<GatherAttr::Axis>(axis)) + Gather_Op(std::int8_t axis, + const std::vector<int64_t>& indices, + const std::vector<DimSize_t>& gatheredShape) + : OperatorTensor(Type, {InputCategory::Data, InputCategory::OptionalData}, 1), + mAttributes(std::make_shared<Attributes_>( + attr<GatherAttr::Axis>(axis), + attr<GatherAttr::Indices>(indices), + attr<GatherAttr::GatheredShape>(gatheredShape))) { mImpl = std::make_shared<Gather_OpImpl>(*this); } @@ -62,7 +71,7 @@ public: */ Gather_Op(const Gather_Op& op) : OperatorTensor(op), - Attributes_(op) + mAttributes(op.mAttributes) { if (!op.backend().empty()) { SET_IMPL_MACRO(Gather_Op, *this, op.backend()); @@ -80,26 +89,32 @@ public: return std::make_shared<Gather_Op>(*this); } + bool dimsForwarded() const override final; bool forwardDims(bool allowDataDependency = false) override final; void setBackend(const std::string& name, DeviceIdx_t device = 0) override; + inline std::shared_ptr<Attributes> attributes() const override { return mAttributes; } + inline std::int8_t& axis() const { return mAttributes -> getAttr<GatherAttr::Axis>(); } + inline std::vector<int64_t>& indices() const { return mAttributes -> getAttr<GatherAttr::Indices>(); } + inline std::vector<DimSize_t>& gatheredShape() const { return mAttributes -> getAttr<GatherAttr::GatheredShape>(); } + static const std::vector<std::string> getInputsName(){ - return {"data_input"}; + return {"data_input", "indices"}; } static const std::vector<std::string> getOutputsName(){ return {"data_output"}; } }; -inline std::shared_ptr<Node> Gather( const std::vector<std::int64_t>& indices, const std::vector<DimSize_t>& gatheredShape, std::int64_t axis = 0, const std::string& name = "") { - return std::make_shared<Node>(std::make_shared<Gather_Op>(indices, gatheredShape, axis), name); +inline std::shared_ptr<Node> Gather(std::int8_t axis = 0, const std::vector<int64_t>& indices = {}, const std::vector<DimSize_t>& gatheredShape = {}, const std::string& name = "") { + return std::make_shared<Node>(std::make_shared<Gather_Op>(axis, indices, gatheredShape), name); } } // namespace Aidge namespace { template <> -const char *const EnumStrings<Aidge::GatherAttr>::data[] = {"Indices", "GatheredShape", "Axis"}; +const char *const EnumStrings<Aidge::GatherAttr>::data[] = {"Axis", "Indices", "GatheredShape"}; } #endif /* AIDGE_CORE_OPERATOR_GATHER_H_ */ diff --git a/include/aidge/operator/GenericOperator.hpp b/include/aidge/operator/GenericOperator.hpp index f0b7e92d708dfef65eea0ec7649ccc8716533679..8196c4268e669001d99f25ed2cead546e1141aa7 100644 --- a/include/aidge/operator/GenericOperator.hpp +++ b/include/aidge/operator/GenericOperator.hpp @@ -26,16 +26,28 @@ namespace Aidge { class GenericOperator_Op : public OperatorTensor, - public Registrable<GenericOperator_Op, std::string, std::unique_ptr<OperatorImpl>(std::shared_ptr<GenericOperator_Op>)>, - public DynamicAttributes { + public Registrable<GenericOperator_Op, std::string, std::unique_ptr<OperatorImpl>(std::shared_ptr<GenericOperator_Op>)> { private: using ComputeDimsFunc = std::function<std::vector<std::vector<size_t>>(const std::vector<std::vector<size_t>>&)>; ComputeDimsFunc mForwardDims; + const std::shared_ptr<DynamicAttributes> mAttributes; + public: + GenericOperator_Op(const std::string& type, const std::vector<InputCategory>& inputsCategory, IOIndex_t nbOut) + : OperatorTensor(type, inputsCategory, nbOut) + { + mImpl = std::make_shared<OperatorImpl>(*this); + } + GenericOperator_Op(const std::string& type, IOIndex_t nbData, IOIndex_t nbParam, IOIndex_t nbOut) - : OperatorTensor(type, nbData, nbParam, nbOut) + : OperatorTensor(type, [nbData, nbParam]() { + std::vector<InputCategory> inputsCategory(nbData, InputCategory::Data); + inputsCategory.resize(nbData + nbParam, InputCategory::Param); + return inputsCategory; + }(), nbOut), + mAttributes(std::make_shared<DynamicAttributes>()) { mImpl = std::make_shared<OperatorImpl>(*this); } @@ -45,7 +57,8 @@ public: * @param op Operator to copy. */ GenericOperator_Op(const GenericOperator_Op& op) - : OperatorTensor(op) + : OperatorTensor(op), + mAttributes(op.attributes() ? op.mAttributes : std::make_shared<DynamicAttributes>()) { mImpl = std::make_shared<OperatorImpl>(*this, op.backend()); } @@ -63,10 +76,23 @@ public: public: bool forwardDims(bool allowDataDependency = false) override final; - bool dimsForwarded() const override final; + void setBackend(const std::string &name, DeviceIdx_t device = 0) override; + inline std::shared_ptr<Attributes> attributes() const override { return mAttributes; } - void setBackend(const std::string & /*name*/, DeviceIdx_t /*device*/ = 0) override { fmt::print("setBackend: not available yet.\n"); } - void setDataType(const DataType& /*datatype*/) const override { fmt::print("setDataType: not available yet.\n"); } + template <class T> + inline T& getAttr(const std::string& name) + { return mAttributes -> template getAttr<T>(name); } + template <class T> + inline const T& getAttr(const std::string& name) const + { return mAttributes -> template getAttr<T>(name); } + + ///\brief Add a new Attribute, identified by its name. If it already exists, asserts. + ///\tparam T expected Attribute type + ///\param name Attribute name + ///\param value Attribute value + template <class T> + inline void addAttr(const std::string& name, const T& value) const + { mAttributes -> template addAttr<T>(name, value); } // Helper functions that can be used with setForwardDims(): static const ComputeDimsFunc Identity; @@ -76,6 +102,20 @@ public: } }; +/** + * @brief Fictive custom operator not associated with any implementation. + * Allows to import unknown operators and simulate new ones. + * @param type Type of the fictive operator. + * @param inputCategory List inputs with their category + * @param nbOut Number of output data. + * @param name (optional) name of the Operator. + * @return std::shared_ptr<Node> Node associated with the Generic Operator. + */ +inline std::shared_ptr<Node> GenericOperator(const std::string& type, const std::vector<InputCategory>& inputCategory, IOIndex_t nbOut, + const std::string& name = "") { + return std::make_shared<Node>(std::make_shared<GenericOperator_Op>(type, inputCategory, nbOut), name); +} + /** * @brief Fictive custom operator not associated with any implementation. * Allows to import unknown operators and simulate new ones. diff --git a/include/aidge/operator/GlobalAveragePooling.hpp b/include/aidge/operator/GlobalAveragePooling.hpp index 74529a0ba9481bf6280df8d3ce496f67635a5aef..8bb738e8b57598e4256d3850fc791976e73c834c 100644 --- a/include/aidge/operator/GlobalAveragePooling.hpp +++ b/include/aidge/operator/GlobalAveragePooling.hpp @@ -37,7 +37,7 @@ class GlobalAveragePooling_Op public: static const std::string Type; - GlobalAveragePooling_Op() : OperatorTensor(Type, 1, 0, 1) {} + GlobalAveragePooling_Op() : OperatorTensor(Type, {InputCategory::Data}, 1) {} GlobalAveragePooling_Op(const GlobalAveragePooling_Op &op) : OperatorTensor(op) { diff --git a/include/aidge/operator/Identity.hpp b/include/aidge/operator/Identity.hpp index 367aa4e2d68fb1095b1e3b3be76f6ab59439e47f..393798da2fc26b3ef3f5e4cfe54f69fd82174a5f 100644 --- a/include/aidge/operator/Identity.hpp +++ b/include/aidge/operator/Identity.hpp @@ -27,6 +27,8 @@ namespace Aidge { + + /** * @brief Indentity_Op is an helper operator made to ease the declaration of MetaNodes. * This Operator has no Implementation, it just forward its input Tensor. @@ -40,7 +42,7 @@ public: static const std::string Type; Identity_Op() - : OperatorTensor(Type, 1, 0, 1) + : OperatorTensor(Type, {InputCategory::Data}, 1) { mImpl = std::make_shared<OperatorImpl>(*this); } @@ -63,7 +65,7 @@ public: return std::make_shared<Identity_Op>(*this); } - bool forwardDims(bool /*allowDataDependency*/ = false) override final { return true; } // Do nothing + // bool forwardDims(bool /*allowDataDependency*/ = false) override final { return true; } // Do nothing /** * @brief Check if output dimensions have been computed. @@ -74,7 +76,7 @@ public: * @return false Input has no dimensions or is a nullptr. */ bool dimsForwarded() const override final { - return mInputs[0] ? !mInputs[0]->empty() : false; + return mInputs[0] ? (mInputs[0]->empty() ? false : mInputs[0]->dims() == mOutputs[0]->dims()) : false; } diff --git a/include/aidge/operator/LeakyReLU.hpp b/include/aidge/operator/LeakyReLU.hpp index 83a7c30fce7e0f68576f367d4b0bfe48edf4b3b6..294e7ebb009ff184c9150d2aa18067a15deeba22 100644 --- a/include/aidge/operator/LeakyReLU.hpp +++ b/include/aidge/operator/LeakyReLU.hpp @@ -12,16 +12,16 @@ #ifndef AIDGE_CORE_OPERATOR_LEAKYRELU_H_ #define AIDGE_CORE_OPERATOR_LEAKYRELU_H_ -#include <vector> #include <memory> +#include <vector> -#include "aidge/utils/StaticAttributes.hpp" -#include "aidge/utils/Registrar.hpp" -#include "aidge/operator/OperatorTensor.hpp" #include "aidge/backend/OperatorImpl.hpp" -#include "aidge/data/Tensor.hpp" #include "aidge/data/Data.hpp" +#include "aidge/data/Tensor.hpp" #include "aidge/graph/Node.hpp" +#include "aidge/operator/OperatorTensor.hpp" +#include "aidge/utils/Registrar.hpp" +#include "aidge/utils/StaticAttributes.hpp" #include "aidge/utils/Types.h" namespace Aidge { @@ -30,20 +30,24 @@ enum class LeakyReLUAttr { }; class LeakyReLU_Op : public OperatorTensor, - public Registrable<LeakyReLU_Op, std::string, std::shared_ptr<OperatorImpl>(const LeakyReLU_Op&)>, - public StaticAttributes<LeakyReLUAttr, float> { + public Registrable<LeakyReLU_Op, std::string, std::shared_ptr<OperatorImpl>(const LeakyReLU_Op&)> { public: static const std::string Type; - LeakyReLU_Op() = delete; - +private: using Attributes_ = StaticAttributes<LeakyReLUAttr, float>; template <LeakyReLUAttr e> using attr = typename Attributes_::template attr<e>; + const std::shared_ptr<Attributes_> mAttributes; + +public: + + LeakyReLU_Op() = delete; LeakyReLU_Op(float negativeSlope) - : OperatorTensor(Type, 1, 0, 1), - Attributes_( - attr<LeakyReLUAttr::NegativeSlope>(negativeSlope)) + : OperatorTensor(Type, {InputCategory::Data}, 1), + mAttributes( + std::make_shared<Attributes_>( + attr<LeakyReLUAttr::NegativeSlope>(negativeSlope))) {} /** @@ -52,7 +56,7 @@ public: */ LeakyReLU_Op(const LeakyReLU_Op& op) : OperatorTensor(op), - Attributes_(op) + mAttributes(op.mAttributes) { if (op.mImpl){ SET_IMPL_MACRO(LeakyReLU_Op, *this, op.backend()); @@ -76,6 +80,9 @@ public: mOutputs[0]->setBackend(name, device); } + inline std::shared_ptr<Attributes> attributes() const override { return mAttributes; } + inline float& negativeSlope() const noexcept { return mAttributes -> getAttr<LeakyReLUAttr::NegativeSlope>(); } + static const std::vector<std::string> getInputsName(){ return {"data_input"}; } diff --git a/include/aidge/operator/Ln.hpp b/include/aidge/operator/Ln.hpp new file mode 100755 index 0000000000000000000000000000000000000000..d4010471c9af853556dbe1d60c8585d12f8fc638 --- /dev/null +++ b/include/aidge/operator/Ln.hpp @@ -0,0 +1,73 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#ifndef AIDGE_CORE_OPERATOR_LN_H_ +#define AIDGE_CORE_OPERATOR_LN_H_ + +#include <cassert> +#include <memory> +#include <vector> + +#include "aidge/backend/OperatorImpl.hpp" +#include "aidge/graph/Node.hpp" +#include "aidge/operator/OperatorTensor.hpp" +#include "aidge/utils/ErrorHandling.hpp" +#include "aidge/utils/Registrar.hpp" +#include "aidge/utils/Types.h" + +namespace Aidge { + +class Ln_Op : public OperatorTensor, + public Registrable<Ln_Op, std::string, std::unique_ptr<OperatorImpl>(const Ln_Op&)> { +public: + static const std::string Type; + + Ln_Op() : OperatorTensor(Type, {InputCategory::Data}, 1) {} + + /** + * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated). + * @param op Operator to copy. + */ + Ln_Op(const Ln_Op& op) + : OperatorTensor(op) + { + if (op.mImpl){ + SET_IMPL_MACRO(Ln_Op, *this, op.backend()); + } else { + mImpl = nullptr; + } + } + + /** + * @brief Clone the operator using its copy-constructor. + * @see Operator::Ln_Op + */ + std::shared_ptr<Operator> clone() const override { + return std::make_shared<Ln_Op>(*this); + } + + + void setBackend(const std::string& name, DeviceIdx_t device = 0) override final; + + static const std::vector<std::string> getInputsName(){ + return {"data_input"}; + } + static const std::vector<std::string> getOutputsName(){ + return {"data_output"}; + } +}; + +inline std::shared_ptr<Node> Ln(const std::string& name = "") { + return std::make_shared<Node>(std::make_shared<Ln_Op>(), name); +} +} + +#endif /* AIDGE_CORE_OPERATOR_LN_H_ */ diff --git a/include/aidge/operator/MatMul.hpp b/include/aidge/operator/MatMul.hpp index 580d720e617e5b20c0acc7ce5e7f200fe5b25606..be460ee88bd79592e29581f6acd64813ecc39bec 100644 --- a/include/aidge/operator/MatMul.hpp +++ b/include/aidge/operator/MatMul.hpp @@ -30,7 +30,7 @@ class MatMul_Op : public OperatorTensor, public: static const std::string Type; - MatMul_Op() : OperatorTensor(Type, 2, 0, 1) {} + MatMul_Op() : OperatorTensor(Type, {InputCategory::Data, InputCategory::Data}, 1) {} /** * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated). diff --git a/include/aidge/operator/MaxPooling.hpp b/include/aidge/operator/MaxPooling.hpp index 8aff1582604a9e23e248e7c01521567483c793ad..082aa26bbdf1d55dcae29d1ffb2b9810db8b17d0 100644 --- a/include/aidge/operator/MaxPooling.hpp +++ b/include/aidge/operator/MaxPooling.hpp @@ -34,30 +34,31 @@ enum class MaxPoolingAttr { StrideDims, KernelDims, CeilMode }; template <DimIdx_t DIM> class MaxPooling_Op : public OperatorTensor, - public Registrable<MaxPooling_Op<DIM>, std::string, std::shared_ptr<OperatorImpl>(const MaxPooling_Op<DIM> &)>, - public StaticAttributes<MaxPoolingAttr, - std::array<DimSize_t, DIM>, - std::array<DimSize_t, DIM>, - bool> { + public Registrable<MaxPooling_Op<DIM>, std::string, std::shared_ptr<OperatorImpl>(const MaxPooling_Op<DIM> &)> { public: static const std::string Type; - MaxPooling_Op() = delete; - using Attributes_ = StaticAttributes<MaxPoolingAttr, std::array<DimSize_t, DIM>, std::array<DimSize_t, DIM>, bool>; + +private: template <MaxPoolingAttr e> using attr = typename Attributes_::template attr<e>; + const std::shared_ptr<Attributes_> mAttributes; + +public: + MaxPooling_Op() = delete; constexpr MaxPooling_Op(const std::array<DimSize_t, DIM> &kernel_dims, const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), bool ceil_mode = false) - : OperatorTensor(Type, 1, 0, 1), - Attributes_(attr<MaxPoolingAttr::StrideDims>(stride_dims), - attr<MaxPoolingAttr::KernelDims>(kernel_dims), - attr<MaxPoolingAttr::CeilMode>(ceil_mode)) + : OperatorTensor(Type, {InputCategory::Data}, 1), + mAttributes(std::make_shared<Attributes_>( + attr<MaxPoolingAttr::StrideDims>(stride_dims), + attr<MaxPoolingAttr::KernelDims>(kernel_dims), + attr<MaxPoolingAttr::CeilMode>(ceil_mode))) {} /** @@ -66,7 +67,7 @@ public: */ MaxPooling_Op(const MaxPooling_Op<DIM>& op) : OperatorTensor(op), - Attributes_(op) + mAttributes(op.mAttributes) { if (op.mImpl) { SET_IMPL_MACRO(MaxPooling_Op<DIM>, *this, op.backend()); @@ -85,25 +86,22 @@ public: bool forwardDims(bool /*allowDataDependency*/ = false) override final { - if (!getInput(0)) { - AIDGE_THROW_OR_ABORT(std::runtime_error, "{}: input #0 should be associated with a Tensor", type()); - } - if (!(getInput(0)->empty())) { + if (inputsAssociated()) { std::array<DimSize_t, DIM + 2> outputDims{}; const std::array<DimSize_t, DIM + 2> inputDims(getInput(0)->template dims<DIM+2>()); std::function<float(float)> roundingFunction; - if (this->template getAttr<MaxPoolingAttr::CeilMode>()) { + if (mAttributes->template getAttr<MaxPoolingAttr::CeilMode>()) { roundingFunction = [](float x) { return std::ceil(x); }; } else { roundingFunction = [](float x) { return std::floor(x); }; } - for (std::size_t dim = 0; dim < this->template getAttr<MaxPoolingAttr::KernelDims>().size() ; ++dim) { + for (std::size_t dim = 0; dim < mAttributes->template getAttr<MaxPoolingAttr::KernelDims>().size() ; ++dim) { outputDims[dim+2] = 1 + static_cast<DimSize_t>( roundingFunction(static_cast<float>(inputDims[dim+2] - - this->template getAttr<MaxPoolingAttr::KernelDims>()[dim]) / - static_cast<float>(this->template getAttr<MaxPoolingAttr::StrideDims>()[dim]))); + mAttributes->template getAttr<MaxPoolingAttr::KernelDims>()[dim]) / + static_cast<float>(mAttributes->template getAttr<MaxPoolingAttr::StrideDims>()[dim]))); } outputDims[1] = inputDims[1]; outputDims[0] = inputDims[0]; @@ -119,6 +117,11 @@ public: mOutputs[0]->setBackend(name, device); } + inline std::shared_ptr<Attributes> attributes() const override { return mAttributes; } + inline std::array<DimSize_t, DIM>& strideDims() const { return mAttributes->template getAttr<MaxPoolingAttr::StrideDims>(); } + inline std::array<DimSize_t, DIM>& kernelDims() const { return mAttributes->template getAttr<MaxPoolingAttr::KernelDims>(); } + inline bool& ceilMode() const { return mAttributes->template getAttr<MaxPoolingAttr::CeilMode>(); } + static const std::vector<std::string> getInputsName(){ return {"data_input"}; } diff --git a/include/aidge/operator/Memorize.hpp b/include/aidge/operator/Memorize.hpp index 6b0ace2eb09fde069f8b9b104f92fc33811c25aa..d6af56f2faad18b9e39c793ea68e39eac4dd2f01 100644 --- a/include/aidge/operator/Memorize.hpp +++ b/include/aidge/operator/Memorize.hpp @@ -37,20 +37,25 @@ public: enum class MemorizeAttr { ScheduleStep, ForwardStep, EndStep }; class Memorize_Op : public OperatorTensor, - public Registrable<Memorize_Op, std::string, std::unique_ptr<OperatorImpl>(const Memorize_Op&)>, - public StaticAttributes<MemorizeAttr, unsigned int, unsigned int, unsigned int> { + public Registrable<Memorize_Op, std::string, std::unique_ptr<OperatorImpl>(const Memorize_Op&)> { public: static const std::string Type; - using Attributes_ = StaticAttributes<MemorizeAttr, unsigned int, unsigned int, unsigned int>; +private: + using Attributes_ = StaticAttributes<MemorizeAttr, std::uint32_t, std::uint32_t, std::uint32_t>; template <MemorizeAttr e> using attr = typename Attributes_::template attr<e>; + const std::shared_ptr<Attributes_> mAttributes; - Memorize_Op(const unsigned int endStep) - : OperatorTensor(Type, 1, 1, 2), - Attributes_(attr<MemorizeAttr::ScheduleStep>(0), - attr<MemorizeAttr::ForwardStep>(0), - attr<MemorizeAttr::EndStep>(endStep)) +public: + Memorize_Op() = delete; + + Memorize_Op(const std::uint32_t endStep) + : OperatorTensor(Type, {InputCategory::Data, InputCategory::Param}, 2), + mAttributes(std::make_shared<Attributes_>( + attr<MemorizeAttr::ScheduleStep>(0), + attr<MemorizeAttr::ForwardStep>(0), + attr<MemorizeAttr::EndStep>(endStep))) { mOutputs[1] = mOutputs[0]; } @@ -62,7 +67,7 @@ public: */ Memorize_Op(const Memorize_Op& op) : OperatorTensor(op), - Attributes_(op) + mAttributes(op.mAttributes) { if (op.mImpl) { SET_IMPL_MACRO(Memorize_Op, *this, op.backend()); @@ -87,6 +92,11 @@ public: void updateConsummerProducer() override; void forward() override; + inline std::shared_ptr<Attributes> attributes() const override { return mAttributes; } + inline std::uint32_t& scheduleStep() const { return mAttributes->template getAttr<MemorizeAttr::ScheduleStep>(); } + inline std::uint32_t& forwardStep() const { return mAttributes->template getAttr<MemorizeAttr::ForwardStep>(); } + inline std::uint32_t& endStep() const { return mAttributes->template getAttr<MemorizeAttr::EndStep>(); } + static const std::vector<std::string> getInputsName(){ return {"data_input", "data_input_init"}; } @@ -95,7 +105,7 @@ public: } }; -inline std::shared_ptr<Node> Memorize(const unsigned int endStep, const std::string& name = "") { +inline std::shared_ptr<Node> Memorize(const std::uint32_t endStep, const std::string& name = "") { return std::make_shared<Node>(std::make_shared<Memorize_Op>(endStep), name); } } // namespace Aidge diff --git a/include/aidge/operator/MetaOperator.hpp b/include/aidge/operator/MetaOperator.hpp index a411101618a5f4acaf070516d67691a6b55e3ff5..744564b4bd591d84b871a6af71c4a54589103485 100644 --- a/include/aidge/operator/MetaOperator.hpp +++ b/include/aidge/operator/MetaOperator.hpp @@ -72,17 +72,9 @@ public: void associateInput(const IOIndex_t inputIdx, const std::shared_ptr<Data>& data) override final; void setInput(const IOIndex_t inputIdx, const std::shared_ptr<Data>& data) override final; - void setInput(const IOIndex_t inputIdx, std::shared_ptr<Data>&& data) override final; bool forwardDims(bool allowDataDependency = false) override final { - // Check first that all required inputs are available, otherwise - // mGraph->forwardDims() will fail! - bool forwarded = true; - for (IOIndex_t i = 0; i < nbInputs(); ++i) { - forwarded &= mInputs[i] ? !(getInput(i)->empty()) : false; - } - - if (forwarded) { + if (inputsAssociated()) { // Forward dims of micro-graph return mGraph->forwardDims({}, allowDataDependency); } @@ -116,9 +108,10 @@ public: Elts_t getNbProducedData(IOIndex_t outputIdx) const override; void updateConsummerProducer() override; + void resetConsummerProducer() override; void forward() override; void backward() override { - assert(false && "not implemented"); + AIDGE_THROW_OR_ABORT(std::runtime_error, "backward() not implemented yet for a MetaOperator"); } inline bool isAtomic() const noexcept override final { return false; } diff --git a/include/aidge/operator/MetaOperatorDefs.hpp b/include/aidge/operator/MetaOperatorDefs.hpp index fb3aa6384fc703d758cb8753dcf54c4694f96bd4..51681629cbae215fd529b6e7bb568d07264dd63e 100644 --- a/include/aidge/operator/MetaOperatorDefs.hpp +++ b/include/aidge/operator/MetaOperatorDefs.hpp @@ -12,22 +12,26 @@ #ifndef AIDGE_CORE_OPERATOR_METAOPERATORDEFS_H_ #define AIDGE_CORE_OPERATOR_METAOPERATORDEFS_H_ +#include <array> +#include <memory> +#include <string> + +#include "aidge/graph/GraphView.hpp" +#include "aidge/graph/Node.hpp" +#include "aidge/graph/OpArgs.hpp" // Sequential #include "aidge/operator/MetaOperator.hpp" #include "aidge/operator/AvgPooling.hpp" #include "aidge/operator/MaxPooling.hpp" #include "aidge/operator/Conv.hpp" #include "aidge/operator/ConvDepthWise.hpp" #include "aidge/operator/Pad.hpp" -#include "aidge/operator/Memorize.hpp" -#include "aidge/operator/Add.hpp" -#include "aidge/operator/Mul.hpp" -#include "aidge/operator/FC.hpp" -#include "aidge/operator/Identity.hpp" -#include "aidge/operator/Concat.hpp" -#include "aidge/operator/Tanh.hpp" #include "aidge/operator/Sigmoid.hpp" +#include "aidge/utils/ArrayHelpers.hpp" +#include "aidge/utils/Types.h" namespace Aidge { + + template <std::array<DimSize_t, 1>::size_type DIM> inline std::shared_ptr<Node> PaddedConv(DimSize_t in_channels, DimSize_t out_channels, @@ -40,14 +44,29 @@ inline std::shared_ptr<Node> PaddedConv(DimSize_t in_channels, { // Construct micro-graph auto pad = Pad<DIM>(padding_dims, (!name.empty()) ? name + "_pad" : "", PadBorderType::Constant, 0.0); - auto conv = std::make_shared<Node>(std::make_shared<Conv_Op<static_cast<DimIdx_t>(DIM)>>(in_channels, out_channels, kernel_dims, stride_dims, dilation_dims, no_bias), (!name.empty()) ? name + "_conv" : ""); + auto conv = std::make_shared<Node>(std::make_shared<Conv_Op<static_cast<DimIdx_t>(DIM)>>(kernel_dims, stride_dims, dilation_dims), (!name.empty()) ? name + "_conv" : ""); auto metaOp = MetaOperator("PaddedConv", Sequential({pad, conv}), name); addProducer(metaOp, 1, append(out_channels, append(in_channels, kernel_dims)), "w"); - addProducer(metaOp, 2, {out_channels}, "b"); + if (!no_bias) { + addProducer(metaOp, 2, {out_channels}, "b"); + } return metaOp; } +template <std::array<DimSize_t, 1>::size_type DIM> +inline std::shared_ptr<MetaOperator_Op> PaddedConv_Op( + const std::array<DimSize_t, DIM> &kernel_dims, + const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), + const std::array<DimSize_t, 2*DIM> &padding_dims = create_array<DimSize_t,2*DIM>(0), + const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1)) +{ + auto pad = Pad<DIM>(padding_dims, "", PadBorderType::Constant, 0.0); + auto conv = std::make_shared<Node>(std::make_shared<Conv_Op<static_cast<DimIdx_t>(DIM)>>(kernel_dims, stride_dims, dilation_dims), ""); + + return std::make_shared<MetaOperator_Op>("PaddedConv", Sequential({pad, conv})); +} + // helper with C-style array instead of std::array for kernel_dims to allow automatic template DIM deduction template <DimSize_t DIM> inline std::shared_ptr<Node> PaddedConv( @@ -63,6 +82,8 @@ inline std::shared_ptr<Node> PaddedConv( return PaddedConv(in_channels, out_channels, to_array(kernel_dims), name, stride_dims, padding_dims, dilation_dims, no_bias); } +//////////////////////////////////////////////////////////////////////////////// + template <std::array<DimSize_t, 1>::size_type DIM> inline std::shared_ptr<Node> PaddedConvDepthWise(const DimSize_t nb_channels, const std::array<DimSize_t, DIM> &kernel_dims, @@ -74,14 +95,29 @@ inline std::shared_ptr<Node> PaddedConvDepthWise(const DimSize_t nb_channels, { // Construct micro-graph auto pad = Pad<DIM>(padding_dims, (!name.empty()) ? name + "_pad" : "", PadBorderType::Constant, 0.0); - auto conv = std::make_shared<Node>(std::make_shared<ConvDepthWise_Op<static_cast<DimIdx_t>(DIM)>>(nb_channels, kernel_dims, stride_dims, dilation_dims, no_bias), (!name.empty()) ? name + "_conv" : ""); + auto conv = std::make_shared<Node>(std::make_shared<ConvDepthWise_Op<static_cast<DimIdx_t>(DIM)>>(kernel_dims, stride_dims, dilation_dims), (!name.empty()) ? name + "_conv" : ""); auto metaOp = MetaOperator("PaddedConvDepthWise", Sequential({pad, conv}), name); addProducer(metaOp, 1, append(nb_channels, append(DimSize_t(1), kernel_dims)), "w"); - addProducer(metaOp, 2, {nb_channels}, "b"); + if (!no_bias) { + addProducer(metaOp, 2, {nb_channels}, "b"); + } return metaOp; } +template <std::array<DimSize_t, 1>::size_type DIM> +inline std::shared_ptr<MetaOperator_Op> PaddedConvDepthWise_Op( + const std::array<DimSize_t, DIM> &kernel_dims, + const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), + const std::array<DimSize_t, 2*DIM> &padding_dims = create_array<DimSize_t,2*DIM>(0), + const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1)) +{ + auto pad = Pad<DIM>(padding_dims, "", PadBorderType::Constant, 0.0); + auto conv = std::make_shared<Node>(std::make_shared<ConvDepthWise_Op<static_cast<DimIdx_t>(DIM)>>(kernel_dims, stride_dims, dilation_dims), ""); + + return std::make_shared<MetaOperator_Op>("PaddedConvDepthWise", Sequential({pad, conv})); +} + // helper with C-style array instead of std::array for kernel_dims to allow automatic template DIM deduction template <DimSize_t DIM> inline std::shared_ptr<Node> PaddedConvDepthWise( @@ -96,30 +132,29 @@ inline std::shared_ptr<Node> PaddedConvDepthWise( return PaddedConvDepthWise(nb_channels, to_array(kernel_dims), name, stride_dims, padding_dims, dilation_dims, no_bias); } +//////////////////////////////////////////////////////////////////////////////// + + template <std::array<DimSize_t, 1>::size_type DIM> -inline std::shared_ptr<Node> PaddedAvgPooling(const std::array<DimSize_t, DIM> &kernel_dims, +extern std::shared_ptr<Node> PaddedAvgPooling(const std::array<DimSize_t, DIM> &kernel_dims, const std::string& name = "", const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), - const std::array<DimSize_t, 2*DIM> &padding_dims = create_array<DimSize_t,2*DIM>(0)) -{ - auto graph = Sequential({ - Pad<DIM>(padding_dims, (!name.empty()) ? name + "_pad" : ""), - AvgPooling(kernel_dims, (!name.empty()) ? name + "_avgpooling" : "", stride_dims) - }); + const std::array<DimSize_t, 2*DIM> &padding_dims = create_array<DimSize_t,2*DIM>(0)); - return MetaOperator("PaddedAvgPooling", graph, name); -} + +template <std::array<DimSize_t, 1>::size_type DIM> +extern std::shared_ptr<MetaOperator_Op> PaddedAvgPooling_Op(const std::array<DimSize_t, DIM> &kernel_dims, + const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), + const std::array<DimSize_t, 2*DIM> &padding_dims = create_array<DimSize_t,2*DIM>(0)); // helper with C-style array instead of std::array for kernel_dims to allow automatic template DIM deduction template <DimSize_t DIM> -inline std::shared_ptr<Node> PaddedAvgPooling( - DimSize_t const (&kernel_dims)[DIM], +extern std::shared_ptr<Node> PaddedAvgPooling(DimSize_t const (&kernel_dims)[DIM], const std::string& name = "", const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), - const std::array<DimSize_t, 2*DIM> &padding_dims = create_array<DimSize_t,2*DIM>(0)) -{ - return PaddedAvgPooling(to_array(kernel_dims), name, stride_dims, padding_dims); -} + const std::array<DimSize_t, 2*DIM> &padding_dims = create_array<DimSize_t,2*DIM>(0)); + +//////////////////////////////////////////////////////////////////////////////// template <std::array<DimSize_t, 1>::size_type DIM> inline std::shared_ptr<Node> PaddedMaxPooling(const std::array<DimSize_t, DIM> &kernel_dims, @@ -136,6 +171,20 @@ inline std::shared_ptr<Node> PaddedMaxPooling(const std::array<DimSize_t, DIM> & return MetaOperator("PaddedMaxPooling", graph, name); } +template <std::array<DimSize_t, 1>::size_type DIM> +inline std::shared_ptr<MetaOperator_Op> PaddedMaxPooling_Op(const std::array<DimSize_t, DIM> &kernel_dims, + const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), + const std::array<DimSize_t, 2*DIM> &padding_dims = create_array<DimSize_t,2*DIM>(0), + bool ceil_mode = false) +{ + auto graph = Sequential({ + Pad<DIM>(padding_dims, ""), + MaxPooling(kernel_dims, "", stride_dims, ceil_mode) + }); + + return std::make_shared<MetaOperator_Op>("PaddedMaxPooling", graph); +} + // helper with C-style array instead of std::array for kernel_dims to allow automatic template DIM deduction template <DimSize_t DIM> inline std::shared_ptr<Node> PaddedMaxPooling( @@ -148,115 +197,16 @@ inline std::shared_ptr<Node> PaddedMaxPooling( return PaddedMaxPooling(to_array(kernel_dims), name, stride_dims, padding_dims, ceil_mode); } -inline std::shared_ptr<Node> LSTM(DimSize_t in_channels, - DimSize_t hidden_channels, - DimSize_t seq_length, - bool noBias = false, - const std::string& name = "") -{ - // Construct micro-graph - auto input = Identity((!name.empty()) ? name + "_input" : ""); - auto hiddenState = Memorize(seq_length, (!name.empty()) ? name + "_hidden_state" : ""); - auto cellState = Memorize(seq_length, (!name.empty()) ? name + "_cell_state" : ""); - auto add = Add(2, (!name.empty()) ? name + "_add" : ""); - - // Forget gate - auto forgetGateX = std::make_shared<Node>(std::make_shared<FC_Op>(hidden_channels, noBias), (!name.empty()) ? name + "_forgetGateX" : ""); - input->addChild(forgetGateX, 0, 0); - auto forgetGateH = std::make_shared<Node>(std::make_shared<FC_Op>(hidden_channels, noBias), (!name.empty()) ? name + "_forgetGateH" : ""); - hiddenState->addChild(forgetGateH, 1, 0); - auto forgetGate = Add(2, (!name.empty()) ? name + "_forgetGate" : ""); - forgetGateX->addChild(forgetGate, 0, 0); - forgetGateH->addChild(forgetGate, 0, 1); - auto forgetGateAct = Sigmoid((!name.empty()) ? name + "_forgetGateAct" : ""); - auto forgetGateMul = Mul((!name.empty()) ? name + "_forgetGateMul" : ""); - forgetGate->addChild(forgetGateAct, 0, 0); - forgetGateAct->addChild(forgetGateMul, 0, 0); - forgetGateMul->addChild(add, 0, 0); - cellState->addChild(forgetGateMul, 1, 1); - - // Input gate - auto inputGateX = std::make_shared<Node>(std::make_shared<FC_Op>(hidden_channels, noBias), (!name.empty()) ? name + "_inputGateX" : ""); - input->addChild(inputGateX, 0, 0); - auto inputGateH = std::make_shared<Node>(std::make_shared<FC_Op>(hidden_channels, noBias), (!name.empty()) ? name + "_inputGateH" : ""); - hiddenState->addChild(inputGateH, 1, 0); - auto inputGate = Add(2, (!name.empty()) ? name + "_inputGate" : ""); - inputGateX->addChild(inputGate, 0, 0); - inputGateH->addChild(inputGate, 0, 1); - auto inputGateAct = Sigmoid((!name.empty()) ? name + "_inputGateAct" : ""); - auto inputGateMul = Mul((!name.empty()) ? name + "_inputGateMul" : ""); - inputGate->addChild(inputGateAct, 0, 0); - inputGateAct->addChild(inputGateMul, 0, 0); - inputGateMul->addChild(add, 0, 1); - - // Candidate for cell update - auto cellCandidateX = std::make_shared<Node>(std::make_shared<FC_Op>(hidden_channels, noBias), (!name.empty()) ? name + "_cellCandidateX" : ""); - input->addChild(cellCandidateX, 0, 0); - auto cellCandidateH = std::make_shared<Node>(std::make_shared<FC_Op>(hidden_channels, noBias), (!name.empty()) ? name + "_cellCandidateH" : ""); - hiddenState->addChild(cellCandidateH, 1, 0); - auto cellCandidate = Add(2, (!name.empty()) ? name + "_cellCandidate" : ""); - cellCandidateX->addChild(cellCandidate, 0, 0); - cellCandidateH->addChild(cellCandidate, 0, 1); - auto cellCandidateAct = Tanh((!name.empty()) ? name + "_cellCandidateAct" : ""); - cellCandidate->addChild(cellCandidateAct, 0, 0); - cellCandidateAct->addChild(inputGateMul, 0, 1); - - // Output gate - auto outputGateX = std::make_shared<Node>(std::make_shared<FC_Op>(hidden_channels, noBias), (!name.empty()) ? name + "_outputGateX" : ""); - input->addChild(outputGateX, 0, 0); - auto outputGateH = std::make_shared<Node>(std::make_shared<FC_Op>(hidden_channels, noBias), (!name.empty()) ? name + "_outputGateH" : ""); - hiddenState->addChild(outputGateH, 1, 0); - auto outputGate = Add(2, (!name.empty()) ? name + "_outputGate" : ""); - outputGateX->addChild(outputGate, 0, 0); - outputGateH->addChild(outputGate, 0, 1); - auto outputGateAct = Sigmoid((!name.empty()) ? name + "_outputGateAct" : ""); - auto outputGateMul = Mul((!name.empty()) ? name + "_outputGateMul" : ""); - outputGate->addChild(outputGateAct, 0, 0); - outputGateAct->addChild(outputGateMul, 0, 0); - - // Updated cell state to help determine new hidden state - auto cellUpdatedAct = Tanh((!name.empty()) ? name + "_cellUpdatedAct" : ""); - add->addChild(cellUpdatedAct, 0, 0); - cellUpdatedAct->addChild(outputGateMul, 0, 1); - outputGateMul->addChild(hiddenState, 0, 0); - add->addChild(cellState, 0, 0); - - std::shared_ptr<GraphView> microGraph = std::make_shared<GraphView>(); - microGraph->add(input); - microGraph->add({hiddenState, cellState, add, - forgetGateX, forgetGateH, forgetGate, forgetGateAct, forgetGateMul, - inputGateX, inputGateH, inputGate, inputGateAct, inputGateMul, - cellCandidateX, cellCandidateH, cellCandidate, cellCandidateAct, - outputGateX, outputGateH, outputGate, outputGateAct, outputGateMul, - cellUpdatedAct}, false); - - microGraph->setOrderedInputs({{input, 0}, - {inputGateX, 1}, {outputGateX, 1}, {forgetGateX, 1}, {cellCandidateX, 1}, - {inputGateH, 1}, {outputGateH, 1}, {forgetGateH, 1}, {cellCandidateH, 1}, - {inputGateX, 2}, {outputGateX, 2}, {forgetGateX, 2}, {cellCandidateX, 2}, - {inputGateH, 2}, {outputGateH, 2}, {forgetGateH, 2}, {cellCandidateH, 2}, - {hiddenState, 1}, {cellState, 1}}); - microGraph->setOrderedOutputs({{hiddenState, 0}, {cellState, 0}}); - - auto metaOp = MetaOperator("LSTM", microGraph, name); - addProducer(metaOp, 1, {hidden_channels, in_channels}, "wi"); - addProducer(metaOp, 2, {hidden_channels, in_channels}, "wo"); - addProducer(metaOp, 3, {hidden_channels, in_channels}, "wf"); - addProducer(metaOp, 4, {hidden_channels, in_channels}, "wc"); - addProducer(metaOp, 5, {hidden_channels, hidden_channels}, "ri"); - addProducer(metaOp, 6, {hidden_channels, hidden_channels}, "ro"); - addProducer(metaOp, 7, {hidden_channels, hidden_channels}, "rf"); - addProducer(metaOp, 8, {hidden_channels, hidden_channels}, "rc"); - addProducer(metaOp, 9, {(noBias ? 0 : hidden_channels)}, "wbi"); - addProducer(metaOp, 10, {(noBias ? 0 : hidden_channels)}, "wbo"); - addProducer(metaOp, 11, {(noBias ? 0 : hidden_channels)}, "wbf"); - addProducer(metaOp, 12, {(noBias ? 0 : hidden_channels)}, "wbc"); - addProducer(metaOp, 13, {(noBias ? 0 : hidden_channels)}, "rbi"); - addProducer(metaOp, 14, {(noBias ? 0 : hidden_channels)}, "rbo"); - addProducer(metaOp, 15, {(noBias ? 0 : hidden_channels)}, "rbf"); - addProducer(metaOp, 16, {(noBias ? 0 : hidden_channels)}, "rbc"); - return metaOp; -} +//////////////////////////////////////////////////////////////////////////////// + +std::shared_ptr<Node> LSTM(DimSize_t in_channels, + DimSize_t hidden_channels, + DimSize_t seq_length, + bool noBias = false, + const std::string& name = ""); + +std::shared_ptr<MetaOperator_Op> LSTM_Op(DimSize_t seq_length); + } // namespace Aidge #endif /* AIDGE_CORE_OPERATOR_METAOPERATORDEFS_H_ */ diff --git a/include/aidge/operator/Move.hpp b/include/aidge/operator/Move.hpp index e9bcaa871619828a50dcd407d39744e7983fe2c4..cf5a3f188424fc52849eab580cce624ff714c729 100644 --- a/include/aidge/operator/Move.hpp +++ b/include/aidge/operator/Move.hpp @@ -35,7 +35,7 @@ class Move_Op : public OperatorTensor, public: static const std::string Type; - Move_Op() : OperatorTensor(Type, 1, 0, 1) { + Move_Op() : OperatorTensor(Type, {InputCategory::Data}, 1) { mImpl = std::make_shared<Move_OpImpl>(*this); } diff --git a/include/aidge/operator/Mul.hpp b/include/aidge/operator/Mul.hpp index f53a38a82a6771e416435222137e72366f5f69f3..e61393b28fc45bf46487ac2277753dec1b297b81 100644 --- a/include/aidge/operator/Mul.hpp +++ b/include/aidge/operator/Mul.hpp @@ -32,7 +32,7 @@ class Mul_Op : public OperatorTensor, public: static const std::string Type; - Mul_Op() : OperatorTensor(Type, 2, 0, 1) {} + Mul_Op() : OperatorTensor(Type, {InputCategory::Data, InputCategory::Data}, 1) {} /** * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), diff --git a/include/aidge/operator/Operator.hpp b/include/aidge/operator/Operator.hpp index 3ee2342297208f6f4e4b061409bc5071c811d2ac..adec17d07f39727a0c75d32fa24bcc624aa66e1a 100644 --- a/include/aidge/operator/Operator.hpp +++ b/include/aidge/operator/Operator.hpp @@ -18,11 +18,21 @@ #include <utility> #include <cstddef> +#ifdef PYBIND +#include <pybind11/pybind11.h> +#include <fmt/format.h> +#endif + + #include "aidge/backend/OperatorImpl.hpp" #include "aidge/data/Data.hpp" +#include "aidge/utils/Attributes.hpp" #include "aidge/utils/Types.h" #include "aidge/hook/Hook.hpp" +#ifdef PYBIND +namespace py = pybind11; +#endif namespace Aidge { enum class OperatorType { @@ -30,6 +40,13 @@ enum class OperatorType { Tensor }; +enum class InputCategory { + Data, + Param, + OptionalData, + OptionalParam +}; + class Operator : public std::enable_shared_from_this<Operator> { protected: std::shared_ptr<OperatorImpl> mImpl; // implementation of the operator @@ -38,17 +55,15 @@ protected: private: std::string mType; const OperatorType mOperatorType; - const IOIndex_t mNbData; - const IOIndex_t mNbParam; + const std::vector<InputCategory> mInputsCategory; const IOIndex_t mNbOut; public: Operator() = delete; - Operator(const std::string& type, const IOIndex_t nbData, const IOIndex_t nbParam, const IOIndex_t nbOut, const OperatorType operatorType = OperatorType::Data) + Operator(const std::string& type, const std::vector<InputCategory>& inputsCategory, const IOIndex_t nbOut, const OperatorType operatorType = OperatorType::Data) : mType(type), mOperatorType(operatorType), - mNbData(nbData), - mNbParam(nbParam), + mInputsCategory(inputsCategory), mNbOut(nbOut) { // ctor @@ -57,8 +72,7 @@ public: Operator(const Operator& op): std::enable_shared_from_this<Operator>(), mOperatorType(op.mOperatorType), - mNbData(op.mNbData), - mNbParam(op.mNbParam), + mInputsCategory(op.mInputsCategory), mNbOut(op.mNbOut) { mType = op.mType; @@ -73,12 +87,14 @@ public: public: virtual std::shared_ptr<Operator> clone() const = 0; + virtual std::shared_ptr<Attributes> attributes() const { return nullptr; }; /** * @brief Set the specified input with a shallow copy. * @param inputIdx Index of the input to set. * @param data Data to copy. */ virtual void associateInput(const IOIndex_t inputIdx, const std::shared_ptr<Data>& data) = 0; + virtual void resetInput(const IOIndex_t inputIdx) = 0; /** * @brief Set the specified input value by performing a deep copy of the given data. @@ -87,7 +103,6 @@ public: * @param data Data to copy. */ virtual void setInput(const IOIndex_t inputIdx, const std::shared_ptr<Data>& data) = 0; - virtual void setInput(const IOIndex_t inputIdx, std::shared_ptr<Data>&& data) = 0; virtual std::shared_ptr<Data> getRawInput(const IOIndex_t inputIdx) const = 0; /** * @brief Set the specified output value by performing a deep copy of the given data. @@ -95,7 +110,6 @@ public: * @param inputIdx Index of the input to set. */ virtual void setOutput(const IOIndex_t outputIdx, const std::shared_ptr<Data>& data) = 0; - virtual void setOutput(const IOIndex_t outputIdx, std::shared_ptr<Data>&& data) = 0; virtual std::shared_ptr<Data> getRawOutput(const IOIndex_t outputIdx) const = 0; std::shared_ptr<Hook> getHook(const std::string& hookName) { @@ -116,6 +130,7 @@ public: virtual void setBackend(const std::string& name, DeviceIdx_t device = 0) = 0; virtual void setDataType(const DataType& dataType) const = 0; + virtual void setDataFormat(const DataFormat& dataFormat) const = 0; /** * @brief Set a new OperatorImpl to the Operator @@ -180,11 +195,14 @@ public: return mOperatorType; } + inline InputCategory inputCategory(IOIndex_t idx) const { + AIDGE_ASSERT(idx < mInputsCategory.size(), "Input #{} out of range (number of inputs is {})", idx, mInputsCategory.size()); + return mInputsCategory[idx]; + } + virtual inline bool isAtomic() const noexcept { return true; } - inline IOIndex_t nbInputs() const noexcept { return mNbData+mNbParam; }; - inline IOIndex_t nbData() const noexcept { return mNbData; }; - inline IOIndex_t nbParam() const noexcept { return mNbParam; }; + inline IOIndex_t nbInputs() const noexcept { return mInputsCategory.size(); }; inline IOIndex_t nbOutputs() const noexcept { return mNbOut; }; static const std::vector<std::string> getInputsName() { @@ -193,6 +211,17 @@ public: static const std::vector<std::string> getOutputsName() { return {}; } + +#ifdef PYBIND + std::string repr() const { + return fmt::format("Operator(type = '{}', nb_in = {}, nb_out = {}, attr = {}, backend = {})", + type(), + nbInputs(), + nbOutputs(), + (attributes() ? attributes()->repr() : "None"), + (mImpl ? "'"+backend()+"'" : "None")); + } +#endif }; } // namespace Aidge diff --git a/include/aidge/operator/OperatorTensor.hpp b/include/aidge/operator/OperatorTensor.hpp index a493793278d42904d8a62e31571720f94ff1655d..657a6d8ab6124b8919a3ac8fea5b6bfa6c4254b9 100644 --- a/include/aidge/operator/OperatorTensor.hpp +++ b/include/aidge/operator/OperatorTensor.hpp @@ -40,7 +40,7 @@ protected: public: OperatorTensor() = delete; - OperatorTensor(const std::string& type, const IOIndex_t nbData, const IOIndex_t nbParam, + OperatorTensor(const std::string& type, const std::vector<InputCategory>& inputsCategory, const IOIndex_t nbOut); OperatorTensor(const OperatorTensor& other); @@ -51,19 +51,18 @@ public: /////////////////////////////////////////////////// virtual void associateInput(const IOIndex_t inputIdx, const std::shared_ptr<Data>& data) override; + void resetInput(const IOIndex_t inputIdx) override final; /////////////////////////////////////////////////// /////////////////////////////////////////////////// // Tensor access // input management void setInput(const IOIndex_t inputIdx, const std::shared_ptr<Data>& data) override; - void setInput(const IOIndex_t inputIdx, std::shared_ptr<Data>&& data) override; const std::shared_ptr<Tensor>& getInput(const IOIndex_t inputIdx) const; std::shared_ptr<Data> getRawInput(const IOIndex_t inputIdx) const override final; // output management void setOutput(const IOIndex_t outputIdx, const std::shared_ptr<Data>& data) override; - void setOutput(const IOIndex_t outputIdx, std::shared_ptr<Data>&& data) override; virtual const std::shared_ptr<Tensor>& getOutput(const IOIndex_t outputIdx) const; std::shared_ptr<Aidge::Data> getRawOutput(const Aidge::IOIndex_t outputIdx) const override final; /////////////////////////////////////////////////// @@ -85,8 +84,12 @@ public: /////////////////////////////////////////////////// virtual void setDataType(const DataType& dataType) const override; - + virtual void setDataFormat(const DataFormat& dataFormat) const override; + virtual void forward() override; + +protected: + bool inputsAssociated(bool checkNonEmpty = true) const; }; } // namespace Aidge diff --git a/include/aidge/operator/Pad.hpp b/include/aidge/operator/Pad.hpp index a4e4ebdce801971de118ca8a263999046a13777d..5fd0f93986206e6cd958a85055159783eeb8bc8f 100644 --- a/include/aidge/operator/Pad.hpp +++ b/include/aidge/operator/Pad.hpp @@ -13,16 +13,16 @@ #define AIDGE_CORE_OPERATOR_PAD_H_ #include <array> -#include <numeric> +#include <memory> +#include <string> #include <vector> -#include <cmath> #include "aidge/data/Tensor.hpp" #include "aidge/graph/Node.hpp" #include "aidge/operator/OperatorTensor.hpp" #include "aidge/operator/Producer.hpp" -#include "aidge/utils/StaticAttributes.hpp" #include "aidge/utils/Registrar.hpp" +#include "aidge/utils/StaticAttributes.hpp" #include "aidge/utils/Types.h" namespace Aidge { @@ -31,30 +31,31 @@ enum class PadBorderType { Constant, Edge, Reflect, Wrap }; template <DimIdx_t DIM> class Pad_Op : public OperatorTensor, - public Registrable<Pad_Op<DIM>, std::string, std::shared_ptr<OperatorImpl>(const Pad_Op<DIM> &)>, - public StaticAttributes<PadAttr, - std::array<DimSize_t, 2*DIM>, - PadBorderType, - double> { + public Registrable<Pad_Op<DIM>, std::string, std::shared_ptr<OperatorImpl>(const Pad_Op<DIM> &)> { public: static const std::string Type; - Pad_Op() = delete; - +private: using Attributes_ = StaticAttributes<PadAttr, - std::array<DimSize_t, 2*DIM>, - PadBorderType, - double>; + std::array<DimSize_t, 2*DIM>, + PadBorderType, + double>; template <PadAttr e> using attr = typename Attributes_::template attr<e>; + const std::shared_ptr<Attributes_> mAttributes; + +public: + + Pad_Op() = delete; constexpr Pad_Op(const std::array<DimSize_t, 2*DIM> &beginEndTuples, const PadBorderType &borderType = PadBorderType::Constant, double borderValue = 0.0) - : OperatorTensor(Type, 1, 0, 1), - Attributes_(attr<PadAttr::BeginEndBorders>(beginEndTuples), - attr<PadAttr::BorderType>(borderType), - attr<PadAttr::BorderValue>(borderValue)) {} + : OperatorTensor(Type, {InputCategory::Data}, 1), + mAttributes(std::make_shared<Attributes_>( + attr<PadAttr::BeginEndBorders>(beginEndTuples), + attr<PadAttr::BorderType>(borderType), + attr<PadAttr::BorderValue>(borderValue))) {} /** * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated). @@ -62,7 +63,7 @@ public: */ Pad_Op(const Pad_Op& op) : OperatorTensor(op), - Attributes_(op) + mAttributes(op.mAttributes) {} /** @@ -75,28 +76,22 @@ public: bool forwardDims(bool /*allowDataDependency*/ = false) override final { - bool associated = true; - for (IOIndex_t i = 0; i < nbInputs(); ++i) { - if (!getInput(i)) { - AIDGE_THROW_OR_ABORT(std::runtime_error, "{}: input #{} should be associated with a Tensor", type(), i); - } - associated &= !(getInput(i)->empty()); - } - if (associated) { + if (inputsAssociated()) { std::array<DimSize_t, DIM + 2> outputDims{}; const std::array<DimSize_t, DIM + 2> inputDims = getInput(0)->template dims<DIM+2>(); for (std::size_t dim = 0; dim < DIM; ++dim) { - outputDims[dim+2] = this->template getAttr<PadAttr::BeginEndBorders>()[2*dim] + outputDims[dim+2] = mAttributes->template getAttr<PadAttr::BeginEndBorders>()[2*dim] + inputDims[dim+2] - + this->template getAttr<PadAttr::BeginEndBorders>()[2*dim+1]; + + mAttributes->template getAttr<PadAttr::BeginEndBorders>()[2*dim+1]; } outputDims[1] = inputDims[1]; outputDims[0] = inputDims[0]; mOutputs[0]->resize(outputDims); + return true; } - return associated; + return false; } void setBackend(const std::string &name, DeviceIdx_t device = 0) override { @@ -104,6 +99,11 @@ public: mOutputs[0]->setBackend(name, device); } + inline std::shared_ptr<Attributes> attributes() const override { return mAttributes; } + inline std::array<DimSize_t, 2*DIM>& beginEndBorders() const noexcept { return mAttributes->template getAttr<PadAttr::BeginEndBorders>(); } + inline PadBorderType& borderType() const noexcept { return mAttributes->template getAttr<PadAttr::BorderType>(); } + inline double& borderValue() const noexcept { return mAttributes->template getAttr<PadAttr::BorderValue>(); } + static const std::vector<std::string> getInputsName(){ return {"data_input"}; } @@ -112,9 +112,6 @@ public: } }; -template <DimIdx_t DIM> -const std::string Pad_Op<DIM>::Type = "Pad"; - template <std::array<DimSize_t, 1>::size_type DIM> inline std::shared_ptr<Node> Pad(const std::array<DimSize_t, 2*DIM> &beginEndTuples, const std::string& name = "", @@ -137,6 +134,9 @@ inline std::shared_ptr<Node> Pad( } } // namespace Aidge +extern template class Aidge::Pad_Op<1>; +extern template class Aidge::Pad_Op<2>; + namespace { template <> const char *const EnumStrings<Aidge::PadAttr>::data[] = {"BeginEndBorders", "BorderType", "BorderValue"}; diff --git a/include/aidge/operator/Pop.hpp b/include/aidge/operator/Pop.hpp index 2219f30ec9db7acf55491882a78e7a1ed2931cf0..575d56b455940ea98571110dbaa9a83de09fef37 100644 --- a/include/aidge/operator/Pop.hpp +++ b/include/aidge/operator/Pop.hpp @@ -34,18 +34,19 @@ public: enum class PopAttr { ForwardStep }; class Pop_Op : public OperatorTensor, - public Registrable<Pop_Op, std::string, std::unique_ptr<OperatorImpl>(const Pop_Op&)>, - public StaticAttributes<PopAttr, unsigned int> { + public Registrable<Pop_Op, std::string, std::unique_ptr<OperatorImpl>(const Pop_Op&)> { public: static const std::string Type; - using Attributes_ = StaticAttributes<PopAttr, unsigned int>; - template <PopAttr e> - using attr = typename Attributes_::template attr<e>; +private: + using Attributes_ = StaticAttributes<PopAttr, std::uint32_t>; + template <PopAttr e> using attr = typename Attributes_::template attr<e>; + const std::shared_ptr<Attributes_> mAttributes; +public: Pop_Op() - : OperatorTensor(Type, 1, 0, 1), - Attributes_(attr<PopAttr::ForwardStep>(0)) + : OperatorTensor(Type, {InputCategory::Data}, 1), + mAttributes(std::make_shared<Attributes_>(attr<PopAttr::ForwardStep>(0))) { mImpl = std::make_shared<Pop_OpImpl>(*this); } @@ -56,7 +57,7 @@ public: */ Pop_Op(const Pop_Op& op) : OperatorTensor(op), - Attributes_(op) + mAttributes(op.mAttributes) { if (!op.backend().empty()) { SET_IMPL_MACRO(Pop_Op, *this, op.backend()); @@ -80,6 +81,9 @@ public: void updateConsummerProducer() override; void forward() override; + inline std::shared_ptr<Attributes> attributes() const override { return mAttributes; } + inline std::uint32_t& forwardStep() const { return mAttributes->template getAttr<PopAttr::ForwardStep>(); } + static const std::vector<std::string> getInputsName(){ return {"data_input"}; } diff --git a/include/aidge/operator/Pow.hpp b/include/aidge/operator/Pow.hpp index 08c4de2a254dd267eda4040b54108f93a0c2d922..ee5c01c2121d68a7988dc686c4dbb4bbf7331c84 100644 --- a/include/aidge/operator/Pow.hpp +++ b/include/aidge/operator/Pow.hpp @@ -29,7 +29,7 @@ class Pow_Op : public OperatorTensor, public: static const std::string Type; - Pow_Op() : OperatorTensor(Type, 2, 0, 1) {} + Pow_Op() : OperatorTensor(Type, {InputCategory::Data, InputCategory::Data}, 1) {} /** * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated). diff --git a/include/aidge/operator/Producer.hpp b/include/aidge/operator/Producer.hpp index 23825079673129ea08aa7da40b21a8cc921d6ba0..9e3bdd1ba2f601da27dea3a6a01131a0c8191eb4 100644 --- a/include/aidge/operator/Producer.hpp +++ b/include/aidge/operator/Producer.hpp @@ -31,20 +31,24 @@ enum class ProdAttr { Constant }; class Producer_Op : public OperatorTensor, public Registrable<Producer_Op, std::string, std::shared_ptr<OperatorImpl>( - const Producer_Op &)>, - public StaticAttributes<ProdAttr, bool> { + const Producer_Op &)> { public: static const std::string Type; +private: using Attributes_ = StaticAttributes<ProdAttr, bool>; - template <ProdAttr e> - using attr = typename Attributes_::template attr<e>; + template <ProdAttr e> using attr = typename Attributes_::template attr<e>; + const std::shared_ptr<Attributes_> mAttributes; + +public: + Producer_Op() = delete; template <std::size_t DIM> Producer_Op(const std::array<DimSize_t, DIM>& dims, bool constant = false) - : OperatorTensor(Type, 0, 0, 1), - Attributes_(attr<ProdAttr::Constant>(constant)) + : OperatorTensor(Type, {}, 1), + mAttributes(std::make_shared<Attributes_>( + attr<ProdAttr::Constant>(constant))) { mOutputs[0]->resize(dims); mImpl = std::make_shared<OperatorImpl>(*this); @@ -95,6 +99,9 @@ public: void setBackend(const std::string& name, DeviceIdx_t device = 0) override; + inline std::shared_ptr<Attributes> attributes() const override { return mAttributes; } + inline bool& constant() const { return mAttributes->template getAttr<ProdAttr::Constant>(); } + static const std::vector<std::string> getInputsName(){ return {}; } @@ -107,15 +114,9 @@ public: void backward() override final { // fmt::print("Basic Producer backward() function.\n"); } - void setOutput(const Aidge::IOIndex_t outputIdx, std::shared_ptr<Aidge::Data>&& data) override { - if (getAttr<ProdAttr::Constant>()) { - AIDGE_THROW_OR_ABORT(std::runtime_error, "Producer is constant, cannot update output."); - } - OperatorTensor::setOutput(outputIdx, std::move(data)); - } void setOutput(const Aidge::IOIndex_t outputIdx, const std::shared_ptr<Aidge::Data>& data) override { - if (getAttr<ProdAttr::Constant>()) { + if (mAttributes->template getAttr<ProdAttr::Constant>()) { AIDGE_THROW_OR_ABORT(std::runtime_error, "Producer is constant, cannot update output."); } OperatorTensor::setOutput(outputIdx, data); @@ -139,19 +140,20 @@ inline std::shared_ptr<Node> Producer(const std::shared_ptr<Tensor> tensor, cons } template <std::array<DimSize_t, 1>::size_type DIM> -void addProducer(std::shared_ptr<Node>& otherNode, const IOIndex_t inputIdx, const std::array<DimSize_t, DIM>& dims, const std::string& extension) { +std::shared_ptr<Node> addProducer(std::shared_ptr<Node>& otherNode, const IOIndex_t inputIdx, const std::array<DimSize_t, DIM>& dims, const std::string& extension) { assert(inputIdx != gk_IODefaultIndex); static_assert(DIM<=MaxDim,"Too many tensor dimensions required by addProducer, not supported"); const std::string prodName = (otherNode->name().empty()) ? "" : (otherNode->name() + std::string("_") + extension); auto prod = Producer(dims, prodName); prod->addChild(otherNode, 0, inputIdx); otherNode->getOperator()->associateInput(inputIdx, prod->getOperator()->getRawOutput(0)); + return prod; } // helper with C-style array instead of std::array for kernel_dims to allow automatic template DIM deduction template <std::size_t DIM> -void addProducer(std::shared_ptr<Node>& otherNode, const IOIndex_t inputIdx, DimSize_t const (&dims)[DIM], const std::string& extension) { - addProducer(otherNode, inputIdx, to_array(dims), extension); +std::shared_ptr<Node> addProducer(std::shared_ptr<Node>& otherNode, const IOIndex_t inputIdx, DimSize_t const (&dims)[DIM], const std::string& extension) { + return addProducer(otherNode, inputIdx, to_array(dims), extension); } } // namespace Aidge diff --git a/include/aidge/operator/ReLU.hpp b/include/aidge/operator/ReLU.hpp index 963de31c49f48784e92434b2b563d6c008e2d4fd..40b5d581d53521e6086d24c5ecc53f725dd9f252 100644 --- a/include/aidge/operator/ReLU.hpp +++ b/include/aidge/operator/ReLU.hpp @@ -30,7 +30,7 @@ class ReLU_Op : public OperatorTensor, public: static const std::string Type; - ReLU_Op() : OperatorTensor(Type, 1, 0, 1) {} + ReLU_Op() : OperatorTensor(Type, {InputCategory::Data}, 1) {} /** * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated). diff --git a/include/aidge/operator/ReduceMean.hpp b/include/aidge/operator/ReduceMean.hpp index ff8d8b0696aafdab48cd37d049fa0473078d7ea6..3fcf19ffd13645fb28b6efcfefaf8e347b148c89 100644 --- a/include/aidge/operator/ReduceMean.hpp +++ b/include/aidge/operator/ReduceMean.hpp @@ -29,22 +29,28 @@ namespace Aidge { enum class ReduceMeanAttr { Axes, KeepDims }; class ReduceMean_Op : public OperatorTensor, - public Registrable<ReduceMean_Op, std::string, std::shared_ptr<OperatorImpl>(const ReduceMean_Op &)>, - public StaticAttributes<ReduceMeanAttr, std::vector<std::int32_t>, DimSize_t> { + public Registrable<ReduceMean_Op, std::string, std::shared_ptr<OperatorImpl>(const ReduceMean_Op &)> { - public: +public: static const std::string Type; - ReduceMean_Op() = delete; - - using Attributes_ = StaticAttributes<ReduceMeanAttr, std::vector<std::int32_t>, DimSize_t>; +private: + using Attributes_ = StaticAttributes<ReduceMeanAttr, + std::vector<std::int32_t>, + DimSize_t>; template <ReduceMeanAttr e> using attr = typename Attributes_::template attr<e>; + const std::shared_ptr<Attributes_> mAttributes; + +public: + ReduceMean_Op() = delete; ReduceMean_Op(const std::vector<std::int32_t>& axes, DimSize_t keep_dims) - : OperatorTensor(Type, 1, 0, 1), - Attributes_(attr<ReduceMeanAttr::Axes>(axes), - attr<ReduceMeanAttr::KeepDims>(keep_dims)) {} + : OperatorTensor(Type, {InputCategory::Data}, 1), + mAttributes(std::make_shared<Attributes_>( + attr<ReduceMeanAttr::Axes>(axes), + attr<ReduceMeanAttr::KeepDims>(keep_dims))) + {} /** * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated). @@ -52,7 +58,7 @@ class ReduceMean_Op : public OperatorTensor, */ ReduceMean_Op(const ReduceMean_Op& op) : OperatorTensor(op), - Attributes_(op) + mAttributes(op.mAttributes) { if (op.mImpl){ SET_IMPL_MACRO(ReduceMean_Op, *this, op.backend()); @@ -73,6 +79,11 @@ class ReduceMean_Op : public OperatorTensor, void setBackend(const std::string &name, DeviceIdx_t device = 0) override final; + inline std::shared_ptr<Attributes> attributes() const override { return mAttributes; } + inline std::vector<std::int32_t>& axes() const noexcept { return mAttributes -> getAttr<ReduceMeanAttr::Axes>(); } + inline DimSize_t& keepDims() const noexcept { return mAttributes -> getAttr<ReduceMeanAttr::KeepDims>(); } + + static const std::vector<std::string> getInputsName() { return {"data_input"}; } diff --git a/include/aidge/operator/Reshape.hpp b/include/aidge/operator/Reshape.hpp index 49ddfc4d76a0602c58c0c768b04ed4b4202f028d..4ea0cca30089555ff7979f141f94e5c84f04ffa1 100644 --- a/include/aidge/operator/Reshape.hpp +++ b/include/aidge/operator/Reshape.hpp @@ -29,24 +29,29 @@ public: void forward() override; }; -enum class ReshapeAttr { Shape }; +enum class ReshapeAttr { Shape, AllowZero }; class Reshape_Op : public OperatorTensor, - public Registrable<Reshape_Op, std::string, std::shared_ptr<OperatorImpl>(const Reshape_Op&)>, - public StaticAttributes<ReshapeAttr, std::vector<std::int64_t>> { + public Registrable<Reshape_Op, std::string, std::shared_ptr<OperatorImpl>(const Reshape_Op&)> { public: static const std::string Type; - Reshape_Op() = delete; +private: + using Attributes_ = StaticAttributes<ReshapeAttr, + std::vector<std::int64_t>, + bool>; + template <ReshapeAttr e> using attr = typename Attributes_::template attr<e>; + const std::shared_ptr<Attributes_> mAttributes; - using Attributes_ = StaticAttributes<ReshapeAttr, std::vector<std::int64_t>>; - template <ReshapeAttr e> - using attr = typename Attributes_::template attr<e>; +public: + Reshape_Op() = delete; - Reshape_Op(const std::vector<std::int64_t>& shape) - : OperatorTensor(Type, 1, 0, 1), - Attributes_(attr<ReshapeAttr::Shape>(shape)) + Reshape_Op(const std::vector<std::int64_t>& shape, bool allowzero) + : OperatorTensor(Type, {InputCategory::Data, InputCategory::OptionalData}, 1), + mAttributes(std::make_shared<Attributes_>( + attr<ReshapeAttr::Shape>(shape), + attr<ReshapeAttr::AllowZero>(allowzero))) { mImpl = std::make_shared<Reshape_OpImpl>(*this); } @@ -57,7 +62,7 @@ public: */ Reshape_Op(const Reshape_Op& op) : OperatorTensor(op), - Attributes_(op) + mAttributes(op.mAttributes) { if (!op.backend().empty()) { SET_IMPL_MACRO(Reshape_Op, *this, op.backend()); @@ -75,10 +80,15 @@ public: return std::make_shared<Reshape_Op>(*this); } + bool dimsForwarded() const override final; bool forwardDims(bool allowDataDependency = false) override final; void setBackend(const std::string& name, DeviceIdx_t device = 0) override final; + std::shared_ptr<Attributes> attributes() const override { return mAttributes; } + inline std::vector<std::int64_t>& shape() const { return mAttributes->template getAttr<ReshapeAttr::Shape>(); } + inline bool& allowZero() const { return mAttributes->template getAttr<ReshapeAttr::AllowZero>(); } + static const std::vector<std::string> getInputsName(){ return {"data_input"}; } @@ -87,16 +97,17 @@ public: } }; -inline std::shared_ptr<Node> Reshape(const std::vector<std::int64_t>& shape, - const std::string &name = "") { +inline std::shared_ptr<Node> Reshape(const std::vector<std::int64_t>& shape = {}, + bool allowzero = false, + const std::string &name = "") { // FIXME: properly handle default w&b initialization in every cases - return std::make_shared<Node>(std::make_shared<Reshape_Op>(shape), name); + return std::make_shared<Node>(std::make_shared<Reshape_Op>(shape, allowzero), name); } } // namespace Aidge namespace { template <> -const char *const EnumStrings<Aidge::ReshapeAttr>::data[] = { "Shape" }; +const char *const EnumStrings<Aidge::ReshapeAttr>::data[] = { "Shape", "AllowZero" }; } #endif /* AIDGE_CORE_OPERATOR_RESHAPE_H_ */ diff --git a/include/aidge/operator/Resize.hpp b/include/aidge/operator/Resize.hpp new file mode 100644 index 0000000000000000000000000000000000000000..565affc57ae8e7b1838466733b0f5d8fa8e1a6d6 --- /dev/null +++ b/include/aidge/operator/Resize.hpp @@ -0,0 +1,88 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#ifndef AIDGE_CORE_OPERATOR_Resize_H_ +#define AIDGE_CORE_OPERATOR_Resize_H_ + +#include <memory> +#include <string> +#include <vector> + +#include "aidge/backend/OperatorImpl.hpp" +#include "aidge/graph/Node.hpp" +#include "aidge/operator/OperatorTensor.hpp" +#include "aidge/utils/Registrar.hpp" +#include "aidge/utils/Types.h" + +namespace Aidge { + +class Resize_Op : public OperatorTensor, + public Registrable<Resize_Op, std::string, std::shared_ptr<OperatorImpl>(const Resize_Op&)>{ + +public: + static const std::string Type; + + Resize_Op() + : OperatorTensor(Type, + {InputCategory::Data, + InputCategory::OptionalData, + InputCategory::OptionalData, + InputCategory::OptionalData}, + 1) {} + + /** + * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), + * but not its input tensors (the new operator has no input associated). + * @param op Operator to copy. + */ + + Resize_Op(const Resize_Op& op) + : OperatorTensor(op) + { + if (!op.backend().empty()) { + SET_IMPL_MACRO(Resize_Op, *this, op.backend()); + } + else { + mImpl = nullptr; + } + } + + /** + * @brief Clone the operator using its copy-constructor. + * @see Operator::Resize_Op + */ + std::shared_ptr<Operator> clone() const override { + return std::make_shared<Resize_Op>(*this); + } + + bool dimsForwarded() const override final; + bool forwardDims(bool allowDataDependency = false) override final; + + void setBackend(const std::string& name, DeviceIdx_t device = 0) override final; + + static const std::vector<std::string> getInputsName(){ + // roi, scales, sizes, even if considered as const parameters/input + return {"data_input", "roi ", "scales", "sizes"}; + } + static const std::vector<std::string> getOutputsName(){ + return {"data_output"}; + } +}; + +inline std::shared_ptr<Node> Resize(const std::string &name = "") { + + return std::make_shared<Node>(std::make_shared<Resize_Op>(), name); +} + +} // namespace Aidge + + +#endif /* AIDGE_CORE_OPERATOR_Resize_H_ */ \ No newline at end of file diff --git a/include/aidge/operator/Scaling.hpp b/include/aidge/operator/Scaling.hpp index c864bd045d8a5a1fc5f4ee591d1d81fcaf241bac..7d8e11b31546cd87a8d6b2d36e2929c9ef6df7a2 100644 --- a/include/aidge/operator/Scaling.hpp +++ b/include/aidge/operator/Scaling.hpp @@ -12,39 +12,42 @@ #ifndef AIDGE_CORE_OPERATOR_SCALING_H_ #define AIDGE_CORE_OPERATOR_SCALING_H_ +#include <cstddef> // std::size_t #include <vector> #include <memory> #include "aidge/backend/OperatorImpl.hpp" #include "aidge/graph/Node.hpp" #include "aidge/operator/OperatorTensor.hpp" -#include "aidge/utils/StaticAttributes.hpp" #include "aidge/utils/Registrar.hpp" +#include "aidge/utils/StaticAttributes.hpp" #include "aidge/utils/Types.h" namespace Aidge { enum class ScalingAttr { - scalingFactor, quantizedNbBits, isOutputUnsigned + ScalingFactor, QuantizedNbBits, IsOutputUnsigned }; -class Scaling_Op +class Scaling_Op : public OperatorTensor, - public Registrable<Scaling_Op, std::string, std::shared_ptr<OperatorImpl>(const Scaling_Op&)>, - public StaticAttributes<ScalingAttr, float, size_t, bool> { + public Registrable<Scaling_Op, std::string, std::shared_ptr<OperatorImpl>(const Scaling_Op&)> { public: static const std::string Type; - Scaling_Op() = delete; - +private: using Attributes_ = StaticAttributes<ScalingAttr, float, std::size_t, bool>; template <ScalingAttr e> using attr = typename Attributes_::template attr<e>; + const std::shared_ptr<Attributes_> mAttributes; + +public: + Scaling_Op() = delete; Scaling_Op(float scalingFactor, std::size_t nbBits, bool isOutputUnsigned) - : OperatorTensor(Type, 1, 0, 1), - Attributes_( - attr<ScalingAttr::scalingFactor>(scalingFactor), - attr<ScalingAttr::quantizedNbBits>(nbBits), - attr<ScalingAttr::isOutputUnsigned>(isOutputUnsigned)) + : OperatorTensor(Type, {InputCategory::Data}, 1), + mAttributes(std::make_shared<Attributes_>( + attr<ScalingAttr::ScalingFactor>(scalingFactor), + attr<ScalingAttr::QuantizedNbBits>(nbBits), + attr<ScalingAttr::IsOutputUnsigned>(isOutputUnsigned))) {} /** @@ -53,7 +56,7 @@ public: */ Scaling_Op(const Scaling_Op& op) : OperatorTensor(op), - Attributes_(op) + mAttributes(op.mAttributes) { if (op.mImpl){ SET_IMPL_MACRO(Scaling_Op, *this, op.backend()); @@ -72,6 +75,11 @@ public: void setBackend(const std::string& name, DeviceIdx_t device = 0) override final; + inline std::shared_ptr<Attributes> attributes() const override { return mAttributes; } + inline float& scalingFactor() const noexcept { return mAttributes -> getAttr<ScalingAttr::ScalingFactor>(); } + inline std::size_t& quantizedNbBits() const noexcept { return mAttributes -> getAttr<ScalingAttr::QuantizedNbBits>(); } + inline bool& isOutputUnsigned() const noexcept { return mAttributes -> getAttr<ScalingAttr::IsOutputUnsigned>(); } + static const std::vector<std::string> getInputsName() { return {"data_input"}; } @@ -85,10 +93,10 @@ inline std::shared_ptr<Node> Scaling(float scalingFactor = 1.0f, const std::stri return std::make_shared<Node>(std::make_shared<Scaling_Op>(scalingFactor), name); } */ -inline std::shared_ptr<Node> Scaling(float scalingFactor = 1.0f, - std::size_t quantizedNbBits=8, - bool isOutputUnsigned=true, - const std::string& name = "") +inline std::shared_ptr<Node> Scaling(float scalingFactor = 1.0f, + std::size_t quantizedNbBits=8, + bool isOutputUnsigned=true, + const std::string& name = "") { return std::make_shared<Node>(std::make_shared<Scaling_Op>(scalingFactor,quantizedNbBits, isOutputUnsigned), name); } @@ -97,7 +105,7 @@ inline std::shared_ptr<Node> Scaling(float scalingFactor = 1.0f, namespace { template <> const char* const EnumStrings<Aidge::ScalingAttr>::data[] - = {"scalingFactor", "quantizedNbBits", "isOutputUnsigned"}; + = {"ScalingFactor", "QuantizedNbBits", "IsOutputUnsigned"}; } #endif /* AIDGE_CORE_OPERATOR_SCALING_H_ */ diff --git a/include/aidge/operator/Shape.hpp b/include/aidge/operator/Shape.hpp new file mode 100644 index 0000000000000000000000000000000000000000..6d2d1b5e7c212fafa5ad6457d9e0a260e96b1c90 --- /dev/null +++ b/include/aidge/operator/Shape.hpp @@ -0,0 +1,111 @@ +/******************************************************************************** + * Copyright (c) 2024 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#ifndef AIDGE_CORE_OPERATOR_SHAPE_H_ +#define AIDGE_CORE_OPERATOR_SHAPE_H_ + +#include <cstdint> // std::int64_t +#include <memory> +#include <string> +#include <vector> + +#include "aidge/backend/OperatorImpl.hpp" +#include "aidge/graph/Node.hpp" +#include "aidge/operator/OperatorTensor.hpp" +#include "aidge/utils/Registrar.hpp" +#include "aidge/utils/StaticAttributes.hpp" +#include "aidge/utils/Types.h" + +namespace Aidge { +class Shape_OpImpl : public OperatorImpl { +public: + Shape_OpImpl(const Operator& op, const std::string& backend = ""): OperatorImpl(op, backend) {} + void forward() override; +}; + +enum class ShapeAttr { Start, End }; + +class Shape_Op : public OperatorTensor, + public Registrable<Shape_Op, + std::string, + std::shared_ptr<OperatorImpl>(const Shape_Op&)> { + +public: + static const std::string Type; + +private: + using Attributes_ = StaticAttributes<ShapeAttr, std::int64_t, std::int64_t>; + template <ShapeAttr e> using attr = typename Attributes_::template attr<e>; + const std::shared_ptr<Attributes_> mAttributes; + +public: + Shape_Op() = delete; + + Shape_Op(const std::int64_t start, const std::int64_t end) + : OperatorTensor(Type, {InputCategory::Data}, 1), + mAttributes(std::make_shared<Attributes_>( + attr<ShapeAttr::Start>(start), + attr<ShapeAttr::End>(end))) + { + mImpl = std::make_shared<Shape_OpImpl>(*this); + } + + /** + * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated). + * @param op Operator to copy. + */ + Shape_Op(const Shape_Op& op) + : OperatorTensor(op), + mAttributes(op.mAttributes) + { + if (!op.backend().empty()) { + SET_IMPL_MACRO(Shape_Op, *this, op.backend()); + } + else { + mImpl = std::make_shared<Shape_OpImpl>(*this); + } + } + + /** + * @brief Clone the operator using its copy-constructor. + * @see Operator::Shape_Op + */ + std::shared_ptr<Operator> clone() const override { + return std::make_shared<Shape_Op>(*this); + } + + bool forwardDims(bool /*allowDataDependency*/ = false) override final; + + void setBackend(const std::string& name, DeviceIdx_t device = 0) override; + + inline std::shared_ptr<Attributes> attributes() const override { return mAttributes; } + inline std::int64_t& start() const noexcept { return mAttributes -> getAttr<ShapeAttr::Start>(); } + inline std::int64_t& end() const noexcept { return mAttributes -> getAttr<ShapeAttr::End>(); } + + static const std::vector<std::string> getInputsName(){ + return {"data_input"}; + } + static const std::vector<std::string> getOutputsName(){ + return {"data_output"}; + } +}; + +inline std::shared_ptr<Node> Shape(const std::int64_t start = 0, const std::int64_t end = -1, const std::string& name = "") { + return std::make_shared<Node>(std::make_shared<Shape_Op>(start, end), name); +} +} // namespace Aidge + +namespace { +template <> +const char *const EnumStrings<Aidge::ShapeAttr>::data[] = {"Start", "End"}; +} + +#endif /* AIDGE_CORE_OPERATOR_SHAPE_H_ */ diff --git a/include/aidge/operator/ShiftGELU.hpp b/include/aidge/operator/ShiftGELU.hpp new file mode 100644 index 0000000000000000000000000000000000000000..879edcac6a7ed9a78a2db8d82994071a6cf09635 --- /dev/null +++ b/include/aidge/operator/ShiftGELU.hpp @@ -0,0 +1,75 @@ +/******************************************************************************** + * Copyright (c) 2024 Thales + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * Author: Lucas RAKOTOARIVONY, Thales Research & Technology France + * Date: 25.06.2024 + * + ********************************************************************************/ + +#ifndef AIDGE_CORE_OPERATOR_SHIFTGELU_H_ +#define AIDGE_CORE_OPERATOR_SHIFTGELU_H_ + +#include <cassert> +#include <memory> +#include <vector> + +#include "aidge/backend/OperatorImpl.hpp" +#include "aidge/graph/Node.hpp" +#include "aidge/operator/OperatorTensor.hpp" +#include "aidge/utils/ErrorHandling.hpp" +#include "aidge/utils/Registrar.hpp" +#include "aidge/utils/Types.h" + +namespace Aidge { + +class ShiftGELU_Op : public OperatorTensor, + public Registrable<ShiftGELU_Op, std::string, std::shared_ptr<OperatorImpl>(const ShiftGELU_Op&)> { +public: + static const std::string Type; + + ShiftGELU_Op() : OperatorTensor(Type, {InputCategory::Data}, 1) {} + + /** + * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated). + * @param op Operator to copy. + */ + ShiftGELU_Op(const ShiftGELU_Op& op) + : OperatorTensor(op) + { + if (op.mImpl){ + SET_IMPL_MACRO(ShiftGELU_Op, *this, op.backend()); + }else{ + mImpl = nullptr; + } + } + + /** + * @brief Clone the operator using its copy-constructor. + * @see Operator::ShiftGELU_Op + */ + std::shared_ptr<Operator> clone() const override { + return std::make_shared<ShiftGELU_Op>(*this); + } + + + void setBackend(const std::string& name, DeviceIdx_t device = 0) override final; + + static const std::vector<std::string> getInputsName(){ + return {"data_input"}; + } + static const std::vector<std::string> getOutputsName(){ + return {"data_output"}; + } +}; + +inline std::shared_ptr<Node> ShiftGELU(const std::string& name = "") { + return std::make_shared<Node>(std::make_shared<ShiftGELU_Op>(), name); +} +} + +#endif /* AIDGE_CORE_OPERATOR_SHIFTGELU_H_ */ diff --git a/include/aidge/operator/ShiftMax.hpp b/include/aidge/operator/ShiftMax.hpp new file mode 100644 index 0000000000000000000000000000000000000000..f171130213b2e51ca8fc9905d93944198f849ce7 --- /dev/null +++ b/include/aidge/operator/ShiftMax.hpp @@ -0,0 +1,75 @@ +/******************************************************************************** + * Copyright (c) 2024 Thales + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * Author: Lucas RAKOTOARIVONY, Thales Research & Technology France + * Date: 25.06.2024 + * + ********************************************************************************/ + +#ifndef AIDGE_CORE_OPERATOR_SHIFTMAX_H_ +#define AIDGE_CORE_OPERATOR_SHIFTMAX_H_ + +#include <cassert> +#include <memory> +#include <vector> + +#include "aidge/backend/OperatorImpl.hpp" +#include "aidge/graph/Node.hpp" +#include "aidge/operator/OperatorTensor.hpp" +#include "aidge/utils/ErrorHandling.hpp" +#include "aidge/utils/Registrar.hpp" +#include "aidge/utils/Types.h" + +namespace Aidge { + +class ShiftMax_Op : public OperatorTensor, + public Registrable<ShiftMax_Op, std::string, std::shared_ptr<OperatorImpl>(const ShiftMax_Op&)> { +public: + static const std::string Type; + + ShiftMax_Op() : OperatorTensor(Type, {InputCategory::Data}, 1) {} + + /** + * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated). + * @param op Operator to copy. + */ + ShiftMax_Op(const ShiftMax_Op& op) + : OperatorTensor(op) + { + if (op.mImpl){ + SET_IMPL_MACRO(ShiftMax_Op, *this, op.backend()); + }else{ + mImpl = nullptr; + } + } + + /** + * @brief Clone the operator using its copy-constructor. + * @see Operator::ShiftMax_Op + */ + std::shared_ptr<Operator> clone() const override { + return std::make_shared<ShiftMax_Op>(*this); + } + + + void setBackend(const std::string& name, DeviceIdx_t device = 0) override final; + + static const std::vector<std::string> getInputsName(){ + return {"data_input"}; + } + static const std::vector<std::string> getOutputsName(){ + return {"data_output"}; + } +}; + +inline std::shared_ptr<Node> ShiftMax(const std::string& name = "") { + return std::make_shared<Node>(std::make_shared<ShiftMax_Op>(), name); +} +} + +#endif /* AIDGE_CORE_OPERATOR_SHIFTMAX_H_ */ diff --git a/include/aidge/operator/Sigmoid.hpp b/include/aidge/operator/Sigmoid.hpp index bea9fc45eaa7f17f71963106b5bd3e1340a48a92..ae82d4a3a2d29755bba22b9a4194284310ac4f84 100644 --- a/include/aidge/operator/Sigmoid.hpp +++ b/include/aidge/operator/Sigmoid.hpp @@ -30,7 +30,7 @@ class Sigmoid_Op : public OperatorTensor, public: static const std::string Type; - Sigmoid_Op() : OperatorTensor(Type, 1, 0, 1) {} + Sigmoid_Op() : OperatorTensor(Type, {InputCategory::Data}, 1) {} /** * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated). diff --git a/include/aidge/operator/Slice.hpp b/include/aidge/operator/Slice.hpp index 757e08fe97dd1cc572c08ac7c2b454daa234bdc1..7d425a0f3589e74b54ee0834fdc4291ea7f49bad 100644 --- a/include/aidge/operator/Slice.hpp +++ b/include/aidge/operator/Slice.hpp @@ -24,35 +24,36 @@ #include "aidge/utils/Types.h" namespace Aidge { -class Slice_OpImpl : public OperatorImpl { -public: - Slice_OpImpl(const Operator& op, const std::string& backend = ""): OperatorImpl(op, backend) {} - void forward() override; -}; -enum class SliceAttr { Starts, Ends, Axes }; +enum class SliceAttr { Starts, Ends, Axes, Steps }; class Slice_Op : public OperatorTensor, - public Registrable<Slice_Op, std::string, std::shared_ptr<OperatorImpl>(const Slice_Op &)>, - public StaticAttributes<SliceAttr, std::vector<std::int64_t>, std::vector<std::int64_t>, std::vector<std::int64_t>> { + public Registrable<Slice_Op, std::string, std::shared_ptr<OperatorImpl>(const Slice_Op &)> { public: static const std::string Type; +private: + using Attributes_ = StaticAttributes<SliceAttr, + std::vector<std::int64_t>, + std::vector<std::int64_t>, + std::vector<std::int8_t>, + std::vector<std::int64_t>>; + template <SliceAttr e> using attr = typename Attributes_::template attr<e>; + const std::shared_ptr<Attributes_> mAttributes; + +public: Slice_Op() = delete; - using Attributes_ = StaticAttributes<SliceAttr, std::vector<std::int64_t>, std::vector<std::int64_t>, std::vector<std::int64_t>>; - template <SliceAttr e> - using attr = typename Attributes_::template attr<e>; + Slice_Op(const std::vector<std::int64_t>& starts, const std::vector<std::int64_t>& ends, const std::vector<std::int8_t>& axes, const std::vector<std::int64_t>& steps) + : OperatorTensor(Type, {InputCategory::Data, InputCategory::OptionalData, InputCategory::OptionalData, InputCategory::OptionalData, InputCategory::OptionalData}, 1), + mAttributes(std::make_shared<Attributes_>( + attr<SliceAttr::Starts>(starts), + attr<SliceAttr::Ends>(ends), + attr<SliceAttr::Axes>(axes), + attr<SliceAttr::Steps>(steps))) + {} - Slice_Op(const std::vector<std::int64_t>& starts, const std::vector<std::int64_t>& ends, const std::vector<std::int64_t>& axes) - : OperatorTensor(Type, 1, 0, 1), - Attributes_(attr<SliceAttr::Starts>(starts), - attr<SliceAttr::Ends>(ends), - attr<SliceAttr::Axes>(axes)) - { - mImpl = std::make_shared<Slice_OpImpl>(*this); - } /** * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its @@ -61,13 +62,13 @@ public: */ Slice_Op(const Slice_Op &op) : OperatorTensor(op), - Attributes_(op) + mAttributes(op.mAttributes) { if (!op.backend().empty()) { SET_IMPL_MACRO(Slice_Op, *this, op.backend()); } else { - mImpl = std::make_shared<Slice_OpImpl>(*this); + mImpl = nullptr; } } @@ -78,43 +79,43 @@ public: */ std::shared_ptr<Operator> clone() const override { return std::make_shared<Slice_Op>(*this); } - bool forwardDims(bool allowDataDependency = false) override final; + bool dimsForwarded() const override final; + bool forwardDims(bool allowDataDependency = true) override final; void setBackend(const std::string &name, DeviceIdx_t device = 0) override; + inline std::shared_ptr<Attributes> attributes() const override { return mAttributes; } + inline std::vector<std::int64_t>& starts() const noexcept { return mAttributes -> getAttr<SliceAttr::Starts>(); } + inline std::vector<std::int64_t>& ends() const noexcept { return mAttributes -> getAttr<SliceAttr::Ends>(); } + inline std::vector<std::int8_t>& axes() const noexcept { return mAttributes -> getAttr<SliceAttr::Axes>(); } + inline std::vector<std::int64_t>& steps() const noexcept { return mAttributes -> getAttr<SliceAttr::Steps>(); } + static const std::vector<std::string> getInputsName(){ - return {"data_input"}; + return {"data_input", "starts", "ends", "axes", "steps"}; } static const std::vector<std::string> getOutputsName(){ return {"data_output"}; } + }; /** * @brief Exract a sub-Tensor from a bigger original Tensor. - * @param starts Indexes for each dimension of the first element. - * Can be a negative value. Negative values start their reference from the last index. - * ``-1`` referes to the last index of a dimension. - * @param ends Indexes for each dimension of the last element. - * Can be a negative value. Negative values start their reference from the last index. - * ``-1`` referes to the last index of a dimension. - * @param axes Dimensions for which start/end indexes apply. Not specifying a dimensions - * means the whole dimensions is extracted. * @param name Name of the Operator. * @return std::shared_ptr<Node> A Node containing the Operator. */ -inline std::shared_ptr<Node> Slice(const std::vector<std::int64_t> starts, - const std::vector<std::int64_t> ends, - const std::vector<std::int64_t> axes, +inline std::shared_ptr<Node> Slice(const std::vector<std::int64_t>& starts = {}, + const std::vector<std::int64_t>& ends = {}, + const std::vector<std::int8_t>& axes = {}, + const std::vector<std::int64_t>& steps = {}, const std::string &name = "") { - // FIXME: properly handle default w&b initialization in every cases - return std::make_shared<Node>(std::make_shared<Slice_Op>(starts, ends, axes), name); + return std::make_shared<Node>(std::make_shared<Slice_Op>(starts, ends, axes, steps), name); } } // namespace Aidge namespace { template <> -const char *const EnumStrings<Aidge::SliceAttr>::data[] = { "Starts", "Ends", "Axes" }; +const char *const EnumStrings<Aidge::SliceAttr>::data[] = { "Starts", "Ends", "Axes", "Steps" }; } #endif /* AIDGE_CORE_OPERATOR_RELU_H_ */ diff --git a/include/aidge/operator/Softmax.hpp b/include/aidge/operator/Softmax.hpp index d48dbc2b60e46eb5c074b8adae065383e29b1769..70f3a561ae5c9ba4720de8419bcd5aaf32a51e47 100644 --- a/include/aidge/operator/Softmax.hpp +++ b/include/aidge/operator/Softmax.hpp @@ -24,24 +24,29 @@ #include "aidge/utils/Types.h" namespace Aidge { -enum class SoftmaxAttr { AxisIdx }; +enum class SoftmaxAttr { Axis }; class Softmax_Op : public OperatorTensor, public Registrable<Softmax_Op, std::string, - std::shared_ptr<OperatorImpl>(const Softmax_Op&)>, - public StaticAttributes<SoftmaxAttr, int> { + std::shared_ptr<OperatorImpl>(const Softmax_Op&)> { public: static const std::string Type; +private: + using Attributes_ = StaticAttributes<SoftmaxAttr, std::int32_t>; + template <SoftmaxAttr e> using attr = typename Attributes_::template attr<e>; + const std::shared_ptr<Attributes_> mAttributes; + +public: Softmax_Op() = delete; - using Attributes_ = StaticAttributes<SoftmaxAttr, int>; - template <SoftmaxAttr e> using attr = typename Attributes_::template attr<e>; - Softmax_Op(int axis) - : OperatorTensor(Type, 1, 0, 1), - Attributes_(attr<SoftmaxAttr::AxisIdx>(axis)) {} + Softmax_Op(std::int32_t axis) + : OperatorTensor(Type, {InputCategory::Data}, 1), + mAttributes(std::make_shared<Attributes_>( + attr<SoftmaxAttr::Axis>(axis))) + {} /** * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated). @@ -49,7 +54,7 @@ public: */ Softmax_Op(const Softmax_Op& op) : OperatorTensor(op), - Attributes_(op) + mAttributes(op.mAttributes) { if (op.mImpl){ SET_IMPL_MACRO(Softmax_Op, *this, op.backend()); @@ -68,6 +73,10 @@ public: void setBackend(const std::string& name, DeviceIdx_t device = 0) override final; + inline std::shared_ptr<Attributes> attributes() const override { return mAttributes; } + + inline std::int32_t& axis() const noexcept { return mAttributes -> getAttr<SoftmaxAttr::Axis>(); } + static const std::vector<std::string> getInputsName(){ return {"data_input"}; } @@ -76,7 +85,7 @@ public: } }; -inline std::shared_ptr<Node> Softmax(int axis, const std::string& name = "") { +inline std::shared_ptr<Node> Softmax(std::int32_t axis, const std::string& name = "") { return std::make_shared<Node>(std::make_shared<Softmax_Op>(axis), name); } } // namespace Aidge diff --git a/include/aidge/operator/Split.hpp b/include/aidge/operator/Split.hpp new file mode 100644 index 0000000000000000000000000000000000000000..42baf66e6722c6f9a0d3f40f12d4f4685fcc6980 --- /dev/null +++ b/include/aidge/operator/Split.hpp @@ -0,0 +1,111 @@ +/******************************************************************************** + * Copyright (c) 2024 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#ifndef AIDGE_CORE_OPERATOR_SPLIT_H_ +#define AIDGE_CORE_OPERATOR_SPLIT_H_ + +#include <memory> +#include <vector> + +#include "aidge/backend/OperatorImpl.hpp" +#include "aidge/data/Tensor.hpp" +#include "aidge/graph/Node.hpp" +#include "aidge/operator/OperatorTensor.hpp" +#include "aidge/utils/Registrar.hpp" +#include "aidge/utils/StaticAttributes.hpp" +#include "aidge/utils/Types.h" + +namespace Aidge { +class Split_OpImpl : public OperatorImpl { +public: + Split_OpImpl(const Operator& op, const std::string& backend = ""): OperatorImpl(op, backend) {} + void forward() override; +}; + +enum class SplitAttr { Axis, Split }; + +class Split_Op + : public OperatorTensor, + public Registrable<Split_Op, std::string, std::shared_ptr<OperatorImpl>(const Split_Op &)>, + public StaticAttributes<SplitAttr, std::int8_t, std::vector<DimSize_t>> { + +public: + static const std::string Type; + + Split_Op() = delete; + + using Attributes_ = StaticAttributes<SplitAttr, std::int8_t, std::vector<DimSize_t>>; + template <SplitAttr e> using attr = typename Attributes_::template attr<e>; + Split_Op( std::int8_t axis, DimSize_t nbOutputs, const std::vector<DimSize_t>& split) + : OperatorTensor(Type, {InputCategory::Data, InputCategory::OptionalData}, nbOutputs), + Attributes_(attr<SplitAttr::Axis>(axis), + attr<SplitAttr::Split>(split)) + { + mImpl = std::make_shared<Split_OpImpl>(*this); + } + + + /** + * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its + * input tensors (the new operator has no input associated). + * @param op Operator to copy. + */ + Split_Op(const Split_Op &op) + : OperatorTensor(op), + Attributes_(op) + { + if (!op.backend().empty()) { + SET_IMPL_MACRO(Split_Op, *this, op.backend()); + } + else { + mImpl = std::make_shared<Split_OpImpl>(*this); + } + } +public: + /** + * @brief Clone the operator using its copy-constructor. + * @see Operator::Split_Op + */ + std::shared_ptr<Operator> clone() const override { return std::make_shared<Split_Op>(*this); } + + bool dimsForwarded() const override final; + bool forwardDims(bool allowDataDependency = false) override final; + + void setBackend(const std::string &name, DeviceIdx_t device = 0) override; + + static const std::vector<std::string> getInputsName(){ + return {"data_input", "split"}; + } + static const std::vector<std::string> getOutputsName(){ + return {"data_output_0", "data_output_n"}; + } + +}; + +/** + * @brief Exract a sub-Tensor from a bigger original Tensor. + * @param name Name of the Operator. + * @return std::shared_ptr<Node> A Node containing the Operator. + */ +inline std::shared_ptr<Node> Split(DimSize_t nbOutput, + std::int8_t axis = 0, + const std::vector<DimSize_t>& split = {}, + const std::string &name = "") { + return std::make_shared<Node>(std::make_shared<Split_Op>(axis, nbOutput, split), name); +} +} // namespace Aidge + +namespace { +template <> +const char *const EnumStrings<Aidge::SplitAttr>::data[] = { "Axis", "Split" }; +} + +#endif /* AIDGE_CORE_OPERATOR_SPLIT_H_ */ diff --git a/include/aidge/operator/Sqrt.hpp b/include/aidge/operator/Sqrt.hpp index f5ffa431192d73a703c1ce973cb485dadb31420d..05b20286bc3f576d4e43fbece26ae270b3e583e6 100644 --- a/include/aidge/operator/Sqrt.hpp +++ b/include/aidge/operator/Sqrt.hpp @@ -33,7 +33,7 @@ public: public: static const std::string Type; - Sqrt_Op() : OperatorTensor(Type, 1, 0, 1) {} + Sqrt_Op() : OperatorTensor(Type, {InputCategory::Data}, 1) {} /** * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated). diff --git a/include/aidge/operator/Sub.hpp b/include/aidge/operator/Sub.hpp index d89584871a05194dbb316132215515d3c3d860fe..ba5a021c30f13bbc2ae73c90078548c5b677a3a5 100644 --- a/include/aidge/operator/Sub.hpp +++ b/include/aidge/operator/Sub.hpp @@ -34,7 +34,7 @@ public: public: static const std::string Type; - Sub_Op() : OperatorTensor(Type, 2, 0, 1) {} + Sub_Op() : OperatorTensor(Type, {InputCategory::Data, InputCategory::Data}, 1) {} /** * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated). diff --git a/include/aidge/operator/Tanh.hpp b/include/aidge/operator/Tanh.hpp index 3fd5377d30cfff864743dcab2da9e690e26e5263..b5f183a90aeeb4ef424c318e8942a818b568b44a 100644 --- a/include/aidge/operator/Tanh.hpp +++ b/include/aidge/operator/Tanh.hpp @@ -28,7 +28,7 @@ class Tanh_Op : public OperatorTensor, public: static const std::string Type; - Tanh_Op() : OperatorTensor(Type, 1, 0, 1) {} + Tanh_Op() : OperatorTensor(Type, {InputCategory::Data}, 1) {} /** * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated). diff --git a/include/aidge/operator/Transpose.hpp b/include/aidge/operator/Transpose.hpp index 16ac2794a283d817f6a4e1586349e55ec626167e..72096448ebf0e00d73e33bdab094ca7f0b7d0633 100644 --- a/include/aidge/operator/Transpose.hpp +++ b/include/aidge/operator/Transpose.hpp @@ -17,7 +17,6 @@ #include <numeric> #include <vector> -#include "aidge/data/Tensor.hpp" #include "aidge/graph/Node.hpp" #include "aidge/operator/OperatorTensor.hpp" #include "aidge/operator/Producer.hpp" @@ -26,32 +25,37 @@ #include "aidge/utils/Types.h" namespace Aidge { -class Transpose_OpImpl : public OperatorImpl { +class TransposeImpl : public OperatorImpl { public: - Transpose_OpImpl(const Operator& op, const std::string& backend = ""): OperatorImpl(op, backend) {} + TransposeImpl(const Operator& op, const std::string& backend = "") + : OperatorImpl(op, backend) + {} void forward() override; }; enum class TransposeAttr { OutputDimsOrder }; class Transpose_Op : public OperatorTensor, - public Registrable<Transpose_Op, std::string, std::shared_ptr<OperatorImpl>(const Transpose_Op&)>, - public StaticAttributes<TransposeAttr, std::vector<DimSize_t>> { + public Registrable<Transpose_Op, std::string, std::shared_ptr<OperatorImpl>(const Transpose_Op&)> { - public: +public: static const std::string Type; - Transpose_Op() = delete; +private: using Attributes_ = StaticAttributes<TransposeAttr, std::vector<DimSize_t>>; - template <TransposeAttr e> - using attr = typename Attributes_::template attr<e>; + template <TransposeAttr e> using attr = typename Attributes_::template attr<e>; + const std::shared_ptr<Attributes_> mAttributes; + +public: + Transpose_Op() = delete; - Transpose_Op(const std::vector<DimSize_t> &output_dims_order) - : OperatorTensor(Type, 1, 0, 1), - Attributes_(attr<TransposeAttr::OutputDimsOrder>(output_dims_order)) + Transpose_Op(const std::vector<DimSize_t> &outputDimsOrder) + : OperatorTensor(Type, {InputCategory::Data}, 1), + mAttributes(std::make_shared<Attributes_>( + attr<TransposeAttr::OutputDimsOrder>(outputDimsOrder))) { - mImpl = std::make_shared<Transpose_OpImpl>(*this); + mImpl = std::make_shared<TransposeImpl>(*this); } /** @@ -60,13 +64,13 @@ class Transpose_Op : public OperatorTensor, */ Transpose_Op(const Transpose_Op& op) : OperatorTensor(op), - Attributes_(op) + mAttributes(op.mAttributes) { if (!op.backend().empty()) { SET_IMPL_MACRO(Transpose_Op, *this, op.backend()); } else { - mImpl = std::make_shared<Transpose_OpImpl>(*this); + mImpl = std::make_shared<TransposeImpl>(*this); } } @@ -82,6 +86,9 @@ class Transpose_Op : public OperatorTensor, void setBackend(const std::string &name, DeviceIdx_t device = 0) override; + inline std::shared_ptr<Attributes> attributes() const override { return mAttributes; } + inline std::vector<DimSize_t>& outputDimsOrder() const noexcept { return mAttributes -> getAttr<TransposeAttr::OutputDimsOrder>(); } + static const std::vector<std::string> getInputsName(){ return {"data_input"}; } @@ -90,9 +97,9 @@ class Transpose_Op : public OperatorTensor, } }; -inline std::shared_ptr<Node> Transpose(const std::vector<DimSize_t> &output_dims_order, +inline std::shared_ptr<Node> Transpose(const std::vector<DimSize_t> &outputDimsOrder, const std::string& name = "") { - return std::make_shared<Node>(std::make_shared<Transpose_Op>(output_dims_order), name); + return std::make_shared<Node>(std::make_shared<Transpose_Op>(outputDimsOrder), name); } } // namespace Aidge diff --git a/include/aidge/recipes/GraphViewHelper.hpp b/include/aidge/recipes/GraphViewHelper.hpp index a2c571bf4ed164729f7c3416c814b913b4d07e6f..3b8ba7627362c945a6bfbe587ec952fdda013e98 100644 --- a/include/aidge/recipes/GraphViewHelper.hpp +++ b/include/aidge/recipes/GraphViewHelper.hpp @@ -39,8 +39,6 @@ std::set<std::shared_ptr<Tensor>> producers(std::shared_ptr<GraphView> graphview */ std::set<std::shared_ptr<Tensor>> parameters(std::shared_ptr<GraphView> graphview); -void compile_gradient(std::shared_ptr<Aidge::GraphView> gv); - } // namespace Aidge #endif /* AIDGE_CORE_UTILS_GRAPHVIEWHELPER_H_ */ diff --git a/include/aidge/recipes/Recipes.hpp b/include/aidge/recipes/Recipes.hpp index 97c608cd38ca76a4f40b8fb02282751a97ceed4e..48137610fe74fc8839c2e5dcf6db1df10e29d420 100644 --- a/include/aidge/recipes/Recipes.hpp +++ b/include/aidge/recipes/Recipes.hpp @@ -44,24 +44,30 @@ void fuseMulAdd(std::shared_ptr<Node> matmul,std::shared_ptr<Node> add); */ void fuseMulAdd(std::shared_ptr<GraphView> graphView); -// REMOVE Dropout - /** - * @brief Remove ``Dropout`` Node. + * @brief Remove a node type. * - * @param nodes Node to remove. + * @param graphView Graph view to use graph matching on, in order to apply transfomrations. + * @param type Type of the nodes to remove + * @param incProducers If true, also remove the producers attached to the removed nodes + * @return size_t Number of identity nodes removed */ -void removeDropout(std::shared_ptr<Node> dropout); - - -void removeDropout(std::shared_ptr<MatchSolution> solution); +size_t removeNode(std::shared_ptr<GraphView> graphView, const std::string& type, bool incProducers = false); /** * @brief Remove ``Dropout`` Node. * * @param graphView Graph view to use graph matching on, in order to apply transfomrations. + * @return size_t Number of identity nodes removed */ -void removeDropout(std::shared_ptr<GraphView> graphView); +size_t removeDropout(std::shared_ptr<GraphView> graphView); + +/** + * Remove all identity nodes + * @param graph Graph to manipulate + * @return size_t Number of identity nodes removed +*/ +size_t removeIdentity(std::shared_ptr<GraphView> graph); // REMOVE FLATTEN + FC -> FC @@ -111,11 +117,17 @@ std::set<std::shared_ptr<Node>> getConvHorizontalTiling(const std::shared_ptr<No /** - * Add Convert operators where needed to ensure no conversion needs to be done + * Add Cast and Move operators where needed to ensure no conversion needs to be done * at the Operator level. */ void explicitCastMove(std::shared_ptr<GraphView> graphView); +/** + * Add Transpose operators where needed to ensure no transposition needs to be done + * at the Operator level. +*/ +void explicitTranspose(std::shared_ptr<GraphView> graphView); + /** * Flatten the graph by replacing the meta operators by their micro graph. * @param recursive If true, recursively replace meta operators until there is @@ -123,6 +135,15 @@ void explicitCastMove(std::shared_ptr<GraphView> graphView); */ void expandMetaOps(std::shared_ptr<GraphView> graph, bool recursive = false); +/** + * Fuse each sub-graph matching a query in a Meta Operator. + * @param graph Graph to manipulate + * @param query Sub-graph matching query + * @param type Type name of the resulting meta operators + * @return size_t Number of replacement +*/ +size_t fuseToMetaOps(std::shared_ptr<GraphView> graph, const std::string& query, const std::string& type = ""); + } // namespace Aidge #endif /* AIDGE_CORE_UTILS_RECIPES_H_ */ diff --git a/include/aidge/scheduler/MemoryManager.hpp b/include/aidge/scheduler/MemoryManager.hpp index 360b01f76e7a9b51f36b83d4d35286eced35016a..94add56e8afdebb8e42f7ae49a32da2aeed9e9cb 100644 --- a/include/aidge/scheduler/MemoryManager.hpp +++ b/include/aidge/scheduler/MemoryManager.hpp @@ -182,16 +182,7 @@ public: const std::shared_ptr<MemorySpace>& p1); }; - struct CompByNodeName { - bool operator()(const std::shared_ptr<Node>& lhs, - const std::shared_ptr<Node>& rhs) const - { - return lhs->name() < rhs->name(); - } - }; - - typedef std::map<std::shared_ptr<Node>, std::vector<MemoryPlane>, - CompByNodeName> MemMap_T; + typedef std::map<std::shared_ptr<Node>, std::vector<MemoryPlane>> MemMap_T; public: MemoryManager(): mClock(0) {} diff --git a/include/aidge/scheduler/SequentialScheduler.hpp b/include/aidge/scheduler/SequentialScheduler.hpp index a7929fde8a2affdd562d70d11a7c809aaf3357d0..35dafead6dc424550df7d83d54f5ec998c3b4d86 100644 --- a/include/aidge/scheduler/SequentialScheduler.hpp +++ b/include/aidge/scheduler/SequentialScheduler.hpp @@ -54,7 +54,7 @@ public: /** * @brief Run the provided Computational Graph with a batch of data */ - void backward(bool instantiateGrad = true); + void backward(); private: SchedulingPolicy mSchedulingPolicy; diff --git a/include/aidge/utils/Attributes.hpp b/include/aidge/utils/Attributes.hpp index 927686cfd5cca910c5ffb25364ae4bc971ad18bf..c1f6a8a7f704b4bd813983cb178d9e5acba5a5e1 100644 --- a/include/aidge/utils/Attributes.hpp +++ b/include/aidge/utils/Attributes.hpp @@ -12,15 +12,14 @@ #ifndef AIDGE_CORE_UTILS_ATTRIBUTES_H_ #define AIDGE_CORE_UTILS_ATTRIBUTES_H_ -#ifdef PYBIND -#include <pybind11/pybind11.h> -#include <pybind11/stl.h> -#endif -#include <vector> #include <string> #include <set> #ifdef PYBIND +#include <pybind11/pybind11.h> +#include <pybind11/stl.h> +#include <fmt/format.h> + namespace py = pybind11; #endif @@ -36,26 +35,53 @@ namespace Aidge { template<class T, std::size_t N> constexpr std::size_t size(T (&)[N]) { return N; } + /* This abstract class allows to avoid binding Attributes. * Otherwise we would need to bind every template possible of Attributes. * Every operators can access the methods of this class by inheriting from * Attributes in the binding code. */ class Attributes { +protected: + /** + * @brief Convert snake_case to PascalCase. + * @param snakeCase string to convert. + */ + static std::string snakeToPascal(const std::string& snakeCase); + + + /** + * @brief Convert PascalCase to snake_case. + * @param pascalCase string to convert. + */ + static std::string pascalToSnake(const std::string& pascalCase); + + /** + * @brief Check whether a given string is in PascalCase. + * @param str String to check. + */ + static bool isPascalCase(const std::string& str); + + /** + * @brief Check whether a given string is in snake_case. + * @param str String to check. + */ + static bool isSnakeCase(const std::string& str); + public: /** * @brief Check if the attribute exists. * @param name Name of the attribute to check. * @return bool True if the attribute exists, false otherwise. */ - virtual bool hasAttr(const std::string& name) const = 0; + virtual bool hasAttr(const std::string& /*name*/) const = 0; /** * @brief Get the (implementation defined) name of the type of an attribute, returned by std::type_info::name. * @param name Name of the attribute. * @return std::string Name of the type as returned by std::type_info::name. */ - virtual std::string getAttrType(const std::string& name) const = 0; + virtual std::string getAttrType(const std::string& /*name*/) const = 0; /** * @brief Get the attribute's name list. @@ -64,16 +90,25 @@ public: virtual std::set<std::string> getAttrsName() const = 0; #ifdef PYBIND + virtual bool hasAttrPy(const std::string& name) const = 0; + /* Bindable get function, does not recquire any templating. * This is thanks to py::object which allow the function to * be agnostic from its return type. */ - virtual py::object getAttrPy(const std::string& name) const = 0; + virtual py::object getAttrPy(const std::string& name) const = 0; /* Bindable set function, does not recquire any templating. * This is thanks to py::object which allow the function to * be agnostic from ``value`` type. */ - virtual void setAttrPy(const std::string& name, py::object&& value) = 0; + virtual void setAttrPy(const std::string& /*name*/, py::object&& /*value*/) = 0; + + virtual std::string str() const = 0; + + virtual std::string repr() const = 0; + + virtual py::dict dict() const = 0; + #endif virtual ~Attributes() {} }; diff --git a/include/aidge/utils/DynamicAttributes.hpp b/include/aidge/utils/DynamicAttributes.hpp index 113377b33d9827c3428eeb0adc92111f75c22abb..c5054eb2fd2e8bfa5e7fca898f343ce630643dbd 100644 --- a/include/aidge/utils/DynamicAttributes.hpp +++ b/include/aidge/utils/DynamicAttributes.hpp @@ -48,11 +48,12 @@ public: */ template<class T> T& getAttr(const std::string& name) { + AIDGE_ASSERT(isPascalCase(name), "Aidge standard requires PascalCase for C++ Attributes."); #ifdef PYBIND // If attribute does not exist in C++, it might have been created or modified in Python auto it = mAttrs.find(name); if (it == mAttrs.end()) { - auto itPy = mAttrsPy.find(name); + auto itPy = mAttrsPy.find(pascalToSnake(name)); if (itPy != mAttrsPy.end()) { // Insert the attribute back in C++ mAttrs.emplace(std::make_pair(name, future_std::any(itPy->second.cast<T>()))); @@ -65,11 +66,12 @@ public: template<class T> const T& getAttr(const std::string& name) const { + AIDGE_ASSERT(isPascalCase(name), "Aidge standard requires PascalCase for C++ Attributes."); #ifdef PYBIND // If attribute does not exist in C++, it might have been created or modified in Python auto it = mAttrs.find(name); if (it == mAttrs.end()) { - auto itPy = mAttrsPy.find(name); + auto itPy = mAttrsPy.find(pascalToSnake(name)); if (itPy != mAttrsPy.end()) { // Insert the attribute back in C++ mAttrs.emplace(std::make_pair(name, future_std::any(itPy->second.cast<T>()))); @@ -86,6 +88,7 @@ public: ///\param value Attribute value template<class T> void addAttr(const std::string& name, const T& value) { + AIDGE_ASSERT(isPascalCase(name), "Aidge standard requires PascalCase for C++ Attributes."); const auto& res = mAttrs.emplace(std::make_pair(name, future_std::any(value))); AIDGE_ASSERT(res.second, "attribute already exists"); @@ -93,7 +96,7 @@ public: // We cannot handle Python object if the Python interpreter is not running if (Py_IsInitialized()) { // Keep a copy of the attribute in py::object that is updated everytime - mAttrsPy.emplace(std::make_pair(name, py::cast(value))); + mAttrsPy.emplace(std::make_pair(pascalToSnake(name), py::cast(value))); } #endif } @@ -129,7 +132,8 @@ public: #ifdef PYBIND void addAttrPy(const std::string& name, py::object&& value) { - auto it = mAttrs.find(name); + AIDGE_ASSERT(isSnakeCase(name), "Aidge standard requires snake_case for Attributes with Python."); + auto it = mAttrs.find(snakeToPascal(name)); AIDGE_ASSERT(it == mAttrs.end(), "attribute already exists"); const auto& res = mAttrsPy.emplace(std::make_pair(name, value)); @@ -138,26 +142,52 @@ public: void setAttrPy(const std::string& name, py::object&& value) override final { + AIDGE_ASSERT(isSnakeCase(name), "Aidge standard requires snake_case for Attributes with Python."); auto resPy = mAttrsPy.emplace(std::make_pair(name, value)); if (!resPy.second) resPy.first->second = std::move(value); // Force getAttr() to take attribute value from mAttrsPy and update mAttrs - mAttrs.erase(name); + const std::string pascalName = snakeToPascal(name); + mAttrs.erase(pascalName); + } + + py::dict dict() const override { + py::dict attributes; + for (const auto& elt : mAttrsPy) { + const std::string snakeName = pascalToSnake(elt.first); + attributes[snakeName.c_str()] = elt.second; + } + return attributes; + } + + std::string str() const override { + return repr(); } + + std::string repr() const override { + // Call the __repr__ method of the base class py::dict + return fmt::format("AttrDict({})", static_cast<std::string>(py::str(dict()))); + // return fmt::format("AttrDict({})", dict().attr("__repr__")().cast<std::string>()); + } + #endif ////////////////////////////////////// /// Generic Attributes API ////////////////////////////////////// bool hasAttr(const std::string& name) const override final { + AIDGE_ASSERT(isPascalCase(name), "Aidge standard requires PascalCase for C++ Attributes."); + return (mAttrs.find(name) != mAttrs.cend()); + } + #ifdef PYBIND + bool hasAttrPy(const std::string& name) const override final { + AIDGE_ASSERT(isSnakeCase(name), "Aidge standard requires snake_case for Attributes with Python."); // Attributes might have been created in Python, the second condition is necessary. - return (mAttrs.find(name) != mAttrs.end() || mAttrsPy.find(name) != mAttrsPy.end()); -#else - return (mAttrs.find(name) != mAttrs.end()); -#endif + return (mAttrs.find(snakeToPascal(name)) != mAttrs.cend() || mAttrsPy.find(name) != mAttrsPy.cend()); } +#endif std::string getAttrType(const std::string& name) const override final { // In order to remain consistent between C++ and Python, with or without PyBind, the name of the type is: @@ -195,7 +225,7 @@ public: * generic type caster for std::any is not feasable. * The strategy here is to keep a copy of each attribute in py::object that is updated everytime. */ - py::object getAttrPy(const std::string& name) const override final { + inline py::object getAttrPy(const std::string& name) const override final { return mAttrsPy.at(name); }; #endif diff --git a/include/aidge/utils/Log.hpp b/include/aidge/utils/Log.hpp index a01f81629c8425f9d860bf1ea03bfe421dbd04fa..a400f8046d07df4ff4493470737f5c4d42945db7 100644 --- a/include/aidge/utils/Log.hpp +++ b/include/aidge/utils/Log.hpp @@ -14,6 +14,7 @@ #define AIDGE_LOG_H_ #include <memory> +#include <vector> #include <fmt/format.h> #include <fmt/ranges.h> diff --git a/include/aidge/utils/Registrar.hpp b/include/aidge/utils/Registrar.hpp index b0acdaff7cb75afec78f0564fb95c98f2b32f47b..47bb05ce7c435eda7e975a58544a416182c3853b 100644 --- a/include/aidge/utils/Registrar.hpp +++ b/include/aidge/utils/Registrar.hpp @@ -77,7 +77,7 @@ struct Registrar { static auto create(const registrar_key& key){ const auto it = C::registry().find(key); - AIDGE_ASSERT(it != C::registry().cend(), "missing or invalid registrar key: {}\nDid you include/import the corresponding module?", key); + AIDGE_ASSERT(it != C::registry().cend(), "missing or invalid registrar key: {} for registrable object {}\nDid you include/import the corresponding module?\nIf so, it is possible that the object is not yet supported.", key, typeid(C).name()); return (*it).second; } diff --git a/include/aidge/utils/StaticAttributes.hpp b/include/aidge/utils/StaticAttributes.hpp index 6bf59155373cf73d158fce4eb5bda58f7d279e69..8fc88ff79c50751ba7b79662fc9fc430d4ed601d 100644 --- a/include/aidge/utils/StaticAttributes.hpp +++ b/include/aidge/utils/StaticAttributes.hpp @@ -12,11 +12,16 @@ #ifndef AIDGE_CORE_UTILS_STATICATTRIBUTES_H_ #define AIDGE_CORE_UTILS_STATICATTRIBUTES_H_ -#include <tuple> +#include <array> #include <cassert> #include <cstddef> +#include <string> +#include <tuple> #include <typeinfo> -#include <array> + +#ifdef PYBIND +#include <fmt/format.h> +#endif #include "aidge/utils/Attributes.hpp" #include "aidge/utils/ErrorHandling.hpp" @@ -149,8 +154,9 @@ public: AIDGE_THROW_OR_ABORT(std::runtime_error, "attribute not found"); } - template <std::size_t SIZE = std::tuple_size<std::tuple<T...>>::value> - constexpr typename std::enable_if<(SIZE > 0), const std::type_info&>::type getAttrType(std::size_t i) const { + template <std::size_t SIZE = std::tuple_size<std::tuple<T...>>::value, + std::enable_if_t<(SIZE > 0), bool> = true> + constexpr const std::type_info& getAttrType(std::size_t i) const { if (i == SIZE-1) { return typeid(typename std::tuple_element<SIZE-1,std::tuple<T...>>::type); } @@ -159,8 +165,9 @@ public: } } - template <std::size_t SIZE = std::tuple_size<std::tuple<T...>>::value> - [[noreturn]] typename std::enable_if<(SIZE == 0), const std::type_info&>::type getAttrType(std::size_t /*i*/) const { + template <std::size_t SIZE = std::tuple_size<std::tuple<T...>>::value, + std::enable_if_t<(SIZE == 0), bool> = true> + [[noreturn]] const std::type_info& getAttrType(std::size_t /*i*/) const { AIDGE_THROW_OR_ABORT(std::runtime_error, "attribute not found"); } @@ -173,6 +180,7 @@ public: ////////////////////////////////////// // Runtime existance check with name bool hasAttr(const std::string& name) const override final { + AIDGE_ASSERT(isPascalCase(name), "Aidge standard requires PascalCase for C++ Attributes."); for (std::size_t i = 0; i < size(EnumStrings<ATTRS_ENUM>::data); ++i) { if (name == EnumStrings<ATTRS_ENUM>::data[i]) { return true; @@ -182,6 +190,20 @@ public: return false; } +#ifdef PYBIND + bool hasAttrPy(const std::string& name) const override final { + AIDGE_ASSERT(isSnakeCase(name), "Aidge standard requires snake_case for Attributes with Python, got '{}'.", name); + const std::string pascalName = snakeToPascal(name); + for (std::size_t i = 0; i < size(EnumStrings<ATTRS_ENUM>::data); ++i) { + if (pascalName == EnumStrings<ATTRS_ENUM>::data[i]) { + return true; + } + } + + return false; + } +#endif + // Runtime type access with name std::string getAttrType(const std::string& name) const override final { for (std::size_t i = 0; i < size(EnumStrings<ATTRS_ENUM>::data); ++i) { @@ -212,28 +234,40 @@ public: static std::set<std::string> staticGetAttrsName() { std::set<std::string> attrsName; for (std::size_t i = 0; i < size(EnumStrings<ATTRS_ENUM>::data); ++i) { - attrsName.insert(EnumStrings<ATTRS_ENUM>::data[i]); + attrsName.insert(pascalToSnake(std::string(EnumStrings<ATTRS_ENUM>::data[i]))); } return attrsName; } py::object getAttrPy(const std::string& name) const override { + if (name == "__dict__") { + return py::none(); + } + AIDGE_ASSERT(isSnakeCase(name), "Aidge standard requires snake_case for Attributes with Python, got '{}'.", name); + const std::string pascalName = snakeToPascal(name); for (std::size_t i = 0; i < size(EnumStrings<ATTRS_ENUM>::data); ++i) { - if (name == EnumStrings<ATTRS_ENUM>::data[i]) { + if (pascalName == EnumStrings<ATTRS_ENUM>::data[i]) { // https://github.com/pybind/pybind11/blob/f3e0602802c7840992c97f4960515777cad6a5c7/include/pybind11/pytypes.h#L1119-L1138 - // Normal accessor would not work has we convert the tuple to a py::object which can be anything + // Normal accessor would not work as we convert the tuple to a py::object which can be anything return py::detail::accessor_policies::tuple_item::get(py::cast(mAttrs), static_cast<py::size_t>(i)); } } - - AIDGE_THROW_OR_ABORT(py::value_error, "attribute \"{}\" not found", name); + // if (name == "_ipython_canary_method_should_not_exist_") { + // fmt::print("dict call {}", py::str(dict().attr("__getitem__")(name)).cast<std::string>()); + // } + // ipython tries special methods and attributes (e.g "_ipython_canary_method_should_not_exist_") that require to throw + throw py::attribute_error(fmt::format("attribute \"{}\" not found.", name)); + // AIDGE_THROW_OR_ABORT(py::key_error, "attribute \"{}\" not found in Python attribute getter", name); + // return py::none(); } void setAttrPy(const std::string& name, py::object&& value) override final{ + AIDGE_ASSERT(isSnakeCase(name), "Aidge standard requires snake_case for Attributes with Python, got '{}'.", name); + const std::string pascalName = snakeToPascal(name); for (std::size_t i = 0; i < size(EnumStrings<ATTRS_ENUM>::data); ++i) { - if (name == EnumStrings<ATTRS_ENUM>::data[i]) { + if (pascalName == EnumStrings<ATTRS_ENUM>::data[i]) { // Cannot update attribute using reference has it would require templating // Use a dirty auto tmpAttr = py::cast(mAttrs); @@ -242,8 +276,42 @@ public: return; } } - AIDGE_THROW_OR_ABORT(py::value_error, "attribute \"{}\" not found", name); + throw py::attribute_error(fmt::format("attribute \"{}\" not found.", name)); + } + + py::dict dict() const override { + py::dict attributes; + for (std::size_t i = 0; i < size(EnumStrings<ATTRS_ENUM>::data); ++i) { + const std::string snakeName = pascalToSnake(EnumStrings<ATTRS_ENUM>::data[i]); + // https://github.com/pybind/pybind11/blob/f3e0602802c7840992c97f4960515777cad6a5c7/include/pybind11/pytypes.h#L1119-L1138 + // Normal accessor would not work as we convert the tuple to a py::object which can be anything + attributes[snakeName.c_str()] = py::detail::accessor_policies::tuple_item::get(py::cast(mAttrs), static_cast<py::size_t>(i)); + } + return attributes; } + + std::string str() const override { + return repr(); + } + + std::string repr() const override { + // Call the __repr__ method of the base class py::dict + return fmt::format("AttrDict({})", static_cast<std::string>(py::str(dict()))); + // return fmt::format("AttrDict({})", dict().attr("__repr__")().cast<std::string>()); + } + + std::size_t len() const { + return size(EnumStrings<ATTRS_ENUM>::data); + } + // AttrDict get_a() const { + // py::dict attributes_; + // for (std::size_t i = 0; i < size(EnumStrings<ATTRS_ENUM>::data); ++i) { + // const std::string snakeName = pascalToSnake(std::string(EnumStrings<ATTRS_ENUM>::data[i])); + // attributes_[snakeName.c_str()] = py::detail::accessor_policies::tuple_item::get(py::cast(mAttrs), static_cast<py::size_t>(i)); + // } + // return AttrDict(attributes_); + // } + #endif private: diff --git a/python_binding/data/pybind_Data.cpp b/python_binding/data/pybind_Data.cpp index bca246c94434b280a12d070526ad4ffb2c7fbe7b..c6595360b17ee08eaa82d483987914adc67b60a8 100644 --- a/python_binding/data/pybind_Data.cpp +++ b/python_binding/data/pybind_Data.cpp @@ -10,6 +10,7 @@ ********************************************************************************/ #include <pybind11/pybind11.h> + #include "aidge/data/Data.hpp" namespace py = pybind11; @@ -17,16 +18,18 @@ namespace Aidge { void init_Data(py::module& m){ // TODO : extend with more values ! - py::enum_<DataType>(m, "DataType") - .value("Float64", DataType::Float64) - .value("Float32", DataType::Float32) - .value("Float16", DataType::Float16) - .value("Int8", DataType::Int8) - .value("Int32", DataType::Int32) - .value("Int64", DataType::Int64) - .value("UInt8", DataType::UInt8) - .value("UInt32", DataType::UInt32) - .value("UInt64", DataType::UInt64) + py::enum_<DataType>(m, "dtype") + .value("float64", DataType::Float64) + .value("float32", DataType::Float32) + .value("float16", DataType::Float16) + .value("int8", DataType::Int8) + .value("int16", DataType::Int16) + .value("int32", DataType::Int32) + .value("int64", DataType::Int64) + .value("uint8", DataType::UInt8) + .value("uint16", DataType::UInt16) + .value("uint32", DataType::UInt32) + .value("uint64", DataType::UInt64) ; py::class_<Data, std::shared_ptr<Data>>(m,"Data"); diff --git a/python_binding/data/pybind_Tensor.cpp b/python_binding/data/pybind_Tensor.cpp index 3c2120565e1637697e5258723b1b366a520fdf80..83bb4afeacdd6de181fd6738edad2229736854c8 100644 --- a/python_binding/data/pybind_Tensor.cpp +++ b/python_binding/data/pybind_Tensor.cpp @@ -73,21 +73,33 @@ void init_Tensor(py::module& m){ (m,"Tensor", py::multiple_inheritance(), py::buffer_protocol()); pyClassTensor.def(py::init<>()) + .def(py::self + py::self) + .def(py::self - py::self) + .def(py::self * py::self) + .def(py::self / py::self) + .def("sqrt", &Tensor::sqrt) .def("set_datatype", &Tensor::setDataType, py::arg("datatype"), py::arg("copyCast") = true) .def("set_backend", &Tensor::setBackend, py::arg("name"), py::arg("device") = 0, py::arg("copyFrom") = true) .def("dims", (const std::vector<DimSize_t>& (Tensor::*)()const) &Tensor::dims) .def("grad", &Tensor::grad) .def("set_grad", &Tensor::setGrad) .def("dtype", &Tensor::dataType) - .def("init_grad", &Tensor::initGrad) .def("size", &Tensor::size) + .def("capacity", &Tensor::capacity) .def("resize", (void (Tensor::*)(const std::vector<DimSize_t>&, std::vector<DimSize_t>)) &Tensor::resize) .def("has_impl", &Tensor::hasImpl) .def("get_coord", &Tensor::getCoord) .def("get_idx", &Tensor::getIdx) .def_static("get_available_backends", &Tensor::getAvailableBackends) .def("__str__", [](Tensor& b) { - return b.toString(); + if (b.empty()) { + return std::string("{}"); + } else { + return b.toString(); + } + }) + .def("__repr__", [](Tensor& b) { + return fmt::format("Tensor(dims = {}, dtype = {})", b.dims(), std::string(EnumStrings<DataType>::data[static_cast<int>(b.dataType())])); }) .def("__len__", [](Tensor& b) -> size_t{ return b.size(); diff --git a/python_binding/graph/pybind_GraphView.cpp b/python_binding/graph/pybind_GraphView.cpp index 1000374454020625aada7f2043893b229deec833..2930383817d1555d51b8bddd8eff6402240e905a 100644 --- a/python_binding/graph/pybind_GraphView.cpp +++ b/python_binding/graph/pybind_GraphView.cpp @@ -30,6 +30,12 @@ void init_GraphView(py::module& m) { :param path: save location :type path: str )mydelimiter") + .def("in_view", (bool (GraphView::*)(const NodePtr&) const) &GraphView::inView) + .def("in_view", (bool (GraphView::*)(const std::string&) const) &GraphView::inView) + .def("root_node", &GraphView::rootNode) + .def("set_root_node", &GraphView::setRootNode, py::arg("node")) + .def("__repr__", &GraphView::repr) + .def("__len__", [](const GraphView& g){ return g.getNodes().size(); }) .def("log_outputs", &GraphView::logOutputs, py::arg("path")) .def("get_ordered_inputs", &GraphView::getOrderedInputs) .def("get_ordered_outputs", &GraphView::getOrderedOutputs) @@ -61,13 +67,15 @@ void init_GraphView(py::module& m) { :type include_learnable_parameters: bool, optional )mydelimiter") - .def("add", (bool (GraphView::*)(std::shared_ptr<GraphView>)) & GraphView::add, - py::arg("other_graph"), + .def("add", (bool (GraphView::*)(std::shared_ptr<GraphView>, bool)) & GraphView::add, + py::arg("other_graph"), py::arg("include_learnable_parameters") = true, R"mydelimiter( Include a GraphView to the current GraphView object. :param other_graph: GraphView to add :type other_graph: GraphView + :param include_learnable_parameters: include non-data inputs, like weights and biases, default True. + :type include_learnable_parameters: bool, optional )mydelimiter") .def("add_child", diff --git a/python_binding/graph/pybind_Node.cpp b/python_binding/graph/pybind_Node.cpp index b22ebdd0f6cdb5bd738cd164b3fc2e9fe36d9987..06c171214d5df261e5df832179a0fa69420aab7d 100644 --- a/python_binding/graph/pybind_Node.cpp +++ b/python_binding/graph/pybind_Node.cpp @@ -48,6 +48,8 @@ void init_Node(py::module& m) { :rtype: str )mydelimiter") + .def("__repr__", &Node::repr) + .def("add_child", (void (Node::*)(std::shared_ptr<Node>, const IOIndex_t, IOIndex_t)) & Node::addChild, @@ -132,11 +134,12 @@ void init_Node(py::module& m) { :rtype: int )mydelimiter") - .def("get_nb_data", &Node::nbData, + .def("input_category", &Node::inputCategory, py::arg("idx"), R"mydelimiter( - Number of data inputs. + Category of a specific input (Data or Param, optional or not). + Data inputs exclude inputs expecting parameters (weights or bias). - :rtype: int + :rtype: InputCategory )mydelimiter") .def("get_nb_outputs", &Node::nbOutputs, diff --git a/python_binding/operator/pybind_Add.cpp b/python_binding/operator/pybind_Add.cpp index c3eeb192a88163be96f973a55e6ef7cc60ec48af..103e7c1e4db6e197a1dac959a25d266e031d3e55 100644 --- a/python_binding/operator/pybind_Add.cpp +++ b/python_binding/operator/pybind_Add.cpp @@ -9,11 +9,11 @@ * ********************************************************************************/ +#include <memory> + #include <pybind11/pybind11.h> #include "aidge/operator/Add.hpp" -#include "aidge/data/Tensor.hpp" -#include "aidge/backend/OperatorImpl.hpp" #include "aidge/operator/OperatorTensor.hpp" #include "aidge/utils/Types.h" @@ -22,13 +22,17 @@ namespace Aidge { void declare_Add(py::module &m) { py::class_<Add_Op, std::shared_ptr<Add_Op>, OperatorTensor>(m, "AddOp", py::multiple_inheritance()) - .def("get_inputs_name", &Add_Op::getInputsName) - .def("get_outputs_name", &Add_Op::getOutputsName); + .def(py::init<const IOIndex_t>(), py::arg("nb_inputs")) + .def_static("get_inputs_name", &Add_Op::getInputsName) + .def_static("get_outputs_name", &Add_Op::getOutputsName); + declare_registrable<Add_Op>(m, "AddOp"); - m.def("Add", &Add, py::arg("nbIn"), py::arg("name") = ""); + + m.def("Add", &Add, py::arg("nb_inputs"), py::arg("name") = ""); } void init_Add(py::module &m) { declare_Add(m); } + } // namespace Aidge diff --git a/python_binding/operator/pybind_AvgPooling.cpp b/python_binding/operator/pybind_AvgPooling.cpp index 5d72a3507c4926412b48cda42b1c3bcbe10e9460..0587554b722c99d009a248ce963f80cb4fd892ec 100644 --- a/python_binding/operator/pybind_AvgPooling.cpp +++ b/python_binding/operator/pybind_AvgPooling.cpp @@ -21,23 +21,34 @@ #include "aidge/operator/AvgPooling.hpp" #include "aidge/operator/OperatorTensor.hpp" #include "aidge/utils/Types.h" +#include "aidge/utils/StaticAttributes.hpp" namespace py = pybind11; namespace Aidge { template <DimIdx_t DIM> void declare_AvgPoolingOp(py::module &m) { + const std::string pyClassName("AvgPoolingOp" + std::to_string(DIM) + "D"); - py::class_<AvgPooling_Op<DIM>, std::shared_ptr<AvgPooling_Op<DIM>>, Attributes, OperatorTensor>( - m, pyClassName.c_str(), - py::multiple_inheritance()) - .def(py::init<const std::array<DimSize_t, DIM> &, - const std::array<DimSize_t, DIM> &>(), - py::arg("kernel_dims"), - py::arg("stride_dims")) - .def("get_inputs_name", &AvgPooling_Op<DIM>::getInputsName) - .def("get_outputs_name", &AvgPooling_Op<DIM>::getOutputsName) - .def("attributes_name", &AvgPooling_Op<DIM>::staticGetAttrsName); + const std::string pyStaticAttrClassName("StaticAttributes" + pyClassName); +// py::class_<StaticAttributes<AvgPoolingAttr, +// std::array<DimSize_t, DIM>, +// std::array<DimSize_t, DIM>>, +// std::shared_ptr<StaticAttributes<AvgPoolingAttr, +// std::array<DimSize_t, DIM>, +// std::array<DimSize_t, DIM>>>, Attributes>(m, pyStaticAttrClassName.c_str()); + + py::class_<AvgPooling_Op<DIM>, std::shared_ptr<AvgPooling_Op<DIM>>, OperatorTensor>( + m, pyClassName.c_str(), + py::multiple_inheritance()) + .def(py::init<const std::array<DimSize_t, DIM> &, + const std::array<DimSize_t, DIM> &>(), + py::arg("kernel_dims"), + py::arg("stride_dims") = create_array<DimSize_t,DIM>(1)) + .def("get_inputs_name", &AvgPooling_Op<DIM>::getInputsName) + .def("get_outputs_name", &AvgPooling_Op<DIM>::getOutputsName); + declare_registrable<AvgPooling_Op<DIM>>(m, pyClassName); + m.def(("AvgPooling" + std::to_string(DIM) + "D").c_str(), [](const std::vector<DimSize_t>& kernel_dims, const std::string& name, const std::vector<DimSize_t> &stride_dims) { @@ -48,11 +59,13 @@ template <DimIdx_t DIM> void declare_AvgPoolingOp(py::module &m) { }, py::arg("kernel_dims"), py::arg("name") = "", py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1)); - } void init_AvgPooling(py::module &m) { +// py::enum_<AvgPoolingAttr>(m, "_AvgPoolingAttr") + // .value("kernel_dims", AvgPoolingAttr::KernelDims) + // .value("stride_dims", AvgPoolingAttr::StrideDims); declare_AvgPoolingOp<1>(m); declare_AvgPoolingOp<2>(m); declare_AvgPoolingOp<3>(m); @@ -61,4 +74,5 @@ void init_AvgPooling(py::module &m) { // m.def("AvgPooling1D", static_cast<NodeAPI(*)(const char*, int, int, int const // (&)[1])>(&AvgPooling)); } + } // namespace Aidge diff --git a/python_binding/operator/pybind_BatchNorm.cpp b/python_binding/operator/pybind_BatchNorm.cpp index 9640141e03bcd811f5ce24c544c5cdbc9fe6b2f3..42e31de2c7c8ba440cd8e479cf9285b398970b42 100644 --- a/python_binding/operator/pybind_BatchNorm.cpp +++ b/python_binding/operator/pybind_BatchNorm.cpp @@ -9,9 +9,10 @@ * ********************************************************************************/ -#include <pybind11/pybind11.h> #include <string> +#include <pybind11/pybind11.h> + #include "aidge/data/Tensor.hpp" #include "aidge/operator/BatchNorm.hpp" #include "aidge/operator/OperatorTensor.hpp" @@ -23,19 +24,21 @@ namespace Aidge { template <DimSize_t DIM> void declare_BatchNormOp(py::module& m) { const std::string pyClassName("BatchNormOp" + std::to_string(DIM) + "D"); - py::class_<BatchNorm_Op<DIM>, std::shared_ptr<BatchNorm_Op<DIM>>, Attributes, OperatorTensor>(m, pyClassName.c_str(), py::multiple_inheritance()) - .def(py::init<float, float>(), - py::arg("epsilon"), - py::arg("momentum")) - .def("get_inputs_name", &BatchNorm_Op<DIM>::getInputsName) - .def("get_outputs_name", &BatchNorm_Op<DIM>::getOutputsName) - .def("attributes_name", &BatchNorm_Op<DIM>::staticGetAttrsName); + py::class_<BatchNorm_Op<DIM>, std::shared_ptr<BatchNorm_Op<DIM>>, OperatorTensor>( + m, pyClassName.c_str(), py::multiple_inheritance()) + .def(py::init<float, float>(), + py::arg("epsilon"), + py::arg("momentum")) + .def_static("get_inputs_name", &BatchNorm_Op<DIM>::getInputsName) + .def_static("get_outputs_name", &BatchNorm_Op<DIM>::getOutputsName); + declare_registrable<BatchNorm_Op<DIM>>(m, pyClassName); - m.def(("BatchNorm" + std::to_string(DIM) + "D").c_str(), &BatchNorm<DIM>, py::arg("nbFeatures"), py::arg("epsilon") = 1.0e-5F, py::arg("momentum") = 0.1F, py::arg("name") = ""); + m.def(("BatchNorm" + std::to_string(DIM) + "D").c_str(), &BatchNorm<DIM>, py::arg("nb_features"), py::arg("epsilon") = 1.0e-5F, py::arg("momentum") = 0.1F, py::arg("name") = ""); } void init_BatchNorm(py::module &m) { declare_BatchNormOp<2>(m); } + } // namespace Aidge diff --git a/python_binding/operator/pybind_Concat.cpp b/python_binding/operator/pybind_Concat.cpp index 756686c209c33fe03f7bda4bbb53d8c3c71e8b4c..9f02e04a41b20599a6cfe878f53db04c6d5bbe34 100644 --- a/python_binding/operator/pybind_Concat.cpp +++ b/python_binding/operator/pybind_Concat.cpp @@ -20,12 +20,16 @@ namespace py = pybind11; namespace Aidge { void init_Concat(py::module& m) { - py::class_<Concat_Op, std::shared_ptr<Concat_Op>, Attributes, OperatorTensor>(m, "ConcatOp", py::multiple_inheritance()) - .def("get_inputs_name", &Concat_Op::getInputsName) - .def("get_outputs_name", &Concat_Op::getOutputsName) - .def("attributes_name", &Concat_Op::staticGetAttrsName); + py::class_<Concat_Op, std::shared_ptr<Concat_Op>, OperatorTensor>(m, "ConcatOp", py::multiple_inheritance()) + .def(py::init<const IOIndex_t, const int>(), + py::arg("nb_inputs"), + py::arg("axis")) + .def_static("get_inputs_name", &Concat_Op::getInputsName) + .def_static("get_outputs_name", &Concat_Op::getOutputsName); declare_registrable<Concat_Op>(m, "ConcatOp"); - m.def("Concat", &Concat, py::arg("nbIn"), py::arg("axis"), py::arg("name") = ""); + + m.def("Concat", &Concat, py::arg("nb_inputs"), py::arg("axis"), py::arg("name") = ""); } + } // namespace Aidge diff --git a/python_binding/operator/pybind_Conv.cpp b/python_binding/operator/pybind_Conv.cpp index adb0e108c409032c7e132016f5b92ed9f9233491..61fb37e788021757fa6c3aced9a5f4c30fb60548 100644 --- a/python_binding/operator/pybind_Conv.cpp +++ b/python_binding/operator/pybind_Conv.cpp @@ -27,27 +27,27 @@ namespace Aidge { template <DimIdx_t DIM> void declare_ConvOp(py::module &m) { const std::string pyClassName("ConvOp" + std::to_string(DIM) + "D"); - py::class_<Conv_Op<DIM>, std::shared_ptr<Conv_Op<DIM>>, Attributes, OperatorTensor>( + py::class_<Conv_Op<DIM>, std::shared_ptr<Conv_Op<DIM>>, OperatorTensor>( m, pyClassName.c_str(), py::multiple_inheritance()) - .def(py::init<DimSize_t, - DimSize_t, - const std::array<DimSize_t, DIM> &, - const std::array<DimSize_t, DIM> &, - const std::array<DimSize_t, DIM> &, - bool>(), - py::arg("in_channels"), - py::arg("out_channels"), - py::arg("kernel_dims"), - py::arg("stride_dims"), - py::arg("dilation_dims"), - py::arg("no_bias")) - .def("get_inputs_name", &Conv_Op<DIM>::getInputsName) - .def("get_outputs_name", &Conv_Op<DIM>::getOutputsName) - .def("attributes_name", &Conv_Op<DIM>::staticGetAttrsName) - ; - declare_registrable<Conv_Op<DIM>>(m, pyClassName); + .def(py::init([](const std::vector<DimSize_t>& kernel_dims, + const std::vector<DimSize_t> &stride_dims, + const std::vector<DimSize_t> &dilation_dims) { + AIDGE_ASSERT(kernel_dims.size() == DIM, "kernel_dims size [{}] does not match DIM [{}]", kernel_dims.size(), DIM); + AIDGE_ASSERT(stride_dims.size() == DIM, "stride_dims size [{}] does not match DIM [{}]", stride_dims.size(), DIM); + AIDGE_ASSERT(dilation_dims.size() == DIM, "dilation_dims size [{}] does not match DIM [{}]", dilation_dims.size(), DIM); + + return new Conv_Op<DIM>(to_array<DIM>(kernel_dims.begin()), to_array<DIM>(stride_dims.begin()), to_array<DIM>(dilation_dims.begin())); + }), py::arg("kernel_dims"), + py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1), + py::arg("dilation_dims") = std::vector<DimSize_t>(DIM,1)) + .def_static("get_inputs_name", &Conv_Op<DIM>::getInputsName) + .def_static("get_outputs_name", &Conv_Op<DIM>::getOutputsName) + .def("in_channels", &Conv_Op<DIM>::inChannels) + .def("out_channels", &Conv_Op<DIM>::outChannels) + ; + declare_registrable<Conv_Op<DIM>>(m, pyClassName); m.def(("Conv" + std::to_string(DIM) + "D").c_str(), [](DimSize_t in_channels, DimSize_t out_channels, @@ -74,6 +74,7 @@ template <DimIdx_t DIM> void declare_ConvOp(py::module &m) { void init_Conv(py::module &m) { declare_ConvOp<1>(m); declare_ConvOp<2>(m); - declare_ConvOp<3>(m); +// declare_ConvOp<3>(m); } + } // namespace Aidge diff --git a/python_binding/operator/pybind_ConvDepthWise.cpp b/python_binding/operator/pybind_ConvDepthWise.cpp index 19b3332a84037185afdc87fd90cb9c8fea2e64f8..080df1832bf92a9db9d26e1fa18b652dc70c2a42 100644 --- a/python_binding/operator/pybind_ConvDepthWise.cpp +++ b/python_binding/operator/pybind_ConvDepthWise.cpp @@ -28,22 +28,19 @@ namespace Aidge { template <DimIdx_t DIM> void declare_ConvDepthWiseOp(py::module &m) { const std::string pyClassName("ConvDepthWiseOp" + std::to_string(DIM) + "D"); - py::class_<ConvDepthWise_Op<DIM>, std::shared_ptr<ConvDepthWise_Op<DIM>>, Attributes, OperatorTensor>( + py::class_<ConvDepthWise_Op<DIM>, std::shared_ptr<ConvDepthWise_Op<DIM>>, OperatorTensor>( m, pyClassName.c_str(), py::multiple_inheritance()) - .def(py::init<const DimSize_t, + .def(py::init<const std::array<DimSize_t, DIM> &, const std::array<DimSize_t, DIM> &, - const std::array<DimSize_t, DIM> &, - const std::array<DimSize_t, DIM> &, - bool>(), - py::arg("nb_channels"), + const std::array<DimSize_t, DIM> &>(), py::arg("kernel_dims"), py::arg("stride_dims"), - py::arg("dilation_dims"), - py::arg("no_bias")) - .def("get_inputs_name", &ConvDepthWise_Op<DIM>::getInputsName) - .def("get_outputs_name", &ConvDepthWise_Op<DIM>::getOutputsName) - .def("attributes_name", &ConvDepthWise_Op<DIM>::staticGetAttrsName); + py::arg("dilation_dims")) + .def_static("get_inputs_name", &ConvDepthWise_Op<DIM>::getInputsName) + .def_static("get_outputs_name", &ConvDepthWise_Op<DIM>::getOutputsName) + .def("nb_channels", &ConvDepthWise_Op<DIM>::nbChannels); + declare_registrable<ConvDepthWise_Op<DIM>>(m, pyClassName); m.def(("ConvDepthWise" + std::to_string(DIM) + "D").c_str(), [](const DimSize_t nb_channels, const std::vector<DimSize_t>& kernel_dims, @@ -69,7 +66,7 @@ template <DimIdx_t DIM> void declare_ConvDepthWiseOp(py::module &m) { void init_ConvDepthWise(py::module &m) { declare_ConvDepthWiseOp<1>(m); declare_ConvDepthWiseOp<2>(m); - declare_ConvDepthWiseOp<3>(m); +// declare_ConvDepthWiseOp<3>(m); // FIXME: // m.def("ConvDepthWise1D", static_cast<NodeAPI(*)(const char*, int, int, int const diff --git a/python_binding/operator/pybind_Div.cpp b/python_binding/operator/pybind_Div.cpp index e9bf26b629aa05090c9601103676cbc12ff4c88d..9dcb98a54596f32525d2880dd6e955d4643f6e7c 100644 --- a/python_binding/operator/pybind_Div.cpp +++ b/python_binding/operator/pybind_Div.cpp @@ -20,9 +20,11 @@ namespace Aidge { void init_Div(py::module& m) { py::class_<Div_Op, std::shared_ptr<Div_Op>, OperatorTensor>(m, "DivOp", py::multiple_inheritance()) - .def("get_inputs_name", &Div_Op::getInputsName) - .def("get_outputs_name", &Div_Op::getOutputsName); + .def(py::init<>()) + .def_static("get_inputs_name", &Div_Op::getInputsName) + .def_static("get_outputs_name", &Div_Op::getOutputsName); declare_registrable<Div_Op>(m, "DivOp"); m.def("Div", &Div, py::arg("name") = ""); } + } // namespace Aidge diff --git a/python_binding/operator/pybind_Erf.cpp b/python_binding/operator/pybind_Erf.cpp index c5fd53f2a665b5b816a3778e6f874cd04956e99e..c248753ca8de46293d49ce4dc614ae258c313256 100644 --- a/python_binding/operator/pybind_Erf.cpp +++ b/python_binding/operator/pybind_Erf.cpp @@ -20,9 +20,12 @@ namespace Aidge { void init_Erf(py::module& m) { py::class_<Erf_Op, std::shared_ptr<Erf_Op>, OperatorTensor>(m, "ErfOp", py::multiple_inheritance()) - .def("get_inputs_name", &Erf_Op::getInputsName) - .def("get_outputs_name", &Erf_Op::getOutputsName); + .def(py::init<>()) + .def_static("get_inputs_name", &Erf_Op::getInputsName) + .def_static("get_outputs_name", &Erf_Op::getOutputsName); + declare_registrable<Erf_Op>(m, "ErfOp"); + m.def("Erf", &Erf, py::arg("name") = ""); } } // namespace Aidge diff --git a/python_binding/operator/pybind_FC.cpp b/python_binding/operator/pybind_FC.cpp index ab1ed9ce20bec01e205cd6478c6a93df9f91a2fb..9e0d61bc3a4d957e98db39577e120da5fe97ebea 100644 --- a/python_binding/operator/pybind_FC.cpp +++ b/python_binding/operator/pybind_FC.cpp @@ -15,21 +15,36 @@ #include "aidge/data/Tensor.hpp" #include "aidge/operator/FC.hpp" #include "aidge/operator/OperatorTensor.hpp" +#include "aidge/utils/Attributes.hpp" #include "aidge/utils/Types.h" namespace py = pybind11; namespace Aidge { + + void declare_FC(py::module &m) { - py::class_<FC_Op, std::shared_ptr<FC_Op>, Attributes, OperatorTensor>(m, "FCOp", py::multiple_inheritance()) - .def("get_inputs_name", &FC_Op::getInputsName) - .def("get_outputs_name", &FC_Op::getOutputsName) - .def("attributes_name", &FC_Op::staticGetAttrsName); + py::class_<FC_Op, std::shared_ptr<FC_Op>, OperatorTensor>(m, "FCOp", py::multiple_inheritance()) + .def(py::init<>()) + .def_static("get_inputs_name", &FC_Op::getInputsName) + .def_static("get_outputs_name", &FC_Op::getOutputsName) + .def("out_channels", &FC_Op::outChannels) + // .def_property_readonly("a", &FC_Op::get_a) + // .def_property_readonly("a", [](const FC_Op& self) { + // const AttrDict a = AttrDict(self.get_a()); + // return a; + // }) + .def("__repr__", [](FC_Op& b) { + return fmt::format("Operator(type='{}')", b.Type); + }); + declare_registrable<FC_Op>(m, "FCOp"); - m.def("FC", &FC, py::arg("in_channels"), py::arg("out_channels"), py::arg("nobias") = false, py::arg("name") = ""); + + m.def("FC", &FC, py::arg("in_channels"), py::arg("out_channels"), py::arg("no_bias") = false, py::arg("name") = ""); } void init_FC(py::module &m) { declare_FC(m); } + } // namespace Aidge diff --git a/python_binding/operator/pybind_Gather.cpp b/python_binding/operator/pybind_Gather.cpp index 8c32acfe2bd7e0118c186be8fa1297ee16fe6f6c..aa831d1cfe92fb720df00bb7d8dd3af7f1c1a668 100644 --- a/python_binding/operator/pybind_Gather.cpp +++ b/python_binding/operator/pybind_Gather.cpp @@ -11,6 +11,7 @@ #include <pybind11/pybind11.h> #include <string> +#include <vector> #include "aidge/data/Tensor.hpp" #include "aidge/operator/Gather.hpp" @@ -20,11 +21,19 @@ namespace py = pybind11; namespace Aidge { void init_Gather(py::module& m) { - py::class_<Gather_Op, std::shared_ptr<Gather_Op>, Attributes, OperatorTensor>(m, "GatherOp", py::multiple_inheritance()) - .def("get_inputs_name", &Gather_Op::getInputsName) - .def("get_outputs_name", &Gather_Op::getOutputsName) - .def("attributes_name", &Gather_Op::staticGetAttrsName); + py::class_<Gather_Op, std::shared_ptr<Gather_Op>, OperatorTensor>(m, "GatherOp", py::multiple_inheritance()) + .def(py::init<std::int8_t, + const std::vector<int64_t>, + const std::vector<DimSize_t>>(), + py::arg("axis"), + py::arg("indices"), + py::arg("gathered_shape")) + .def_static("get_inputs_name", &Gather_Op::getInputsName) + .def_static("get_outputs_name", &Gather_Op::getOutputsName); + declare_registrable<Gather_Op>(m, "GatherOp"); - m.def("Gather", &Gather, py::arg("indices"), py::arg("gathered_shape"), py::arg("axis")= 0, py::arg("name") = ""); + + m.def("Gather", &Gather, py::arg("axis") = 0, py::arg("indices") = std::vector<std::int64_t>(), py::arg("gathered_shape") = std::vector<std::size_t>(), py::arg("name") = ""); } + } // namespace Aidge diff --git a/python_binding/operator/pybind_GenericOperator.cpp b/python_binding/operator/pybind_GenericOperator.cpp index 897cd359a4b368dc599f37136ade3508b5ec5a76..6af8fef88e411af0a3ecbe5a771bf7af24de411a 100644 --- a/python_binding/operator/pybind_GenericOperator.cpp +++ b/python_binding/operator/pybind_GenericOperator.cpp @@ -9,23 +9,34 @@ * ********************************************************************************/ +#include <stdio.h> + +#include <memory> +#include <string> + +#include <pybind11/functional.h> #include <pybind11/pybind11.h> #include <pybind11/stl.h> -#include <pybind11/functional.h> -#include <stdio.h> #include "aidge/backend/OperatorImpl.hpp" #include "aidge/data/Tensor.hpp" #include "aidge/operator/GenericOperator.hpp" #include "aidge/operator/OperatorTensor.hpp" +#include "aidge/utils/Types.h" + namespace py = pybind11; namespace Aidge { void init_GenericOperator(py::module& m) { - py::class_<GenericOperator_Op, std::shared_ptr<GenericOperator_Op>, DynamicAttributes, OperatorTensor>(m, "GenericOperatorOp", + py::class_<GenericOperator_Op, std::shared_ptr<GenericOperator_Op>, OperatorTensor>(m, "GenericOperatorOp", py::multiple_inheritance()) - .def_readonly_static("identity", &GenericOperator_Op::Identity) - .def("set_forward_dims", &GenericOperator_Op::setForwardDims, py::arg("computation_function")); + .def(py::init<const std::string&, IOIndex_t, IOIndex_t, IOIndex_t>(), + py::arg("type"), + py::arg("nb_data"), + py::arg("nb_param"), + py::arg("nb_outputs")) + .def_readonly_static("identity", &GenericOperator_Op::Identity) + .def("set_forward_dims", &GenericOperator_Op::setForwardDims, py::arg("computation_function")); // &GenericOperator m.def("GenericOperator", @@ -44,10 +55,11 @@ void init_GenericOperator(py::module& m) { ); if (kwargs){ std::shared_ptr<GenericOperator_Op> gop = std::static_pointer_cast<GenericOperator_Op>(genericNode->getOperator()); + std::shared_ptr<DynamicAttributes> attr = std::dynamic_pointer_cast<DynamicAttributes>(gop->attributes()); for (auto item : kwargs) { std::string key = py::cast<std::string>(item.first); py::object value = py::reinterpret_borrow<py::object>(item.second); - gop->setAttrPy(key, std::move(value)); + attr->setAttrPy(key, std::move(value)); } } return genericNode; diff --git a/python_binding/operator/pybind_GlobalAveragePooling.cpp b/python_binding/operator/pybind_GlobalAveragePooling.cpp index 08c8ad6f9c6b742eee9e9b0ad1ac20217d152bda..d4d2a921addaef676913cee2a16991ad36686767 100644 --- a/python_binding/operator/pybind_GlobalAveragePooling.cpp +++ b/python_binding/operator/pybind_GlobalAveragePooling.cpp @@ -23,9 +23,13 @@ void init_GlobalAveragePooling(py::module &m) { py::class_<GlobalAveragePooling_Op, std::shared_ptr<GlobalAveragePooling_Op>, OperatorTensor>(m, pyClassName.c_str(), py::multiple_inheritance()) - .def("get_inputs_name", &GlobalAveragePooling_Op::getInputsName) - .def("get_outputs_name", &GlobalAveragePooling_Op::getOutputsName); + .def(py::init<>()) + .def_static("get_inputs_name", &GlobalAveragePooling_Op::getInputsName) + .def_static("get_outputs_name", &GlobalAveragePooling_Op::getOutputsName); + declare_registrable<GlobalAveragePooling_Op>(m, pyClassName); + m.def("globalaveragepooling", &GlobalAveragePooling, py::arg("name") = ""); } + } // namespace Aidge diff --git a/python_binding/operator/pybind_Identity.cpp b/python_binding/operator/pybind_Identity.cpp index 4538b72fcb012a35ca0ebf3a15449a4b5cfff7a8..560f2889f20233ef928557aa230e6dab7f0a5d2b 100644 --- a/python_binding/operator/pybind_Identity.cpp +++ b/python_binding/operator/pybind_Identity.cpp @@ -19,10 +19,12 @@ namespace py = pybind11; namespace Aidge { void init_Identity(py::module& m) { - py::class_<Identity_Op, std::shared_ptr<Identity_Op>, Operator>(m, "IdentityOp", py::multiple_inheritance()) - .def("get_inputs_name", &Identity_Op::getInputsName) - .def("get_outputs_name", &Identity_Op::getOutputsName); + py::class_<Identity_Op, std::shared_ptr<Identity_Op>, OperatorTensor>(m, "IdentityOp", py::multiple_inheritance()) + .def(py::init<>()) + .def_static("get_inputs_name", &Identity_Op::getInputsName) + .def_static("get_outputs_name", &Identity_Op::getOutputsName); m.def("Identity", &Identity, py::arg("name") = ""); } + } // namespace Aidge diff --git a/python_binding/operator/pybind_LeakyReLU.cpp b/python_binding/operator/pybind_LeakyReLU.cpp index 9ad47e7a391698ae9b30d35d94f05e8b80138590..f46106fb3fb168631c9681d90bda857183c9bc04 100644 --- a/python_binding/operator/pybind_LeakyReLU.cpp +++ b/python_binding/operator/pybind_LeakyReLU.cpp @@ -19,11 +19,12 @@ namespace py = pybind11; namespace Aidge { void init_LeakyReLU(py::module& m) { - py::class_<LeakyReLU_Op, std::shared_ptr<LeakyReLU_Op>, Attributes, OperatorTensor>(m, "LeakyReLUOp", py::multiple_inheritance()) - .def("get_inputs_name", &LeakyReLU_Op::getInputsName) - .def("get_outputs_name", &LeakyReLU_Op::getOutputsName) - .def("attributes_name", &LeakyReLU_Op::staticGetAttrsName); + py::class_<LeakyReLU_Op, std::shared_ptr<LeakyReLU_Op>, OperatorTensor>(m, "LeakyReLUOp", py::multiple_inheritance()) + .def(py::init<float>(), py::arg("negative_slope")) + .def_static("get_inputs_name", &LeakyReLU_Op::getInputsName) + .def_static("get_outputs_name", &LeakyReLU_Op::getOutputsName); declare_registrable<LeakyReLU_Op>(m, "LeakyReLUOp"); m.def("LeakyReLU", &LeakyReLU, py::arg("negative_slope") = 0.0f, py::arg("name") = ""); } + } // namespace Aidge diff --git a/python_binding/operator/pybind_Ln.cpp b/python_binding/operator/pybind_Ln.cpp new file mode 100755 index 0000000000000000000000000000000000000000..0be710be1dfe1a5a83ceaf085094e8ded3f07ffd --- /dev/null +++ b/python_binding/operator/pybind_Ln.cpp @@ -0,0 +1,29 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <pybind11/pybind11.h> + +#include "aidge/data/Tensor.hpp" +#include "aidge/operator/Ln.hpp" +#include "aidge/operator/OperatorTensor.hpp" + +namespace py = pybind11; +namespace Aidge { + +void init_Ln(py::module& m) { + py::class_<Ln_Op, std::shared_ptr<Ln_Op>, OperatorTensor>(m, "LnOp", py::multiple_inheritance()) + .def(py::init<>()) + .def_static("get_inputs_name", &Ln_Op::getInputsName) + .def_static("get_outputs_name", &Ln_Op::getOutputsName); + + m.def("Ln", &Ln, py::arg("name") = ""); +} +} // namespace Aidge diff --git a/python_binding/operator/pybind_Matmul.cpp b/python_binding/operator/pybind_Matmul.cpp index 73bfac04a78ec9b972ec984466dbae582b2c03dc..09e11f89ea579b5a3aa75f177958d981c53f1dce 100644 --- a/python_binding/operator/pybind_Matmul.cpp +++ b/python_binding/operator/pybind_Matmul.cpp @@ -22,8 +22,9 @@ namespace Aidge { void init_MatMul(py::module &m) { py::class_<MatMul_Op, std::shared_ptr<MatMul_Op>, OperatorTensor>(m, "MatMulOp", py::multiple_inheritance()) - .def("get_inputs_name", &MatMul_Op::getInputsName) - .def("get_outputs_name", &MatMul_Op::getOutputsName); + .def(py::init<>()) + .def_static("get_inputs_name", &MatMul_Op::getInputsName) + .def_static("get_outputs_name", &MatMul_Op::getOutputsName); declare_registrable<MatMul_Op>(m, "MatMulOp"); m.def("MatMul", &MatMul, py::arg("name") = ""); } diff --git a/python_binding/operator/pybind_MaxPooling.cpp b/python_binding/operator/pybind_MaxPooling.cpp index 91fa0489d8bedd16dd33424e33d7e15eea3e3ecb..2a850cd7bfe5cca21ea1ca54b5e9ad86b880bcc2 100644 --- a/python_binding/operator/pybind_MaxPooling.cpp +++ b/python_binding/operator/pybind_MaxPooling.cpp @@ -27,7 +27,7 @@ namespace Aidge { template <DimIdx_t DIM> void declare_MaxPoolingOp(py::module &m) { const std::string pyClassName("MaxPoolingOp" + std::to_string(DIM) + "D"); - py::class_<MaxPooling_Op<DIM>, std::shared_ptr<MaxPooling_Op<DIM>>, Attributes, OperatorTensor>( + py::class_<MaxPooling_Op<DIM>, std::shared_ptr<MaxPooling_Op<DIM>>, OperatorTensor>( m, ("MaxPoolingOp" + std::to_string(DIM) + "D").c_str(), py::multiple_inheritance()) .def(py::init<const std::array<DimSize_t, DIM> &, @@ -36,9 +36,8 @@ template <DimIdx_t DIM> void declare_MaxPoolingOp(py::module &m) { py::arg("kernel_dims"), py::arg("stride_dims"), py::arg("ceil_mode")) - .def("get_inputs_name", &MaxPooling_Op<DIM>::getInputsName) - .def("get_outputs_name", &MaxPooling_Op<DIM>::getOutputsName) - .def("attributes_name", &MaxPooling_Op<DIM>::staticGetAttrsName); + .def_static("get_inputs_name", &MaxPooling_Op<DIM>::getInputsName) + .def_static("get_outputs_name", &MaxPooling_Op<DIM>::getOutputsName); declare_registrable<MaxPooling_Op<DIM>>(m, pyClassName); m.def(("MaxPooling" + std::to_string(DIM) + "D").c_str(), [](const std::vector<DimSize_t>& kernel_dims, const std::string& name, diff --git a/python_binding/operator/pybind_MetaOperatorDefs.cpp b/python_binding/operator/pybind_MetaOperatorDefs.cpp index 20cd3f156996c98bb64502a90ab98535f87cc2a3..d021a79c5ff4e337bebf424465458ddabf056a56 100644 --- a/python_binding/operator/pybind_MetaOperatorDefs.cpp +++ b/python_binding/operator/pybind_MetaOperatorDefs.cpp @@ -47,6 +47,22 @@ template <DimIdx_t DIM> void declare_PaddedConvOp(py::module &m) { py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0), py::arg("dilation_dims") = std::vector<DimSize_t>(DIM,1), py::arg("no_bias")= false); + m.def(("PaddedConvOp" + std::to_string(DIM) + "D").c_str(), []( + const std::vector<DimSize_t>& kernel_dims, + const std::vector<DimSize_t> &stride_dims, + const std::vector<DimSize_t> &padding_dims, + const std::vector<DimSize_t> &dilation_dims) + { + AIDGE_ASSERT(kernel_dims.size() == DIM, "kernel_dims size [{}] does not match DIM [{}]", kernel_dims.size(), DIM); + AIDGE_ASSERT(stride_dims.size() == DIM, "stride_dims size [{}] does not match DIM [{}]", stride_dims.size(), DIM); + AIDGE_ASSERT(padding_dims.size() == 2*DIM, "padding_dims size [{}] does not match DIM [{}]", padding_dims.size(), 2*DIM); + AIDGE_ASSERT(dilation_dims.size() == DIM, "dilation_dims size [{}] does not match DIM [{}]", dilation_dims.size(), DIM); + + return PaddedConv_Op<DIM>(to_array<DIM>(kernel_dims.begin()), to_array<DIM>(stride_dims.begin()), to_array<2*DIM>(padding_dims.begin()), to_array<DIM>(dilation_dims.begin())); + }, py::arg("kernel_dims"), + py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1), + py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0), + py::arg("dilation_dims") = std::vector<DimSize_t>(DIM,1)); } template <DimIdx_t DIM> void declare_PaddedConvDepthWiseOp(py::module &m) { @@ -71,6 +87,22 @@ template <DimIdx_t DIM> void declare_PaddedConvDepthWiseOp(py::module &m) { py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0), py::arg("dilation_dims") = std::vector<DimSize_t>(DIM,1), py::arg("no_bias") = false); + m.def(("PaddedConvDepthWiseOp" + std::to_string(DIM) + "D").c_str(), []( + const std::vector<DimSize_t>& kernel_dims, + const std::vector<DimSize_t> &stride_dims, + const std::vector<DimSize_t> &padding_dims, + const std::vector<DimSize_t> &dilation_dims) + { + AIDGE_ASSERT(kernel_dims.size() == DIM, "kernel_dims size [{}] does not match DIM [{}]", kernel_dims.size(), DIM); + AIDGE_ASSERT(stride_dims.size() == DIM, "stride_dims size [{}] does not match DIM [{}]", stride_dims.size(), DIM); + AIDGE_ASSERT(padding_dims.size() == 2*DIM, "padding_dims size [{}] does not match DIM [{}]", padding_dims.size(), 2*DIM); + AIDGE_ASSERT(dilation_dims.size() == DIM, "dilation_dims size [{}] does not match DIM [{}]", dilation_dims.size(), DIM); + + return PaddedConvDepthWise_Op<DIM>(to_array<DIM>(kernel_dims.begin()), to_array<DIM>(stride_dims.begin()), to_array<2*DIM>(padding_dims.begin()), to_array<DIM>(dilation_dims.begin())); + }, py::arg("kernel_dims"), + py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1), + py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0), + py::arg("dilation_dims") = std::vector<DimSize_t>(DIM,1)); } @@ -89,7 +121,18 @@ template <DimIdx_t DIM> void declare_PaddedAvgPoolingOp(py::module &m) { py::arg("name") = "", py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1), py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0)); + m.def(("PaddedAvgPoolingOp" + std::to_string(DIM) + "D").c_str(), [](const std::vector<DimSize_t>& kernel_dims, + const std::vector<DimSize_t> &stride_dims, + const std::vector<DimSize_t> &padding_dims) + { + AIDGE_ASSERT(kernel_dims.size() == DIM, "kernel_dims size [{}] does not match DIM [{}]", kernel_dims.size(), DIM); + AIDGE_ASSERT(stride_dims.size() == DIM, "stride_dims size [{}] does not match DIM [{}]", stride_dims.size(), DIM); + AIDGE_ASSERT(padding_dims.size() == 2*DIM, "padding_dims size [{}] does not match DIM [{}]", padding_dims.size(), 2*DIM); + return PaddedAvgPooling_Op<DIM>(to_array<DIM>(kernel_dims.begin()), to_array<DIM>(stride_dims.begin()), to_array<2*DIM>(padding_dims.begin())); + }, py::arg("kernel_dims"), + py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1), + py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0)); } template <DimIdx_t DIM> void declare_PaddedMaxPoolingOp(py::module &m) { @@ -109,6 +152,20 @@ template <DimIdx_t DIM> void declare_PaddedMaxPoolingOp(py::module &m) { py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1), py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0), py::arg("ceil_mode") = false); + m.def(("PaddedMaxPoolingOp" + std::to_string(DIM) + "D").c_str(), [](const std::vector<DimSize_t>& kernel_dims, + const std::vector<DimSize_t> &stride_dims, + const std::vector<DimSize_t> &padding_dims, + bool ceil_mode) + { + AIDGE_ASSERT(kernel_dims.size() == DIM, "kernel_dims size [{}] does not match DIM [{}]", kernel_dims.size(), DIM); + AIDGE_ASSERT(stride_dims.size() == DIM, "stride_dims size [{}] does not match DIM [{}]", stride_dims.size(), DIM); + AIDGE_ASSERT(padding_dims.size() == 2*DIM, "padding_dims size [{}] does not match DIM [{}]", padding_dims.size(), 2*DIM); + + return PaddedMaxPooling_Op<DIM>(to_array<DIM>(kernel_dims.begin()), to_array<DIM>(stride_dims.begin()), to_array<2*DIM>(padding_dims.begin()), ceil_mode); + }, py::arg("kernel_dims"), + py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1), + py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0), + py::arg("ceil_mode") = false); } @@ -118,21 +175,23 @@ void declare_LSTMOp(py::module &m) { py::arg("seq_length"), py::arg("nobias") = false, py::arg("name") = ""); + m.def("LSTMOp", &LSTM_Op, + py::arg("seq_length")); } void init_MetaOperatorDefs(py::module &m) { declare_PaddedConvOp<1>(m); declare_PaddedConvOp<2>(m); - declare_PaddedConvOp<3>(m); +// declare_PaddedConvOp<3>(m); declare_PaddedConvDepthWiseOp<1>(m); declare_PaddedConvDepthWiseOp<2>(m); - declare_PaddedConvDepthWiseOp<3>(m); - declare_PaddedAvgPoolingOp<1>(m); +// declare_PaddedConvDepthWiseOp<3>(m); +// declare_PaddedAvgPoolingOp<1>(m); declare_PaddedAvgPoolingOp<2>(m); - declare_PaddedAvgPoolingOp<3>(m); - declare_PaddedMaxPoolingOp<1>(m); +// declare_PaddedAvgPoolingOp<3>(m); +// declare_PaddedMaxPoolingOp<1>(m); declare_PaddedMaxPoolingOp<2>(m); - declare_PaddedMaxPoolingOp<3>(m); +// declare_PaddedMaxPoolingOp<3>(m); declare_LSTMOp(m); py::class_<MetaOperator_Op, std::shared_ptr<MetaOperator_Op>, OperatorTensor>(m, "MetaOperator_Op", py::multiple_inheritance()) diff --git a/python_binding/operator/pybind_Mul.cpp b/python_binding/operator/pybind_Mul.cpp index 47c84c0e52f605a5466a63a5a5d0851fecedd2f8..1658b0d959c0882d53e078f6d68b4474b34c739e 100644 --- a/python_binding/operator/pybind_Mul.cpp +++ b/python_binding/operator/pybind_Mul.cpp @@ -20,8 +20,9 @@ namespace Aidge { void init_Mul(py::module& m) { py::class_<Mul_Op, std::shared_ptr<Mul_Op>, OperatorTensor>(m, "MulOp", py::multiple_inheritance()) - .def("get_inputs_name", &Mul_Op::getInputsName) - .def("get_outputs_name", &Mul_Op::getOutputsName); + .def(py::init<>()) + .def_static("get_inputs_name", &Mul_Op::getInputsName) + .def_static("get_outputs_name", &Mul_Op::getOutputsName); declare_registrable<Mul_Op>(m, "MulOp"); m.def("Mul", &Mul, py::arg("name") = ""); } diff --git a/python_binding/operator/pybind_Operator.cpp b/python_binding/operator/pybind_Operator.cpp index e00f70413614a96919c2a068303b3fbc3f6eca8d..2b2f30f14931fd041bfb4ec1a712e5c9419fdf22 100644 --- a/python_binding/operator/pybind_Operator.cpp +++ b/python_binding/operator/pybind_Operator.cpp @@ -24,7 +24,18 @@ namespace py = pybind11; namespace Aidge { void init_Operator(py::module& m){ + py::enum_<OperatorType>(m, "OperatorType") + .value("Data", OperatorType::Data) + .value("Tensor", OperatorType::Tensor); + + py::enum_<InputCategory>(m, "InputCategory") + .value("Data", InputCategory::Data) + .value("Param", InputCategory::Param) + .value("OptionalData", InputCategory::OptionalData) + .value("OptionalParam", InputCategory::OptionalParam); + py::class_<Operator, std::shared_ptr<Operator>>(m, "Operator") + .def("__repr__", &Operator::repr) .def("backend", &Operator::backend) .def("set_output", py::overload_cast<const IOIndex_t, const std::shared_ptr<Data>&>(&Operator::setOutput), py::arg("outputIdx"), py::arg("data")) .def("set_input", py::overload_cast<const IOIndex_t, const std::shared_ptr<Data>&>(&Operator::setInput), py::arg("inputIdx"), py::arg("data")) @@ -32,18 +43,25 @@ void init_Operator(py::module& m){ .def("set_input", py::overload_cast<const IOIndex_t, const std::shared_ptr<Data>&>(&Operator::setInput), py::arg("inputIdx"), py::arg("data")) .def("get_raw_input", &Operator::getRawInput, py::arg("inputIdx")) .def("nb_inputs", &Operator::nbInputs) - .def("nb_data", &Operator::nbData) - .def("nb_param", &Operator::nbParam) .def("nb_outputs", &Operator::nbOutputs) + .def("input_category", &Operator::inputCategory, py::arg("idx"), + R"mydelimiter( + Category of a specific input (Data or Param, optional or not). + Data inputs exclude inputs expecting parameters (weights or bias). + + :rtype: InputCategory + )mydelimiter") .def("associate_input", &Operator::associateInput, py::arg("inputIdx"), py::arg("data")) .def("set_datatype", &Operator::setDataType, py::arg("dataType")) .def("set_backend", &Operator::setBackend, py::arg("name"), py::arg("device") = 0) .def("forward", &Operator::forward) // py::keep_alive forbide Python to garbage collect the implementation lambda as long as the Operator is not deleted ! .def("set_impl", &Operator::setImpl, py::arg("implementation"), py::keep_alive<1, 2>()) + .def("type", &Operator::type) .def("get_impl", &Operator::getImpl) .def("get_hook", &Operator::getHook) .def("add_hook", &Operator::addHook) + .def_property_readonly("attr", &Operator::attributes) ; } } diff --git a/python_binding/operator/pybind_Pad.cpp b/python_binding/operator/pybind_Pad.cpp index 1cd9f074fe5241be11da0ea7d0d1ed5a1c5869c2..3df203ed52967e3dbc393769276015a7fe0e016f 100644 --- a/python_binding/operator/pybind_Pad.cpp +++ b/python_binding/operator/pybind_Pad.cpp @@ -26,7 +26,7 @@ namespace Aidge { template <DimIdx_t DIM> void declare_PadOp(py::module &m) { const std::string pyClassName("PadOp" + std::to_string(DIM) + "D"); - py::class_<Pad_Op<DIM>, std::shared_ptr<Pad_Op<DIM>>, Attributes, Operator>( + py::class_<Pad_Op<DIM>, std::shared_ptr<Pad_Op<DIM>>, OperatorTensor>( m, pyClassName.c_str(), py::multiple_inheritance()) .def(py::init<const std::array<DimSize_t, 2*DIM> &, @@ -35,9 +35,8 @@ template <DimIdx_t DIM> void declare_PadOp(py::module &m) { py::arg("beginEndTuples"), py::arg("borderType") = PadBorderType::Constant, py::arg("borderValue") = 0.0) - .def("get_inputs_name", &Pad_Op<DIM>::getInputsName) - .def("get_outputs_name", &Pad_Op<DIM>::getOutputsName) - .def("attributes_name", &Pad_Op<DIM>::staticGetAttrsName) + .def_static("get_inputs_name", &Pad_Op<DIM>::getInputsName) + .def_static("get_outputs_name", &Pad_Op<DIM>::getOutputsName) ; declare_registrable<Pad_Op<DIM>>(m, pyClassName); m.def(("Pad" + std::to_string(DIM) + "D").c_str(), [](const std::vector<DimSize_t>& beginEndTuples, @@ -63,6 +62,6 @@ void init_Pad(py::module &m) { .export_values(); declare_PadOp<1>(m); declare_PadOp<2>(m); - declare_PadOp<3>(m); + //declare_PadOp<3>(m); } } // namespace Aidge diff --git a/python_binding/operator/pybind_Pop.cpp b/python_binding/operator/pybind_Pop.cpp index baae552270a4776d292047140e213dbe1566d35e..0c3b3f38803735d2df632496382e86a0c9f2735d 100644 --- a/python_binding/operator/pybind_Pop.cpp +++ b/python_binding/operator/pybind_Pop.cpp @@ -19,9 +19,10 @@ namespace py = pybind11; namespace Aidge { void init_Pop(py::module& m) { - py::class_<Pop_Op, std::shared_ptr<Pop_Op>, OperatorTensor, Attributes>(m, "PopOp", py::multiple_inheritance()) - .def("get_inputs_name", &Pop_Op::getInputsName) - .def("get_outputs_name", &Pop_Op::getOutputsName); + py::class_<Pop_Op, std::shared_ptr<Pop_Op>, OperatorTensor>(m, "PopOp", py::multiple_inheritance()) + .def(py::init<>()) + .def_static("get_inputs_name", &Pop_Op::getInputsName) + .def_static("get_outputs_name", &Pop_Op::getOutputsName); m.def("Pop", &Pop, py::arg("name") = ""); } diff --git a/python_binding/operator/pybind_Pow.cpp b/python_binding/operator/pybind_Pow.cpp index 9e9ef772cadddb1c7928060b503c388b094ed9f4..e5d67542cd1acc5b2982081e4cf3a91948542147 100644 --- a/python_binding/operator/pybind_Pow.cpp +++ b/python_binding/operator/pybind_Pow.cpp @@ -20,8 +20,9 @@ namespace Aidge { void init_Pow(py::module& m) { py::class_<Pow_Op, std::shared_ptr<Pow_Op>, OperatorTensor>(m, "PowOp", py::multiple_inheritance()) - .def("get_inputs_name", &Pow_Op::getInputsName) - .def("get_outputs_name", &Pow_Op::getOutputsName); + .def(py::init<>()) + .def_static("get_inputs_name", &Pow_Op::getInputsName) + .def_static("get_outputs_name", &Pow_Op::getOutputsName); declare_registrable<Pow_Op>(m, "PowOp"); m.def("Pow", &Pow, py::arg("name") = ""); diff --git a/python_binding/operator/pybind_Producer.cpp b/python_binding/operator/pybind_Producer.cpp index eb74515915c252d50a2522cae6d6f4c6832ab3ef..30279dc477a0badbd5dc361ef7b5d071fa7b8cbc 100644 --- a/python_binding/operator/pybind_Producer.cpp +++ b/python_binding/operator/pybind_Producer.cpp @@ -31,16 +31,25 @@ void declare_Producer(py::module &m) { void init_Producer(py::module &m) { - py::class_<Producer_Op, std::shared_ptr<Producer_Op>, Attributes, OperatorTensor>( + py::class_<Producer_Op, std::shared_ptr<Producer_Op>, OperatorTensor>( m, "ProducerOp", py::multiple_inheritance()) - .def("dims", &Producer_Op::dims) - .def("get_inputs_name", &Producer_Op::getInputsName) - .def("get_outputs_name", &Producer_Op::getOutputsName) - .def("attributes_name", &Producer_Op::staticGetAttrsName); - m.def("Producer", static_cast<std::shared_ptr<Node>(*)(const std::shared_ptr<Tensor>, const std::string&, bool)>(&Producer), py::arg("tensor"), py::arg("name") = "", py::arg("constant") = false); + .def(py::init<const std::shared_ptr<Tensor>, bool>(), py::arg("tensor"), py::arg("constant")) + .def("dims", &Producer_Op::dims) + .def_static("get_inputs_name", &Producer_Op::getInputsName) + .def_static("get_outputs_name", &Producer_Op::getOutputsName); + + m.def("Producer", static_cast<std::shared_ptr<Node>(*)( + const std::shared_ptr<Tensor>, + const std::string&, + bool)>(&Producer), + py::arg("tensor"), + py::arg("name") = "", + py::arg("constant") = false); + declare_registrable<Producer_Op>(m, "ProducerOp"); + declare_Producer<1>(m); declare_Producer<2>(m); declare_Producer<3>(m); diff --git a/python_binding/operator/pybind_ReLU.cpp b/python_binding/operator/pybind_ReLU.cpp index 57601e25607a40c44c400fe75965d83050a146ed..d611523f15a7007b0e9ab9cce323ed9a57d8ecdf 100644 --- a/python_binding/operator/pybind_ReLU.cpp +++ b/python_binding/operator/pybind_ReLU.cpp @@ -20,8 +20,9 @@ namespace Aidge { void init_ReLU(py::module& m) { py::class_<ReLU_Op, std::shared_ptr<ReLU_Op>, OperatorTensor>(m, "ReLUOp", py::multiple_inheritance()) - .def("get_inputs_name", &ReLU_Op::getInputsName) - .def("get_outputs_name", &ReLU_Op::getOutputsName); + .def(py::init<>()) + .def_static("get_inputs_name", &ReLU_Op::getInputsName) + .def_static("get_outputs_name", &ReLU_Op::getOutputsName); declare_registrable<ReLU_Op>(m, "ReLUOp"); m.def("ReLU", &ReLU, py::arg("name") = ""); diff --git a/python_binding/operator/pybind_ReduceMean.cpp b/python_binding/operator/pybind_ReduceMean.cpp index 599a648a3f2733acd49bbbc293cd30734e8ea2ff..3023c077e2f3695902ca76dfa21831749f0ca82e 100644 --- a/python_binding/operator/pybind_ReduceMean.cpp +++ b/python_binding/operator/pybind_ReduceMean.cpp @@ -26,11 +26,11 @@ namespace Aidge { void declare_ReduceMeanOp(py::module &m) { const std::string pyClassName("ReduceMeanOp"); - py::class_<ReduceMean_Op, std::shared_ptr<ReduceMean_Op>, Attributes, OperatorTensor>( + py::class_<ReduceMean_Op, std::shared_ptr<ReduceMean_Op>, OperatorTensor>( m, pyClassName.c_str(), py::multiple_inheritance()) - .def("get_inputs_name", &ReduceMean_Op::getInputsName) - .def("get_outputs_name", &ReduceMean_Op::getOutputsName) - .def("attributes_name", &ReduceMean_Op::staticGetAttrsName) + .def(py::init<std::vector<std::int32_t>, DimSize_t>(), py::arg("axes"), py::arg("keep_dims")) + .def_static("get_inputs_name", &ReduceMean_Op::getInputsName) + .def_static("get_outputs_name", &ReduceMean_Op::getOutputsName) ; declare_registrable<ReduceMean_Op>(m, pyClassName); diff --git a/python_binding/operator/pybind_Reshape.cpp b/python_binding/operator/pybind_Reshape.cpp index 0e336db28ddba4629e61d30e026befe4240c40b6..89d93134ac2f590bcb067aa6936081c16fc1e2a3 100644 --- a/python_binding/operator/pybind_Reshape.cpp +++ b/python_binding/operator/pybind_Reshape.cpp @@ -19,10 +19,11 @@ namespace py = pybind11; namespace Aidge { void init_Reshape(py::module& m) { - py::class_<Reshape_Op, std::shared_ptr<Reshape_Op>, Attributes, OperatorTensor>(m, "ReshapeOp", py::multiple_inheritance()) - .def("get_inputs_name", &Reshape_Op::getInputsName) - .def("get_outputs_name", &Reshape_Op::getOutputsName); + py::class_<Reshape_Op, std::shared_ptr<Reshape_Op>, OperatorTensor>(m, "ReshapeOp", py::multiple_inheritance()) + .def(py::init<const std::vector<std::int64_t>&, bool>(), py::arg("shape"), py::arg("allowzero")) + .def_static("get_inputs_name", &Reshape_Op::getInputsName) + .def_static("get_outputs_name", &Reshape_Op::getOutputsName); declare_registrable<Reshape_Op>(m, "ReshapeOp"); - m.def("Reshape", &Reshape, py::arg("shape"), py::arg("name") = ""); + m.def("Reshape", &Reshape, py::arg("shape") = std::vector<std::int64_t>(), py::arg("allowzero") = false, py::arg("name") = ""); } } // namespace Aidge diff --git a/python_binding/operator/pybind_Resize.cpp b/python_binding/operator/pybind_Resize.cpp new file mode 100644 index 0000000000000000000000000000000000000000..a925af8cf357dabc09f4e8e3c39af9519b4ed550 --- /dev/null +++ b/python_binding/operator/pybind_Resize.cpp @@ -0,0 +1,29 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <pybind11/pybind11.h> + +#include "aidge/operator/Resize.hpp" +#include "aidge/operator/OperatorTensor.hpp" + +namespace py = pybind11; +namespace Aidge { + +void init_Resize(py::module& m) { + py::class_<Resize_Op, std::shared_ptr<Resize_Op>, OperatorTensor>(m, "ResizeOp", py::multiple_inheritance()) + .def_static("get_inputs_name", &Resize_Op::getInputsName) + .def_static("get_outputs_name", &Resize_Op::getOutputsName); + + declare_registrable<Resize_Op>(m, "ResizeOp"); + + m.def("Resize", &Resize, py::arg("name") = ""); +} +} // namespace Aidge diff --git a/python_binding/operator/pybind_Scaling.cpp b/python_binding/operator/pybind_Scaling.cpp index f091ea70f9b5e9927e535bd527cd84cf081d9823..31e6c0b08194fbb8b6ec2270e8127a2f838ba78f 100644 --- a/python_binding/operator/pybind_Scaling.cpp +++ b/python_binding/operator/pybind_Scaling.cpp @@ -19,12 +19,12 @@ namespace py = pybind11; namespace Aidge { -void init_Scaling(py::module& m) +void init_Scaling(py::module& m) { - py::class_<Scaling_Op, std::shared_ptr<Scaling_Op>, Attributes, OperatorTensor>(m, "ScalingOp", py::multiple_inheritance()) - .def("get_inputs_name", &Scaling_Op::getInputsName) - .def("get_outputs_name", &Scaling_Op::getOutputsName) - .def("attributes_name", &Scaling_Op::staticGetAttrsName); + py::class_<Scaling_Op, std::shared_ptr<Scaling_Op>, OperatorTensor>(m, "ScalingOp", py::multiple_inheritance()) + .def(py::init<float, size_t, bool>(), py::arg("scaling_factor"), py::arg("nb_bits"), py::arg("is_output_unsigned")) + .def_static("get_inputs_name", &Scaling_Op::getInputsName) + .def_static("get_outputs_name", &Scaling_Op::getOutputsName); declare_registrable<Scaling_Op>(m, "ScalingOp"); m.def("Scaling", &Scaling, py::arg("scaling_factor") = 1.0f, py::arg("nb_bits") = 8, py::arg("is_output_unsigned") = true, py::arg("name") = ""); } diff --git a/python_binding/operator/pybind_Shape.cpp b/python_binding/operator/pybind_Shape.cpp new file mode 100644 index 0000000000000000000000000000000000000000..4e1d4203e48f714746587c9f209b4d28bfecb439 --- /dev/null +++ b/python_binding/operator/pybind_Shape.cpp @@ -0,0 +1,36 @@ +/******************************************************************************** + * Copyright (c) 2024 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <cstdint> // std::int64_t + +#include <pybind11/pybind11.h> + +#include "aidge/operator/Shape.hpp" +#include "aidge/operator/OperatorTensor.hpp" + +namespace py = pybind11; +namespace Aidge { + +void init_Shape(py::module& m) { + py::class_<Shape_Op, std::shared_ptr<Shape_Op>, OperatorTensor>(m, "ShapeOp", py::multiple_inheritance()) + .def(py::init<const std::int64_t, + const std::int64_t>(), + py::arg("start"), + py::arg("end")) + .def_static("get_inputs_name", &Shape_Op::getInputsName) + .def_static("get_outputs_name", &Shape_Op::getOutputsName); + + declare_registrable<Shape_Op>(m, "ShapeOp"); + + m.def("Shape", &Shape, py::arg("start") = 0, py::arg("end") = -1, py::arg("name") = ""); +} + +} // namespace Aidge diff --git a/python_binding/operator/pybind_Sigmoid.cpp b/python_binding/operator/pybind_Sigmoid.cpp index 8ffa8581593af9dc994baa566475317bcd96d475..0ba94c73fcd1fb435194f8485567771a147ec616 100644 --- a/python_binding/operator/pybind_Sigmoid.cpp +++ b/python_binding/operator/pybind_Sigmoid.cpp @@ -20,8 +20,9 @@ namespace Aidge { void init_Sigmoid(py::module& m) { py::class_<Sigmoid_Op, std::shared_ptr<Sigmoid_Op>, OperatorTensor>(m, "SigmoidOp", py::multiple_inheritance()) - .def("get_inputs_name", &Sigmoid_Op::getInputsName) - .def("get_outputs_name", &Sigmoid_Op::getOutputsName); + .def(py::init<>()) + .def_static("get_inputs_name", &Sigmoid_Op::getInputsName) + .def_static("get_outputs_name", &Sigmoid_Op::getOutputsName); m.def("Sigmoid", &Sigmoid, py::arg("name") = ""); } diff --git a/python_binding/operator/pybind_Slice.cpp b/python_binding/operator/pybind_Slice.cpp index 558fc98c172ea1a264ee8ac3ebbc70e09eba826d..b87cc8da4874c666de21a6e798a66e3c7fad9c10 100644 --- a/python_binding/operator/pybind_Slice.cpp +++ b/python_binding/operator/pybind_Slice.cpp @@ -10,6 +10,7 @@ ********************************************************************************/ #include <pybind11/pybind11.h> +#include <vector> #include "aidge/data/Tensor.hpp" #include "aidge/operator/Slice.hpp" @@ -20,9 +21,24 @@ namespace Aidge { void init_Slice(py::module& m) { py::class_<Slice_Op, std::shared_ptr<Slice_Op>, OperatorTensor>(m, "SliceOp", py::multiple_inheritance()) - .def("get_inputs_name", &Slice_Op::getInputsName) - .def("get_outputs_name", &Slice_Op::getOutputsName); + .def(py::init<const std::vector<std::int64_t>&, + const std::vector<std::int64_t>&, + const std::vector<std::int8_t>&, + const std::vector<std::int64_t>&>(), + py::arg("starts"), + py::arg("ends"), + py::arg("axes"), + py::arg("steps")) + .def_static("get_inputs_name", &Slice_Op::getInputsName) + .def_static("get_outputs_name", &Slice_Op::getOutputsName); declare_registrable<Slice_Op>(m, "SliceOp"); - m.def("Slice", &Slice, py::arg("starts"), py::arg("ends"), py::arg("axes"), py::arg("name") = ""); + + m.def("Slice", + &Slice, + py::arg("starts") = std::vector<std::int64_t>(), + py::arg("ends") = std::vector<std::int64_t>(), + py::arg("axes") = std::vector<std::int8_t>(), + py::arg("steps") = std::vector<std::int64_t>(), + py::arg("name") = ""); } } // namespace Aidge diff --git a/python_binding/operator/pybind_Softmax.cpp b/python_binding/operator/pybind_Softmax.cpp index 837f3ed2b92aeab5739d07a04b071040806d8a1f..f27e469d84c463ec48d1f9484807a8c93b7a5f4d 100644 --- a/python_binding/operator/pybind_Softmax.cpp +++ b/python_binding/operator/pybind_Softmax.cpp @@ -20,10 +20,10 @@ namespace py = pybind11; namespace Aidge { void init_Softmax(py::module& m) { - py::class_<Softmax_Op, std::shared_ptr<Softmax_Op>, Attributes, OperatorTensor>(m, "SoftmaxOp", py::multiple_inheritance()) - .def("get_inputs_name", &Softmax_Op::getInputsName) - .def("get_outputs_name", &Softmax_Op::getOutputsName) - .def("attributes_name", &Softmax_Op::staticGetAttrsName); + py::class_<Softmax_Op, std::shared_ptr<Softmax_Op>, OperatorTensor>(m, "SoftmaxOp", py::multiple_inheritance()) + .def(py::init<std::size_t>(), py::arg("axis")) + .def_static("get_inputs_name", &Softmax_Op::getInputsName) + .def_static("get_outputs_name", &Softmax_Op::getOutputsName); declare_registrable<Softmax_Op>(m, "SoftmaxOp"); m.def("Softmax", &Softmax, py::arg("axis"), py::arg("name") = ""); } diff --git a/python_binding/operator/pybind_Split.cpp b/python_binding/operator/pybind_Split.cpp new file mode 100644 index 0000000000000000000000000000000000000000..6efc123864f21bf8ea02008b29fe59f31685f17c --- /dev/null +++ b/python_binding/operator/pybind_Split.cpp @@ -0,0 +1,38 @@ +/******************************************************************************** + * Copyright (c) 2024 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <pybind11/pybind11.h> +#include <string> +#include <vector> + +#include "aidge/data/Tensor.hpp" +#include "aidge/operator/Split.hpp" +#include "aidge/operator/OperatorTensor.hpp" + +namespace py = pybind11; +namespace Aidge { + +void init_Split(py::module& m) { + py::class_<Split_Op, std::shared_ptr<Split_Op>, Attributes, OperatorTensor>(m, "SplitOp", py::multiple_inheritance()) + .def(py::init<DimSize_t, std::int8_t, std::vector<DimSize_t>&>(), + py::arg("nb_outputs"), + py::arg("axis"), + py::arg("split")) + .def_static("get_inputs_name", &Split_Op::getInputsName) + .def_static("get_outputs_name", &Split_Op::getOutputsName) + .def_static("attributes_name", &Split_Op::staticGetAttrsName); + + declare_registrable<Split_Op>(m, "SplitOp"); + + m.def("Split", &Split, py::arg("nb_outputs"), py::arg("axis") = 0, py::arg("split") = std::vector<DimSize_t>(), py::arg("name") = ""); +} + +} // namespace Aidge diff --git a/python_binding/operator/pybind_Sqrt.cpp b/python_binding/operator/pybind_Sqrt.cpp index 7065b828eb18d77edce49726dd903045c7952977..9425eba06574c73339e8e4628ffded3449a8b4ab 100644 --- a/python_binding/operator/pybind_Sqrt.cpp +++ b/python_binding/operator/pybind_Sqrt.cpp @@ -20,8 +20,9 @@ namespace Aidge { void init_Sqrt(py::module& m) { py::class_<Sqrt_Op, std::shared_ptr<Sqrt_Op>, OperatorTensor>(m, "SqrtOp", py::multiple_inheritance()) - .def("get_inputs_name", &Sqrt_Op::getInputsName) - .def("get_outputs_name", &Sqrt_Op::getOutputsName); + .def(py::init<>()) + .def_static("get_inputs_name", &Sqrt_Op::getInputsName) + .def_static("get_outputs_name", &Sqrt_Op::getOutputsName); declare_registrable<Sqrt_Op>(m, "SqrtOp"); m.def("Sqrt", &Sqrt, py::arg("name") = ""); } diff --git a/python_binding/operator/pybind_Sub.cpp b/python_binding/operator/pybind_Sub.cpp index e031040dfe8373c07d1524cbe4f75f3744e2f312..752490a72bc35ec8a0ab08dd8d51a31c887b4dc6 100644 --- a/python_binding/operator/pybind_Sub.cpp +++ b/python_binding/operator/pybind_Sub.cpp @@ -20,8 +20,9 @@ namespace Aidge { void init_Sub(py::module& m) { py::class_<Sub_Op, std::shared_ptr<Sub_Op>, OperatorTensor>(m, "SubOp", py::multiple_inheritance()) - .def("get_inputs_name", &Sub_Op::getInputsName) - .def("get_outputs_name", &Sub_Op::getOutputsName); + .def(py::init<>()) + .def_static("get_inputs_name", &Sub_Op::getInputsName) + .def_static("get_outputs_name", &Sub_Op::getOutputsName); declare_registrable<Sub_Op>(m, "SubOp"); m.def("Sub", &Sub, py::arg("name") = ""); } diff --git a/python_binding/operator/pybind_Tanh.cpp b/python_binding/operator/pybind_Tanh.cpp index a5c2f9dd5f2eab17e296f82788726210f976bd0d..74cde8dd3831c8d29ca87e2314afc27276ec025f 100644 --- a/python_binding/operator/pybind_Tanh.cpp +++ b/python_binding/operator/pybind_Tanh.cpp @@ -20,8 +20,9 @@ namespace Aidge { void init_Tanh(py::module& m) { py::class_<Tanh_Op, std::shared_ptr<Tanh_Op>, OperatorTensor>(m, "TanhOp", py::multiple_inheritance()) - .def("get_inputs_name", &Tanh_Op::getInputsName) - .def("get_outputs_name", &Tanh_Op::getOutputsName); + .def(py::init<>()) + .def_static("get_inputs_name", &Tanh_Op::getInputsName) + .def_static("get_outputs_name", &Tanh_Op::getOutputsName); m.def("Tanh", &Tanh, py::arg("name") = ""); } diff --git a/python_binding/operator/pybind_Transpose.cpp b/python_binding/operator/pybind_Transpose.cpp index 63b22608d1737f9a59caffd4517fc0e9cfc4dd91..c0c3ad617bef3eda3e283667944ac423cd10a622 100644 --- a/python_binding/operator/pybind_Transpose.cpp +++ b/python_binding/operator/pybind_Transpose.cpp @@ -27,11 +27,11 @@ namespace Aidge { void declare_Transpose(py::module &m) { const std::string pyClassName("TransposeOp"); - py::class_<Transpose_Op, std::shared_ptr<Transpose_Op>, Attributes, OperatorTensor>( + py::class_<Transpose_Op, std::shared_ptr<Transpose_Op>, OperatorTensor>( m, "TransposeOp", py::multiple_inheritance()) - .def("get_inputs_name", &Transpose_Op::getInputsName) - .def("get_outputs_name", &Transpose_Op::getOutputsName) - .def("attributes_name", &Transpose_Op::staticGetAttrsName); + .def(py::init<const std::vector<DimSize_t>&>(), py::arg("output_dims_order")) + .def_static("get_inputs_name", &Transpose_Op::getInputsName) + .def_static("get_outputs_name", &Transpose_Op::getOutputsName); declare_registrable<Transpose_Op>(m, pyClassName); m.def("Transpose", &Transpose, py::arg("output_dims_order"), py::arg("name") = ""); } diff --git a/python_binding/pybind_core.cpp b/python_binding/pybind_core.cpp index 7b38c2d72d5f4b2eed8d8bbf9f41f47144b51060..9443ed55eaaf6dc04ad9ee4612ed9d491aed54ae 100644 --- a/python_binding/pybind_core.cpp +++ b/python_binding/pybind_core.cpp @@ -51,10 +51,13 @@ void init_Pow(py::module&); void init_ReduceMean(py::module&); void init_ReLU(py::module&); void init_Reshape(py::module&); +void init_Resize(py::module&); void init_Scaling(py::module&); +void init_Shape(py::module&); void init_Sigmoid(py::module&); void init_Slice(py::module&); void init_Softmax(py::module&); +void init_Split(py::module&); void init_Sqrt(py::module&); void init_Sub(py::module&); void init_Tanh(py::module&); @@ -119,10 +122,13 @@ void init_Aidge(py::module& m) { init_ReduceMean(m); init_ReLU(m); init_Reshape(m); + init_Resize(m); init_Scaling(m); + init_Shape(m); init_Sigmoid(m); init_Slice(m); init_Softmax(m); + init_Split(m); init_Sqrt(m); init_Sub(m); init_Tanh(m); diff --git a/python_binding/recipes/pybind_GraphViewHelper.cpp b/python_binding/recipes/pybind_GraphViewHelper.cpp index e65b790d3eba6072e3e1b112c7d841959d4a5672..ac56fb4b43eb5b0a737157ec9e64c6771a692816 100644 --- a/python_binding/recipes/pybind_GraphViewHelper.cpp +++ b/python_binding/recipes/pybind_GraphViewHelper.cpp @@ -24,6 +24,5 @@ namespace py = pybind11; namespace Aidge { void init_GraphViewHelper(py::module &m) { m.def("producers", &producers, py::arg("graphview")); - m.def("compile_gradient", &compile_gradient, py::arg("graphview")); } } // namespace Aidge diff --git a/python_binding/recipes/pybind_Recipes.cpp b/python_binding/recipes/pybind_Recipes.cpp index b85d1c41ed90a5774a9b24062dfda4186c2294d5..c0392287a756b6272a59275b6d12b3a70c1c9420 100644 --- a/python_binding/recipes/pybind_Recipes.cpp +++ b/python_binding/recipes/pybind_Recipes.cpp @@ -39,11 +39,35 @@ void init_Recipes(py::module &m) // :type nodes: list of :py:class:`aidge_core.Node` // )mydelimiter"); - m.def("remove_dropout",static_cast<void(*)(std::shared_ptr<GraphView>)>(removeDropout), py::arg("graph_view"), R"mydelimiter( - Recipe to remove a dropout operator. + m.def("remove_node", removeNode, py::arg("graph_view"), py::arg("type"), py::arg("incProducers") = false, R"mydelimiter( + Recipe to remove operators of a given type. :param graph_view: Graph view on which we want to apply the recipe :type graph_view: :py:class:`aidge_core.GraphView` + :param type: Type of the operators to remove + :type type: str + :param incProducers: If true, also removed attached Producers + :type incProducers: bool + :return: Number of removed operators. + :rtype: int + )mydelimiter"); + + m.def("remove_dropout", removeDropout, py::arg("graph_view"), R"mydelimiter( + Recipe to remove dropout operators. + + :param graph_view: Graph view on which we want to apply the recipe + :type graph_view: :py:class:`aidge_core.GraphView` + :return: Number of removed operators. + :rtype: int + )mydelimiter"); + + m.def("remove_identity", removeIdentity, py::arg("graph_view"), R"mydelimiter( + Recipe to remove identity operators. + + :param graph_view: Graph view on which we want to apply the recipe + :type graph_view: :py:class:`aidge_core.GraphView` + :return: Number of removed operators. + :rtype: int )mydelimiter"); m.def("remove_flatten", static_cast<void(*)(std::shared_ptr<GraphView>)>(removeFlatten), py::arg("graph_view"), R"mydelimiter( @@ -84,7 +108,27 @@ void init_Recipes(py::module &m) // :type nodes: list of :py:class:`aidge_core.Node` // )mydelimiter"); - m.def("expand_metaops", static_cast<void(*)(std::shared_ptr<GraphView>, bool)>(expandMetaOps), py::arg("graph_view"), py::arg("recursive") = false); + m.def("expand_metaops", static_cast<void(*)(std::shared_ptr<GraphView>, bool)>(expandMetaOps), py::arg("graph_view"), py::arg("recursive") = false, R"mydelimiter( + Flatten the graph by replacing the meta operators by their micro graph. + + :param graph_view: Graph view on which we want to apply the recipe + :type graph_view: :py:class:`aidge_core.GraphView` + :param recursive: If true, recursively replace meta operators until there is no more meta operator in the graph. + :type recursive: bool + )mydelimiter"); + + m.def("fuse_to_metaops", fuseToMetaOps, py::arg("graph_view"), py::arg("query"), py::arg("type") = "", R"mydelimiter( + Fuse each sub-graph matching a query in a Meta Operator. + + :param graph_view: Graph view on which we want to apply the recipe + :type graph_view: :py:class:`aidge_core.GraphView` + :param query: Sub-graph matching query + :type query: str + :param type: Type name of the resulting meta operators + :type type: str, optional + :return: Number of sub-graph actually fused in a Meta Operator. + :rtype: int + )mydelimiter"); } } // namespace Aidge diff --git a/python_binding/scheduler/pybind_Scheduler.cpp b/python_binding/scheduler/pybind_Scheduler.cpp index b16134da324383a4542965393257288c49dceed0..ac35ce0a62408a69637a4160c9a008aba9dceb66 100644 --- a/python_binding/scheduler/pybind_Scheduler.cpp +++ b/python_binding/scheduler/pybind_Scheduler.cpp @@ -28,13 +28,14 @@ void init_Scheduler(py::module& m){ .def("resetScheduling", &Scheduler::resetScheduling) .def("generate_scheduling", &Scheduler::generateScheduling) .def("get_static_scheduling", &Scheduler::getStaticScheduling, py::arg("step") = 0) + .def("graph_view", &Scheduler::graphView) .def("generate_memory", &Scheduler::generateMemory, py::arg("inc_producers") = false, py::arg("wrap_around_buffer") = false) ; py::class_<SequentialScheduler, std::shared_ptr<SequentialScheduler>, Scheduler>(m, "SequentialScheduler") .def(py::init<std::shared_ptr<GraphView>&>(), py::arg("graph_view")) .def("forward", &SequentialScheduler::forward, py::arg("forward_dims")=true, py::arg("data")=std::vector<Tensor>()) - .def("backward", &SequentialScheduler::backward, py::arg("instanciate_grad")=true) + .def("backward", &SequentialScheduler::backward) ; py::class_<ParallelScheduler, std::shared_ptr<ParallelScheduler>, Scheduler>(m, "ParallelScheduler") diff --git a/python_binding/utils/pybind_Attributes.cpp b/python_binding/utils/pybind_Attributes.cpp index bfce891176822a3b1c07b1ded0c46c9c94a43c0a..7f5dde63c4835eb694d5fd2d571d7c9c1fd5a9ac 100644 --- a/python_binding/utils/pybind_Attributes.cpp +++ b/python_binding/utils/pybind_Attributes.cpp @@ -1,31 +1,47 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + #include <pybind11/pybind11.h> +#include <pybind11/stl.h> + #include "aidge/utils/Attributes.hpp" #include "aidge/utils/DynamicAttributes.hpp" #include "aidge/utils/StaticAttributes.hpp" namespace py = pybind11; namespace Aidge { + DynamicAttributes test_DynamicAttributes_binding() { DynamicAttributes attrs; - attrs.addAttr<int>("a", 42); - attrs.addAttr<std::string>("b", "test"); - attrs.addAttr<std::vector<bool>>("c", {true, false, true}); + attrs.addAttr<int>("A", 42); + attrs.addAttr<std::string>("B", "test"); + attrs.addAttr<std::vector<bool>>("C", {true, false, true}); return attrs; } double test_DynamicAttributes_binding_check(DynamicAttributes& attrs) { - return attrs.getAttr<double>("d"); + return attrs.getAttr<double>("D"); } void init_Attributes(py::module& m){ py::class_<Attributes, std::shared_ptr<Attributes>>(m, "Attributes") - .def("has_attr", &Attributes::hasAttr, py::arg("name")) - .def("get_attr_type", &Attributes::getAttrType, py::arg("name")) - .def("get_attrs_name", &Attributes::getAttrsName) + .def("has_attr", &Attributes::hasAttrPy, py::arg("name")) .def("get_attr", &Attributes::getAttrPy, py::arg("name")) .def("__getattr__", &Attributes::getAttrPy, py::arg("name")) .def("set_attr", &Attributes::setAttrPy, py::arg("name"), py::arg("value")) - .def("__setattr__", &Attributes::setAttrPy, py::arg("name"), py::arg("value")); + .def("__setattr__", &Attributes::setAttrPy, py::arg("name"), py::arg("value")) + .def("dict", &Attributes::dict) + .def("__str__", &Attributes::str) + .def("__repr__", &Attributes::repr); + py::class_<DynamicAttributes, std::shared_ptr<DynamicAttributes>, Attributes>(m, "DynamicAttributes") .def("add_attr", &DynamicAttributes::addAttrPy, py::arg("name"), py::arg("value")) @@ -35,5 +51,4 @@ void init_Attributes(py::module& m){ m.def("test_DynamicAttributes_binding_check", &test_DynamicAttributes_binding_check, py::arg("attrs")); } -} - +} // namespace Aidge diff --git a/src/backend/OperatorImpl.cpp b/src/backend/OperatorImpl.cpp index 2277db2421c36704270b81bdb6c45f19aaa891e4..de200300a99bb33180103608238855b2f5604145 100644 --- a/src/backend/OperatorImpl.cpp +++ b/src/backend/OperatorImpl.cpp @@ -27,10 +27,6 @@ Aidge::OperatorImpl::OperatorImpl(const Operator& op, const std::string& backend } Aidge::Elts_t Aidge::OperatorImpl::getNbRequiredData(const Aidge::IOIndex_t inputIdx) const { - AIDGE_ASSERT(mOp.getRawInput(inputIdx), - "a valid input is required at index {} for operator type {}", - inputIdx, mOp.type()); - if (mOp.getRawInput(inputIdx)) { const auto input = std::static_pointer_cast<Tensor>(mOp.getRawInput(inputIdx)); if (!input->empty()) { @@ -48,10 +44,6 @@ Aidge::Elts_t Aidge::OperatorImpl::getNbRequiredData(const Aidge::IOIndex_t inpu } Aidge::Elts_t Aidge::OperatorImpl::getNbRequiredProtected(IOIndex_t inputIdx) const { - AIDGE_ASSERT(mOp.getRawInput(inputIdx), - "a valid input is required at index {} for operator type {}", - inputIdx, mOp.type()); - if (mOp.getRawInput(inputIdx)) { const auto input = std::static_pointer_cast<Tensor>(mOp.getRawInput(inputIdx)); if (!input->empty()) { @@ -73,10 +65,6 @@ Aidge::Elts_t Aidge::OperatorImpl::getNbRequiredProtected(IOIndex_t inputIdx) co Aidge::Elts_t Aidge::OperatorImpl::getRequiredMemory(const Aidge::IOIndex_t outputIdx, const std::vector<Aidge::DimSize_t> &/*inputsSize*/) const { - AIDGE_ASSERT(mOp.getRawOutput(outputIdx), - "a valid output is required at index {} for operator type {}", - outputIdx, mOp.type()); - if (mOp.getRawOutput(outputIdx)) { const auto output = std::static_pointer_cast<Tensor>(mOp.getRawOutput(outputIdx)); if (!output->empty()) { @@ -129,9 +117,9 @@ void Aidge::OperatorImpl::resetConsummerProducer(){ } void Aidge::OperatorImpl::forward() { - AIDGE_THROW_OR_ABORT(std::runtime_error, "forward() not implemented"); + AIDGE_THROW_OR_ABORT(std::runtime_error, "forward() not implemented yet for operator of type {}", mOp.type()); } void Aidge::OperatorImpl::backward() { - AIDGE_THROW_OR_ABORT(std::runtime_error, "backward() not implemented"); + AIDGE_THROW_OR_ABORT(std::runtime_error, "backward() not implemented yet for operator of type {}", mOp.type()); } diff --git a/src/backend/TensorImpl.cpp b/src/backend/TensorImpl.cpp index ee2f82a9cf847bfc6fe51e8d8b621e53a4c93cf4..335122d0583d355b6aab1649b5e8122c16eef15b 100644 --- a/src/backend/TensorImpl.cpp +++ b/src/backend/TensorImpl.cpp @@ -15,7 +15,9 @@ #include "aidge/utils/ErrorHandling.hpp" void Aidge::TensorImpl::copyFrom(const TensorImpl& srcImpl, NbElts_t length, NbElts_t srcOffset, NbElts_t dstOffset) { - if (&srcImpl == this && srcOffset == dstOffset) { + // Returns if src and dst are the same + // OR if src capacity is 0 (no valid data must be copied) + if ((&srcImpl == this && srcOffset == dstOffset) || srcImpl.capacity() == 0) { return; } @@ -24,7 +26,7 @@ void Aidge::TensorImpl::copyFrom(const TensorImpl& srcImpl, NbElts_t length, NbE // Same backend, but different device copyFromDevice(srcImpl.rawPtr(srcOffset), srcImpl.device(), length, dstOffset); } - else if (srcImpl.hostPtr() != nullptr) { + else if (srcImpl.hostPtr() != nullptr) { // capacity() is > 0 so hostPtr() will not assert // Different backend, but input is valid on host copyFromHost(srcImpl.hostPtr(srcOffset), length, dstOffset); } diff --git a/src/backend/cpu/data/TensorImpl.cpp b/src/backend/cpu/data/TensorImpl.cpp index da90197e912fbeabc2f28bd3bedd91cc6f29e466..ed3c96f80c1b8bafd70425451d6618428d1888f0 100644 --- a/src/backend/cpu/data/TensorImpl.cpp +++ b/src/backend/cpu/data/TensorImpl.cpp @@ -38,12 +38,7 @@ bool Aidge::TensorImpl_cpu<T>::operator==(const Aidge::TensorImpl &other) const template <typename T> void Aidge::TensorImpl_cpu<T>::zeros() { - if (mData.empty()) { - lazyInit(); - } - for (std::size_t i = 0; i < mData.size(); ++i) { - *(mData.data() + i) = T(0); - } + std::memset(rawPtr(), T(0), mNbElts * sizeof(T)); } template <typename T> @@ -53,7 +48,7 @@ void Aidge::TensorImpl_cpu<T>::copyCast(const void *src, const Aidge::DataType s } T* dstT = static_cast<T *>(rawPtr(offset)); - AIDGE_ASSERT(length <= mData.size() || length <= mNbElts, "copy length is above capacity"); + AIDGE_ASSERT(length <= mData.size() || length <= mNbElts, "TensorImpl_cpu<{}>::copyCast(): copy length ({}) is above capacity ({})", typeid(T).name(), length, mNbElts); switch (srcDt) { case DataType::Float64: diff --git a/src/data/DataProvider.cpp b/src/data/DataProvider.cpp index 5c3d1d7ef3b3dd8c779cf9cda737f1a2b2f6e01f..fc6b842edef17c80a4ef80667fc814bf85df25a4 100644 --- a/src/data/DataProvider.cpp +++ b/src/data/DataProvider.cpp @@ -42,8 +42,8 @@ Aidge::DataProvider::DataProvider(const Aidge::Database& database, const std::si // Compute the number of bacthes depending on mDropLast boolean mNbBatch = (mDropLast) ? - static_cast<std::size_t>(std::floor(mNbItems / mBatchSize)) : - static_cast<std::size_t>(std::ceil(mNbItems / mBatchSize)); + (mNbItems / mBatchSize) : + static_cast<std::size_t>(std::ceil(mNbItems / static_cast<float>(mBatchSize))); } std::vector<std::shared_ptr<Aidge::Tensor>> Aidge::DataProvider::readBatch() const diff --git a/src/data/Tensor.cpp b/src/data/Tensor.cpp index 677bd0246e145ebf760f210000728bd2d99a3807..28fb90cebf8e387e69f1ec39c46a6a47c8a4d316 100644 --- a/src/data/Tensor.cpp +++ b/src/data/Tensor.cpp @@ -16,8 +16,117 @@ #include "aidge/utils/ErrorHandling.hpp" #include "aidge/utils/Registrar.hpp" +#include "aidge/operator/Add.hpp" +#include "aidge/operator/Div.hpp" +#include "aidge/operator/Mul.hpp" +#include "aidge/operator/Sub.hpp" +#include "aidge/operator/Sqrt.hpp" +#include "aidge/operator/Transpose.hpp" #include "aidge/utils/Types.h" + +/** + * @brief Element-wise addition operation for two ``Tensor``s. + * @note ``Tensor``s should be stored on the same backend. + * @todo If input ``Tensor``s have a different dataType, the output should + * have the dataType of the ``Tensor`` with the highest precision. + * + * @param other + * @return Tensor + */ +Aidge::Tensor Aidge::Tensor::operator+(const Aidge::Tensor& other) const { + AIDGE_ASSERT(hasImpl() && other.hasImpl(), "At least one Tensor cannot perform any binary operation because it has no implementation."); + AIDGE_ASSERT(mImpl->backend() == other.mImpl->backend(), "Tensors must have the same backend"); + AIDGE_ASSERT(dataType() == other.dataType(), "Tensors must have the same data type"); + AIDGE_ASSERT(dataFormat() == other.dataFormat(), "Tensors must have the same data format"); + auto add_ = Add_Op(2); + add_.associateInput(0, std::make_shared<Tensor>(*this)); + add_.associateInput(1, std::make_shared<Tensor>(other)); + add_.setDataType(dataType()); + add_.setDataFormat(dataFormat()); + add_.setBackend(mImpl->backend()); + add_.forward(); + // using add_backend = std::remove_reference_t<decltype(*Registrar<Add_Op>::create("cpu")(std::declval<const Add_Op&>()))>; + return add_.getOutput(0)->clone(); +} + +/** + * @brief Element-wise substraction operation for two ``Tensor``s. + * @note ``Tensor``s should be stored on the same backend. + * @todo If input ``Tensor``s have a different dataType, the output should + * have the dataType of the ``Tensor`` with the highest precision. + * + * @param other + * @return Tensor + */ +Aidge::Tensor Aidge::Tensor::operator-(const Aidge::Tensor& other) const { + AIDGE_ASSERT(hasImpl() && other.hasImpl(), "At least one Tensor cannot perform any binary operation because it has no implementation."); + AIDGE_ASSERT(mImpl->backend() == other.mImpl->backend(), "Tensors must have the same backend"); + AIDGE_ASSERT(dataType() == other.dataType(), "Tensors must have the same data type"); + AIDGE_ASSERT(dataFormat() == other.dataFormat(), "Tensors must have the same data format"); + auto sub_ = Sub_Op(); + sub_.associateInput(0, std::make_shared<Tensor>(*this)); + sub_.associateInput(1, std::make_shared<Tensor>(other)); + sub_.setDataType(dataType()); + sub_.setDataFormat(dataFormat()); + sub_.setBackend(mImpl->backend()); + sub_.forward(); + // using add_backend = std::remove_reference_t<decltype(*Registrar<Add_Op>::create("cpu")(std::declval<const Add_Op&>()))>; + return sub_.getOutput(0)->clone(); +} + +/** + * @brief Element-wise multiplication operation for two ``Tensor``s. + * @note ``Tensor``s should be stored on the same backend. + * @todo If input ``Tensor``s have a different dataType, the output should + * have the dataType of the ``Tensor`` with the highest precision. + * + * @param other + * @return Tensor + */ +Aidge::Tensor Aidge::Tensor::operator*(const Aidge::Tensor& other) const { + AIDGE_ASSERT(hasImpl() && other.hasImpl(), "At least one Tensor cannot perform any binary operation because it has no implementation."); + AIDGE_ASSERT(mImpl->backend() == other.mImpl->backend(), "Tensors must have the same backend"); + AIDGE_ASSERT(dataType() == other.dataType(), "Tensors must have the same data type"); + AIDGE_ASSERT(dataFormat() == other.dataFormat(), "Tensors must have the same data format"); + auto mul_ = Mul_Op(); + mul_.associateInput(0, std::make_shared<Tensor>(*this)); + mul_.associateInput(1, std::make_shared<Tensor>(other)); + mul_.setDataType(dataType()); + mul_.setDataFormat(dataFormat()); + mul_.setBackend(mImpl->backend()); + mul_.forward(); + // using add_backend = std::remove_reference_t<decltype(*Registrar<Add_Op>::create("cpu")(std::declval<const Add_Op&>()))>; + return mul_.getOutput(0)->clone(); +} + +Aidge::Tensor Aidge::Tensor::operator/(const Aidge::Tensor& other) const { + AIDGE_ASSERT(hasImpl() && other.hasImpl(), "At least one Tensor cannot perform any binary operation because it has no implementation."); + AIDGE_ASSERT(mImpl->backend() == other.mImpl->backend(), "Tensors must have the same backend"); + AIDGE_ASSERT(dataType() == other.dataType(), "Tensors must have the same data type"); + AIDGE_ASSERT(dataFormat() == other.dataFormat(), "Tensors must have the same data format"); + auto div_ = Div_Op(); + div_.associateInput(0, std::make_shared<Tensor>(*this)); + div_.associateInput(1, std::make_shared<Tensor>(other)); + div_.setDataType(dataType()); + div_.setDataFormat(dataFormat()); + div_.setBackend(mImpl->backend()); + div_.forward(); + // using add_backend = std::remove_reference_t<decltype(*Registrar<Add_Op>::create("cpu")(std::declval<const Add_Op&>()))>; + return div_.getOutput(0)->clone(); +} + +Aidge::Tensor Aidge::Tensor::sqrt() const { + AIDGE_ASSERT(hasImpl(), "Tensor has no implementation."); + auto sqrt_ = Sqrt_Op(); + sqrt_.associateInput(0, std::make_shared<Tensor>(*this)); + sqrt_.setDataType(dataType()); + sqrt_.setDataFormat(dataFormat()); + sqrt_.setBackend(mImpl->backend()); + sqrt_.forward(); + return sqrt_.getOutput(0)->clone(); +} + Aidge::Tensor& Aidge::Tensor::operator=(const Aidge::Tensor& other) { if (this == &other) { return *this; @@ -319,6 +428,52 @@ void Aidge::Tensor::copyFrom(const Tensor& src) { mImplOffset); } +void Aidge::Tensor::copyTranspose(const Tensor& src, const std::vector<DimSize_t>& transpose) { + std::vector<DimSize_t> newDims; + for (std::size_t i = 0; i < src.dims().size(); ++i) { + newDims.push_back(src.dims()[transpose[i]]); + } + + std::vector<std::size_t> newStrides(newDims.size(), 1); + for (size_t i = 0; i < newDims.size(); ++i) { + for (size_t j = i + 1; j < newDims.size(); ++j) { + newStrides[i] *= newDims[j]; + } + } + + std::shared_ptr<TensorImpl> newImpl = Registrar<Tensor>::create({mImpl->backend(), mDataType})(mImpl->device().second, newDims); + + std::vector<size_t> indices(newDims.size(), 0); + for (size_t i = 0; i < src.size(); ++i) { + size_t idx = 0; + // Permute indices based on OutputDimsOrder attr + for (int j = newDims.size() -1; j >=0; --j) { + idx += indices[transpose[j]] * newStrides[j]; + } + + // Copy the value in output + newImpl->copy(src.getImpl()->rawPtr(i), 1, idx); + + // Update indices for the next iteration + for (int j = newDims.size() - 1; j >= 0; --j) { + if (indices[j] < src.dims()[j] - 1) { + indices[j]++; + break; + } + else { + indices[j] = 0; + } + } + } + + resize(newDims); + setImpl(newImpl); +} + +void Aidge::Tensor::copyTranspose(const Tensor& src, const DataFormatTranspose& transpose) { + copyTranspose(src, std::vector<DimSize_t>(transpose.begin(), transpose.end())); +} + void Aidge::Tensor::copyCastFrom(const Tensor& src, std::shared_ptr<Tensor>& movedSrcPtr) { if (&src == this) { diff --git a/src/graph/GraphView.cpp b/src/graph/GraphView.cpp index 0bc918995c55a914b29987506578491e2c86fae5..5a11aa20e03bef274f784788dee1ef047cafba42 100644 --- a/src/graph/GraphView.cpp +++ b/src/graph/GraphView.cpp @@ -31,6 +31,7 @@ #include "aidge/operator/MetaOperator.hpp" #include "aidge/operator/OperatorTensor.hpp" #include "aidge/operator/Producer.hpp" +#include "aidge/operator/Memorize.hpp" #include "aidge/utils/Directories.hpp" #include "aidge/utils/ErrorHandling.hpp" #include "aidge/utils/Types.h" @@ -45,23 +46,29 @@ const std::shared_ptr<Aidge::Node> Aidge::GraphView::operator[](const std::strin /////////////////////////////////////////////////////// Aidge::Connector Aidge::GraphView::operator()( - const std::vector<Aidge::Connector> ctors) { + const std::vector<Aidge::Connector> ctors) +{ // TODO: allow for multiple inputNodes? - assert((inputNodes().size() == 1U) && "Too many input Nodes for the GraphView, undefined behaviour"); + AIDGE_ASSERT(inputNodes().size() == 1U, "Multiple input Nodes for the GraphView is not supported for Connectors"); std::shared_ptr<Node> inNode = *inputNodes().begin(); - assert((ctors.size() == static_cast<std::size_t>(inNode->nbData())) && "Wrong number of arguments.\n"); - for (std::pair<std::shared_ptr<Node>, IOIndex_t> &input : inNode->inputs()) { - assert((gk_IODefaultIndex == input.second) && "At least one input connection is not free.\n"); - (void)input; // avoid unused warning - } - IOIndex_t inID = 0; - for (const Connector &ctor : ctors) { - assert((ctor.node() != nullptr) && - "Input Connector must be associated with a node"); - ctor.node()->addChild(shared_from_this(), static_cast<std::size_t>(ctor.index()), - {inNode, inID++}); + IOIndex_t ctorIdx = 0; + const auto& inputs = inNode->inputs(); + for (IOIndex_t idx = 0; idx < inNode->nbInputs(); ++idx) { + if (inNode->inputCategory(idx) == InputCategory::Data || inNode->inputCategory(idx) == InputCategory::OptionalData) { + if (ctorIdx < ctors.size()) { + AIDGE_ASSERT(ctors[ctorIdx].node() != nullptr, "Input Connector #{} must be associated with a node", ctorIdx); + AIDGE_ASSERT(inputs[idx].second == gk_IODefaultIndex, "Data input#{} connection is not free.", idx); + ctors[ctorIdx].node()->addChild(shared_from_this(), static_cast<std::size_t>(ctors[ctorIdx].index()), + {inNode, idx}); + ++ctorIdx; + } + else { + AIDGE_ASSERT(inNode->inputCategory(idx) == InputCategory::OptionalData, "Missing an input connector for non-optional Data input#{}", idx); + } + } } + AIDGE_ASSERT(ctorIdx == ctors.size(), "Too many input connectors ({}) vs available node inputs ({}).", ctors.size(), ctorIdx); return Connector(*(outputNodes().begin())); } @@ -73,6 +80,9 @@ bool Aidge::GraphView::inView(const std::shared_ptr<Aidge::Node>& nodePtr) const return mNodes.find(nodePtr) != mNodes.cend(); } +bool Aidge::GraphView::inView(const std::string& nodeName) const { + return mNodeRegistry.find(nodeName) != mNodeRegistry.end(); +} void Aidge::GraphView::save(const std::string& path, bool verbose, bool showProducers) const { auto fp = std::unique_ptr<FILE, decltype(&std::fclose)>(std::fopen((path + ".mmd").c_str(), "w"), &std::fclose); @@ -119,9 +129,11 @@ void Aidge::GraphView::save(const std::string& path, bool verbose, bool showProd } } - if (node_ptr == mRootNode || node_ptr->type() != "Producer" || showProducers) { - fmt::print(fp.get(), "{}_{}({}){}\n", node_ptr->type(), namePtrTable.at(node_ptr), - givenName, nodeCls); + if (node_ptr->type() != "Producer" || showProducers) { + // if (node_ptr == mRootNode) { + fmt::print(fp.get(), "{}_{}({}){}\n", node_ptr->type(), namePtrTable.at(node_ptr), + givenName, nodeCls); + // } } } @@ -392,14 +404,21 @@ void Aidge::GraphView::compile(const std::string& backend, const Aidge::DataType } bool Aidge::GraphView::forwardDims(const std::vector<std::vector<Aidge::DimSize_t>>& dims, bool allowDataDependency) { + // remove current Data connections and use dummy inputs to propagate dimensions // setInputs // Link every tensor to the right pointer // following parent - children informations if (!dims.empty()){ AIDGE_ASSERT(dims.size() == mInputNodes.size(), "GraphView forwardDims error - Inconsistent number of given dimensions ({}) and graph inputs ({})", dims.size(), mInputNodes.size()); for (std::size_t i = 0; i < dims.size(); ++i){ - auto tensor = std::make_shared<Tensor>(dims[i]); - mInputNodes[i].first->getOperator()->setInput(mInputNodes[i].second, tensor); + const auto& currentTensorPtr = + std::dynamic_pointer_cast<OperatorTensor>(mInputNodes[i].first->getOperator())->getInput(mInputNodes[i].second); + if (currentTensorPtr) { // tensor detected + AIDGE_ASSERT(currentTensorPtr->dims() == dims[i], "Tensor of unexpected size provided.") + } else { + auto tensor = std::make_shared<Tensor>(dims[i]); + mInputNodes[i].first->getOperator()->setInput(mInputNodes[i].second, tensor); + } } } @@ -412,7 +431,7 @@ bool Aidge::GraphView::forwardDims(const std::vector<std::vector<Aidge::DimSize_ AIDGE_ASSERT(nodePtr->getOperator()->getRawInput(i) == inputI.first->getOperator()->getRawOutput(inputI.second), "Input#{} for node {} ({}) is not properly connected to output#{} of node {} ({}): Data or Tensor mismatch!", i, nodePtr->name(), nodePtr->type(), inputI.second, inputI.first->name(), inputI.first->type()); - } else { + } else if (nodePtr->inputCategory(i) != InputCategory::OptionalData && nodePtr->inputCategory(i) != InputCategory::OptionalParam) { // Input is missing AIDGE_ASSERT(nodePtr->getOperator()->getRawInput(i), "Missing input#{} for node {} ({})", i, nodePtr->name(), nodePtr->type()); @@ -423,22 +442,68 @@ bool Aidge::GraphView::forwardDims(const std::vector<std::vector<Aidge::DimSize_ } } - // Compute dimensions of every node - std::set<std::shared_ptr<Node>> listNodes = getNodes(); + // List of nodes that are already dims forwarded + std::set<std::shared_ptr<Node>> dimsForwarded; + // Establish initial list of dims forwardable nodes: + // input nodes and childs from Producers + std::set<std::shared_ptr<Node>> listNodes = inputNodes(); + for (const auto& nodePtr : getNodes()) { + if (nodePtr->type() == Producer_Op::Type) { + // Producers are already dims forwarded! + dimsForwarded.insert(nodePtr); + // Producers childs are dims forwardable + for (const auto& child : nodePtr->getChildren()) { + if (inView(child)) { + listNodes.insert(child); + } + } + } + } + do { std::set<std::shared_ptr<Node>> nextList; - for (std::shared_ptr<Node> nodePtr : listNodes) { + for (const auto& nodePtr : listNodes) { if (nodePtr->getOperator()->operatorType() == OperatorType::Tensor) { - const auto op = std::static_pointer_cast<OperatorTensor>(nodePtr->getOperator()); - // Recompute everytime, even if it was already computed in a - // previous call of forwardDims(), as the graph may have changed! - op->forwardDims(allowDataDependency); - if (!op->dimsForwarded()) { - nextList.insert(nodePtr); - } + const auto op = std::static_pointer_cast<OperatorTensor>(nodePtr->getOperator()); + + bool anyParent = false; + bool parentsForwarded = true; + for (const auto& parent : nodePtr->getParents()) { + if (parent != nullptr && inView(parent) && dimsForwarded.find(parent) == dimsForwarded.end()) { + Log::debug("Dimensions not forwarded for parent (node {} (of type {})) of node {} (of type {})", + parent->name(), parent->type(), nodePtr->name(), nodePtr->type()); + parentsForwarded = false; + } + else { + anyParent = true; + } + } + + // Special rule for Memorize_Op, which only requires one parent + // to have its dims forwarded. This avoids circular dependency. + if (nodePtr->type() == Memorize_Op::Type && anyParent) { + parentsForwarded = true; + } + + if (parentsForwarded && op->forwardDims(allowDataDependency)) { + // Recompute everytime, even if it was already computed in a + // previous call of forwardDims(), as the graph may have changed! + dimsForwarded.insert(nodePtr); + for (const auto& child : nodePtr->getChildren()) { + if (inView(child) && dimsForwarded.find(child) == dimsForwarded.end()) { + nextList.insert(child); + } + } + } + else { + Log::debug("Unable to forward dimensions for node {} (of type {}) yet", nodePtr->name(), nodePtr->type()); + nextList.insert(nodePtr); + } } } + Log::debug("********************"); + // Internal check to make sure we won't enter in an infinite loop! if (nextList == listNodes) { // We are stuck! @@ -450,7 +515,6 @@ bool Aidge::GraphView::forwardDims(const std::vector<std::vector<Aidge::DimSize_ Log::warn("Unable to forward dimensions (circular dependency and/or wrong dimensions and/or data dependent dimension?). Unable to compute output dims for nodes {}.", nodesName); return false; } - listNodes.swap(nextList); } while (!listNodes.empty()); @@ -470,6 +534,12 @@ void Aidge::GraphView::setDataType(const Aidge::DataType &datatype) const { } } +void Aidge::GraphView::setDataFormat(const Aidge::DataFormat &dataformat) const { + for (const auto& node : getNodes()) { + node->getOperator()->setDataFormat(dataformat); + } +} + std::vector< std::vector<std::pair<std::shared_ptr<Aidge::Node>, Aidge::IOIndex_t>>> Aidge::GraphView::outputs() const { @@ -526,15 +596,17 @@ void Aidge::GraphView::add(std::shared_ptr<Node> node, bool includeLearnablePara // add learnable parameters to the graph if (includeLearnableParam) { - for (IOIndex_t i = node->nbData(); i < node->nbInputs(); ++i) { - std::shared_ptr<Node> parentNode = node->getParent(static_cast<IOIndex_t>(i)); - if (parentNode) { - parentNode->addView(shared_from_this()); - mNodes.insert(parentNode); - if (!(parentNode->name()).empty()) - mNodeRegistry.insert(std::make_pair(parentNode->name(), parentNode)); - // check if the parentNode is an input/output node - updateInputsOutputsNew(parentNode); + for (IOIndex_t i = 0; i < node->nbInputs(); ++i) { + if (node->inputCategory(i) == InputCategory::Param || node->inputCategory(i) == InputCategory::OptionalParam) { + std::shared_ptr<Node> parentNode = node->getParent(static_cast<IOIndex_t>(i)); + if (parentNode) { + parentNode->addView(shared_from_this()); + mNodes.insert(parentNode); + if (!(parentNode->name()).empty()) + mNodeRegistry.insert(std::make_pair(parentNode->name(), parentNode)); + // check if the parentNode is an input/output node + updateInputsOutputsNew(parentNode); + } } } } @@ -604,6 +676,15 @@ bool Aidge::GraphView::add(std::set<std::shared_ptr<Node>> otherNodes, bool incl std::set<NodePtr> nodesToAdd; std::set_difference(otherNodes.begin(), otherNodes.end(), mNodes.begin(), mNodes.end(), std::inserter(nodesToAdd, nodesToAdd.begin())); + // Check no name is common with the name in the current Graph + for (auto node : nodesToAdd) { + if (mNodeRegistry.find(node->name()) != mNodeRegistry.end()){ + std::string newName = node->createUniqueName(node->name()); + fmt::print("Warning: node name \"{}\" is a duplicate, renaming to {}.\n", node->name(), newName); + node->setName(newName); + + } + } // List the nodes to rank, initially all the nodes in the GraphView std::set<NodePtr> nodesToRank(mNodes); nodesToRank.insert(nodesToAdd.begin(), nodesToAdd.end()); @@ -698,10 +779,10 @@ bool Aidge::GraphView::add(std::pair<NodePtr, std::set<NodePtr>> nodes, bool inc return add(nodes.second, includeLearnableParam); } -bool Aidge::GraphView::add(std::shared_ptr<GraphView> graph) { +bool Aidge::GraphView::add(std::shared_ptr<GraphView> graph, bool includeLearnableParam) { // set the rootNode to the other graphView rootNode if no rootNode yet mRootNode = mRootNode ? mRootNode : graph->rootNode(); - return add(graph->getNodes(), false); + return add(graph->getNodes(), includeLearnableParam); } void Aidge::GraphView::addChild(std::shared_ptr<Node> toOtherNode, @@ -813,29 +894,31 @@ Aidge::GraphView::getNode(const std::string& nodeName) const { void Aidge::GraphView::remove(std::shared_ptr<Node> nodePtr, bool includeLearnableParam) { // remove learnable params if (includeLearnableParam) { - for (IOIndex_t i = nodePtr->nbData(); i < nodePtr->nbInputs(); ++i) { - auto inputI = nodePtr->input(i); - if (inputI.first != nullptr) { - bool removeNode = true; - for (const auto& parentOutput : inputI.first->outputs()) { - for (const auto& childOfParentOutput : parentOutput) { - // only remove the learnable parameter if not related to any other Node in the GraphView - if (childOfParentOutput.first != nodePtr) { - removeNode = false; - break; + for (IOIndex_t i = 0; i < nodePtr->nbInputs(); ++i) { + if (nodePtr->inputCategory(i) == InputCategory::Param || nodePtr->inputCategory(i) == InputCategory::OptionalParam) { + auto inputI = nodePtr->input(i); + if (inputI.first != nullptr) { + bool removeNode = true; + for (const auto& parentOutput : inputI.first->outputs()) { + for (const auto& childOfParentOutput : parentOutput) { + // only remove the learnable parameter if not related to any other Node in the GraphView + if (childOfParentOutput.first != nodePtr) { + removeNode = false; + break; + } } } - } - if (removeNode) { - // assert Learnable Parameter in the GraphView scope - if (mNodes.find(inputI.first) != mNodes.end()) { - mNodes.erase(inputI.first); - inputI.first->removeView(shared_from_this()); - } - if (!inputI.first->name().empty()) { mNodeRegistry.erase(inputI.first->name()); } + if (removeNode) { + // assert Learnable Parameter in the GraphView scope + if (mNodes.find(inputI.first) != mNodes.end()) { + mNodes.erase(inputI.first); + inputI.first->removeView(shared_from_this()); + } + if (!inputI.first->name().empty()) { mNodeRegistry.erase(inputI.first->name()); } - // check if the node was an input/output node - updateInputsOutputsDelete(inputI.first); + // check if the node was an input/output node + updateInputsOutputsDelete(inputI.first); + } } } } @@ -979,6 +1062,10 @@ bool Aidge::GraphView::replace(const std::shared_ptr<GraphView>& oldGraph, const for (const auto& child : outputChildren[i]) { inputParents[i].first -> addChild(child.first, inputParents[i].second, child.second); } + } else { + for (const auto& child : outputChildren[i]) { + child.first->getOperator()->resetInput(child.second); + } } } } @@ -998,7 +1085,10 @@ bool Aidge::GraphView::replace(const std::shared_ptr<GraphView>& oldGraph, const // Case 2 if ((oldOIn.size() == 1) && (inputParents[0].first)) { for (std::size_t i = 0; i < newOIn.size(); ++i) { - inputParents[0].first -> addChild(newOIn[i].first, inputParents[0].second, newOIn[i].second); + // Only re-connect the same input category + if (newOIn[i].first->inputCategory(newOIn[i].second) == oldOIn[0].first->inputCategory(oldOIn[0].second)) { + inputParents[0].first -> addChild(newOIn[i].first, inputParents[0].second, newOIn[i].second); + } } } else { for (std::size_t i = 0; i < oldOIn.size(); ++i) { @@ -1284,7 +1374,7 @@ std::shared_ptr<Aidge::GraphView> Aidge::GraphView::cloneCallback(NodePtr(*clone auto clonedNode = cloneNode(node_ptr); if (clonedNode == nullptr) { AIDGE_ASSERT(node_ptr->getChildren().size() <= 1, "deleted nodes in GraphView::clone() cannot have multiple children"); - AIDGE_ASSERT(node_ptr->nbData() <= 1, "deleted nodes in GraphView::clone() cannot have multiple data input parents"); + AIDGE_ASSERT(node_ptr->dataInputs().size() <= 1, "deleted nodes in GraphView::clone() cannot have multiple data input parents"); } oldToNewNodes[node_ptr] = clonedNode; } @@ -1302,8 +1392,8 @@ std::shared_ptr<Aidge::GraphView> Aidge::GraphView::cloneCallback(NodePtr(*clone while (oldToNewNodes[parent.first] == nullptr) { // Find next valid parent in line, going backward in the graph AIDGE_INTERNAL_ASSERT(parent.first->getChildren().size() == 1); - AIDGE_INTERNAL_ASSERT(parent.first->nbData() <= 1); const auto& parents = parent.first->dataInputs(); + AIDGE_INTERNAL_ASSERT(parents.size() <= 1); if (!parents.empty() && parents[0].first != nullptr // a valid parent exists && oldToNewNodes.find(parents[0].first) != oldToNewNodes.end()) // parent is in the GraphView @@ -1384,9 +1474,9 @@ std::shared_ptr<Aidge::GraphView> Aidge::GraphView::cloneCallback(NodePtr(*clone for (auto it = newOutputNodes.begin(); it != newOutputNodes.end(); ) { // If output node was removed, find previous valid output while (oldToNewNodes[it->first] == nullptr) { - // Removed node should have only one connected data input, otherwise cloning is invalid - AIDGE_INTERNAL_ASSERT(it->first->nbData() <= 1); auto parents = it->first->dataInputs(); + // Removed node should have only one connected data input, otherwise cloning is invalid + AIDGE_INTERNAL_ASSERT(parents.size() <= 1); if (!parents.empty() && parents[0].first != nullptr // a valid parent exists && oldToNewNodes.find(parents[0].first) != oldToNewNodes.end()) // parent is in the GraphView @@ -1412,10 +1502,9 @@ std::shared_ptr<Aidge::GraphView> Aidge::GraphView::cloneCallback(NodePtr(*clone } std::shared_ptr<Aidge::GraphView> Aidge::getConnectedGraphView(std::shared_ptr<Node> node) { - std::vector<NodePtr> foundNodes; - foundNodes.push_back(node); + std::vector<NodePtr> foundNodes{node}; - for (size_t curNodeIdx = 0; curNodeIdx < foundNodes.size(); ++curNodeIdx) { + for (std::size_t curNodeIdx = 0; curNodeIdx < foundNodes.size(); ++curNodeIdx) { NodePtr curNode = foundNodes[curNodeIdx]; for (auto childs : curNode->getOrderedChildren()) { diff --git a/src/graph/Matching.cpp b/src/graph/Matching.cpp new file mode 100644 index 0000000000000000000000000000000000000000..a840b6ab552d71990b796d741d3ca56b07c7c0be --- /dev/null +++ b/src/graph/Matching.cpp @@ -0,0 +1,685 @@ +#include "aidge/graph/Matching.hpp" + +#include <fmt/color.h> + +std::set<Aidge::SinglePassGraphMatching::MatchingResult> Aidge::SinglePassGraphMatching::match(const std::string& query, bool disjoint) { + Context ctx; + ctx.query = query; + std::set<MatchingResult> matches; + + while (matchSequence(ctx, matches) || matchNodeOrBlock(ctx, matches)) { + removeWhiteSpace(ctx.query); + if (!ctx.query.empty() && ctx.query[0] == ';') { + ctx.query.erase(0, 1); + } + else { + break; + } + } + + removeWhiteSpace(ctx.query); + if (!ctx.query.empty()) { + Log::warn("Syntax error, unable to parse remaining query: {}", ctx.query); + } + + if (disjoint) { + matches = filterLonguestDisjoint(matches); + } + + return matches; +} + +std::set<Aidge::SinglePassGraphMatching::MatchingResult> Aidge::SinglePassGraphMatching::filterLonguestDisjoint(const std::set<MatchingResult>& matches) { + // Sort matches by highest number of nodes first, thanks to the CompareMatchingResultSize function + std::set<MatchingResult, CompareMatchingResultSize> sortedMatches(matches.begin(), matches.end()); + // Keep all the nodes that are already in previous (selected) matches + std::set<NodePtr> selectedNodes; + std::set<MatchingResult> filteredMatches; + + for (const auto& match : sortedMatches) { + const auto& nodes = match.graph->getNodes(); + bool isNonOverlapping = true; + for (const auto& node : nodes) { + if (selectedNodes.find(node) != selectedNodes.end()) { + isNonOverlapping = false; + break; + } + } + + if (isNonOverlapping) { + // If no node of the current match is already in a previous match, + // the match is disjoint from previous matches and can be kept! + filteredMatches.insert(match); + selectedNodes.insert(nodes.begin(), nodes.end()); + } + } + + return filteredMatches; +} + +bool Aidge::SinglePassGraphMatching::matchNodeOrBlock(Context& ctx, std::set<MatchingResult>& matches) { + auto newCtx = ctx; + Log::debug("{}node-or-block", std::string(2*newCtx.depth, ' ')); + auto newMatches = matches; + ++newCtx.depth; + + // (BLOCK | NODE) + if (!matchBlock(newCtx, newMatches) && !matchNode(newCtx, newMatches)) { + Log::debug("{}{}", std::string(2*ctx.depth, ' '), fmt::styled("×", fmt::fg(fmt::color::red))); + return false; + } + + // QUANTIFIER? + bool matchMore = false; + size_t matchQuantity = 0; + removeWhiteSpace(newCtx.query); + if (!newCtx.query.empty() && (newCtx.query[0] == '?' || newCtx.query[0] == '*')) { + AIDGE_ASSERT(!(ctx.firstSequence && ctx.firstNode), + "Ill-formed query; the root node cannot be optional in query at: {}", ctx.query); + + for (const auto& match : matches) { + bool found = false; + for (const auto& newMatch : newMatches) { + if (match.graph->rootNode() == newMatch.graph->rootNode()) { + found = true; + } + } + + if (!found) { + newMatches.insert(match); + } + } + + if (newCtx.query[0] == '*') { + matchMore = true; + } + + newCtx.query.erase(0, 1); + } + else if (!newCtx.query.empty() && newCtx.query[0] == '+') { + newCtx.query.erase(0, 1); + matchMore = true; + } + else if (!newCtx.query.empty() && newCtx.query[0] == '{') { + newCtx.query.erase(0, 1); + + removeWhiteSpace(newCtx.query); + const auto endQuantity = std::find_if(newCtx.query.begin(), newCtx.query.end(), + [](char c) { return !isdigit(c); }); + if (endQuantity != newCtx.query.begin()) { + matchQuantity = std::stoi(newCtx.query.substr(0, endQuantity - newCtx.query.begin())); + newCtx.query = newCtx.query.substr(endQuantity - newCtx.query.begin()); + } + else { + Log::debug("{}{}", std::string(2*ctx.depth, ' '), fmt::styled("×", fmt::fg(fmt::color::red))); + return false; + } + + if (matchQuantity == 0) { + Log::debug("{}{}", std::string(2*ctx.depth, ' '), fmt::styled("×", fmt::fg(fmt::color::red))); + return false; + } + + removeWhiteSpace(newCtx.query); + if (!newCtx.query.empty() && newCtx.query[0] == '}') { + newCtx.query.erase(0, 1); + } + else { + Log::debug("{}{}", std::string(2*ctx.depth, ' '), fmt::styled("×", fmt::fg(fmt::color::red))); + return false; + } + + if (matchQuantity > 1) { + matchMore = true; + } + } + + if (matchMore) { + std::set<MatchingResult> additionalMatches; + + do { + auto additionalCtx = ctx; + additionalCtx.firstNode = newCtx.firstNode; + additionalCtx.firstSequence = newCtx.firstSequence; + additionalCtx.anchors = newCtx.anchors; + ++additionalCtx.depth; + additionalMatches = newMatches; + + if (!matchBlock(additionalCtx, additionalMatches) && !matchNode(additionalCtx, additionalMatches)) { + Log::debug("{}{}", std::string(2*ctx.depth, ' '), fmt::styled("×", fmt::fg(fmt::color::red))); + return false; + } + + for (const auto& additionalMatch : additionalMatches) { + for (auto& match : newMatches) { + if (match.graph->rootNode() == additionalMatch.graph->rootNode()) { + match.graph = std::make_shared<GraphView>(*(additionalMatch.graph.get())); + match.anchors = additionalMatch.anchors; + match.startNode = additionalMatch.startNode; + break; + } + } + } + + --matchQuantity; + } + while (!additionalMatches.empty() && matchQuantity > 1); + } + + --newCtx.depth; + ctx = newCtx; + matches = newMatches; + return true; +} + +bool Aidge::SinglePassGraphMatching::matchBlock(Context& ctx, std::set<MatchingResult>& matches) { + auto newCtx = ctx; + Log::debug("{}block", std::string(2*newCtx.depth, ' ')); + auto newMatches = matches; + ++newCtx.depth; + + // '(' + removeWhiteSpace(newCtx.query); + if (!newCtx.query.empty() && newCtx.query[0] == '(') { + newCtx.query.erase(0, 1); + } + else { + Log::debug("{}{}", std::string(2*ctx.depth, ' '), fmt::styled("×", fmt::fg(fmt::color::red))); + return false; + } + + // SEQ | PAR | BLOCK | ALT | NODE + if (!matchSequence(newCtx, newMatches) + && !matchParallel(newCtx, newMatches) + && !matchBlock(newCtx, newMatches) + && !matchAlternative(newCtx, newMatches) + && !matchNode(newCtx, newMatches)) + { + Log::debug("{}{}", std::string(2*ctx.depth, ' '), fmt::styled("×", fmt::fg(fmt::color::red))); + return false; + } + + // ')' + removeWhiteSpace(newCtx.query); + if (!newCtx.query.empty() && newCtx.query[0] == ')') { + newCtx.query.erase(0, 1); + } + else { + Log::debug("{}{}", std::string(2*ctx.depth, ' '), fmt::styled("×", fmt::fg(fmt::color::red))); + return false; + } + + --newCtx.depth; + ctx = newCtx; + matches = newMatches; + return true; +} + +bool Aidge::SinglePassGraphMatching::matchSequence(Context& ctx, std::set<MatchingResult>& matches) { + auto newCtx = ctx; + Log::debug("{}sequence", std::string(2*newCtx.depth, ' ')); + auto newMatches = matches; + ++newCtx.depth; + + if (!ctx.inSequence) { + newCtx.inSequence = true; + newCtx.firstNode = true; + } + + // NODE_OR_BLOCK + if (!matchNodeOrBlock(newCtx, newMatches)) { + Log::debug("{}{}", std::string(2*ctx.depth, ' '), fmt::styled("×", fmt::fg(fmt::color::red))); + return false; + } + + newCtx.firstNode = false; + + bool found = false; + while (true) { + // (EDGE NODE_OR_BLOCK)+ + // EDGE + if (matchEdge(newCtx, newMatches)) { + found = true; + } + else { + break; + } + + // NODE_OR_BLOCK + if (!matchNodeOrBlock(newCtx, newMatches)) { + Log::debug("{}{}", std::string(2*ctx.depth, ' '), fmt::styled("×", fmt::fg(fmt::color::red))); + return false; + } + } + + if (!found) { + Log::debug("{}{}", std::string(2*ctx.depth, ' '), fmt::styled("×", fmt::fg(fmt::color::red))); + return false; + } + + if (!ctx.inSequence) { + newCtx.inSequence = false; + } + + --newCtx.depth; + ctx = newCtx; + matches = newMatches; + return true; +} + +bool Aidge::SinglePassGraphMatching::matchParallel(Context& ctx, std::set<MatchingResult>& matches) { + auto newCtx = ctx; + Log::debug("{}parallel", std::string(2*newCtx.depth, ' ')); + ++newCtx.depth; + auto newMatches = matches; + + // NODE_OR_BLOCK + auto parCtx = newCtx; + if (!matchNodeOrBlock(parCtx, newMatches)) { + Log::debug("{}{}", std::string(2*ctx.depth, ' '), fmt::styled("×", fmt::fg(fmt::color::red))); + return false; + } + newCtx.query = parCtx.query; + + bool found = false; + while (true) { + // ('&' NODE_OR_BLOCK)+ + // '&' + removeWhiteSpace(newCtx.query); + if (!newCtx.query.empty() && newCtx.query[0] == '&') { + newCtx.query.erase(0, 1); + found = true; + } + else { + break; + } + + // NODE_OR_BLOCK + // reset the ctx to the beginning + parCtx = newCtx; + // reset the startNode to the beginning + for (auto& newMatch : newMatches) { + for (const auto& match : matches) { + if (match.graph->rootNode() == newMatch.graph->rootNode()) { + newMatch.startNode = match.startNode; + } + } + } + + if (!matchNodeOrBlock(parCtx, newMatches)) { + Log::debug("{}{}", std::string(2*ctx.depth, ' '), fmt::styled("×", fmt::fg(fmt::color::red))); + return false; + } + newCtx.query = parCtx.query; + } + + // Keep the last context for further query + newCtx = parCtx; + + if (!found) { + Log::debug("{}{}", std::string(2*ctx.depth, ' '), fmt::styled("×", fmt::fg(fmt::color::red))); + return false; + } + + --newCtx.depth; + ctx = newCtx; + matches = newMatches; + return true; +} + +bool Aidge::SinglePassGraphMatching::matchAlternative(Context& ctx, std::set<MatchingResult>& matches) { + auto newCtx = ctx; + Log::debug("{}alternative", std::string(2*newCtx.depth, ' ')); + ++newCtx.depth; + std::set<MatchingResult> newMatches; + + // NODE_OR_BLOCK + auto altCtx = newCtx; + auto altMatches = matches; + if (!matchNodeOrBlock(altCtx, altMatches)) { + Log::debug("{}{}", std::string(2*ctx.depth, ' '), fmt::styled("×", fmt::fg(fmt::color::red))); + return false; + } + newCtx.query = altCtx.query; + newMatches.insert(altMatches.begin(), altMatches.end()); + + bool found = false; + while (true) { + // ('|' NODE_OR_BLOCK)+ + // '|' + removeWhiteSpace(newCtx.query); + if (!newCtx.query.empty() && newCtx.query[0] == '|') { + newCtx.query.erase(0, 1); + found = true; + } + else { + break; + } + + // NODE_OR_BLOCK + altCtx = newCtx; + altMatches = matches; + if (!matchNodeOrBlock(altCtx, altMatches)) { + Log::debug("{}{}", std::string(2*ctx.depth, ' '), fmt::styled("×", fmt::fg(fmt::color::red))); + return false; + } + newCtx.query = altCtx.query; + newMatches.insert(altMatches.begin(), altMatches.end()); + } + + if (!found) { + Log::debug("{}{}", std::string(2*ctx.depth, ' '), fmt::styled("×", fmt::fg(fmt::color::red))); + return false; + } + + --newCtx.depth; + ctx = newCtx; + matches = newMatches; + return true; +} + +bool Aidge::SinglePassGraphMatching::matchEdge(Context& ctx, std::set<MatchingResult>& /*matches*/) { + auto newCtx = ctx; + Log::debug("{}edge", std::string(2*newCtx.depth, ' ')); + + // ('-' | '~') or '<' + removeWhiteSpace(newCtx.query); + if (!newCtx.query.empty() && (newCtx.query[0] == '-' || newCtx.query[0] == '~')) { + newCtx.singleOutput = (newCtx.query[0] == '-'); + newCtx.query.erase(0, 1); // drop '-' + newCtx.lookForChild = true; + } + else if (!newCtx.query.empty() && newCtx.query[0] == '<') { + newCtx.query.erase(0, 1); // drop '<' + newCtx.lookForChild = false; + } + else { + Log::debug("{}{}", std::string(2*ctx.depth, ' '), fmt::styled("×", fmt::fg(fmt::color::red))); + return false; + } + + // optional first IO_INDEX + int firstIdx = 0; + bool foundFirst = false; + const auto endOutputIdx = std::find_if(newCtx.query.begin(), newCtx.query.end(), + [](char c) { return !isdigit(c); }); + if (endOutputIdx != newCtx.query.begin()) { + firstIdx = std::stoi(newCtx.query.substr(0, endOutputIdx - newCtx.query.begin())); + newCtx.query = newCtx.query.substr(endOutputIdx - newCtx.query.begin()); + foundFirst = true; + } + else if (newCtx.query[0] == '*') { + newCtx.query.erase(0, 1); // drop '*' + firstIdx = -1; + foundFirst = true; + } + + // optional second IO_INDEX, preceded by '-' + int secondIdx = 0; + bool foundSecond = false; + if (foundFirst && !newCtx.query.empty() && newCtx.query[0] == '-') { + auto query = newCtx.query; + query.erase(0, 1); // drop '-' + + const auto endInputIdx = std::find_if(query.begin(), query.end(), + [](char c) { return !isdigit(c); }); + if (endInputIdx != query.begin()) { + secondIdx = std::stoi(query.substr(0, endInputIdx - query.begin())); + query = query.substr(endInputIdx - query.begin()); + foundSecond = true; + } + else if (query[0] == '*') { + query.erase(0, 1); // drop '*' + secondIdx = -1; + foundSecond = true; + } + + if (foundSecond) { + newCtx.query = query; + } + } + + // '>' or ('-' | '~') + if (newCtx.lookForChild && !newCtx.query.empty() && newCtx.query[0] == '>') { + newCtx.query.erase(0, 1); // drop '>' + } + else if (!newCtx.lookForChild && !newCtx.query.empty() && (newCtx.query[0] == '-' || newCtx.query[0] == '~')) { + newCtx.singleOutput = (newCtx.query[0] == '-'); + newCtx.query.erase(0, 1); + } + else { + Log::debug("{}{}", std::string(2*ctx.depth, ' '), fmt::styled("×", fmt::fg(fmt::color::red))); + return false; + } + + // Parsing is done, update the remaining context + newCtx.edgeLeftIdx = 0; + newCtx.edgeRightIdx = 0; + if (foundFirst && foundSecond) { + newCtx.edgeLeftIdx = firstIdx; + newCtx.edgeRightIdx = secondIdx; + } + else if (foundFirst) { + if (newCtx.lookForChild) { + newCtx.edgeRightIdx = firstIdx; + } + else { + newCtx.edgeLeftIdx = firstIdx; + } + } + + if (newCtx.lookForChild) { + Log::debug("{}-{}-{}>", std::string(2*newCtx.depth + 2, ' '), + newCtx.edgeLeftIdx, newCtx.edgeRightIdx); + } + else { + Log::debug("{}<{}-{}-", std::string(2*newCtx.depth + 2, ' '), + newCtx.edgeLeftIdx, newCtx.edgeRightIdx); + } + + ctx = newCtx; + return true; +} + +bool Aidge::SinglePassGraphMatching::matchNode(Context& ctx, std::set<MatchingResult>& matches) { + auto newCtx = ctx; + Log::debug("{}node", std::string(2*newCtx.depth, ' ')); + auto newMatches = matches; + + // (TYPE | '.') + removeWhiteSpace(newCtx.query); + if (newCtx.query.empty()) { + Log::debug("{}{}", std::string(2*ctx.depth, ' '), fmt::styled("×", fmt::fg(fmt::color::red))); + return false; + } + + std::string type; + if (newCtx.query[0] == '.') { + // '.' + newCtx.query.erase(0, 1); // drop '.' + } + else { + // TYPE + const auto endIdentifier = std::find_if(newCtx.query.begin(), newCtx.query.end(), + [](char c) { return (!isalnum(c) && c != '_'); }); + + if (endIdentifier == newCtx.query.begin()) { + Log::debug("{}{}", std::string(2*ctx.depth, ' '), fmt::styled("×", fmt::fg(fmt::color::red))); + return false; + } + + type = newCtx.query.substr(0, endIdentifier - newCtx.query.begin()); + newCtx.query = newCtx.query.substr(endIdentifier - newCtx.query.begin()); + } + + // ('#' ANCHOR)? + std::string anchor = ""; + if (!newCtx.query.empty() && newCtx.query[0] == '#') { + // '#' + newCtx.query.erase(0, 1); // drop '#' + + // ANCHOR + const auto endAnchor = std::find_if(newCtx.query.begin(), newCtx.query.end(), + [](char c) { return (!isalnum(c) && c != '_'); }); + anchor = "#" + newCtx.query.substr(0, endAnchor - newCtx.query.begin()); + newCtx.query = newCtx.query.substr(endAnchor - newCtx.query.begin()); + } + + // ('[' LAMBDA ']')? + std::string lambda = ""; + if (!newCtx.query.empty() && newCtx.query[0] == '[') { + // '[' + newCtx.query.erase(0, 1); + + // LAMBDA + const auto endIdentifier = std::find_if(newCtx.query.begin(), newCtx.query.end(), + [](char c) { return (!isalnum(c) && c != '_'); }); + + if (endIdentifier == newCtx.query.begin()) { + Log::debug("{}{}", std::string(2*ctx.depth, ' '), fmt::styled("×", fmt::fg(fmt::color::red))); + return false; + } + + lambda = newCtx.query.substr(0, endIdentifier - newCtx.query.begin()); + newCtx.query = newCtx.query.substr(endIdentifier - newCtx.query.begin()); + + // ']' + if (!newCtx.query.empty() && newCtx.query[0] == ']') { + newCtx.query.erase(0, 1); + } + else { + Log::debug("{}{}", std::string(2*ctx.depth, ' '), fmt::styled("×", fmt::fg(fmt::color::red))); + return false; + } + } + + // Parsing is done, try to match the node + if (newCtx.firstSequence && newCtx.firstNode) { + // First node of first sequence = root node + for (auto node : mGraph->getNodes()) { + if ((type.empty() || node->type() == type) + && (lambda.empty() || mLambda.at(lambda)(node))) + { + MatchingResult result; + result.graph->add(node, false); + if (!anchor.empty()) { + result.anchors[type][anchor] = node; + } + result.startNode = node; + newMatches.insert(result); + } + } + newCtx.firstSequence = false; + + Log::debug("{}root node {}{}, found: {}", std::string(2*newCtx.depth + 2, ' '), fmt::styled(type.empty() ? "." : type, fmt::fg(fmt::color::yellow)), anchor, newMatches.size()); + } + else if (newCtx.firstNode) { + // First node of a (new) sequence: it has to be an existing anchor + AIDGE_ASSERT(!anchor.empty(), + "Ill-formed query; an anchor is expected in query at: {}", ctx.query); + AIDGE_ASSERT(newCtx.anchors.find(type + anchor) != newCtx.anchors.end(), + "Ill-formed query; the node anchor {} has to be an existing anchor in query at: {}", type + anchor, ctx.query); + + for (auto it = newMatches.begin(); it != newMatches.end(); ) { + const auto anchors = it->anchors[type]; + const auto anchorNode = anchors.find(anchor); + if (anchorNode != anchors.end()) { + it->startNode = anchorNode->second; + ++it; + } + else { + it = newMatches.erase(it); + } + } + + Log::debug("{}anchor node {}{}, found: {}", std::string(2*newCtx.depth + 2, ' '), fmt::styled(type.empty() ? "." : type, fmt::fg(fmt::color::yellow)), anchor, newMatches.size()); + } + else { + for (auto it = newMatches.begin(); it != newMatches.end(); ) { + bool found = false; + + if (newCtx.lookForChild) { + const auto outputs = (newCtx.edgeLeftIdx != gk_IODefaultIndex) + ? std::vector<std::vector<std::pair<NodePtr, IOIndex_t>>>(1, std::vector<std::pair<NodePtr, IOIndex_t>>(it->startNode->output(newCtx.edgeLeftIdx))) + : it->startNode->outputs(); + + for (const auto& output : outputs) { + if (newCtx.singleOutput && output.size() > 1) { + continue; + } + + for (const auto& node : output) { + if ((type.empty() || node.first->type() == type) + && (lambda.empty() || mLambda.at(lambda)(node.first)) + && (newCtx.edgeRightIdx == gk_IODefaultIndex || node.second == newCtx.edgeRightIdx)) + { + if (mGraph->inView(node.first) && !it->graph->inView(node.first)) { + it->graph->add(node.first, false); + if (!anchor.empty()) { + it->anchors[type][anchor] = node.first; + } + it->startNode = node.first; + found = true; + break; + } + else if (!anchor.empty() && it->anchors[type].find(anchor) != it->anchors[type].end()) { + it->startNode = node.first; + found = true; + break; + } + } + } + + if (found) { + break; + } + } + } + else { + const auto inputs = (newCtx.edgeLeftIdx != gk_IODefaultIndex) + ? std::vector<std::pair<NodePtr, IOIndex_t>>(1, it->startNode->input(newCtx.edgeLeftIdx)) + : it->startNode->inputs(); + + for (const auto& input : inputs) { + if ((type.empty() || input.first->type() == type) + && (lambda.empty() || mLambda.at(lambda)(input.first)) + && (newCtx.edgeRightIdx == gk_IODefaultIndex || input.second == newCtx.edgeRightIdx)) + { + if (newCtx.singleOutput && input.first->getChildren(input.second).size() > 1) { + continue; + } + + if (mGraph->inView(input.first) && !it->graph->inView(input.first)) { + it->graph->add(input.first, false); + if (!anchor.empty()) { + it->anchors[type][anchor] = input.first; + } + it->startNode = input.first; + found = true; + break; + } + else if (!anchor.empty() && it->anchors[type].find(anchor) != it->anchors[type].end()) { + it->startNode = input.first; + found = true; + break; + } + } + } + } + + if (found) { + ++it; + } + else { + it = newMatches.erase(it); + } + } + + Log::debug("{}node {}{}, found: {}", std::string(2*newCtx.depth + 2, ' '), fmt::styled(type.empty() ? "." : type, fmt::fg(fmt::color::yellow)), anchor, newMatches.size()); + } + + newCtx.anchors.insert(type + anchor); + ctx = newCtx; + matches = newMatches; + return true; +} diff --git a/src/graph/Node.cpp b/src/graph/Node.cpp index b08bb4c2056e8c14f5b1dd3aae62fbacf8d8c14e..50b8be13c6faac62a8b2aecf1e767e0b83024d3c 100644 --- a/src/graph/Node.cpp +++ b/src/graph/Node.cpp @@ -38,18 +38,24 @@ Aidge::Node::Node(std::shared_ptr<Operator> op, const std::string& name) /////////////////////////////////////////////////////// Aidge::Connector Aidge::Node::operator()(const std::vector<Connector>& ctors) { - assert((ctors.size() == nbData()) && "Wrong number of arguments.\n"); - for (std::pair<std::shared_ptr<Node>, IOIndex_t>& input : inputs()) { - assert((gk_IODefaultIndex == input.second) && - "At least one input connection is not free.\n"); - (void)input; // avoid unused warning - } - IOIndex_t i = 0; - for (const Connector& ctor : ctors) { + IOIndex_t idx = 0; + for (const auto& ctor : ctors) { + // Skip to next possible input idx + for (; idx < nbInputs() && (inputCategory(idx) != InputCategory::Data && inputCategory(idx) != InputCategory::OptionalData); ++idx) {} + + AIDGE_ASSERT(idx < nbInputs(), "Too many input connectors ({}) vs available node inputs.", ctors.size()); + AIDGE_ASSERT(input(idx).second == gk_IODefaultIndex, "Data input#{} connection is not free.", idx); + if (ctor.node() != nullptr) { // ctor must be associated with a node - ctor.node()->addChild(shared_from_this(), ctor.index(), i++); + ctor.node()->addChild(shared_from_this(), ctor.index(), idx); } + ++idx; } + + // Skip to next possible input idx + for (; idx < nbInputs() && (inputCategory(idx) != InputCategory::Data && inputCategory(idx) != InputCategory::OptionalData); ++idx) {} + AIDGE_ASSERT(idx == nbInputs(), "Missing an input connector for Data input#{}", idx); + return Connector(shared_from_this()); } @@ -62,6 +68,15 @@ void Aidge::Node::setName(const std::string& name) { mName = name; } +std::string Aidge::Node::createUniqueName(std::string name){ + for (auto graphView : views()){ + if (graphView->inView(name)){ + return createUniqueName(name.append("_")); + } + } + return name; +} + /////////////////////////////////////////////////////// // OPERATORS /////////////////////////////////////////////////////// @@ -101,10 +116,11 @@ Aidge::IOIndex_t Aidge::Node::getNbFreeDataInputs() const { std::vector<std::pair<std::shared_ptr<Aidge::Node>, Aidge::IOIndex_t>> Aidge::Node::dataInputs() const { - std::vector<std::pair<std::shared_ptr<Node>, IOIndex_t>> res = - std::vector<std::pair<std::shared_ptr<Node>, IOIndex_t>>(nbData()); - for (std::size_t i = 0; i < static_cast<std::size_t>(nbData()); ++i) { - res[i] = std::pair<std::shared_ptr<Node>, IOIndex_t>(mParents[i], mIdOutParents[i]); + std::vector<std::pair<std::shared_ptr<Node>, IOIndex_t>> res; + for (std::size_t i = 0; i < static_cast<std::size_t>(nbInputs()); ++i) { + if (inputCategory(i) == InputCategory::Data || inputCategory(i) == InputCategory::OptionalData) { + res.push_back(std::pair<std::shared_ptr<Node>, IOIndex_t>(mParents[i], mIdOutParents[i])); + } } return res; } @@ -320,18 +336,19 @@ bool Aidge::Node::removeChild(const std::shared_ptr<Aidge::Node> nodePtr, void Aidge::Node::resetConnections(bool includeLearnableParam) { // remove every parents reference to it - IOIndex_t nbRemovedInputs = includeLearnableParam ? nbInputs() : nbData(); - for (IOIndex_t i = 0; i < nbRemovedInputs; ++i) { - std::pair<std::shared_ptr<Node>, IOIndex_t> parent = input(i); - if (parent.first) { - // number of children linked to the parent's output - while (parent.first->removeChild(shared_from_this(), parent.second) == true) { + for (IOIndex_t i = 0; i < nbInputs(); ++i) { + if (includeLearnableParam || inputCategory(i) == InputCategory::Data || inputCategory(i) == InputCategory::OptionalData) { + std::pair<std::shared_ptr<Node>, IOIndex_t> parent = input(i); + if (parent.first) { + // number of children linked to the parent's output + while (parent.first->removeChild(shared_from_this(), parent.second) == true) { + } } + // every reference to this object as child has been removed + // removing reference to parents. + mParents[i] = nullptr; + mIdOutParents[i] = gk_IODefaultIndex; } - // every reference to this object as child has been removed - // removing reference to parents. - mParents[i] = nullptr; - mIdOutParents[i] = gk_IODefaultIndex; } for (IOIndex_t i = 0; i < nbOutputs(); ++i) { for (std::pair<std::shared_ptr<Node>, IOIndex_t> child : output(i)) { diff --git a/src/graph/OpArgs.cpp b/src/graph/OpArgs.cpp index 124878fc45fe632d4a584e76a0eae6e7acfd53b9..e1a378c3db0d79d7816e9882f790540cdc26cd88 100644 --- a/src/graph/OpArgs.cpp +++ b/src/graph/OpArgs.cpp @@ -18,23 +18,37 @@ std::shared_ptr<Aidge::GraphView> Aidge::Sequential(std::vector<OpArgs> inputs) std::shared_ptr<GraphView> gv = std::make_shared<GraphView>(); for (const OpArgs& elt : inputs) { if(elt.node() != nullptr) { - // >= to allow incomplete graphViews - assert(static_cast<std::size_t>(elt.node()->getNbFreeDataInputs()) >= gv->outputNodes().size()); - /* - * /!\ mn.view()->outputNodes() is a set, order of Nodes cannot be guaranted. - * Prefer a functional description for detailed inputs - */ - for (const std::shared_ptr<Node>& node_ptr : gv->outputNodes()) { - node_ptr -> addChild(elt.node()); // already checks that node_ptr->nbOutput() == 1 + // Connect the first output (ordered) of each output node (ordered) + // to the next available input of the input node. + AIDGE_ASSERT(static_cast<std::size_t>(elt.node()->getNbFreeDataInputs()) >= gv->outputNodes().size(), + "Sequential(): not enough free data inputs ({}) for input node {} (of type {}) to connect to all previous output nodes ({})", + elt.node()->getNbFreeDataInputs(), elt.node()->name(), elt.node()->type(), gv->outputNodes().size()); + std::set<NodePtr> connectedOutputs; + for (const auto& node_out : gv->getOrderedOutputs()) { + if (connectedOutputs.find(node_out.first) == connectedOutputs.end()) { + node_out.first -> addChild(elt.node(), node_out.second); // already checks that node_out->nbOutput() == 1 + connectedOutputs.insert(node_out.first); + } } gv->add(elt.node()); } else { - for (std::shared_ptr<Node> node_in : elt.view()->inputNodes()) { - // >= to allow incomplete graphViews - assert(static_cast<std::size_t>(node_in->getNbFreeDataInputs()) >= gv->outputNodes().size()); - for (std::shared_ptr<Node> node_out : gv->outputNodes()) { - node_out -> addChild(node_in); // assert one output Tensor per output Node + // For each input node, connect the first output (ordered) of each + // output node (ordered) to the next available input + std::set<NodePtr> connectedInputs; + for (const auto& node_in : elt.view()->getOrderedInputs()) { + if (connectedInputs.find(node_in.first) == connectedInputs.end()) { + AIDGE_ASSERT(static_cast<std::size_t>(node_in.first->getNbFreeDataInputs()) >= gv->outputNodes().size(), + "Sequential(): not enough free data inputs ({}) for input node {} (of type {}) to connect to all previous output nodes ({})", + node_in.first->getNbFreeDataInputs(), node_in.first->name(), node_in.first->type(), gv->outputNodes().size()); + std::set<NodePtr> connectedOutputs; + for (const auto& node_out : gv->getOrderedOutputs()) { + if (connectedOutputs.find(node_out.first) == connectedOutputs.end()) { + node_out.first -> addChild(node_in.first, node_out.second); // assert one output Tensor per output Node + connectedOutputs.insert(node_out.first); + } + } + connectedInputs.insert(node_in.first); } } gv->add(elt.view()); @@ -58,16 +72,18 @@ std::shared_ptr<Aidge::GraphView> Aidge::Parallel(std::vector<OpArgs> inputs) { std::shared_ptr<Aidge::GraphView> Aidge::Residual(std::vector<OpArgs> inputs) { std::shared_ptr<GraphView> gv = Sequential(inputs); - assert(gv->outputNodes().size() == 1U && "Zero or more than one output Node for the GraphView, don't know which one to choose from for the residual connection"); + AIDGE_ASSERT(gv->outputNodes().size() == 1U, + "Residual(): Zero or more than one output Node for the GraphView, don't know which one to choose from for the residual connection"); std::shared_ptr<Node> lastNode = *gv->outputNodes().begin(); - assert(gv->inputNodes().size() == 2U && "Zero or more than one input Node for the GraphView, don't know which one to choose from for the residual connection"); + AIDGE_ASSERT(gv->inputNodes().size() == 2U, + "Residual(): Zero or more than one input Node for the GraphView, don't know which one to choose from for the residual connection"); std::shared_ptr<Node> firstNode = nullptr; for (const std::shared_ptr<Node>& node_ptr : gv->inputNodes()) { if (node_ptr != lastNode) { firstNode = node_ptr; } } - assert(lastNode->getNbFreeDataInputs()>=1); + AIDGE_ASSERT(lastNode->getNbFreeDataInputs()>=1, "Residual(): missing a free data input for the output Node in order to connect the residual branch"); gv->addChild(lastNode, firstNode, 0U, gk_IODefaultIndex); return gv; } diff --git a/src/graph/Testing.cpp b/src/graph/Testing.cpp index f30ad6e25b81e1ce7768fcc201ddf00c2226eebf..774ee8912da2ddaa19583debdac063a95b5aa461 100644 --- a/src/graph/Testing.cpp +++ b/src/graph/Testing.cpp @@ -45,7 +45,7 @@ std::pair<Aidge::NodePtr, std::set<Aidge::NodePtr>> Aidge::RandomGraph::gen(std: std::vector<NodePtr> nodes(nbNodes, nullptr); for (auto idx : nodesSeq) { const std::string name = nodesType[idx] + std::to_string(idx); - nodes[idx] = GenericOperator(nodesType[idx], nbIOs[idx].first, 0, nbIOs[idx].second, name); + nodes[idx] = GenericOperator(nodesType[idx], std::vector<InputCategory>(nbIOs[idx].first, InputCategory::Data), nbIOs[idx].second, name); } for (std::size_t i = 0; i < nbNodes; ++i) { diff --git a/src/operator/Add.cpp b/src/operator/Add.cpp index 9b77ffcbe0117292ed0aa520309febf709e8dd68..57ece07152613b831675cdecd6526d4ab26af5cb 100644 --- a/src/operator/Add.cpp +++ b/src/operator/Add.cpp @@ -33,15 +33,7 @@ Aidge::Add_Op::Add_Op(const Add_Op& op) } bool Aidge::Add_Op::forwardDims(bool /*allowDataDependency*/) { - // check inputs have been associated - bool associated = (nbInputs() > 0); // do not compute anything if no input - for (IOIndex_t i = 0; i < nbInputs(); ++i) { - if (!getInput(i)) { - AIDGE_THROW_OR_ABORT(std::runtime_error, "Every input should be associated with a Tensor"); - } - associated &= !(getInput(i)->empty()); - } - if (associated) { + if (inputsAssociated()) { std::vector<std::vector<std::size_t>> inputsDims(nbInputs()); for (std::size_t i = 0; i < nbInputs(); i++) { inputsDims[i] = getInput(i)->dims(); @@ -70,9 +62,10 @@ bool Aidge::Add_Op::forwardDims(bool /*allowDataDependency*/) { } } mOutputs[0]->resize(outDims); + return true; } - return associated; + return false; } void Aidge::Add_Op::setBackend(const std::string& name, DeviceIdx_t device) { diff --git a/src/operator/AvgPooling.cpp b/src/operator/AvgPooling.cpp index 07123bc88aa1da22bfa98166d6a01af8d66be98d..53ffb93269e79c0ba940f1fb0d3d94cb494ad8ce 100644 --- a/src/operator/AvgPooling.cpp +++ b/src/operator/AvgPooling.cpp @@ -27,7 +27,10 @@ template <Aidge::DimIdx_t DIM> const std::string Aidge::AvgPooling_Op<DIM>::Type = "AvgPooling"; template <Aidge::DimIdx_t DIM> -Aidge::AvgPooling_Op<DIM>::AvgPooling_Op(const AvgPooling_Op<DIM>& op): OperatorTensor(op), Attributes_(op) { +Aidge::AvgPooling_Op<DIM>::AvgPooling_Op(const AvgPooling_Op<DIM>& op) + : OperatorTensor(op), + mAttributes(op.mAttributes) +{ if (op.mImpl) { SET_IMPL_MACRO(AvgPooling_Op<DIM>, *this, op.backend()); } else { @@ -37,21 +40,17 @@ Aidge::AvgPooling_Op<DIM>::AvgPooling_Op(const AvgPooling_Op<DIM>& op): Operator template <Aidge::DimIdx_t DIM> bool Aidge::AvgPooling_Op<DIM>::forwardDims(bool /*allowDataDependency*/) { - // check inputs have been associated - if (!getInput(0)) { - AIDGE_THROW_OR_ABORT(std::runtime_error, "{}: input #0 should be associated with a Tensor", type()); - } - if (!(getInput(0)->empty())) { + if (inputsAssociated()) { std::array<DimSize_t, DIM + 2> outputDims; const std::array<DimSize_t, DIM + 2> inputDims(getInput(0)->template dims<DIM+2>()); outputDims[0] = inputDims[0]; outputDims[1] = inputDims[1]; - for (std::size_t dim = 0; dim < this->template getAttr<AvgPoolingAttr::KernelDims>().size() ; ++dim) { + for (std::size_t dim = 0; dim < mAttributes->template getAttr<AvgPoolingAttr::KernelDims>().size() ; ++dim) { outputDims[dim+2] = 1 + static_cast<DimSize_t>( std::floor(static_cast<float>(inputDims[dim+2] - - this->template getAttr<AvgPoolingAttr::KernelDims>()[dim]) / - static_cast<float>(this->template getAttr<AvgPoolingAttr::StrideDims>()[dim]))); + mAttributes->template getAttr<AvgPoolingAttr::KernelDims>()[dim]) / + static_cast<float>(mAttributes->template getAttr<AvgPoolingAttr::StrideDims>()[dim]))); } getOutput(0)->resize(outputDims); return true; @@ -89,10 +88,10 @@ Aidge::AvgPooling_Op<DIM>::computeReceptiveField(const std::vector<Aidge::DimSiz for (DimIdx_t i = 0; i < DIM; ++i) { inputDims.push_back((outputDims[2+static_cast<std::size_t>(i)] - 1) - * this->template getAttr<AvgPoolingAttr::StrideDims>()[static_cast<std::size_t>(i)] + * mAttributes->template getAttr<AvgPoolingAttr::StrideDims>()[static_cast<std::size_t>(i)] + 1 - + (this->template getAttr<AvgPoolingAttr::KernelDims>()[static_cast<std::size_t>(i)] - 1)); - inputIdxDims[2+i] *= this->template getAttr<AvgPoolingAttr::StrideDims>()[static_cast<std::size_t>(i)]; + + (mAttributes->template getAttr<AvgPoolingAttr::KernelDims>()[static_cast<std::size_t>(i)] - 1)); + inputIdxDims[2+i] *= mAttributes->template getAttr<AvgPoolingAttr::StrideDims>()[static_cast<std::size_t>(i)]; } std::vector<std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>> res; res.push_back(std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>(inputIdxDims, inputDims)); diff --git a/src/operator/BatchNorm.cpp b/src/operator/BatchNorm.cpp index 14bf65763c024ffe28d30654a49c9630737a12fd..98e5c2da20fc35e18d4fd69a79cf1d87ec9d60ca 100644 --- a/src/operator/BatchNorm.cpp +++ b/src/operator/BatchNorm.cpp @@ -27,7 +27,10 @@ template <Aidge::DimIdx_t DIM> const std::string Aidge::BatchNorm_Op<DIM>::Type = "BatchNorm"; template <Aidge::DimIdx_t DIM> -Aidge::BatchNorm_Op<DIM>::BatchNorm_Op(const BatchNorm_Op<DIM>& op): OperatorTensor(op), Attributes_(op) { +Aidge::BatchNorm_Op<DIM>::BatchNorm_Op(const BatchNorm_Op<DIM>& op) + : OperatorTensor(op), + mAttributes(op.mAttributes) +{ if (op.mImpl) { SET_IMPL_MACRO(BatchNorm_Op<DIM>, *this, op.backend()); } else { @@ -37,23 +40,19 @@ Aidge::BatchNorm_Op<DIM>::BatchNorm_Op(const BatchNorm_Op<DIM>& op): OperatorTen template <Aidge::DimIdx_t DIM> bool Aidge::BatchNorm_Op<DIM>::forwardDims(bool /*allowDataDependency*/) { - // check inputs have been associated - bool associated = true; - for (IOIndex_t i = 0; i < nbInputs(); ++i) { - associated &= !(getInput(i)->empty()); - } - if (associated) { + if (inputsAssociated()) { const DimSize_t nbFeatures = getInput(0)->dims()[1]; - for (std::size_t i = nbData(); i < nbInputs(); ++i) { - if(getInput(i)->size() != nbFeatures) { + for (std::size_t i = 0; i < nbInputs(); ++i) { + if(inputCategory(i) == InputCategory::Param && getInput(i)->size() != nbFeatures) { // /!\ Input size should be handled BEFORE calling this function // This should raise an error getInput(i)->resize({getInput(0)->dims()[1]}); } } mOutputs[0]->resize(getInput(0)->dims()); + return true; } - return associated; + return false; } template <Aidge::DimIdx_t DIM> @@ -62,10 +61,33 @@ void Aidge::BatchNorm_Op<DIM>::setBackend(const std::string &name, Aidge::Device mOutputs[0]->setBackend(name, device); // By default, automatically set backend for scale, shift, mean and variance - getInput(1)->setBackend(name, device); - getInput(2)->setBackend(name, device); - getInput(3)->setBackend(name, device); - getInput(4)->setBackend(name, device); + if (getInput(1)) { + getInput(1)->setBackend(name, device); + } + else { + Log::notice("BatchNorm_Op::setBackend(): could not set backend for scale input, because input is not connected"); + } + + if (getInput(2)) { + getInput(2)->setBackend(name, device); + } + else { + Log::notice("BatchNorm_Op::setBackend(): could not set backend for shift input, because input is not connected"); + } + + if (getInput(3)) { + getInput(3)->setBackend(name, device); + } + else { + Log::notice("BatchNorm_Op::setBackend(): could not set backend for variance input, because input is not connected"); + } + + if (getInput(4)) { + getInput(4)->setBackend(name, device); + } + else { + Log::notice("BatchNorm_Op::setBackend(): could not set backend for mean input, because input is not connected"); + } } template class Aidge::BatchNorm_Op<2>; diff --git a/src/operator/Cast.cpp b/src/operator/Cast.cpp index f1c8e25e17c80d58d444a1ddddbaa428b2fc4c41..8df153a67d2214e4435d9fa0aac6e74d53e11b12 100644 --- a/src/operator/Cast.cpp +++ b/src/operator/Cast.cpp @@ -27,6 +27,16 @@ void Aidge::Cast_OpImpl::forward() { const std::string Aidge::Cast_Op::Type = "Cast"; +Aidge::Cast_Op::Cast_Op(const DataType targetType) + : OperatorTensor(Type, {InputCategory::Data}, 1), + mAttributes(std::make_shared<Attributes_>( + attr<CastAttr::TargetType>(targetType))) +{ + mImpl = std::make_shared<Cast_OpImpl>(*this); + mOutputs[0]->setDataType(targetType); +} + + void Aidge::Cast_Op::setBackend(const std::string& name, Aidge::DeviceIdx_t device) { if (Registrar<Cast_Op>::exists({name})) { SET_IMPL_MACRO(Cast_Op, *this, name); diff --git a/src/operator/Concat.cpp b/src/operator/Concat.cpp index ee06ce69b135e11fe3ed5be8fa9f501debb6acd5..bf4bbb85be606fc857bf8d771b9ce211ca8e858e 100644 --- a/src/operator/Concat.cpp +++ b/src/operator/Concat.cpp @@ -20,7 +20,7 @@ void Aidge::Concat_OpImpl::forward() { const Concat_Op& op = dynamic_cast<const Concat_Op&>(mOp); - const DimSize_t axis = op.template getAttr<DimSize_t>("Axis"); + const DimSize_t axis = op.axis(); assert(op.getInput(0) && "missing input in Concat operator"); DataType datatypeFirstInput = op.getInput(0)->dataType(); @@ -60,36 +60,47 @@ void Aidge::Concat_OpImpl::forward() { const std::string Aidge::Concat_Op::Type = "Concat"; bool Aidge::Concat_Op::forwardDims(bool /*allowDataDependency*/) { - // Every input is non-empty with the same number of dimensions - bool associated = (getInput(0) != nullptr); - associated &= !(getInput(0)->empty()) && (getAttr<ConcatAttr::Axis>() < getInput(0)->nbDims()); // do not compute anything if no input - auto outputDims = getInput(0)->dims(); - const auto firstInputNbDims = getInput(0) -> nbDims(); + if (!inputsAssociated()) { + return false; + } + const std::size_t nbDimsInput0 = getInput(0)->nbDims(); + if (nbDimsInput0 == 0) { + return false; + } + AIDGE_ASSERT(nbDimsInput0 > 0, "First input in {} Operator is empty", type()); for (IOIndex_t i = 1; i < nbInputs(); ++i) { - if (!getInput(i)) { - AIDGE_THROW_OR_ABORT(std::runtime_error, "{}: input #{} should be associated with a Tensor", type(), i); + if (getInput(i)->nbDims() == 0) { + return false; } + AIDGE_ASSERT(nbDimsInput0 == getInput(i)->nbDims(), + "Input 0 and input {} in {} Operator have different number of dimensions: {} / {}", + i, type(), nbDimsInput0, getInput(i)->nbDims()); + } + // Check validity of attributes with inputs + // Axis + std::int32_t axis = mAttributes->template getAttr<ConcatAttr::Axis>(); + axis = (axis < 0) ? axis + static_cast<std::int32_t>(nbDimsInput0) : axis; + AIDGE_ASSERT(((axis >= 0) && (axis < static_cast<std::int32_t>(nbDimsInput0))), + "'Axis' attribute not compatible with provided inputs.") + const std::size_t axis_u64 = static_cast<std::size_t>(axis); - if (getInput(i)->nbDims() == firstInputNbDims) { - for (DimSize_t dim = 0; dim < firstInputNbDims; ++dim) { - if (dim == getAttr<ConcatAttr::Axis>()) { - outputDims[dim] += getInput(i)->dims()[dim]; - } - else { - associated &= (getInput(i)->dims()[dim] == outputDims[dim]); - } + // Check validity of inputs + auto outputDims = getInput(0)->dims(); + for (IOIndex_t i = 1; i < nbInputs(); ++i) { + for (DimSize_t dim = 0; dim < nbDimsInput0; ++dim) { + if (dim == axis_u64) { + outputDims[axis_u64] += getInput(i)->dims()[axis_u64]; + } + else { + AIDGE_ASSERT(getInput(i)->dims()[dim] == outputDims[dim], + "Incomatible dimensions between input 0 {} and input {} {}", + getInput(0)->dims(), i, getInput(i)->dims()); } } - else { - associated = false; - break; - } - } - if (associated) { - getOutput(0)->resize(outputDims); } - return associated; + getOutput(0)->resize(outputDims); + return true; } void Aidge::Concat_Op::setBackend(const std::string& name, DeviceIdx_t device) { diff --git a/src/operator/Conv.cpp b/src/operator/Conv.cpp new file mode 100644 index 0000000000000000000000000000000000000000..a33af78779971e77da4f4e910b89b9263a1af5d6 --- /dev/null +++ b/src/operator/Conv.cpp @@ -0,0 +1,161 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include "aidge/operator/Conv.hpp" + +#include <cmath> // std::floor +#include <cstddef> // std::size_t +#include <stdexcept> // std::runtime_error +#include <string> +#include <utility> // std::pair +#include <vector> + +#include "aidge/data/Tensor.hpp" +#include "aidge/utils/ErrorHandling.hpp" +#include "aidge/utils/Registrar.hpp" +#include "aidge/utils/Types.h" + +template <Aidge::DimIdx_t DIM> +const std::string Aidge::Conv_Op<DIM>::Type = "Conv"; + +template <Aidge::DimIdx_t DIM> +Aidge::Conv_Op<DIM>::Conv_Op(const Aidge::Conv_Op<DIM>& op) + : OperatorTensor(op), + mAttributes(op.mAttributes) +{ + if (op.mImpl) { + SET_IMPL_MACRO(Conv_Op<DIM>, *this, op.backend()); + } else { + mImpl = nullptr; + } +} + +template <Aidge::DimIdx_t DIM> +bool Aidge::Conv_Op<DIM>::forwardDims(bool /*allowDataDependency*/) { + if (inputsAssociated()) { + // first check weight since it defines inChannels and outChannels + AIDGE_ASSERT((getInput(1)->nbDims() == (DIM+2)), + "Wrong weight Tensor dimension: {} for Conv{}D operator.", getInput(1)->nbDims(), DIM); + // check data + AIDGE_ASSERT((getInput(0)->nbDims() == (DIM+2)) && + (getInput(0)->template dims<DIM+2>()[1] == inChannels()), + "Wrong input size for Conv operator."); + // check optional bias + if(getInput(2)) + AIDGE_ASSERT((getInput(2)->nbDims() == (1)) && + (getInput(2)->template dims<1>()[0] == outChannels()), + "Wrong bias size for Conv operator."); + std::array<DimSize_t, DIM + 2> outputDims{}; + const std::array<DimSize_t, DIM + 2> inputDims(getInput(0)->template dims<DIM+2>()); + + for (std::size_t dim = 0; dim < mAttributes->template getAttr<ConvAttr::KernelDims>().size() ; ++dim) { + const DimSize_t kernelExtent = mAttributes->template getAttr<ConvAttr::DilationDims>()[dim] * + (mAttributes->template getAttr<ConvAttr::KernelDims>()[dim] - 1) + + 1; + + outputDims[dim+2] = 1 + static_cast<DimSize_t>( + floor(static_cast<float>(inputDims[dim+2] - kernelExtent) / + static_cast<float>(mAttributes->template getAttr<ConvAttr::StrideDims>()[dim]))); + } + + outputDims[1] = outChannels(); + outputDims[0] = inputDims[0]; + mOutputs[0]->resize(outputDims); + return true; + } + + return false; +} + + +template <Aidge::DimIdx_t DIM> +std::vector<std::pair<std::vector<Aidge::DimSize_t>, std::vector<Aidge::DimSize_t>>> +Aidge::Conv_Op<DIM>::computeReceptiveField( + const std::vector<Aidge::DimSize_t>& firstEltDims, + const std::vector<Aidge::DimSize_t>& outputDims, + const Aidge::IOIndex_t outputIdx) const +{ + if (outputIdx != 0) { + AIDGE_THROW_OR_ABORT(std::runtime_error, "Conv_Op Operator has got only one output Tensor."); + } + if (firstEltDims.size() != outputDims.size()) { + AIDGE_THROW_OR_ABORT(std::runtime_error, "outputDims and firstEltDims should have the size of the output Tensor dimensions."); + } + if ((outputDims.size() == (DIM+2)) && dimsForwarded()) { + // Offset + auto inputIdxDims = firstEltDims; // batch idx is the same + inputIdxDims[1] = 0; // each channel is used so start with the first one + + for (DimIdx_t i = 0; i < (DIM+2); ++i) { + if (((outputDims[i] + firstEltDims[i]) > mOutputs[0]->template dims<DIM+2>()[i]) || (outputDims[i] == 0)) { + AIDGE_THROW_OR_ABORT(std::runtime_error, "Given outputDim out of range for dimension {} ({} + {})", static_cast<std::size_t>(i), firstEltDims[i], outputDims[i]); + } + } + + // padding is not a parameter of Conv_Op. It is handled in Pad_Op Operator + // Input + // same batch value, every input channel is used + std::vector<DimSize_t> inputDims{outputDims[0], getInput(0)->dims()[1]}; + for (DimIdx_t i = 0; i < DIM; ++i) { + inputDims.push_back((outputDims[2+static_cast<std::size_t>(i)] - 1) + * mAttributes->template getAttr<ConvAttr::StrideDims>()[static_cast<std::size_t>(i)] + + 1 + + (mAttributes->template getAttr<ConvAttr::KernelDims>()[static_cast<std::size_t>(i)] - 1) + * mAttributes->template getAttr<ConvAttr::DilationDims>()[static_cast<std::size_t>(i)]); + inputIdxDims[2+i] *= mAttributes->template getAttr<ConvAttr::StrideDims>()[static_cast<std::size_t>(i)]; + } + + // Weight + // same output value, every input channel is used + std::vector<DimSize_t> weightDims{outputDims[1], getInput(0)->dims()[1]}; + for (std::size_t i = 0; i < DIM; ++i) { + weightDims.push_back(mAttributes->template getAttr<ConvAttr::KernelDims>()[i]); + } + std::vector<DimSize_t> weightIdxDims = std::vector<DimSize_t>(DIM+2, 0); + weightIdxDims[0] = firstEltDims[1]; + + // Result + std::vector<std::pair<std::vector<DimSize_t>, std::vector<DimSize_t>>> res; + res.push_back(std::pair<std::vector<DimSize_t>, std::vector<DimSize_t>>(inputIdxDims, inputDims)); + res.push_back(std::pair<std::vector<DimSize_t>, std::vector<DimSize_t>>(weightIdxDims, weightDims)); + + // Bias + if (getInput(2)){ + const std::vector<DimSize_t> biasDims{outputDims[1]}; // the number of output channel + const std::vector<DimSize_t> biasIdxDims{firstEltDims[1]}; + res.push_back(std::pair<std::vector<DimSize_t>, std::vector<DimSize_t>>(biasIdxDims, biasDims)); + } + return res; + } + AIDGE_THROW_OR_ABORT(std::runtime_error, "Given outputDim out of range or output dim not forwarded yet."); +} + +template <Aidge::DimIdx_t DIM> +void Aidge::Conv_Op<DIM>::setBackend(const std::string &name, Aidge::DeviceIdx_t device) { + SET_IMPL_MACRO(Conv_Op<DIM>, *this, name); + mOutputs[0]->setBackend(name, device); + + // By default, automatically set backend for weight and bias inputs + if (getInput(1)) { + getInput(1)->setBackend(name, device); + } + else { + Log::notice("Conv_Op::setBackend(): could not set backend for weight input, because input is not connected"); + } + + if (getInput(2)) { + // Bias is optional + getInput(2)->setBackend(name, device); + } +} + +template class Aidge::Conv_Op<1>; +template class Aidge::Conv_Op<2>; \ No newline at end of file diff --git a/src/operator/ConvDepthWise.cpp b/src/operator/ConvDepthWise.cpp new file mode 100644 index 0000000000000000000000000000000000000000..342fd86195d5c2e85a63d990c4ebbb75e7f50a6b --- /dev/null +++ b/src/operator/ConvDepthWise.cpp @@ -0,0 +1,160 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include "aidge/operator/ConvDepthWise.hpp" + +#include <array> +#include <cmath> // std::floor +#include <cstddef> // std::size_t +#include <stdexcept> // std::runtime_error +#include <string> +#include <utility> // std::pair +#include <vector> + +#include "aidge/data/Tensor.hpp" +#include "aidge/utils/ErrorHandling.hpp" +#include "aidge/utils/Registrar.hpp" +#include "aidge/utils/Types.h" + +template <Aidge::DimIdx_t DIM> +const std::string Aidge::ConvDepthWise_Op<DIM>::Type = "ConvDepthWise"; + +template <Aidge::DimIdx_t DIM> +Aidge::ConvDepthWise_Op<DIM>::ConvDepthWise_Op(const Aidge::ConvDepthWise_Op<DIM>& op) + : OperatorTensor(op), + mAttributes(op.mAttributes) +{ + if (op.mImpl) { + SET_IMPL_MACRO(ConvDepthWise_Op<DIM>, *this, op.backend()); + } else { + mImpl = nullptr; + } +} + +template <Aidge::DimIdx_t DIM> +bool Aidge::ConvDepthWise_Op<DIM>::forwardDims(bool /*allowDataDependency*/) { + if (inputsAssociated()) { + // first check weight since it defines nbChannels + AIDGE_ASSERT((getInput(1)->nbDims() == (DIM+2)), + "Wrong weight Tensor dimension: {} for Conv{}D operator.", getInput(1)->nbDims(), DIM); + // check data + AIDGE_ASSERT((getInput(0)->nbDims() == (DIM+2)) && + (getInput(0)->template dims<DIM+2>()[1] == nbChannels()), + "Wrong input size for Conv operator."); + // check optional bias + if(getInput(2)) + AIDGE_ASSERT((getInput(2)->nbDims() == (1)) && + (getInput(2)->template dims<1>()[0] == nbChannels()), + "Wrong bias size for Conv operator."); + std::array<DimSize_t, DIM + 2> outputDims = {}; + const std::array<DimSize_t, DIM + 2> inputDims(getInput(0)->template dims<DIM+2>()); + + for (std::size_t dim = 0; dim < mAttributes->template getAttr<ConvDepthWiseAttr::KernelDims>().size() ; ++dim) { + const DimSize_t kernelExtent = mAttributes->template getAttr<ConvDepthWiseAttr::DilationDims>()[dim] * + (mAttributes->template getAttr<ConvDepthWiseAttr::KernelDims>()[dim] - 1) + + 1; + + outputDims[dim+2] = 1 + static_cast<DimSize_t>( + floor(static_cast<float>(inputDims[dim+2] - kernelExtent) / + static_cast<float>(mAttributes->template getAttr<ConvDepthWiseAttr::StrideDims>()[dim]))); + } + + outputDims[1] = inputDims[1]; + outputDims[0] = inputDims[0]; + mOutputs[0]->resize(outputDims); + return true; + } + + return false; +} + + +template <Aidge::DimIdx_t DIM> +std::vector<std::pair<std::vector<Aidge::DimSize_t>, std::vector<Aidge::DimSize_t>>> +Aidge::ConvDepthWise_Op<DIM>::computeReceptiveField( + const std::vector<Aidge::DimSize_t>& firstEltDims, + const std::vector<Aidge::DimSize_t>& outputDims, + const Aidge::IOIndex_t outputIdx) const +{ + if (outputIdx != 0) { + AIDGE_THROW_OR_ABORT(std::runtime_error, "Conv_Op Operator has got only one output Tensor."); + } + if (firstEltDims.size() != outputDims.size()) { + AIDGE_THROW_OR_ABORT(std::runtime_error, "outputDims and firstEltDims should have the size of the output Tensor dimensions."); + } + if ((outputDims.size() == (DIM+2)) && dimsForwarded()) { + // Offset + auto inputIdxDims = firstEltDims; // batch idx is the same + + for (DimIdx_t i = 0; i < (DIM+2); ++i) { + if (((outputDims[i] + firstEltDims[i]) > mOutputs[0]->template dims<DIM+2>()[i]) || (outputDims[i] == 0)) { + AIDGE_THROW_OR_ABORT(std::runtime_error, "Given outputDim out of range for dimension {} ({} + {})", static_cast<std::size_t>(i), firstEltDims[i], outputDims[i]); + } + } + + // padding is not a parameter of Conv_Op. It is handled in Pad_Op Operator + // Input + // same batch value + std::vector<DimSize_t> inputDims{outputDims[0], outputDims[1]}; + for (DimIdx_t i = 0; i < DIM; ++i) { + inputDims.push_back((outputDims[2+static_cast<std::size_t>(i)] - 1) + * mAttributes->template getAttr<ConvDepthWiseAttr::StrideDims>()[static_cast<std::size_t>(i)] + + 1 + + (mAttributes->template getAttr<ConvDepthWiseAttr::KernelDims>()[static_cast<std::size_t>(i)] - 1) + * mAttributes->template getAttr<ConvDepthWiseAttr::DilationDims>()[static_cast<std::size_t>(i)]); + inputIdxDims[2+i] *= mAttributes->template getAttr<ConvDepthWiseAttr::StrideDims>()[static_cast<std::size_t>(i)]; + } + + // Weight + std::vector<DimSize_t> weightDims{outputDims[1], 1}; + for (std::size_t i = 0; i < DIM; ++i) { + weightDims.push_back(mAttributes->template getAttr<ConvDepthWiseAttr::KernelDims>()[i]); + } + std::vector<DimSize_t> weightIdxDims = std::vector<DimSize_t>(DIM+2, 0); + weightIdxDims[0] = firstEltDims[1]; + + + // Result + std::vector<std::pair<std::vector<DimSize_t>, std::vector<DimSize_t>>> res; + res.push_back(std::pair<std::vector<DimSize_t>, std::vector<DimSize_t>>(inputIdxDims, inputDims)); + res.push_back(std::pair<std::vector<DimSize_t>, std::vector<DimSize_t>>(weightIdxDims, weightDims)); + // Bias + if (getInput(2)){ + const std::vector<DimSize_t> biasDims{outputDims[1]}; // the number of output channel + const std::vector<DimSize_t> biasIdxDims{firstEltDims[1]}; + res.push_back(std::pair<std::vector<DimSize_t>, std::vector<DimSize_t>>(biasIdxDims, biasDims)); + } + return res; + } + AIDGE_THROW_OR_ABORT(std::runtime_error, "Given outputDim out of range or output dim not forwarded yet."); +} + +template <Aidge::DimIdx_t DIM> +void Aidge::ConvDepthWise_Op<DIM>::setBackend(const std::string &name, Aidge::DeviceIdx_t device) { + SET_IMPL_MACRO(ConvDepthWise_Op<DIM>, *this, name); + mOutputs[0]->setBackend(name, device); + + // By default, automatically set backend for weight and bias inputs + if (getInput(1)) { + getInput(1)->setBackend(name, device); + } + else { + Log::notice("ConvDepthWise_Op::setBackend(): could not set backend for weight input, because input is not connected"); + } + + if (getInput(2)) { + // Bias is optional + getInput(2)->setBackend(name, device); + } +} + +template class Aidge::ConvDepthWise_Op<1>; +template class Aidge::ConvDepthWise_Op<2>; \ No newline at end of file diff --git a/src/operator/Div.cpp b/src/operator/Div.cpp index e6300d08c2c792c8a3eb66b307aca53f9d2acc73..387a9516077a937cca5c20ad091547b7f1c5be6f 100644 --- a/src/operator/Div.cpp +++ b/src/operator/Div.cpp @@ -23,13 +23,7 @@ const std::string Aidge::Div_Op::Type = "Div"; bool Aidge::Div_Op::forwardDims(bool /*allowDataDependency*/) { - // check inputs have been associated - if (!getInput(0) || !getInput(1)) { - AIDGE_THROW_OR_ABORT(std::runtime_error, "At least one input was not connected"); - } - - if (!getInput(0)->empty() && !getInput(1)->empty()) { - + if (inputsAssociated()) { const std::vector<std::size_t>& inputsDims0 = getInput(0)->dims(); const std::vector<std::size_t>& inputsDims1 = getInput(1)->dims(); diff --git a/src/operator/FC.cpp b/src/operator/FC.cpp index ba7e29e7b6543a570ceede6158bd306286037c10..44d499bc7e125c757f802e086c22e1e6c72e9216 100644 --- a/src/operator/FC.cpp +++ b/src/operator/FC.cpp @@ -37,19 +37,36 @@ void Aidge::FC_Op::associateInput(const Aidge::IOIndex_t inputIdx, const std::sh } bool Aidge::FC_Op::forwardDims(bool /*allowDataDependency*/) { - bool associated = true; - for (IOIndex_t i = 0; i < nbInputs(); ++i) { - if (!getInput(i)) { - AIDGE_THROW_OR_ABORT(std::runtime_error, "{}: input #{} should be associated with a Tensor", type(), i); + if (inputsAssociated()) { + // first check weight since it defines inChannels and outChannels + AIDGE_ASSERT((getInput(1)->nbDims() == 2), + "Wrong weight Tensor dimension: {} for FC operator (should have 2 dimensions).", getInput(1)->nbDims()); + const DimSize_t outChannels = getInput(1)->template dims<2>()[0]; + const DimSize_t inChannels = getInput(1)->template dims<2>()[1]; + // check data + const std::vector<DimSize_t>& inputDims = getInput(0)->dims(); + if (getInput(0)->nbDims() == 1) { + AIDGE_ASSERT(inputDims[0] == inChannels, + "Wrong number of input features for input data ({}), expected {}", + inputDims[0], inChannels); + } else { + AIDGE_ASSERT(getInput(0)->nbDims() > 1, "FC input data must have at least one dimension"); + const DimSize_t nbInputFeatures = std::accumulate(inputDims.cbegin() + 1, inputDims.cend(), DimSize_t(1), std::multiplies<DimSize_t>()); + AIDGE_ASSERT(nbInputFeatures == inChannels, + "Wrong number of input features for input data ({}), expected {}", + nbInputFeatures, inChannels); } - associated &= !(getInput(i)->empty()); - } - if (associated) { + // check optional bias + if(getInput(2)) + AIDGE_ASSERT((getInput(2)->nbDims() == 1) && + (getInput(2)->template dims<1>()[0] == outChannels), + "Wrong bias size for FC operator."); // <batch, OutChannels> - mOutputs[0]->resize({getInput(0)->dims()[0], this->template getAttr<FCAttr::OutChannels>()}); + mOutputs[0]->resize({getInput(0)->dims()[0], outChannels}); + return true; } - return associated; + return false; } void Aidge::FC_Op::setBackend(const std::string& name, Aidge::DeviceIdx_t device) { @@ -57,6 +74,15 @@ void Aidge::FC_Op::setBackend(const std::string& name, Aidge::DeviceIdx_t device mOutputs[0]->setBackend(name, device); // By default, automatically set backend for weight and bias inputs - getInput(1)->setBackend(name, device); - getInput(2)->setBackend(name, device); + if (getInput(1)) { + getInput(1)->setBackend(name, device); + } + else { + Log::notice("FC_Op::setBackend(): could not set backend for weight input, because input is not connected"); + } + + if (getInput(2)) { + // Bias is optional + getInput(2)->setBackend(name, device); + } } diff --git a/src/operator/Gather.cpp b/src/operator/Gather.cpp index 7b0945271660be8f309024f46c258e6a7e2193e5..c28a0587a755ef0a910ec5bfdeb9caa2f1edc216 100644 --- a/src/operator/Gather.cpp +++ b/src/operator/Gather.cpp @@ -9,24 +9,21 @@ * ********************************************************************************/ -#include "aidge/operator/Gather.hpp" - #include <cstddef> // std::size_t #include <cstdint> // std::int64_t #include <string> #include <vector> +#include "aidge/operator/Gather.hpp" #include "aidge/data/Tensor.hpp" #include "aidge/utils/Types.h" #include "aidge/utils/ErrorHandling.hpp" +#include "aidge/utils/Types.h" void Aidge::Gather_OpImpl::forward() { const Gather_Op& op = dynamic_cast<const Gather_Op&>(mOp); - const auto axis = op.template getAttr<std::int64_t>("Axis"); - const std::size_t axisIdx = axis>=0 ? - axis : - static_cast<std::size_t>(axis) + op.getInput(0)->dims().size(); + const std::size_t axisIdx = static_cast<std::size_t>(op.axis()) + (op.axis() >= 0 ? 0 : op.getInput(0)->dims().size()); std::size_t postAxisElems = 1; for (std::size_t i = axisIdx + 1; i < op.getInput(0)->dims().size(); ++i) { @@ -37,13 +34,14 @@ void Aidge::Gather_OpImpl::forward() { preAxisElems *= op.getInput(0)->dims()[i]; } - const auto indices = op.template getAttr<std::vector<std::int64_t>>("Indices"); std::size_t outputOffset = 0; for (std::size_t i=0; i<preAxisElems; ++i) { - for(std::size_t j=0; j<indices.size(); ++j) + for(std::size_t j = 0; j < op.indices().size(); ++j) { - const std::size_t idx = indices[j] >= 0 ? indices[j] : static_cast<std::size_t>(indices[j]) + op.getInput(0)->dims()[axisIdx]; + const std::size_t idx = op.indices()[j] >= 0 ? + static_cast<std::size_t>(op.indices()[j]) : + static_cast<std::size_t>(op.indices()[j] + static_cast<int>(op.getInput(0)->dims()[axisIdx])); op.getOutput(0)->getImpl()->copy(op.getInput(0)->getImpl()->rawPtr(i * postAxisElems * op.getInput(0)->dims()[axisIdx] + idx * postAxisElems), postAxisElems, outputOffset); outputOffset += postAxisElems; } @@ -52,28 +50,53 @@ void Aidge::Gather_OpImpl::forward() { const std::string Aidge::Gather_Op::Type = "Gather"; -bool Aidge::Gather_Op::forwardDims(bool /*allowDataDependency*/) { - // check inputs have been associated - if (!getInput(0)) { - AIDGE_THROW_OR_ABORT(std::runtime_error, "Input was not connected"); +bool Aidge::Gather_Op::dimsForwarded() const { + if (getInput(1) && !getInput(1)->empty()) { + // output dims are data dependent + return false; } - if (!getInput(0)->empty()) { + return OperatorTensor::dimsForwarded(); +} + +bool Aidge::Gather_Op::forwardDims(bool allowDataDependency) { + if (inputsAssociated()) { + // Copy optional input #1, if present, to attribute Indices + if (getInput(1)) { + if (!this->indices().empty()) { + Log::notice("Gather_Op: ignoring non-empty Indices attribute because input#1 takes precedence"); + } + + if (!allowDataDependency) { + Log::warn("Gather_Op: unable to forwardDims() because output dims are data dependent on input#1"); + return false; + } + + std::shared_ptr<Tensor> fallback; + this->gatheredShape() = getInput(1)->dims(); + this->indices().clear(); // If both are provided input would override attrs + this->indices().reserve(getInput(1)->size()); + const auto& indices = mInputs[1]->refCastFrom(fallback, NativeType<int64_t>::type, "cpu"); + std::copy_n(static_cast<int64_t*>(indices.getImpl()->hostPtr()), + indices.size(), + std::back_inserter(this->indices())); + } + + AIDGE_ASSERT(!this->indices().empty(), "Missing input#1 or Indices attribute"); + + // Compute output dims std::vector<DimSize_t> outDims = getInput(0)->dims(); - const std::vector<DimSize_t> gatheredShape = this->template getAttr<GatherAttr::GatheredShape>(); - // TODO: check indices and gatheredShape - const std::int64_t axisIdx = this->template getAttr<GatherAttr::Axis>() >= 0 ? - this->template getAttr<GatherAttr::Axis>() : - this->template getAttr<GatherAttr::Axis>() + outDims.size(); + std::int8_t axisIdx = this->axis()>=0? + this->axis(): + this->axis()+outDims.size(); outDims.erase(outDims.begin() + static_cast<std::size_t>(axisIdx)); - if (!gatheredShape.empty()) + if( !this->gatheredShape().empty()) { - outDims.insert(outDims.cbegin() + static_cast<std::size_t>(axisIdx), - gatheredShape.cbegin(), - gatheredShape.cend()); + outDims.insert(outDims.begin() + static_cast<std::size_t>(axisIdx), + this->gatheredShape().begin(), + this->gatheredShape().end()); } - mOutputs[0]->resize(outDims); return true; } diff --git a/src/operator/GenericOperator.cpp b/src/operator/GenericOperator.cpp index fdf3036fe7eeccb2dfd9e21faf834e27854e45f3..d49e1f0838f623bca1546e54ea4f4e470d70e1c5 100644 --- a/src/operator/GenericOperator.cpp +++ b/src/operator/GenericOperator.cpp @@ -26,9 +26,10 @@ const Aidge::GenericOperator_Op::ComputeDimsFunc Aidge::GenericOperator_Op::Inpu } bool Aidge::GenericOperator_Op::forwardDims(bool /*allowDataDependency*/) { - if (mForwardDims) { + if (mForwardDims && inputsAssociated(false)) { std::vector<std::vector<std::size_t>> inputsDims(nbInputs(), std::vector<std::size_t>()); for (std::size_t i = 0; i < nbInputs(); ++i) { + // Check for input, as it may be optional if (getInput(i)) { inputsDims[i] = getInput(i)->dims(); } @@ -47,12 +48,10 @@ bool Aidge::GenericOperator_Op::forwardDims(bool /*allowDataDependency*/) { } } -bool Aidge::GenericOperator_Op::dimsForwarded() const { - if (mForwardDims) { - return !(mOutputs[0]->empty()); - } - else { - Log::notice("GenericOperator: not output dims forwarded, no ComputeDimsFunc function provided."); - return false; +void Aidge::GenericOperator_Op::setBackend(const std::string & name, DeviceIdx_t device) { + Log::warn("GenericOperator::setBackend(): cannot set backend for a generic operator, as no implementation has been provided!"); + + for (std::size_t i = 0; i < nbOutputs(); ++i) { + mOutputs[i]->setBackend(name, device); } } diff --git a/src/operator/GlobalAveragePooling.cpp b/src/operator/GlobalAveragePooling.cpp index b09426f8f835eda5600b630488ef18c5b08ba32a..1632c8a7677c884194494269e1a8cd93e7ef7822 100644 --- a/src/operator/GlobalAveragePooling.cpp +++ b/src/operator/GlobalAveragePooling.cpp @@ -22,26 +22,20 @@ const std::string Aidge::GlobalAveragePooling_Op::Type = "GlobalAveragePooling"; bool Aidge::GlobalAveragePooling_Op::forwardDims(bool /*allowDataDependency*/) { - // error checking - if (!getInput(0)) { - AIDGE_THROW_OR_ABORT(std::runtime_error, - "GlobalAveragePooling : The input was not connected"); - } - else if (!getInput(0)->empty()) { - AIDGE_ASSERT(getInput(0)->dims().size() >= 3, - "GlobalAveragePooling : needs at least a 3 dimensions input, " - "number of input dim : {}", - getInput(0)->dims().size()); - // Global average pooling takes each filter, averages its values and uses - // it as an output(Much like a fancier flatten). 1st dim is batch 2nd is - // number of filter - const std::vector<DimSize_t> out_dims{getInput(0)->dims().at(0), - getInput(0)->dims().at(1)}; - mOutputs[0]->resize(out_dims); - return true; - } + if (inputsAssociated()) { + AIDGE_ASSERT(getInput(0)->dims().size() >= 3, + "GlobalAveragePooling : needs at least a 3 dimensions input, " + "number of input dim : {}", + getInput(0)->dims().size()); + // Global average pooling takes each filter, averages its values and uses + // it as an output(Much like a fancier flatten). 1st dim is batch 2nd is + // number of filter + mOutputs[0]->resize({getInput(0)->dims().at(0), + getInput(0)->dims().at(1)}); + return true; + } - return false; + return false; } void Aidge::GlobalAveragePooling_Op::setBackend(const std::string &name, Aidge::DeviceIdx_t device) { diff --git a/src/operator/Ln.cpp b/src/operator/Ln.cpp new file mode 100755 index 0000000000000000000000000000000000000000..7e9f9ad01186f53a0f89657acb72f6a544223068 --- /dev/null +++ b/src/operator/Ln.cpp @@ -0,0 +1,25 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include "aidge/operator/Ln.hpp" + +#include <memory> +#include <string> + +#include "aidge/data/Tensor.hpp" +#include "aidge/utils/Types.h" + +const std::string Aidge::Ln_Op::Type = "Ln"; + +void Aidge::Ln_Op::setBackend(const std::string& name, DeviceIdx_t device) { + mImpl = Registrar<Ln_Op>::create(name)(*this); + mOutputs[0]->setBackend(name, device); +} diff --git a/src/operator/MatMul.cpp b/src/operator/MatMul.cpp index 8f7548155cde4c7187f7a7fe96a44c4accd2c302..17b4960dfdfc9de199cc25b0119a5cb000bcf48c 100644 --- a/src/operator/MatMul.cpp +++ b/src/operator/MatMul.cpp @@ -21,58 +21,57 @@ const std::string Aidge::MatMul_Op::Type = "MatMul"; bool Aidge::MatMul_Op::forwardDims(bool /*allowDataDependency*/) { - if (!getInput(0) || !getInput(1)) { - AIDGE_THROW_OR_ABORT(std::runtime_error, "Missing input. Cannot compute output dimensions for MatMul Operator."); - } - if (getInput(0)->empty() && getInput(1)->empty()) { - // both inputs are scalar - mOutputs[0]->resize({}); - return true; - } - else if (!getInput(0)->empty() && !getInput(1)->empty()) - { - std::vector<std::size_t> dims0 = getInput(0)->dims(); - std::vector<std::size_t> dims1 = getInput(1)->dims(); + if (inputsAssociated(false)) { + if (getInput(0)->empty() && getInput(1)->empty()) { + // both inputs are scalar + mOutputs[0]->resize({}); + return true; + } + else if (!getInput(0)->empty() && !getInput(1)->empty()) + { + std::vector<std::size_t> dims0 = getInput(0)->dims(); + std::vector<std::size_t> dims1 = getInput(1)->dims(); - // keep second-to-last dimension of dims0 - const bool keepDim0 = dims0.size() > 1; - // keep last dimension of dims1 - const bool keepDim1 = dims1.size() > 1; + // keep second-to-last dimension of dims0 + const bool keepDim0 = dims0.size() > 1; + // keep last dimension of dims1 + const bool keepDim1 = dims1.size() > 1; - if (dims0.size() == 1) { - dims0.insert(dims0.cbegin(), 1); - } - if (dims1.size() == 1) { - dims1.push_back(1); - } - const std::size_t dims_size = std::max(dims0.size(), dims1.size()); + if (dims0.size() == 1) { + dims0.insert(dims0.cbegin(), 1); + } + if (dims1.size() == 1) { + dims1.push_back(1); + } + const std::size_t dims_size = std::max(dims0.size(), dims1.size()); - if (dims0.size() > dims1.size()) { - dims1.insert(dims1.cbegin(), dims0.size() - dims1.size(), std::size_t(1)); - } - else if (dims1.size() > dims0.size()) { - dims0.insert(dims0.cbegin(), dims1.size() - dims0.size(), std::size_t(1)); - } + if (dims0.size() > dims1.size()) { + dims1.insert(dims1.cbegin(), dims0.size() - dims1.size(), std::size_t(1)); + } + else if (dims1.size() > dims0.size()) { + dims0.insert(dims0.cbegin(), dims1.size() - dims0.size(), std::size_t(1)); + } - AIDGE_ASSERT(dims0[dims_size-1] == dims1[dims_size-2], "Incompatible matrices sizes."); + AIDGE_ASSERT(dims0[dims_size-1] == dims1[dims_size-2], "Incompatible matrices sizes."); - std::vector<std::size_t> outDims = std::vector<std::size_t>(dims_size-2, 1); - for (std::size_t i = 0; i < dims_size-2; ++i) { - AIDGE_ASSERT((dims0[i] == dims1[i]) || (dims0[i] == 1) || (dims1[i] == 1), "Bad vector dimension."); - outDims[i] = std::max(dims0[i], dims1[i]); - } + std::vector<std::size_t> outDims = std::vector<std::size_t>(dims_size-2, 1); + for (std::size_t i = 0; i < dims_size-2; ++i) { + AIDGE_ASSERT((dims0[i] == dims1[i]) || (dims0[i] == 1) || (dims1[i] == 1), "Bad vector dimension."); + outDims[i] = std::max(dims0[i], dims1[i]); + } - // use keepDim0 instead of dims0.size() because dims0 has been modified - if (keepDim0) - outDims.push_back(dims0[dims_size-2]); - if (keepDim1) - outDims.push_back(dims1[dims_size-1]); + // use keepDim0 instead of dims0.size() because dims0 has been modified + if (keepDim0) + outDims.push_back(dims0[dims_size-2]); + if (keepDim1) + outDims.push_back(dims1[dims_size-1]); - mOutputs[0]->resize(outDims); - return true; + mOutputs[0]->resize(outDims); + return true; + } } - + return false; } diff --git a/src/operator/Memorize.cpp b/src/operator/Memorize.cpp index e08b5f1054f07a9dcc1722d219ebce022f994d61..adf79b5c69e991ad7979184c313448e4288a8ecb 100644 --- a/src/operator/Memorize.cpp +++ b/src/operator/Memorize.cpp @@ -24,14 +24,13 @@ Aidge::Elts_t Aidge::Memorize_OpImpl::getNbRequiredData( Aidge::IOIndex_t inputIdx) const { const Memorize_Op& op = dynamic_cast<const Memorize_Op&>(mOp); - const unsigned int scheduleStep = op.template getAttr<MemorizeAttr::ScheduleStep>(); - if (scheduleStep == 0 && inputIdx == 0) { + if (op.scheduleStep() == 0 && inputIdx == 0) { // No data input is required for the initial step. // Initialization data is required however. return Elts_t::NoneElts(); } - else if (scheduleStep > 0 && inputIdx == 1) { + else if (op.scheduleStep() > 0 && inputIdx == 1) { // No initialization data is required after the initial step. return Elts_t::NoneElts(); } @@ -45,10 +44,8 @@ Aidge::Elts_t Aidge::Memorize_OpImpl::getRequiredMemory(const Aidge::IOIndex_t o assert(mOp.getRawOutput(outputIdx) && "requires valid output"); const Memorize_Op& op = dynamic_cast<const Memorize_Op&>(mOp); - const unsigned int scheduleStep = op.template getAttr<MemorizeAttr::ScheduleStep>(); - const unsigned int endStep = op.template getAttr<MemorizeAttr::EndStep>(); - if (endStep > 0 && outputIdx == 1 && scheduleStep >= endStep) { + if ((op.endStep() > 0) && (outputIdx == 1) && (op.scheduleStep() >= op.endStep())) { return Elts_t::NoneElts(); } else { @@ -60,18 +57,15 @@ void Aidge::Memorize_OpImpl::updateConsummerProducer() { OperatorImpl::updateConsummerProducer(); const Memorize_Op& op = dynamic_cast<const Memorize_Op&>(mOp); - const unsigned int scheduleStep = op.template getAttr<MemorizeAttr::ScheduleStep>(); - const unsigned int endStep = op.template getAttr<MemorizeAttr::EndStep>(); - AIDGE_ASSERT(endStep == 0 || scheduleStep <= endStep, "cannot update consumer producer anymore, number of cycles exceeded"); + AIDGE_ASSERT(op.endStep() == 0 || op.scheduleStep() <= op.endStep(), "cannot update consumer producer anymore, number of cycles exceeded"); } void Aidge::Memorize_OpImpl::forward() { const Memorize_Op& op = dynamic_cast<const Memorize_Op&>(mOp); - const unsigned int forwardStep = op.template getAttr<MemorizeAttr::ForwardStep>(); - const unsigned int endStep = op.template getAttr<MemorizeAttr::EndStep>(); - AIDGE_ASSERT(endStep == 0 || forwardStep <= endStep, "cannot forward anymore, number of cycles exceeded"); - if (forwardStep == 0) { + AIDGE_ASSERT((op.endStep() == 0) || (op.forwardStep() <= op.endStep()), "cannot forward anymore, number of cycles exceeded"); + + if (op.forwardStep() == 0) { op.getOutput(0)->getImpl()->copy(op.getInput(1)->getImpl()->rawPtr(), op.getInput(1)->size()); } else { @@ -83,28 +77,24 @@ const std::string Aidge::Memorize_Op::Type = "Memorize"; void Aidge::Memorize_Op::updateConsummerProducer() { Operator::updateConsummerProducer(); - ++this->template getAttr<MemorizeAttr::ScheduleStep>(); - this->template getAttr<MemorizeAttr::ForwardStep>() = 0; + ++mAttributes->template getAttr<MemorizeAttr::ScheduleStep>(); + mAttributes->template getAttr<MemorizeAttr::ForwardStep>() = 0; } bool Aidge::Memorize_Op::forwardDims(bool /*allowDataDependency*/) { - for (size_t i = 0; i < 2; ++i) { - if (!getInput(i)) { - AIDGE_THROW_OR_ABORT(std::runtime_error, "{}: input #{} should be associated with a Tensor", type(), i); + if (inputsAssociated(false)) { + // Only require one of the input to have dims defined + // Otherwise, forwardDims() won't converge! + if (!(getInput(0)->empty())) { + const auto expectedDims = getInput(0)->dims(); + mOutputs[0]->resize(expectedDims); + return true; + } + else if (!(getInput(1)->empty())) { + const auto expectedDims = getInput(1)->dims(); + mOutputs[0]->resize(expectedDims); + return true; } - } - - // Only require one of the input to have dims defined - // Otherwise, forwardDims() won't converge! - if (!(getInput(0)->empty())) { - const auto expectedDims = getInput(0)->dims(); - mOutputs[0]->resize(expectedDims); - return true; - } - else if (!(getInput(1)->empty())) { - const auto expectedDims = getInput(1)->dims(); - mOutputs[0]->resize(expectedDims); - return true; } return false; @@ -132,6 +122,6 @@ void Aidge::Memorize_Op::setBackend(const std::string& name, Aidge::DeviceIdx_t void Aidge::Memorize_Op::forward() { Operator::forward(); - ++this->template getAttr<MemorizeAttr::ForwardStep>(); - this->template getAttr<MemorizeAttr::ScheduleStep>() = 0; + ++mAttributes->template getAttr<MemorizeAttr::ForwardStep>(); + mAttributes->template getAttr<MemorizeAttr::ScheduleStep>() = 0; } diff --git a/src/operator/MetaOperator.cpp b/src/operator/MetaOperator.cpp index 36ff1854703d015980a1943390eb87d0863d877f..e7c50033797c7c984b6b8da69d30f005bc69e70c 100644 --- a/src/operator/MetaOperator.cpp +++ b/src/operator/MetaOperator.cpp @@ -20,15 +20,16 @@ #include "aidge/utils/ErrorHandling.hpp" Aidge::MetaOperator_Op::MetaOperator_Op(const std::string& type, const std::shared_ptr<GraphView>& graph) - : OperatorTensor(type, graph->dataInputs().size(), (graph->getOrderedInputs().size() - graph->dataInputs().size()), graph->getOrderedOutputs().size()), + : OperatorTensor(type, [graph]() { + std::vector<InputCategory> inputsCategory; + for (const auto& in : graph->getOrderedInputs()) { + inputsCategory.push_back(in.first->getOperator()->inputCategory(in.second)); + } + return inputsCategory; + }(), graph->getOrderedOutputs().size()), mGraph(graph) { - mInputs = std::vector<std::shared_ptr<Tensor>>(mGraph->getOrderedInputs().size()); - for (std::size_t i = 0; i < mInputs.size(); ++i) { - mInputs[i] = std::make_shared<Tensor>(); - } // Associate outputs to micro-graph outputs for custom implementation - mOutputs = std::vector<std::shared_ptr<Tensor>>(mGraph->getOrderedOutputs().size()); for (size_t outputIdx = 0; outputIdx < mOutputs.size(); ++outputIdx) { const auto& outputOp = mGraph->getOrderedOutputs()[outputIdx]; if (outputOp.first) { @@ -58,16 +59,6 @@ void Aidge::MetaOperator_Op::setInput(const Aidge::IOIndex_t inputIdx, const std mInputs[inputIdx] = std::dynamic_pointer_cast<Tensor>(inputOp.first->getOperator()->getRawInput(inputOp.second)); } -void Aidge::MetaOperator_Op::setInput(const Aidge::IOIndex_t inputIdx, std::shared_ptr<Data>&& data) { - AIDGE_ASSERT(data->type() == Tensor::Type, "{} Operator only accepts Tensors as inputs", type()); - - const auto& inputOp = mGraph->getOrderedInputs()[inputIdx]; - inputOp.first->getOperator()->setInput(inputOp.second, std::forward<std::shared_ptr<Data>>(data)); - - // Associate inputs for custom implementation - mInputs[inputIdx] = std::dynamic_pointer_cast<Tensor>(inputOp.first->getOperator()->getRawInput(inputOp.second)); -} - Aidge::Elts_t Aidge::MetaOperator_Op::getNbRequiredData(const IOIndex_t inputIdx) const { if (mImpl) { return mImpl->getNbRequiredData(inputIdx); @@ -143,6 +134,20 @@ Aidge::Elts_t Aidge::MetaOperator_Op::getNbProducedData(IOIndex_t outputIdx) con } } +void Aidge::MetaOperator_Op::resetConsummerProducer() { + if (mImpl) { + mImpl->resetConsummerProducer(); + } + else { + if (!mScheduler) { + // Lazy initialization + mScheduler = std::make_shared<SequentialScheduler>(mGraph, mUpperNode.lock()); + } + + mScheduler->resetScheduling(); + } +} + void Aidge::MetaOperator_Op::updateConsummerProducer() { if (mImpl) { mImpl->updateConsummerProducer(); diff --git a/src/operator/MetaOperatorDefs/LSTM.cpp b/src/operator/MetaOperatorDefs/LSTM.cpp new file mode 100644 index 0000000000000000000000000000000000000000..910e7c67aad0068679ca2d240b23312add3e42d7 --- /dev/null +++ b/src/operator/MetaOperatorDefs/LSTM.cpp @@ -0,0 +1,229 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include "aidge/operator/MetaOperatorDefs.hpp" + +#include <array> +#include <memory> +#include <string> + +#include "aidge/operator/Memorize.hpp" +#include "aidge/operator/Add.hpp" +#include "aidge/operator/Mul.hpp" +#include "aidge/operator/FC.hpp" +#include "aidge/operator/Identity.hpp" +#include "aidge/operator/Concat.hpp" +#include "aidge/operator/Tanh.hpp" + +namespace Aidge { + +std::shared_ptr<Node> LSTM(const DimSize_t inChannel, + const DimSize_t hiddenChannel, + const DimSize_t seqLength, + bool noBias, + const std::string& name) +{ + // Construct micro-graph + auto input = Identity((!name.empty()) ? name + "_input" : ""); + auto hiddenState = Memorize(seqLength, (!name.empty()) ? name + "_hidden_state" : ""); + auto cellState = Memorize(seqLength, (!name.empty()) ? name + "_cell_state" : ""); + auto add = Add(2, (!name.empty()) ? name + "_add" : ""); + + // Forget gate + auto forgetGateX = std::make_shared<Node>(std::make_shared<FC_Op>(), (!name.empty()) ? name + "_forgetGateX" : ""); + input->addChild(forgetGateX, 0, 0); + auto forgetGateH = std::make_shared<Node>(std::make_shared<FC_Op>(), (!name.empty()) ? name + "_forgetGateH" : ""); + hiddenState->addChild(forgetGateH, 1, 0); + auto forgetGate = Add(2, (!name.empty()) ? name + "_forgetGate" : ""); + forgetGateX->addChild(forgetGate, 0, 0); + forgetGateH->addChild(forgetGate, 0, 1); + auto forgetGateAct = Sigmoid((!name.empty()) ? name + "_forgetGateAct" : ""); + auto forgetGateMul = Mul((!name.empty()) ? name + "_forgetGateMul" : ""); + forgetGate->addChild(forgetGateAct, 0, 0); + forgetGateAct->addChild(forgetGateMul, 0, 0); + forgetGateMul->addChild(add, 0, 0); + cellState->addChild(forgetGateMul, 1, 1); + + // Input gate + auto inputGateX = std::make_shared<Node>(std::make_shared<FC_Op>(), (!name.empty()) ? name + "_inputGateX" : ""); + input->addChild(inputGateX, 0, 0); + auto inputGateH = std::make_shared<Node>(std::make_shared<FC_Op>(), (!name.empty()) ? name + "_inputGateH" : ""); + hiddenState->addChild(inputGateH, 1, 0); + auto inputGate = Add(2, (!name.empty()) ? name + "_inputGate" : ""); + inputGateX->addChild(inputGate, 0, 0); + inputGateH->addChild(inputGate, 0, 1); + auto inputGateAct = Sigmoid((!name.empty()) ? name + "_inputGateAct" : ""); + auto inputGateMul = Mul((!name.empty()) ? name + "_inputGateMul" : ""); + inputGate->addChild(inputGateAct, 0, 0); + inputGateAct->addChild(inputGateMul, 0, 0); + inputGateMul->addChild(add, 0, 1); + + // Candidate for cell update + auto cellCandidateX = std::make_shared<Node>(std::make_shared<FC_Op>(), (!name.empty()) ? name + "_cellCandidateX" : ""); + input->addChild(cellCandidateX, 0, 0); + auto cellCandidateH = std::make_shared<Node>(std::make_shared<FC_Op>(), (!name.empty()) ? name + "_cellCandidateH" : ""); + hiddenState->addChild(cellCandidateH, 1, 0); + auto cellCandidate = Add(2, (!name.empty()) ? name + "_cellCandidate" : ""); + cellCandidateX->addChild(cellCandidate, 0, 0); + cellCandidateH->addChild(cellCandidate, 0, 1); + auto cellCandidateAct = Tanh((!name.empty()) ? name + "_cellCandidateAct" : ""); + cellCandidate->addChild(cellCandidateAct, 0, 0); + cellCandidateAct->addChild(inputGateMul, 0, 1); + + // Output gate + auto outputGateX = std::make_shared<Node>(std::make_shared<FC_Op>(), (!name.empty()) ? name + "_outputGateX" : ""); + input->addChild(outputGateX, 0, 0); + auto outputGateH = std::make_shared<Node>(std::make_shared<FC_Op>(), (!name.empty()) ? name + "_outputGateH" : ""); + hiddenState->addChild(outputGateH, 1, 0); + auto outputGate = Add(2, (!name.empty()) ? name + "_outputGate" : ""); + outputGateX->addChild(outputGate, 0, 0); + outputGateH->addChild(outputGate, 0, 1); + auto outputGateAct = Sigmoid((!name.empty()) ? name + "_outputGateAct" : ""); + auto outputGateMul = Mul((!name.empty()) ? name + "_outputGateMul" : ""); + outputGate->addChild(outputGateAct, 0, 0); + outputGateAct->addChild(outputGateMul, 0, 0); + + // Updated cell state to help determine new hidden state + auto cellUpdatedAct = Tanh((!name.empty()) ? name + "_cellUpdatedAct" : ""); + add->addChild(cellUpdatedAct, 0, 0); + cellUpdatedAct->addChild(outputGateMul, 0, 1); + outputGateMul->addChild(hiddenState, 0, 0); + add->addChild(cellState, 0, 0); + + std::shared_ptr<GraphView> microGraph = std::make_shared<GraphView>(); + microGraph->add(input); + microGraph->add({hiddenState, cellState, add, + forgetGateX, forgetGateH, forgetGate, forgetGateAct, forgetGateMul, + inputGateX, inputGateH, inputGate, inputGateAct, inputGateMul, + cellCandidateX, cellCandidateH, cellCandidate, cellCandidateAct, + outputGateX, outputGateH, outputGate, outputGateAct, outputGateMul, + cellUpdatedAct}, false); + + microGraph->setOrderedInputs({{input, 0}, + {inputGateX, 1}, {outputGateX, 1}, {forgetGateX, 1}, {cellCandidateX, 1}, + {inputGateH, 1}, {outputGateH, 1}, {forgetGateH, 1}, {cellCandidateH, 1}, + {inputGateX, 2}, {outputGateX, 2}, {forgetGateX, 2}, {cellCandidateX, 2}, + {inputGateH, 2}, {outputGateH, 2}, {forgetGateH, 2}, {cellCandidateH, 2}, + {hiddenState, 1}, {cellState, 1}}); + microGraph->setOrderedOutputs({{hiddenState, 0}, {cellState, 0}}); + + auto metaOp = MetaOperator("LSTM", microGraph, name); + addProducer(metaOp, 1, {hiddenChannel, inChannel}, "wi"); + addProducer(metaOp, 2, {hiddenChannel, inChannel}, "wo"); + addProducer(metaOp, 3, {hiddenChannel, inChannel}, "wf"); + addProducer(metaOp, 4, {hiddenChannel, inChannel}, "wc"); + addProducer(metaOp, 5, {hiddenChannel, hiddenChannel}, "ri"); + addProducer(metaOp, 6, {hiddenChannel, hiddenChannel}, "ro"); + addProducer(metaOp, 7, {hiddenChannel, hiddenChannel}, "rf"); + addProducer(metaOp, 8, {hiddenChannel, hiddenChannel}, "rc"); + if (!noBias) { + addProducer(metaOp, 9, {hiddenChannel}, "wbi"); + addProducer(metaOp, 10, {hiddenChannel}, "wbo"); + addProducer(metaOp, 11, {hiddenChannel}, "wbf"); + addProducer(metaOp, 12, {hiddenChannel}, "wbc"); + addProducer(metaOp, 13, {hiddenChannel}, "rbi"); + addProducer(metaOp, 14, {hiddenChannel}, "rbo"); + addProducer(metaOp, 15, {hiddenChannel}, "rbf"); + addProducer(metaOp, 16, {hiddenChannel}, "rbc"); + } + return metaOp; +} + +std::shared_ptr<MetaOperator_Op> LSTM_Op(const DimSize_t seqLength) +{ + // Construct micro-graph + auto input = Identity(""); + auto hiddenState = Memorize(seqLength, ""); + auto cellState = Memorize(seqLength, ""); + auto add = Add(2, ""); + + // Forget gate + auto forgetGateX = std::make_shared<Node>(std::make_shared<FC_Op>(), ""); + input->addChild(forgetGateX, 0, 0); + auto forgetGateH = std::make_shared<Node>(std::make_shared<FC_Op>(), ""); + hiddenState->addChild(forgetGateH, 1, 0); + auto forgetGate = Add(2, ""); + forgetGateX->addChild(forgetGate, 0, 0); + forgetGateH->addChild(forgetGate, 0, 1); + auto forgetGateAct = Sigmoid(""); + auto forgetGateMul = Mul(""); + forgetGate->addChild(forgetGateAct, 0, 0); + forgetGateAct->addChild(forgetGateMul, 0, 0); + forgetGateMul->addChild(add, 0, 0); + cellState->addChild(forgetGateMul, 1, 1); + + // Input gate + auto inputGateX = std::make_shared<Node>(std::make_shared<FC_Op>(), ""); + input->addChild(inputGateX, 0, 0); + auto inputGateH = std::make_shared<Node>(std::make_shared<FC_Op>(), ""); + hiddenState->addChild(inputGateH, 1, 0); + auto inputGate = Add(2, ""); + inputGateX->addChild(inputGate, 0, 0); + inputGateH->addChild(inputGate, 0, 1); + auto inputGateAct = Sigmoid(""); + auto inputGateMul = Mul(""); + inputGate->addChild(inputGateAct, 0, 0); + inputGateAct->addChild(inputGateMul, 0, 0); + inputGateMul->addChild(add, 0, 1); + + // Candidate for cell update + auto cellCandidateX = std::make_shared<Node>(std::make_shared<FC_Op>(), ""); + input->addChild(cellCandidateX, 0, 0); + auto cellCandidateH = std::make_shared<Node>(std::make_shared<FC_Op>(), ""); + hiddenState->addChild(cellCandidateH, 1, 0); + auto cellCandidate = Add(2, ""); + cellCandidateX->addChild(cellCandidate, 0, 0); + cellCandidateH->addChild(cellCandidate, 0, 1); + auto cellCandidateAct = Tanh(""); + cellCandidate->addChild(cellCandidateAct, 0, 0); + cellCandidateAct->addChild(inputGateMul, 0, 1); + + // Output gate + auto outputGateX = std::make_shared<Node>(std::make_shared<FC_Op>(), ""); + input->addChild(outputGateX, 0, 0); + auto outputGateH = std::make_shared<Node>(std::make_shared<FC_Op>(), ""); + hiddenState->addChild(outputGateH, 1, 0); + auto outputGate = Add(2,""); + outputGateX->addChild(outputGate, 0, 0); + outputGateH->addChild(outputGate, 0, 1); + auto outputGateAct = Sigmoid(""); + auto outputGateMul = Mul(""); + outputGate->addChild(outputGateAct, 0, 0); + outputGateAct->addChild(outputGateMul, 0, 0); + + // Updated cell state to help determine new hidden state + auto cellUpdatedAct = Tanh(""); + add->addChild(cellUpdatedAct, 0, 0); + cellUpdatedAct->addChild(outputGateMul, 0, 1); + outputGateMul->addChild(hiddenState, 0, 0); + add->addChild(cellState, 0, 0); + + std::shared_ptr<GraphView> microGraph = std::make_shared<GraphView>(); + microGraph->add(input); + microGraph->add({hiddenState, cellState, add, + forgetGateX, forgetGateH, forgetGate, forgetGateAct, forgetGateMul, + inputGateX, inputGateH, inputGate, inputGateAct, inputGateMul, + cellCandidateX, cellCandidateH, cellCandidate, cellCandidateAct, + outputGateX, outputGateH, outputGate, outputGateAct, outputGateMul, + cellUpdatedAct}, false); + + microGraph->setOrderedInputs({{input, 0}, + {inputGateX, 1}, {outputGateX, 1}, {forgetGateX, 1}, {cellCandidateX, 1}, + {inputGateH, 1}, {outputGateH, 1}, {forgetGateH, 1}, {cellCandidateH, 1}, + {inputGateX, 2}, {outputGateX, 2}, {forgetGateX, 2}, {cellCandidateX, 2}, + {inputGateH, 2}, {outputGateH, 2}, {forgetGateH, 2}, {cellCandidateH, 2}, + {hiddenState, 1}, {cellState, 1}}); + microGraph->setOrderedOutputs({{hiddenState, 0}, {cellState, 0}}); + + return std::make_shared<MetaOperator_Op>("LSTM", microGraph); +} + +} // namespace Aidge diff --git a/src/operator/MetaOperatorDefs/PaddedAvgPooling.cpp b/src/operator/MetaOperatorDefs/PaddedAvgPooling.cpp new file mode 100644 index 0000000000000000000000000000000000000000..ef319ef38ad18de9eaed0a1d4a92c3877ee7cf8e --- /dev/null +++ b/src/operator/MetaOperatorDefs/PaddedAvgPooling.cpp @@ -0,0 +1,84 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include "aidge/operator/MetaOperatorDefs.hpp" + +#include <array> +#include <memory> +#include <string> + +#include "aidge/graph/GraphView.hpp" +#include "aidge/graph/Node.hpp" +#include "aidge/graph/OpArgs.hpp" +#include "aidge/operator/AvgPooling.hpp" +#include "aidge/operator/MetaOperator.hpp" +#include "aidge/operator/Pad.hpp" +#include "aidge/utils/ArrayHelpers.hpp" +#include "aidge/utils/Types.h" + +namespace Aidge { + +////////////////////////////////// +// Node functions +////////////////////////////////// + +template <std::array<DimSize_t, 1>::size_type DIM> +std::shared_ptr<Node> PaddedAvgPooling(const std::array<DimSize_t, DIM> &kernel_dims, + const std::string& name, + const std::array<DimSize_t, DIM> &stride_dims, + const std::array<DimSize_t, 2*DIM> &padding_dims) +{ + auto graph = Sequential({ + Pad<DIM>(padding_dims, (!name.empty()) ? name + "_pad" : ""), + AvgPooling(kernel_dims, (!name.empty()) ? name + "_avgpooling" : "", stride_dims) + }); + + return MetaOperator("PaddedAvgPooling", graph, name); +} + +template std::shared_ptr<Node> PaddedAvgPooling<1>(const std::array<DimSize_t,1>&, const std::string&, const std::array<DimSize_t,1>&, const std::array<DimSize_t,2>&); +template std::shared_ptr<Node> PaddedAvgPooling<2>(const std::array<DimSize_t,2>&, const std::string&, const std::array<DimSize_t,2>&, const std::array<DimSize_t,4>&); + +// helper with C-style array instead of std::array for kernel_dims to allow automatic template DIM deduction +template <DimSize_t DIM> +std::shared_ptr<Node> PaddedAvgPooling(const DimSize_t (&kernel_dims)[DIM], + const std::string& name, + const std::array<DimSize_t, DIM> &stride_dims, + const std::array<DimSize_t, 2*DIM> &padding_dims) +{ + return PaddedAvgPooling(to_array(kernel_dims), name, stride_dims, padding_dims); +} + +template std::shared_ptr<Node> PaddedAvgPooling<1>(const DimSize_t (&kernel_dims)[1], const std::string&, const std::array<DimSize_t,1>&, const std::array<DimSize_t,2>&); +template std::shared_ptr<Node> PaddedAvgPooling<2>(const DimSize_t (&kernel_dims)[2], const std::string&, const std::array<DimSize_t,2>&, const std::array<DimSize_t,4>&); + + +////////////////////////////////// +// Operator functions +////////////////////////////////// + +template <std::array<DimSize_t, 1>::size_type DIM> +inline std::shared_ptr<MetaOperator_Op> PaddedAvgPooling_Op(const std::array<DimSize_t, DIM> &kernel_dims, + const std::array<DimSize_t, DIM> &stride_dims, + const std::array<DimSize_t, 2*DIM> &padding_dims) +{ + auto graph = Sequential({ + Pad<DIM>(padding_dims, ""), + AvgPooling(kernel_dims, "", stride_dims) + }); + + return std::make_shared<MetaOperator_Op>("PaddedAvgPooling", graph); +} + +template std::shared_ptr<MetaOperator_Op> PaddedAvgPooling_Op<1>(const std::array<DimSize_t,1>&, const std::array<DimSize_t,1>&, const std::array<DimSize_t,2>&); +template std::shared_ptr<MetaOperator_Op> PaddedAvgPooling_Op<2>(const std::array<DimSize_t,2>&, const std::array<DimSize_t,2>&, const std::array<DimSize_t,4>&); + +} // namespace Aidge diff --git a/src/operator/Mul.cpp b/src/operator/Mul.cpp index 426de388f31391fb5e59446d50e50de94ca5f8a1..ded67a11acd299e5407f0d7e74146f5bcd1bf86a 100644 --- a/src/operator/Mul.cpp +++ b/src/operator/Mul.cpp @@ -24,13 +24,7 @@ const std::string Aidge::Mul_Op::Type = "Mul"; bool Aidge::Mul_Op::forwardDims(bool /*allowDataDependency*/) { - // check inputs have been associated - if (!getInput(0) || !getInput(1)) { - AIDGE_THROW_OR_ABORT(std::runtime_error, "At least one input was not connected"); - } - - if (!getInput(0)->empty() && !getInput(1)->empty()) { - + if (inputsAssociated()) { const std::vector<std::size_t>& inputsDims0 = getInput(0)->dims(); const std::vector<std::size_t>& inputsDims1 = getInput(1)->dims(); diff --git a/src/operator/OperatorTensor.cpp b/src/operator/OperatorTensor.cpp index 2a60f580f3279170a0f1ff417cea96ae7cfa981f..5df90020a43ad6cffebcd2345c075837f11462b1 100644 --- a/src/operator/OperatorTensor.cpp +++ b/src/operator/OperatorTensor.cpp @@ -9,7 +9,6 @@ * ********************************************************************************/ -#include <cassert> #include <memory> #include "aidge/operator/OperatorTensor.hpp" @@ -20,11 +19,10 @@ Aidge::OperatorTensor::OperatorTensor(const std::string& type, - const IOIndex_t nbData, - const IOIndex_t nbParam, + const std::vector<InputCategory>& inputsCategory, const IOIndex_t nbOut) -: Operator(type, nbData, nbParam, nbOut, OperatorType::Tensor), - mInputs(std::vector<std::shared_ptr<Tensor>>(nbData + nbParam, nullptr)), +: Operator(type, inputsCategory, nbOut, OperatorType::Tensor), + mInputs(std::vector<std::shared_ptr<Tensor>>(inputsCategory.size(), nullptr)), mOutputs(std::vector<std::shared_ptr<Tensor>>(nbOut)) { for (std::size_t i = 0; i < static_cast<std::size_t>(nbOut); ++i) { mOutputs[i] = std::make_shared<Tensor>(); @@ -51,6 +49,11 @@ void Aidge::OperatorTensor::associateInput(const Aidge::IOIndex_t inputIdx, cons mInputs[inputIdx] = std::dynamic_pointer_cast<Tensor>(data); } +void Aidge::OperatorTensor::resetInput(const Aidge::IOIndex_t inputIdx) { + AIDGE_ASSERT(inputIdx < nbInputs(), "Input idx out of range."); + mInputs[inputIdx] = nullptr; +} + void Aidge::OperatorTensor::setInput(const Aidge::IOIndex_t inputIdx, const std::shared_ptr<Aidge::Data>& data) { AIDGE_ASSERT(data->type() == Tensor::Type, "{} Operator only accepts Tensors as inputs", type()); if (getInput(inputIdx)) { @@ -62,15 +65,6 @@ void Aidge::OperatorTensor::setInput(const Aidge::IOIndex_t inputIdx, const std: Aidge::OperatorTensor::~OperatorTensor() = default; -void Aidge::OperatorTensor::setInput(const Aidge::IOIndex_t inputIdx, std::shared_ptr<Aidge::Data>&& data) { - AIDGE_ASSERT(data->type() == Tensor::Type, "{} Operator only accepts Tensors as inputs", type()); - if (getInput(inputIdx)) { - *mInputs[inputIdx] = std::move(*std::dynamic_pointer_cast<Tensor>(data)); - } else { - mInputs[inputIdx] = std::make_shared<Tensor>(std::move(*std::dynamic_pointer_cast<Tensor>(data))); - } -} - std::shared_ptr<Aidge::Data> Aidge::OperatorTensor::getRawInput(const Aidge::IOIndex_t inputIdx) const { return std::static_pointer_cast<Data>(getInput(inputIdx)); } @@ -88,15 +82,6 @@ void Aidge::OperatorTensor::setOutput(const Aidge::IOIndex_t outputIdx, const st *mOutputs[outputIdx] = *data_tensor; } -void Aidge::OperatorTensor::setOutput(const Aidge::IOIndex_t outputIdx, std::shared_ptr<Aidge::Data>&& data) { - AIDGE_ASSERT(data->type() == Tensor::Type, "{} Operator only accepts Tensors as inputs", type()); - AIDGE_ASSERT(outputIdx < nbOutputs(), "{} Operator has {} outputs", type(), nbOutputs()); - auto&& data_tensor = std::dynamic_pointer_cast<Tensor>(data); - // if (mImpl) - // AIDGE_ASSERT(data_tensor->getImpl()->backend() == backend(), "Data parameter and Operator have different backends: {} and {}", data_tensor->getImpl()->backend(), backend()); - *mOutputs[outputIdx] = std::move(*data_tensor); -} - std::shared_ptr<Aidge::Data> Aidge::OperatorTensor::getRawOutput(const Aidge::IOIndex_t outputIdx) const { return std::static_pointer_cast<Data>(getOutput(outputIdx)); } @@ -116,9 +101,6 @@ std::vector<std::pair<std::vector<Aidge::DimSize_t>, std::vector<Aidge::DimSize_ if (outputIdx >= nbOutputs()) { AIDGE_THROW_OR_ABORT(std::runtime_error, "Operator output index out of range."); } - if (nbInputs() != nbData()) { - AIDGE_THROW_OR_ABORT(std::runtime_error, "Operator has attributes. Must be handled in an overrided function."); - } if (!dimsForwarded() || getOutput(0)->nbDims() != outputDims.size()) { AIDGE_THROW_OR_ABORT(std::runtime_error, "Given outputDim out of range or output dim not forwarded yet."); } @@ -128,19 +110,28 @@ std::vector<std::pair<std::vector<Aidge::DimSize_t>, std::vector<Aidge::DimSize_ } } // return the same Tensor description as given in function parameter for each data input - return std::vector<std::pair<std::vector<Aidge::DimSize_t>, std::vector<Aidge::DimSize_t>>>(nbData(),std::pair<std::vector<Aidge::DimSize_t>, std::vector<Aidge::DimSize_t>>(firstEltDims, outputDims)); + return std::vector<std::pair<std::vector<Aidge::DimSize_t>, std::vector<Aidge::DimSize_t>>>(nbInputs(),std::pair<std::vector<Aidge::DimSize_t>, std::vector<Aidge::DimSize_t>>(firstEltDims, outputDims)); } -bool Aidge::OperatorTensor::forwardDims(bool /*allowDataDependency*/) { - // check inputs have been associated - bool associated = (nbInputs() > 0); // do not compute anything if no input +bool Aidge::OperatorTensor::inputsAssociated(bool checkNonEmpty) const { + bool associated = true; for (IOIndex_t i = 0; i < nbInputs(); ++i) { - if (!getInput(i)) { - AIDGE_THROW_OR_ABORT(std::runtime_error, "{}: input #{} should be associated with a Tensor", type(), i); + if (inputCategory(i) != InputCategory::OptionalData && inputCategory(i) != InputCategory::OptionalParam) { + if (!getInput(i)) { + AIDGE_THROW_OR_ABORT(std::runtime_error, "{}: input #{} should be associated with a Tensor", type(), i); + } + } + + if (checkNonEmpty && getInput(i)) { + associated &= !(getInput(i)->empty()); } - associated &= !(getInput(i)->empty()); } - if (associated) { + + return associated; +} + +bool Aidge::OperatorTensor::forwardDims(bool /*allowDataDependency*/) { + if (inputsAssociated()) { const auto expectedDims = getInput(0)->dims(); for (std::size_t i = 1; i < nbInputs(); ++i) { if (expectedDims != getInput(i)->dims()) { @@ -150,16 +141,19 @@ bool Aidge::OperatorTensor::forwardDims(bool /*allowDataDependency*/) { } } mOutputs[0]->resize(expectedDims); + return true; } - return associated; + return false; } bool Aidge::OperatorTensor::dimsForwarded() const { bool forwarded = true; // check both inputs and outputs have been filled for (IOIndex_t i = 0; i < nbInputs(); ++i) { - forwarded &= mInputs[i] ? !(getInput(i)->empty()) : false; + if (inputCategory(i) != InputCategory::OptionalData && inputCategory(i) != InputCategory::OptionalParam) { + forwarded &= mInputs[i] ? !(getInput(i)->empty()) : false; + } } for (IOIndex_t i = 0; i < nbOutputs(); ++i) { // If getOutput(i) is nullptr, ignore this output (it may be a dummy @@ -174,15 +168,39 @@ void Aidge::OperatorTensor::setDataType(const DataType& dataType) const { getOutput(i)->setDataType(dataType); } - for (IOIndex_t i = nbData(); i < nbInputs(); ++i) { - AIDGE_ASSERT(getInput(i) != nullptr, "Missing input#{} for operator {}", i, type()); - getInput(i)->setDataType(dataType); + // Set data type for parameters inputs only (weights, bias...), which are usually Producers + for (IOIndex_t i = 0; i < nbInputs(); ++i) { + if (inputCategory(i) == InputCategory::Param) { + AIDGE_ASSERT(getInput(i) != nullptr, "Missing input#{} for operator {}", i, type()); + getInput(i)->setDataType(dataType); + } + else if (inputCategory(i) == InputCategory::OptionalParam && getInput(i) != nullptr) { + getInput(i)->setDataType(dataType); + } + } +} + +void Aidge::OperatorTensor::setDataFormat(const DataFormat& dataFormat) const { + for (IOIndex_t i = 0; i < nbOutputs(); ++i) { + getOutput(i)->setDataFormat(dataFormat); + } + + // Set data format for parameters inputs only (weights, bias...), which are usually Producers + for (IOIndex_t i = 0; i < nbInputs(); ++i) { + if (inputCategory(i) == InputCategory::Param) { + AIDGE_ASSERT(getInput(i) != nullptr, "Missing input#{} for operator {}", i, type()); + getInput(i)->setDataFormat(dataFormat); + } + else if (inputCategory(i) == InputCategory::OptionalParam && getInput(i) != nullptr) { + getInput(i)->setDataFormat(dataFormat); + } } } void Aidge::OperatorTensor::forward() { if (!dimsForwarded()) { - forwardDims(); + // Allow data dependent forwardDims at this point (data is available) + forwardDims(true); } Operator::forward(); diff --git a/src/operator/Pad.cpp b/src/operator/Pad.cpp new file mode 100644 index 0000000000000000000000000000000000000000..c66e6c84af6df299e4786bbbb73767d6ee6374f5 --- /dev/null +++ b/src/operator/Pad.cpp @@ -0,0 +1,19 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include "aidge/operator/Pad.hpp" +#include "aidge/utils/Types.h" + +template <Aidge::DimIdx_t DIM> +const std::string Aidge::Pad_Op<DIM>::Type = "Pad"; + +template class Aidge::Pad_Op<1>; +template class Aidge::Pad_Op<2>; diff --git a/src/operator/Pop.cpp b/src/operator/Pop.cpp index 18325d80a94f35878ededca839ec809000527c39..2fcc46a460ffd7c7f6746dfcd108acbaafe912de 100644 --- a/src/operator/Pop.cpp +++ b/src/operator/Pop.cpp @@ -30,19 +30,15 @@ Aidge::Elts_t Aidge::Pop_OpImpl::getNbRequiredData(const Aidge::IOIndex_t inputI void Aidge::Pop_OpImpl::forward() { const Pop_Op& op = dynamic_cast<const Pop_Op&>(mOp); + assert(op.getInput(0) && "missing input #0"); - const unsigned int forwardStep = op.template getAttr<PopAttr::ForwardStep>(); - *op.getOutput(0) = op.getInput(0)->extract({forwardStep}); + *op.getOutput(0) = op.getInput(0)->extract({op.forwardStep()}); } const std::string Aidge::Pop_Op::Type = "Pop"; bool Aidge::Pop_Op::forwardDims(bool /*allowDataDependency*/) { - // check inputs have been associated - if (!getInput(0)) { - AIDGE_THROW_OR_ABORT(std::runtime_error, "{}: input #0 should be associated with a Tensor", type()); - } - if (!(getInput(0)->empty())) { + if (inputsAssociated()) { auto inputDims = getInput(0)->dims(); inputDims.erase(inputDims.begin()); getOutput(0)->resize(inputDims); @@ -54,7 +50,7 @@ bool Aidge::Pop_Op::forwardDims(bool /*allowDataDependency*/) { void Aidge::Pop_Op::updateConsummerProducer() { Operator::updateConsummerProducer(); - this->template getAttr<PopAttr::ForwardStep>() = 0; + mAttributes->template getAttr<PopAttr::ForwardStep>() = 0; } void Aidge::Pop_Op::setBackend(const std::string& name, Aidge::DeviceIdx_t device) { @@ -69,5 +65,5 @@ void Aidge::Pop_Op::setBackend(const std::string& name, Aidge::DeviceIdx_t devic void Aidge::Pop_Op::forward() { Operator::forward(); - ++this->template getAttr<PopAttr::ForwardStep>(); + ++mAttributes->template getAttr<PopAttr::ForwardStep>(); } diff --git a/src/operator/Pow.cpp b/src/operator/Pow.cpp index 135c792345b0caf1166e671a8dad7d5b49b42ee7..2a50f9c7bad1e40cd6e69cfc0a22632439cfe000 100644 --- a/src/operator/Pow.cpp +++ b/src/operator/Pow.cpp @@ -23,13 +23,7 @@ const std::string Aidge::Pow_Op::Type = "Pow"; bool Aidge::Pow_Op::forwardDims(bool /*allowDataDependency*/) { - // check inputs have been associated - if (!getInput(0) || !getInput(1)) { - AIDGE_THROW_OR_ABORT(std::runtime_error, "At least one input was not connected"); - } - - if (!getInput(0)->empty() && !getInput(1)->empty()) { - + if (inputsAssociated()) { const std::vector<std::size_t>& inputsDims0 = getInput(0)->dims(); const std::vector<std::size_t>& inputsDims1 = getInput(1)->dims(); diff --git a/src/operator/Producer.cpp b/src/operator/Producer.cpp index 7059ea7e989d789b4cff0ed895fc2c5ec0ad81bc..bdb69452ec54fb635d0cbc299336071295f37ae1 100644 --- a/src/operator/Producer.cpp +++ b/src/operator/Producer.cpp @@ -28,8 +28,9 @@ const std::string Aidge::Producer_Op::Type = "Producer"; Aidge::Producer_Op::Producer_Op(const std::shared_ptr<Aidge::Tensor> tensor, bool constant) - : OperatorTensor(Type, 0, 0, 1), - Attributes_(attr<ProdAttr::Constant>(constant)) + : OperatorTensor(Type, {}, 1), + mAttributes(std::make_shared<Attributes_>( + attr<ProdAttr::Constant>(constant))) { mOutputs[0] = tensor; // copy the pointer of the Tensor if (mOutputs[0]->getImpl() && Registrar<Producer_Op>::exists({mOutputs[0]->getImpl()->backend()})){ @@ -47,7 +48,7 @@ Aidge::Producer_Op::Producer_Op(const std::shared_ptr<Aidge::Tensor> tensor, boo */ Aidge::Producer_Op::Producer_Op(const Aidge::Producer_Op& op) : OperatorTensor(op), - Attributes_(op) + mAttributes(op.mAttributes) { mOutputs[0] = std::make_shared<Tensor>(*(op.getOutput(0))); if (mOutputs[0]->getImpl() && Registrar<Producer_Op>::exists({mOutputs[0]->getImpl()->backend()})){ diff --git a/src/operator/ReduceMean.cpp b/src/operator/ReduceMean.cpp index 28e39b6d3387a0371c0505dc0a7b350e83a2bbaf..96f2f855f46275e167acb1300434f8bcdbdd7d3e 100644 --- a/src/operator/ReduceMean.cpp +++ b/src/operator/ReduceMean.cpp @@ -27,12 +27,9 @@ const std::string Aidge::ReduceMean_Op::Type = "ReduceMean"; bool Aidge::ReduceMean_Op::forwardDims(bool /*allowDataDependency*/) { - if (!getInput(0)) { - AIDGE_THROW_OR_ABORT(std::runtime_error, "Every input should be associated with a Tensor"); - } - if (!getInput(0)->empty()) { + if (inputsAssociated()) { // make Axes attribute positive - std::vector<std::int32_t>& axes = this->template getAttr<ReduceMeanAttr::Axes>(); + std::vector<std::int32_t>& axes = mAttributes->template getAttr<ReduceMeanAttr::Axes>(); std::for_each(axes.begin(), axes.end(), [&] (std::int32_t& val) { if (val < 0) val+=static_cast<std::int32_t>(getInput(0)->nbDims()); @@ -41,7 +38,7 @@ bool Aidge::ReduceMean_Op::forwardDims(bool /*allowDataDependency*/) { // build output dimensions std::vector<DimSize_t> outDims = getInput(0)->dims(); - if (this->template getAttr<ReduceMeanAttr::KeepDims>()) { + if (mAttributes->template getAttr<ReduceMeanAttr::KeepDims>()) { std::for_each(axes.cbegin(), axes.cend(), [&outDims] (const std::int32_t& val) { outDims[val] = 1; }); } else { diff --git a/src/operator/Reshape.cpp b/src/operator/Reshape.cpp index ab53c094dac09879c1bec86509463aab2280ca92..1838c008a6b83548b6a5a80af0363e2cf239b649 100644 --- a/src/operator/Reshape.cpp +++ b/src/operator/Reshape.cpp @@ -30,22 +30,48 @@ void Aidge::Reshape_OpImpl::forward() { const std::string Aidge::Reshape_Op::Type = "Reshape"; -bool Aidge::Reshape_Op::forwardDims(bool /*allowDataDependency*/) { - // check input has been associated - if (!getInput(0)) { - AIDGE_THROW_OR_ABORT(std::runtime_error, "Input was not connected"); +bool Aidge::Reshape_Op::dimsForwarded() const { + if (getInput(1) && !getInput(1)->empty()) { + // output dims are data dependent + return false; } - if (!getInput(0)->empty()) { + return OperatorTensor::dimsForwarded(); +} + +bool Aidge::Reshape_Op::forwardDims(bool allowDataDependency) { + if (inputsAssociated()) { + // Copy optional input #1, if present, to attribute Shape + if (getInput(1)) { + if (!this->shape().empty()) { + Log::notice("Reshape_Op: ignoring non-empty Shape attribute because input#1 takes precedence"); + } + + if (!allowDataDependency) { + Log::warn("Reshape_Op: unable to forwardDims() because output dims are data dependent on input#1"); + return false; + } + + std::shared_ptr<Tensor> fallback; + this->shape().clear(); // If both are provided input would override attrs + this->shape().reserve(getInput(1)->size()); + const auto& shape = mInputs[1]->refCastFrom(fallback, NativeType<int64_t>::type, "cpu"); + std::copy_n(static_cast<int64_t*>(shape.getImpl()->hostPtr()), + shape.size(), + std::back_inserter(this->shape())); + } + + AIDGE_ASSERT(!this->shape().empty(), "Missing input#1 or Shape attribute"); + + // Compute output dims std::vector<DimSize_t> outDims; // variables to handle a negative dimension bool foundNegativeDimension = false; std::size_t outSize = 1; DimIdx_t negativeIndex = 0; - - for(std::size_t i = 0; i < this->template getAttr<ReshapeAttr::Shape>().size(); ++i) + for(std::size_t i = 0; i < this->shape().size(); ++i) { - std::int64_t dimSize = this->template getAttr<ReshapeAttr::Shape>()[i]; + int64_t dimSize = this->shape()[i]; if (dimSize < 0) { if (foundNegativeDimension) { AIDGE_THROW_OR_ABORT(std::runtime_error, "Found more than one negative dimension in Reshape Operator."); @@ -54,8 +80,14 @@ bool Aidge::Reshape_Op::forwardDims(bool /*allowDataDependency*/) { dimSize = 1; negativeIndex = static_cast<DimIdx_t>(i); } + else if (dimSize == 0 && !mAttributes->template getAttr<ReshapeAttr::AllowZero>()) + { + dimSize = getInput(0) -> dims()[i]; + } outDims.push_back(static_cast<DimSize_t>(dimSize)); - outSize *= static_cast<DimSize_t>(dimSize); + if (dimSize != 0) { + outSize *= static_cast<DimSize_t>(dimSize); + } } if (foundNegativeDimension) { diff --git a/src/operator/Resize.cpp b/src/operator/Resize.cpp new file mode 100644 index 0000000000000000000000000000000000000000..966e1c3e032e64e75d3606fca022b84f9da8fbaf --- /dev/null +++ b/src/operator/Resize.cpp @@ -0,0 +1,121 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include "aidge/operator/Resize.hpp" + +#include <cstddef> // std::size_t +#include <cstdint> // std::int64_t +#include <stdexcept> // std::runtime_error +#include <string> +#include <vector> +#include <fmt/core.h> + +#include "aidge/backend/OperatorImpl.hpp" +#include "aidge/data/Tensor.hpp" +#include "aidge/utils/ErrorHandling.hpp" +#include "aidge/utils/Types.h" + +const std::string Aidge::Resize_Op::Type = "Resize"; + +bool Aidge::Resize_Op::dimsForwarded() const { + // in case of ROI add getInput(1) condition + if ((getInput(1) && !getInput(1)->empty()) + || (getInput(2) && !getInput(2)->empty()) + || (getInput(3) && !getInput(3)->empty()) + ) + { + // output dims are data dependent + return false; + } + + return OperatorTensor::dimsForwarded(); +} + +bool Aidge::Resize_Op::forwardDims(bool allowDataDependency) { + if (inputsAssociated()) { + AIDGE_ASSERT(getInput(0)->nbDims() == 4, + "input tensor must have dimensions = 4 (batch, channel, height, width)."); + + const bool input1ROIPresent = getInput(1) && !getInput(1)->empty(); + const bool input2ScalesPresent = getInput(2) && !getInput(2)->empty(); + const bool input3SizesPresent = getInput(3) && !getInput(3)->empty(); + + AIDGE_ASSERT(input2ScalesPresent != input3SizesPresent, "Only one of scales and sizes can be specified.") + + if (input1ROIPresent) { + AIDGE_THROW_OR_ABORT(std::runtime_error, "Input #1 (ROI) is given and it is not supported."); + } + else if (input2ScalesPresent) { + if (!allowDataDependency) { + Log::warn("Resize_Op: cannot execute forwardDims() as the output dimensions depend on the input #2"); + return false; + } + + AIDGE_ASSERT(getInput(0)->nbDims() == getInput(2)->size(), + "input #0 and input #2 (Scales) must have the same dimensions."); + + std::vector<DimSize_t> outDims = getInput(0)->dims(); + const std::vector<DimSize_t> inDims = getInput(0)->dims(); + + std::shared_ptr<Tensor> fallback; + const auto& scales = getInput(2)->refCastFrom(fallback, NativeType<int64_t>::type, "cpu"); + + for (std::size_t dim=0; dim < getInput(2)->size(); ++dim) { + outDims[dim] = inDims[dim]*static_cast<int64_t*>(scales.getImpl()->hostPtr())[dim]; + } + + mOutputs[0]->resize(outDims); + return true; + } + else if (input3SizesPresent) { + if (!allowDataDependency) { + Log::warn("Resize_Op: cannot execute forwardDims() as the output dimensions depend on the input #3"); + return false; + } + + AIDGE_ASSERT(getInput(0)->nbDims() == getInput(3)->size(), + "input #0 and input #3 (Sizes) must have the same dimensions."); + + std::vector<DimSize_t> outDims = getInput(0)->dims(); + + std::shared_ptr<Tensor> fallback; + const auto& sizes = getInput(3)->refCastFrom(fallback, NativeType<int64_t>::type, "cpu"); + + for (std::size_t dim=0; dim < getInput(3)->size(); ++dim) { + outDims[dim] = static_cast<int64_t*>(sizes.getImpl()->hostPtr())[dim]; + } + + mOutputs[0]->resize(outDims); + return true; + } + else { + AIDGE_THROW_OR_ABORT(std::runtime_error, "Error: Either Input #2 or Input #3 must be present."); + } + } + + return false; +} + +void Aidge::Resize_Op::setBackend(const std::string& name, Aidge::DeviceIdx_t device) { + SET_IMPL_MACRO(Resize_Op, *this, name); + mOutputs[0]->setBackend(name, device); + + // By default, automatically set backend for all inputs: roi, scales and sizes + if(getInput(1)) { + getInput(1)->setBackend(name, device); + } + if(getInput(2)) { + getInput(2)->setBackend(name, device); + } + if(getInput(3)) { + getInput(3)->setBackend(name, device); + } +} \ No newline at end of file diff --git a/src/operator/Shape.cpp b/src/operator/Shape.cpp new file mode 100644 index 0000000000000000000000000000000000000000..8166712e1e5fd967bb9328e95ecf8c5388636ba7 --- /dev/null +++ b/src/operator/Shape.cpp @@ -0,0 +1,65 @@ +/******************************************************************************** + * Copyright (c) 2024 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <cstddef> // std::size_t +#include <cstdint> // std::int64_t +#include <string> +#include <vector> + +#include "aidge/operator/Shape.hpp" +#include "aidge/data/Tensor.hpp" +#include "aidge/utils/ErrorHandling.hpp" +#include "aidge/utils/Types.h" + +void Aidge::Shape_OpImpl::forward() { + const Shape_Op& op = dynamic_cast<const Shape_Op&>(mOp); + const auto start = op.start(); + const auto end = op.end(); + + op.getOutput(0)->getImpl()->copyCast(std::next(op.getInput(0)->dims().data(), + start), + DataType::UInt64, + end - start + 1); +} + +const std::string Aidge::Shape_Op::Type = "Shape"; + +bool Aidge::Shape_Op::forwardDims(bool /*allowDataDependency*/) { + if (inputsAssociated()) { + if (mAttributes->template getAttr<std::int64_t>("Start") < 0) + mAttributes->template getAttr<std::int64_t>("Start") += static_cast<std::int64_t>(getInput(0)->nbDims()); + if (mAttributes->template getAttr<std::int64_t>("End") < 0) + mAttributes->template getAttr<std::int64_t>("End") += static_cast<std::int64_t>(getInput(0)->nbDims()); + + const auto start = mAttributes->template getAttr<std::int64_t>("Start"); + const auto end = mAttributes->template getAttr<std::int64_t>("End"); + const auto nbDims = static_cast<std::int64_t>(getInput(0)->nbDims()); + const DimSize_t roi = end - start + 1; + + AIDGE_ASSERT(start < nbDims && end < nbDims, "'Start' and 'End' must be < {}", nbDims); + AIDGE_ASSERT(roi> 1, "Unvalid ROI for Shape"); + + mOutputs[0]->resize({roi}); + return true; + } + + return false; +} + +void Aidge::Shape_Op::setBackend(const std::string& name, Aidge::DeviceIdx_t device) { + if (Registrar<Shape_Op>::exists({name})) { + SET_IMPL_MACRO(Shape_Op, *this, name); + } + else { + mImpl = std::make_shared<Shape_OpImpl>(*this); + } + mOutputs[0]->setBackend(name, device); +} diff --git a/src/operator/ShiftGELU.cpp b/src/operator/ShiftGELU.cpp new file mode 100644 index 0000000000000000000000000000000000000000..ede83e291bd1670885192e3ac8f4958e185c28e2 --- /dev/null +++ b/src/operator/ShiftGELU.cpp @@ -0,0 +1,27 @@ +/******************************************************************************** + * Copyright (c) 2024 Thales + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * Author: Lucas RAKOTOARIVONY, Thales Research & Technology France + * Date: 25.06.2024 + * + ********************************************************************************/ + +#include "aidge/operator/ShiftGELU.hpp" + +#include <memory> +#include <string> + +#include "aidge/data/Tensor.hpp" +#include "aidge/utils/Types.h" + +const std::string Aidge::ShiftGELU_Op::Type = "ShiftGELU"; + +void Aidge::ShiftGELU_Op::setBackend(const std::string& name, DeviceIdx_t device) { + SET_IMPL_MACRO(ShiftGELU_Op, *this, name); + mOutputs[0]->setBackend(name, device); +} \ No newline at end of file diff --git a/src/operator/ShiftMax.cpp b/src/operator/ShiftMax.cpp new file mode 100644 index 0000000000000000000000000000000000000000..eb77ae655354eac03fbdc0f1a84a44391795ee8c --- /dev/null +++ b/src/operator/ShiftMax.cpp @@ -0,0 +1,27 @@ +/******************************************************************************** + * Copyright (c) 2024 Thales + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * Author: Lucas RAKOTOARIVONY, Thales Research & Technology France + * Date: 25.06.2024 + * + ********************************************************************************/ + +#include "aidge/operator/ShiftMax.hpp" + +#include <memory> +#include <string> + +#include "aidge/data/Tensor.hpp" +#include "aidge/utils/Types.h" + +const std::string Aidge::ShiftMax_Op::Type = "ShiftMax"; + +void Aidge::ShiftMax_Op::setBackend(const std::string& name, DeviceIdx_t device) { + SET_IMPL_MACRO(ShiftMax_Op, *this, name); + mOutputs[0]->setBackend(name, device); +} \ No newline at end of file diff --git a/src/operator/Slice.cpp b/src/operator/Slice.cpp index 97ec0a5171a8f13fee0a93557b6831443f10713a..3cc2de686435a304326e2a4a60dad6c12a50349c 100644 --- a/src/operator/Slice.cpp +++ b/src/operator/Slice.cpp @@ -8,126 +8,172 @@ * SPDX-License-Identifier: EPL-2.0 * ********************************************************************************/ + #include "aidge/operator/Slice.hpp" -#include "aidge/utils/Types.h" -#include "aidge/utils/ErrorHandling.hpp" #include <cassert> #include <cstddef> +#include <cstdint> #include <string> #include <utility> #include <vector> +#include <fmt/format.h> + #include "aidge/backend/OperatorImpl.hpp" +#include "aidge/data/Data.hpp" +#include "aidge/data/Tensor.hpp" #include "aidge/utils/ErrorHandling.hpp" #include "aidge/utils/Types.h" -void Aidge::Slice_OpImpl::forward() { - const Slice_Op& op = dynamic_cast<const Slice_Op&>(mOp); - const auto inputDims = op.getInput(0)->dims(); - auto slicedDims = op.getInput(0)->dims(); - - std::size_t beginning = 0; - DimSize_t nbAxes = op.getAttr<SliceAttr::Axes>().size(); - for (std::size_t i = 0; i < nbAxes; ++i) { - // For each slice operation get the params and cast them to size_t - const std::int64_t axis_ = op.getAttr<SliceAttr::Axes>()[i]; - const std::int64_t start_ = op.getAttr<SliceAttr::Starts>()[i]; - const std::int64_t end_ = op.getAttr<SliceAttr::Ends>()[i]; - const std::size_t axis = axis_ >= 0 ? axis_ : static_cast<std::size_t>(axis_) + inputDims.size(); - const std::size_t start = start_ >= 0 ? start_ : start_ + inputDims[axis]; - const std::size_t end = end_ >= 0 ? end_ : end_ + inputDims[axis]; - std::size_t stride = 1; - for (std::size_t j = inputDims.size() - 1; j > axis; --j) stride *= inputDims[j]; - beginning += start * stride; - const std::size_t sliceLength = end - start + 1; - slicedDims[axis] = sliceLength; +const std::string Aidge::Slice_Op::Type = "Slice"; + +bool Aidge::Slice_Op::dimsForwarded() const { + if ((getInput(1) && !getInput(1)->empty()) + || (getInput(2) && !getInput(2)->empty()) + || (getInput(3) && !getInput(3)->empty()) + || (getInput(4) && !getInput(4)->empty())) + { + // output dims are data dependent + return false; } - const std::size_t nbDims = slicedDims.size(); + return OperatorTensor::dimsForwarded(); +} - // for inputDims = {4,5,5,3} & slicedDims = {3,2,2,1}, substractDims = {1,5,5,3} - std::vector<std::size_t> substractedDims = std::vector<std::size_t>(nbDims); - for (std::size_t i = 0; i < nbDims; ++i) { - substractedDims[i] = inputDims[i] - slicedDims[i]; - } +bool Aidge::Slice_Op::forwardDims(bool allowDataDependency) { + if (inputsAssociated()) { + std::shared_ptr<Tensor> fallback; + // Copy optional input #1, if present, to attribute Starts + if (getInput(1)) { + if (!this->starts().empty()) { + Log::notice("Slice_Op: ignoring non-empty Starts attribute because input#1 takes precedence"); + } - // for slicedDims = {3,2,2,1}, prodSlicedDims = {12,4,2,1} - std::vector<std::size_t> prodSlicedDims = std::vector<std::size_t>(nbDims); - std::vector<std::size_t> prodInputDims = std::vector<std::size_t>(nbDims + 1); - prodSlicedDims[nbDims - 1] = slicedDims[nbDims - 1]; - prodInputDims[nbDims - 1] = inputDims[nbDims - 1]; - prodInputDims[nbDims] = 1; - for (std::size_t i = 2; i <= nbDims; ++i) { - prodSlicedDims[nbDims - i] = prodSlicedDims[nbDims - i + 1] * slicedDims[nbDims - i]; - prodInputDims[nbDims - i] = prodInputDims[nbDims - i + 1] * inputDims[nbDims - i]; - } + if (!allowDataDependency) { + Log::warn("Slice_Op: unable to forwardDims() because output dims are data dependent on input#1"); + return false; + } + + this->starts().clear(); // If both are provided input would override attrs + this->starts().reserve(getInput(1)->size()); + const auto& starts = getInput(1)->refCastFrom(fallback, NativeType<int64_t>::type, "cpu"); + std::copy_n(static_cast<int64_t*>(starts.getImpl()->hostPtr()), + starts.size(), + std::back_inserter(this->starts())); + } + + AIDGE_ASSERT(!this->starts().empty(), "Missing input#1 or Starts attribute"); + + // Copy optional input #2, if present, to attribute Ends + if (getInput(2)) { + if (!this->ends().empty()) { + Log::notice("Slice_Op: ignoring non-empty Ends attribute because input#2 takes precedence"); + } + + if (!allowDataDependency) { + Log::warn("Slice_Op: unable to forwardDims() because output dims are data dependent on input#2"); + return false; + } + + this->ends().clear(); // If both are provided input would override attrs + this->ends().reserve(getInput(2)->size()); + const auto& ends = getInput(2)->refCastFrom(fallback, NativeType<int64_t>::type, "cpu"); + std::copy_n(static_cast<int64_t*>(ends.getImpl()->hostPtr()), + ends.size(), + std::back_inserter(this->ends())); + } - std::size_t i = beginning; - std::size_t size = 0; - std::size_t offset = 0; - for (std::size_t j = 0; j < prodSlicedDims[0];) { - ++size; - ++i; - ++j; - bool newChunk = false; - for (std::size_t idx = nbDims - 1; idx > 0; --idx) { - if (j % prodSlicedDims[idx] == 0) { - i += substractedDims[idx] * prodInputDims[idx + 1]; - newChunk = true; + AIDGE_ASSERT(!this->ends().empty(), "Missing input#2 or Ends attribute"); + + // Copy optional input #3, if present, to attribute Axes + if (getInput(3)) { + if (!this->axes().empty()) { + Log::notice("Slice_Op: ignoring non-empty Axes attribute because input#3 takes precedence"); + } + + if (!allowDataDependency) { + Log::warn("Slice_Op: unable to forwardDims() because output dims are data dependent on input#3"); + return false; } + + this->axes().clear(); // If both are provided input would override attrs + this->axes().reserve(getInput(3)->size()); + const auto& axes = getInput(3)->refCastFrom(fallback, NativeType<int8_t>::type, "cpu"); + std::copy_n(static_cast<int8_t*>(axes.getImpl()->hostPtr()), + axes.size(), + std::back_inserter(this->axes())); } - if (newChunk) { - op.getOutput(0)->getImpl()->copy(op.getInput(0)->getImpl()->rawPtr(beginning), size, offset); - beginning = i; - offset += size; - size = 0; + AIDGE_ASSERT(!this->axes().empty(), "Missing input#3 or Axes attribute"); + + // Copy optional input #4, if present, to attribute Steps + if (getInput(4)) { + if (!this->steps().empty()) { + Log::notice("Slice_Op: ignoring non-empty Steps attribute because input#4 takes precedence"); + } + + if (!allowDataDependency) { + Log::warn("Slice_Op: unable to forwardDims() because output dims are data dependent on input#4"); + return false; + } + + this->steps().clear(); // If both are provided input would override attrs + this->steps().reserve(getInput(4)->size()); + const auto& steps = getInput(4)->refCastFrom(fallback, NativeType<int64_t>::type, "cpu"); + std::copy_n(static_cast<int64_t*>(steps.getImpl()->hostPtr()), + steps.size(), + std::back_inserter(this->steps())); } - } - if (size > 0) { - op.getOutput(0)->getImpl()->copy(op.getInput(0)->getImpl()->rawPtr(beginning), size, offset); - } -} + // Fill Steps attr if empty + if(this->steps().empty()) { + // In case the input Steps is not provided, default value is 1 + this->steps() = std::vector<std::int64_t>(this->axes().size(), 1); + } -const std::string Aidge::Slice_Op::Type = "Slice"; + // Compute output dims + const DimSize_t nbAxes = this->axes().size(); + std::vector<DimSize_t> outDims = getInput(0)->dims(); + for (std::size_t i = 0; i < nbAxes; ++i) { + const DimIdx_t axis = this->axes()[i] >= 0 ? + static_cast<DimIdx_t>(this->axes()[i]) : + static_cast<DimIdx_t>(this->axes()[i] + static_cast<DimIdx_t>(getInput(0)->nbDims())); + const DimSize_t start = this->starts()[i] >= 0 ? + static_cast<DimSize_t>(this->starts()[i]) : + static_cast<DimSize_t>(this->starts()[i] + static_cast<DimSize_t>(getInput(0)->dims()[axis])); + const DimSize_t end = this->ends()[i] >= 0 ? + static_cast<DimSize_t>(this->ends()[i]) : + static_cast<DimSize_t>(this->ends()[i] + static_cast<DimSize_t>(getInput(0)->dims()[axis])); + const std::int64_t step = this->steps()[i]; -bool Aidge::Slice_Op::forwardDims(bool /*allowDataDependency*/) { - // check input have been associated - if (!getInput(0) || (getInput(0)->empty())) { - AIDGE_THROW_OR_ABORT(std::runtime_error, "{}: input #0 should be associated with a Tensor", type()); - } + AIDGE_ASSERT(step != 0, "Slice_Op: Step ({}) must have a non-zero value on axis {}!", this->steps(), axis); + if(step * (static_cast<int64_t>(end) - static_cast<int64_t>(start)) < 0) { + if(step < 0) { + AIDGE_THROW_OR_ABORT(std::runtime_error, "{}: Step ({}) is negative, we must have End ({}) < Start ({}) on axis {}", type(), step, end, start, axis); + } + else { + AIDGE_THROW_OR_ABORT(std::runtime_error, "{}: Step ({}) is positive, we must have Start ({}) < End ({}) on axis {}", type(), step, start, end, axis); + } + } - const DimSize_t nbAxes = this->template getAttr<SliceAttr::Axes>().size(); - std::vector<DimSize_t> outDims = getInput(0)->dims(); - for (std::size_t i = 0; i < nbAxes; ++i) { - // For each slice operation get the params and cast them to size_t - const std::int64_t axis_ = this->template getAttr<SliceAttr::Axes>()[i]; - const std::int64_t start_ = this->template getAttr<SliceAttr::Starts>()[i]; - const std::int64_t end_ = this->template getAttr<SliceAttr::Ends>()[i]; - const std::size_t axis = axis_ >= 0 ? static_cast<std::size_t>(axis_) : static_cast<std::size_t>(axis_) + getInput(0)->nbDims(); - const std::size_t start = start_ >= 0 ? static_cast<std::size_t>(start_) : static_cast<std::size_t>(start_) + getInput(0)->dims()[axis]; - const std::size_t end = end_ >= 0 ? static_cast<std::size_t>(end_) : static_cast<std::size_t>(end_) + getInput(0)->dims()[axis]; - - const std::size_t sliceLength = end - start + 1; - // Check if slice length is valid - if (sliceLength > getInput(0)->dims()[axis]) - { - AIDGE_THROW_OR_ABORT(std::runtime_error, "ROI of Slice operator out of bounds"); + const std::size_t sliceLength = static_cast<std::size_t>(std::ceil((static_cast<float>(end) - static_cast<float>(start)) / static_cast<float>(step))); + // Check if slice length is valid + if (sliceLength > getInput(0)->dims()[axis]) + { + AIDGE_THROW_OR_ABORT(std::runtime_error, "Slice_Op: ROI ({}) of Slice operator out of bounds ({}) on axis {}, with (Start, End, Step) = ({}, {}, {})", + sliceLength, getInput(0)->dims()[axis], axis, start, end, step); + } + outDims[axis] = sliceLength; } - outDims[axis] = sliceLength; + mOutputs[0]->resize(outDims); + return true; } - mOutputs[0]->resize(outDims); - return true; + + return false; } void Aidge::Slice_Op::setBackend(const std::string& name, Aidge::DeviceIdx_t device) { - if (Registrar<Slice_Op>::exists({name})){ - SET_IMPL_MACRO(Slice_Op, *this, name); - } - else { - mImpl = std::make_shared<Slice_OpImpl>(*this); - } + SET_IMPL_MACRO(Slice_Op, *this, name); mOutputs[0]->setBackend(name, device); } diff --git a/src/operator/Split.cpp b/src/operator/Split.cpp new file mode 100644 index 0000000000000000000000000000000000000000..a0cb049b19e9411daf65bbe2a10319c62b32c1b8 --- /dev/null +++ b/src/operator/Split.cpp @@ -0,0 +1,138 @@ +/******************************************************************************** + * Copyright (c) 2024 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include "aidge/operator/Split.hpp" + +#include <cassert> +#include <cstddef> +#include <cstdint> +#include <string> +#include <utility> +#include <vector> + +#include <fmt/format.h> + +#include "aidge/backend/OperatorImpl.hpp" +#include "aidge/data/Data.hpp" +#include "aidge/data/Tensor.hpp" +#include "aidge/utils/ErrorHandling.hpp" +#include "aidge/utils/Types.h" + +void Aidge::Split_OpImpl::forward() { + const Split_Op& op = dynamic_cast<const Split_Op&>(mOp); + const auto axis = op.template getAttr<std::int8_t>("Axis"); + const auto splits = op.template getAttr<std::vector<DimSize_t>>("Split"); + const auto dims = op.getInput(0)->dims(); + + //Compute pre/post axis strides + const std::size_t stride_pre = std::accumulate(dims.cbegin(), dims.cbegin() + axis, 1, std::multiplies<std::size_t>()); + const std::size_t stride_post = std::accumulate(dims.crbegin(), dims.crbegin() + dims.size() -1 - axis, 1, std::multiplies<std::size_t>()); + for (auto i = 0; i < op.nbOutputs(); ++i) + { + DimIdx_t chunkIdxOnAxis = std::accumulate(splits.cbegin(), splits.cbegin() + i, 0) * stride_post; + DimIdx_t offset = 0; + for (std::size_t j = 0; j < stride_pre; ++j) + { + // Compute chunk position in input tensor + DimIdx_t idx = j * stride_post * dims[axis] + chunkIdxOnAxis; + // Copy chunk in ouput + op.getOutput(i)->getImpl()->copy(op.getInput(0)->getImpl()->rawPtr(idx), + splits[i] * stride_post, offset); + offset += splits[i] * stride_post; + } + + } +} + +const std::string Aidge::Split_Op::Type = "Split"; + +bool Aidge::Split_Op::dimsForwarded() const { + if ((getInput(1) && !getInput(1)->empty())) + { + // output dims are data dependent + return false; + } + + return OperatorTensor::dimsForwarded(); +} + +bool Aidge::Split_Op::forwardDims(bool allowDataDependency) { + if (inputsAssociated()) { + // Copy optional input #1, if present, to attribute Split + if (getInput(1)) { + if (!this->template getAttr<SplitAttr::Split>().empty()) { + Log::notice("Split_Op: ignoring non-empty Split attribute because input#1 takes precedence"); + } + + if (!allowDataDependency) { + Log::warn("Split_Op: unable to forwardDims() because output dims are data dependent on input#1"); + return false; + } + + std::shared_ptr<Tensor> fallback; + this->template getAttr<SplitAttr::Split>().reserve(getInput(1)->size()); + const auto& splits = getInput(1)->refCastFrom(fallback, NativeType<DimSize_t>::type, "cpu"); + std::copy_n(static_cast<DimSize_t*>(splits.getImpl()->hostPtr()), + splits.size(), + std::back_inserter(this->template getAttr<SplitAttr::Split>())); + } + + // Compute output dims + if (this->template getAttr<std::int8_t>("Axis") < 0) + this->template getAttr<std::int8_t>("Axis") += static_cast<std::int8_t>(getInput(0)->nbDims()); + + DimSize_t dimToSplit = getInput(0)->dims()[this->template getAttr<std::int8_t>("Axis")]; + DimSize_t nbOutput = this->nbOutputs(); + // Fill Split attr if empty + if(this->template getAttr<SplitAttr::Split>().empty()) { + // In case the input Split is not provided, divide the dimension of Axis into equal slices + AIDGE_ASSERT(dimToSplit > nbOutput, "Split_Op: Output number {} musn't be bigger than dimension {}.", nbOutput, dimToSplit); + DimSize_t baseSliceSize = dimToSplit / nbOutput; + + DimSize_t remainder = dimToSplit % nbOutput; + + for (DimSize_t i = 0; i < static_cast<DimSize_t>(nbOutput -1); ++i) { + this->template getAttr<SplitAttr::Split>().push_back(baseSliceSize); + } + this->template getAttr<SplitAttr::Split>().push_back(baseSliceSize + remainder); + } + + const auto splits = this->template getAttr<SplitAttr::Split>(); + AIDGE_ASSERT(splits.size() == nbOutput, "Split_Op: number of slices {} must be equal to number of outputs {}", splits, nbOutput); + DimSize_t totalSplitSize = std::accumulate(splits.cbegin(), splits.cend(), 0); + AIDGE_ASSERT(totalSplitSize == dimToSplit, "Split_Op: Total chunks size {} is different from dimension size {}.", totalSplitSize, dimToSplit); + + std::vector<DimSize_t> outDims = getInput(0)->dims(); + for (std::size_t i = 0; i < nbOutput; ++i) + { + outDims[this->template getAttr<std::int8_t>("Axis")] = this->template getAttr<SplitAttr::Split>()[i]; + mOutputs[i]->resize(outDims); + } + + return true; + } + + return false; +} + +void Aidge::Split_Op::setBackend(const std::string& name, Aidge::DeviceIdx_t device) { + if (Registrar<Split_Op>::exists({name})) { + SET_IMPL_MACRO(Split_Op, *this, name); + } + else { + mImpl = std::make_shared<Split_OpImpl>(*this); + } + for (std::size_t i = 0; i < this->nbOutputs(); i++) + { + mOutputs[i]->setBackend(name, device); + } + +} diff --git a/src/operator/Sub.cpp b/src/operator/Sub.cpp index b977f4ee7ccce32d7f7929cbee99140aea36cd2f..858b32beaf9e23e8e9e7f52cfe7176afe399843c 100644 --- a/src/operator/Sub.cpp +++ b/src/operator/Sub.cpp @@ -25,13 +25,7 @@ const std::string Aidge::Sub_Op::Type = "Sub"; bool Aidge::Sub_Op::forwardDims(bool /*allowDataDependency*/) { - // check inputs have been associated - if (!getInput(0) || !getInput(1)) { - AIDGE_THROW_OR_ABORT(std::runtime_error, "At least one input was not connected"); - } - - if (!getInput(0)->empty() && !getInput(1)->empty()) { - + if (inputsAssociated()) { const std::vector<std::size_t>& inputsDims0 = getInput(0)->dims(); const std::vector<std::size_t>& inputsDims1 = getInput(1)->dims(); diff --git a/src/operator/Transpose.cpp b/src/operator/Transpose.cpp index 08c4770e3fb43fe819a924dd963356401c3ce801..69820a924105acc8bea817aecb90e0aa278fce06 100644 --- a/src/operator/Transpose.cpp +++ b/src/operator/Transpose.cpp @@ -23,54 +23,18 @@ #include "aidge/utils/Registrar.hpp" #include "aidge/utils/Types.h" -void Aidge::Transpose_OpImpl::forward() { +void Aidge::TransposeImpl::forward() { const Transpose_Op& op = dynamic_cast<const Transpose_Op&>(mOp); - const auto inputDims = op.getInput(0)->dims(); - const auto outputDims = op.getOutput(0)->dims(); - - std::vector<std::size_t> outStrides(outputDims.size(), 1); - for (size_t i = 0; i < outputDims.size(); ++i) { - for (size_t j = i+1; j < outputDims.size(); ++j) - { - outStrides[i] *= outputDims[j]; - } - } - - std::vector<size_t> indices(outputDims.size(), 0); - for (size_t i = 0; i < op.getInput(0)->size(); ++i) { - size_t idx = 0; - // Permute indices based on OutputDimsOrder attr - for (int j = outputDims.size() -1; j >=0; --j) { - idx += indices[op.getAttr<std::vector<DimSize_t>>(0)[j]] * outStrides[j]; - } - // Copy the value in output - op.getOutput(0)->getImpl()->copy(op.getInput(0)->getImpl()->rawPtr(i), 1, idx); - - // Update indices for the next iteration - for (int j = outputDims.size() - 1; j >= 0; --j) { - if (indices[j] < inputDims[j] - 1) { - indices[j]++; - break; - } else { - indices[j] = 0; - } - } - } + op.getOutput(0)->copyTranspose(*(op.getInput(0)), op.outputDimsOrder()); } const std::string Aidge::Transpose_Op::Type = "Transpose"; bool Aidge::Transpose_Op::forwardDims(bool /*allowDataDependency*/) { - // check input has been associated - if (!getInput(0)) { - AIDGE_THROW_OR_ABORT(std::runtime_error, "Input was not connected"); - } - - if (!getInput(0)->empty()) { - const auto& outDimsOrder = getAttr<std::vector<DimSize_t>>(0); + if (inputsAssociated()) { std::vector<DimSize_t> outputDims; - for (std::size_t i = 0; i < outDimsOrder.size(); ++i) { - outputDims.push_back(getInput(0)->dims()[outDimsOrder[i]]); + for (std::size_t i = 0; i < outputDimsOrder().size(); ++i) { + outputDims.push_back(getInput(0)->dims()[outputDimsOrder()[i]]); } mOutputs[0]->resize(outputDims); return true; @@ -83,7 +47,7 @@ void Aidge::Transpose_Op::setBackend(const std::string& name, Aidge::DeviceIdx_t SET_IMPL_MACRO(Transpose_Op, *this, name); } else { - mImpl = std::make_shared<Transpose_OpImpl>(*this); + mImpl = std::make_shared<TransposeImpl>(*this); } mOutputs[0]->setBackend(name, device); } diff --git a/src/recipes/ConstantFolding.cpp b/src/recipes/ConstantFolding.cpp index 42fb45224614ca2655165a69b974cfe229e27f90..40b0bda766ab243805349b13e93391c5a60df63a 100644 --- a/src/recipes/ConstantFolding.cpp +++ b/src/recipes/ConstantFolding.cpp @@ -44,7 +44,7 @@ void Aidge::constantFolding(std::shared_ptr<GraphView> graph) { } const auto& producer = std::static_pointer_cast<Producer_Op>(input.first->getOperator()); - if (!producer->getAttr<bool>("Constant")) { + if (!producer->constant()) { Log::info("Node {} (of type {}) not foldable because Producer input {} not Constant", node->name(), node->type(), input.first->name()); foldable = false; diff --git a/src/recipes/ExplicitCastMove.cpp b/src/recipes/ExplicitCastMove.cpp index 7d836c3acc835c5ed3fe014db6787029dc318afd..c860b9e8a0e1fcbf467eb13e1366f371d731a47d 100644 --- a/src/recipes/ExplicitCastMove.cpp +++ b/src/recipes/ExplicitCastMove.cpp @@ -73,7 +73,7 @@ void Aidge::explicitCastMove(std::shared_ptr<GraphView> graph) { IOIndex_t inputIdx = 0; for (auto parent : node->inputs()) { - // TODO: possible optimization: currently, a Cast/Move Operator may + // TODO: possible optimization: currently, a Cast/Move Operator may // be added several time to the same output, if it has multiple childs, // even if it is the same conversion each time. if (parent.first != nullptr) { @@ -91,8 +91,8 @@ void Aidge::explicitCastMove(std::shared_ptr<GraphView> graph) { if (node->type() != Cast_Op::Type && input->dataType() != output->dataType()) { // Change of date type => a Cast operator is required - castOp = Cast(); - castOp->getOperator()->setDataType(output->dataType()); + castOp = Cast(output->dataType()); + // castOp->getOperator()->setDataType(output->dataType()); castOp->getOperator()->setBackend(device.first, device.second); if (moveOp == nullptr) { diff --git a/src/recipes/ExplicitTranspose.cpp b/src/recipes/ExplicitTranspose.cpp new file mode 100644 index 0000000000000000000000000000000000000000..7ff971b7e436219d5dfbb7cbadbaf780d3f1aeda --- /dev/null +++ b/src/recipes/ExplicitTranspose.cpp @@ -0,0 +1,125 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include "aidge/recipes/Recipes.hpp" +#include "aidge/operator/OperatorTensor.hpp" +#include "aidge/operator/Transpose.hpp" + +void Aidge::explicitTranspose(std::shared_ptr<GraphView> graph) { + // First, remove existing Transpose operators, if not needed anymore + auto nodes = graph->getNodes(); + for (auto node : nodes) { + AIDGE_ASSERT(node->getOperator()->operatorType() == OperatorType::Tensor, "Operator must be of Tensor type."); + const auto& output = std::static_pointer_cast<OperatorTensor>(node->getOperator())->getOutput(0); + + if (node->type() == Transpose_Op::Type) { + // Remove existing Transpose operators, if not needed anymore + AIDGE_INTERNAL_ASSERT(node->inputs().size() == 1); + const auto parent = node->inputs()[0]; + // Check parent is not nullptr, as this Operator may be an entry point of the graph without parent + if (parent.first != nullptr) { + AIDGE_ASSERT(parent.first->getOperator()->operatorType() == OperatorType::Tensor, "Operator must be of Tensor type."); + const auto& input = std::static_pointer_cast<OperatorTensor>(parent.first->getOperator())->getOutput(parent.second); + + if (input->dataFormat() != DataFormat::Default + && output->dataFormat() != DataFormat::Default + && input->dataFormat() == output->dataFormat()) + { + // Add direct connection bypassing Transpose node + const auto childs = node->outputs()[0]; + for (const auto& child : childs) { + parent.first->addChild(child.first, parent.second, child.second); + } + + // Remove all node connections + node->resetConnections(); + // Remove node from view + graph->remove(node); + } + } + } + } + + // Second, insert Transpose operator between node inputs and parent output, if needed + nodes = graph->getNodes(); + for (auto node : nodes) { + // TODO: currently, Operator data type is only reflected in its output tensor data type. + // But an Operator might have multiple outputs of different data type(?) + const auto& output = std::static_pointer_cast<OperatorTensor>(node->getOperator())->getOutput(0); + + IOIndex_t inputIdx = 0; + for (auto parent : node->inputs()) { + // TODO: possible optimization: currently, a Transpose Operator may + // be added several time to the same output, if it has multiple childs, + // even if it is the same conversion each time. + if (parent.first != nullptr) { + const auto& input = std::static_pointer_cast<OperatorTensor>(parent.first->getOperator())->getOutput(parent.second); + + if ((node->type() != Transpose_Op::Type + && input->dataFormat() != DataFormat::Default + && output->dataFormat() != DataFormat::Default + && input->dataFormat() != output->dataFormat())) + { + // Allow Transpose fuse only if data format is fully specified before and after in this recipe + bool fuseTranspose = false; + if (parent.first->type() == Transpose_Op::Type && parent.first->getChildren().size() == 1) { + const auto& parentInput = std::static_pointer_cast<OperatorTensor>(parent.first->getOperator())->getInput(0); + if (parentInput->dataFormat() != DataFormat::Default) { + fuseTranspose = true; + } + } + + if (fuseTranspose) { + // Do not insert a new Transpose if the only parent is already a Transpose! + const auto& parentInput = std::static_pointer_cast<OperatorTensor>(parent.first->getOperator())->getInput(0); + if (parentInput->dataFormat() == output->dataFormat()) { + // Case 1: same data format than before parent Transpose + // => remove Transpose altogether + const auto parentParent = parent.first->inputs()[0]; + // Add direct connection bypassing Transpose node + parentParent.first->addChild(node, parentParent.second, 0); + // Remove all node connections + parent.first->resetConnections(); + // Remove node from view + graph->remove(parent.first); + } + else { + // Case 2: change of format + // => compute the new permutation array + const auto transpose = getDataFormatTranspose(parentInput->dataFormat(), output->dataFormat()); + auto transposeOp = std::static_pointer_cast<Transpose_Op>(parent.first->getOperator()); + transposeOp->setDataFormat(output->dataFormat()); + transposeOp->outputDimsOrder() = std::vector<DimSize_t>(transpose.begin(), transpose.end()); + } + } + else { + const auto transpose = getDataFormatTranspose(input->dataFormat(), output->dataFormat()); + auto transposeOp = Transpose(std::vector<DimSize_t>(transpose.begin(), transpose.end())); + transposeOp->getOperator()->setDataFormat(output->dataFormat()); + transposeOp->getOperator()->setDataType(output->dataType()); + if (output->getImpl()) { + const auto& device = output->getImpl()->device(); + transposeOp->getOperator()->setBackend(device.first, device.second); + } + transposeOp->addChild(node, 0, inputIdx); + parent.first->addChild(transposeOp, parent.second, 0); + + graph->add(transposeOp); + graph->add(parent.first); + graph->add(node); + } + } + } + + ++inputIdx; + } + } +} diff --git a/src/recipes/FuseBatchNorm.cpp b/src/recipes/FuseBatchNorm.cpp index 76c15a0627ee65ed23c2dc385d9cd3787f9f0979..aa20a056ad789975c5b4d493a1ce48dcd7592946 100644 --- a/src/recipes/FuseBatchNorm.cpp +++ b/src/recipes/FuseBatchNorm.cpp @@ -32,10 +32,12 @@ void Aidge::fuseBatchNorm(std::shared_ptr<Aidge::Node> convNode, std::shared_ptr<Aidge::Node> batchnormNode) { // Case: convNode is a MetaOperator ending with a Convolution // eg. PaddedConv + std::shared_ptr<Node> metaNode; if (!(convNode -> getOperator() -> isAtomic())) { - const std::shared_ptr<MetaOperator_Op> metaNode = std::static_pointer_cast<MetaOperator_Op>(convNode -> getOperator()); - const std::shared_ptr<GraphView> metanodeGraph = metaNode -> getMicroGraph(); - const std::vector<std::pair<std::shared_ptr<Node>, IOIndex_t>> outputNodes = metanodeGraph -> getOrderedOutputs(); + metaNode = convNode; + const auto metaOp = std::static_pointer_cast<MetaOperator_Op>(convNode -> getOperator()); + const std::shared_ptr<GraphView> metaOpGraph = metaOp -> getMicroGraph(); + const std::vector<std::pair<std::shared_ptr<Node>, IOIndex_t>> outputNodes = metaOpGraph -> getOrderedOutputs(); if (outputNodes.size() != 1) { AIDGE_THROW_OR_ABORT(std::runtime_error, "Bad MetaOperator argument for fuseBatchNorm recipie."); } @@ -58,16 +60,17 @@ void Aidge::fuseBatchNorm(std::shared_ptr<Aidge::Node> convNode, if (convNode->type() == Conv_Op<2>::Type) { const std::shared_ptr<Conv_Op<2>> convOpPtr = std::static_pointer_cast<Conv_Op<2>>(convNode->getOperator()); - convNbOutChannels = convOpPtr->getAttr<DimSize_t>("OutChannels"); - channelsSize = convOpPtr->getAttr<DimSize_t>("InChannels"); - kernelDims = convOpPtr->getAttr<std::array<DimSize_t, 2>>("KernelDims"); + convNbOutChannels = convOpPtr->outChannels(); + channelsSize = convOpPtr->inChannels(); + kernelDims = convOpPtr->kernelDims(); } else if (convNode->type() == ConvDepthWise_Op<2>::Type) { const std::shared_ptr<ConvDepthWise_Op<2>> convOpPtr = std::static_pointer_cast<ConvDepthWise_Op<2>>(convNode->getOperator()); - convNbOutChannels = convOpPtr->getAttr<DimSize_t>("Channels"); - kernelDims = convOpPtr->getAttr<std::array<DimSize_t, 2>>("KernelDims"); + convNbOutChannels = convOpPtr->nbChannels(); + kernelDims = convOpPtr->kernelDims(); } + AIDGE_ASSERT(kernelDims.size() == 2, "fuseBatchNorm(): only 2D convolutions are supported"); std::shared_ptr<Tensor> scaleBuf, shiftBuf, b_meanBuf, b_varBuf; const Tensor& scale = batchOp->getInput(1)->refCastFrom(scaleBuf, DataType::Float32, "cpu"); @@ -75,7 +78,7 @@ void Aidge::fuseBatchNorm(std::shared_ptr<Aidge::Node> convNode, const Tensor& b_mean = batchOp->getInput(3)->refCastFrom(b_meanBuf, DataType::Float32, "cpu"); const Tensor& b_var = batchOp->getInput(4)->refCastFrom(b_varBuf, DataType::Float32, "cpu"); - const float epsilon = batchOp->getAttr<float>("Epsilon"); + const float epsilon = batchOp->epsilon(); assert(epsilon > 0.0); @@ -98,6 +101,51 @@ void Aidge::fuseBatchNorm(std::shared_ptr<Aidge::Node> convNode, fmt::print("Warning: variance < 1e-12 for all outputs! Is the network correctly trained?\n"); } + // Add bias if it is non existant, as there will be a bias after the fuse + if (!convOp->getInput(2)) { + if (metaNode) { + // Conv is inside a meta-operator, we add bias outside it + // Find the correct input index of the meta-operator corresponding + // to the bias: + const auto metaOp = std::static_pointer_cast<MetaOperator_Op>(metaNode->getOperator()); + const auto metaOpGraph = metaOp->getMicroGraph(); + IOIndex_t inputIdx = 0; + for (auto input : metaOpGraph->getOrderedInputs()) { + if (input.first == convNode && input.second == 2) { + break; + } + ++inputIdx; + } + + auto prod = addProducer(metaNode, inputIdx, {convNbOutChannels}, "b"); + // Add the new bias node to the same views as the meta node + for (auto g : metaNode->views()) { + g->add(prod); + } + } + else { + auto prod = addProducer(convNode, 2, {convNbOutChannels}, "b"); + if (convNode->input(1).first) { + // Add the new bias node to the same views as the weights node + // if possible + for (auto g : convNode->input(1).first->views()) { + g->add(prod); + } + } + else { + for (auto g : convNode->views()) { + g->add(prod); + } + } + } + + AIDGE_INTERNAL_ASSERT(convOp->getInput(2) != nullptr); + + // Use the same backend for the bias than for the weights + convOp->getInput(2)->setBackend(convOp->getInput(1)->backend()); + convOp->getInput(2)->zeros(); + } + std::shared_ptr<Tensor> weightBuf, biasBuf; Tensor& weight = convOp->getInput(1)->refCastFrom(weightBuf, DataType::Float32, "cpu"); Tensor& bias = convOp->getInput(2)->refCastFrom(biasBuf, DataType::Float32, "cpu"); @@ -112,7 +160,6 @@ void Aidge::fuseBatchNorm(std::shared_ptr<Aidge::Node> convNode, ? b_var.get<float>(outChId) : meanVariance)); // Weights adjustments for (std::size_t channel = 0; channel < channelsSize; ++channel) { - // TODO : Suppose kerneldims = 2 for (std::size_t k0 = 0; k0 < kernelDims[0]; ++k0) { for (std::size_t k1 = 0; k1 < kernelDims[1]; ++k1) { std::vector<DimSize_t> currentIdx = {outChId, channel, k0, k1}; @@ -122,7 +169,6 @@ void Aidge::fuseBatchNorm(std::shared_ptr<Aidge::Node> convNode, } } - // TODO : check if noBias==true is set, then set biasValue to 0 float biasValue = bias.get<float>(outChId); biasValue = shift.get<float>(outChId) + (biasValue - b_mean.get<float>(outChId)) * factor; diff --git a/src/recipes/FuseMulAdd.cpp b/src/recipes/FuseMulAdd.cpp index 9a89f8af583fa8567f62ed7c8f42d160d80a1e99..6112fc47ece6bb361ebad626be7b5a6b1c2189bd 100644 --- a/src/recipes/FuseMulAdd.cpp +++ b/src/recipes/FuseMulAdd.cpp @@ -38,11 +38,11 @@ void Aidge::fuseMulAdd(std::shared_ptr<Aidge::Node> matmulNode, std::shared_ptr< // Fetch the output dimension throught the bias size std::shared_ptr<Node> bias = nullptr; if (addNode->getParent(0) == matmulNode) { - AIDGE_ASSERT(matmulNode->getParent(1), "No bias detected to produce the fuseMulAdd recipe."); + AIDGE_ASSERT(addNode->getParent(1), "No bias detected to produce the fuseMulAdd recipe."); bias = addNode->getParent(1); } else if (addNode->getParent(1) == matmulNode) { - AIDGE_ASSERT(matmulNode->getParent(0), "No bias detected to produce the fuseMulAdd recipe."); + AIDGE_ASSERT(addNode->getParent(0), "No bias detected to produce the fuseMulAdd recipe."); bias = addNode->getParent(0); } @@ -52,6 +52,12 @@ void Aidge::fuseMulAdd(std::shared_ptr<Aidge::Node> matmulNode, std::shared_ptr< && matmulNode->getParent(0) && matmulNode->getParent(0)->getOperator()->type() != Producer_Op::Type)) { weight = matmulNode->getParent(1); + // Transpose weights because weight Tensor is in first input + auto weightOpTensor = std::static_pointer_cast<OperatorTensor>(weight->getOperator()); + const std::shared_ptr<Aidge::Tensor>& weightTensor = weightOpTensor->getOutput(0); + std::vector<DimSize_t> shape = weightTensor->dims(); + std::reverse(shape.begin(), shape.end()); + weightTensor->copyTranspose(*weightTensor, std::vector<Aidge::DimSize_t>({1ul, 0ul})); } else if ((matmulNode->getParent(0) && !matmulNode->getParent(1)) || (matmulNode->getParent(0) && matmulNode->getParent(0)->getOperator()->type() == Producer_Op::Type @@ -82,7 +88,7 @@ void Aidge::fuseMulAdd(std::shared_ptr<Aidge::Node> matmulNode, std::shared_ptr< break; } } - AIDGE_ASSERT(outSize, "Couldnt get output number of channels for FC operator."); + AIDGE_ASSERT(outSize, "Could not get output number of channels for FC operator."); // Instanciate FC std::string fcName = matmulNode->name(); @@ -90,7 +96,7 @@ void Aidge::fuseMulAdd(std::shared_ptr<Aidge::Node> matmulNode, std::shared_ptr< fcName += "_" + addNode->name(); } - std::shared_ptr<Node> fc = std::make_shared<Node>(std::make_shared<FC_Op>(outSize, bias ? false : true), fcName); + std::shared_ptr<Node> fc = std::make_shared<Node>(std::make_shared<FC_Op>(), fcName); // Step 2 : Branch existing producers & create the others // link weights & bias @@ -138,4 +144,4 @@ void Aidge::fuseMulAdd(std::shared_ptr<Aidge::GraphView> graphView){ } -} \ No newline at end of file +} diff --git a/src/recipes/FuseToMetaOps.cpp b/src/recipes/FuseToMetaOps.cpp new file mode 100644 index 0000000000000000000000000000000000000000..e7748936c00a20ec235ea7853f4d17e2c10261fb --- /dev/null +++ b/src/recipes/FuseToMetaOps.cpp @@ -0,0 +1,41 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <memory> + +#include "aidge/graph/Node.hpp" +#include "aidge/graph/GraphView.hpp" +#include "aidge/graph/Matching.hpp" +#include "aidge/operator/MetaOperator.hpp" +#include "aidge/recipes/Recipes.hpp" + +size_t Aidge::fuseToMetaOps(std::shared_ptr<GraphView> graphView, const std::string& query, const std::string& type) { + const auto metaType = (!type.empty()) ? type : query; + const auto matches = SinglePassGraphMatching(graphView).match(query); + + size_t nbReplaced = 0; + for (const auto& match : matches) { + auto metaOp = MetaOperator(metaType.c_str(), match.graph->clone()); + auto metaOpGraph = std::make_shared<GraphView>(); + metaOpGraph->add(metaOp, false); + const auto success = GraphView::replace(match.graph, metaOpGraph); + + if (!success) { + Log::notice("Could not replace sub-graph with meta operator"); + } + else { + ++nbReplaced; + } + } + + Log::info("Replaced {} (out of {}) matching sub-graph with meta operators", nbReplaced, matches.size()); + return nbReplaced; +} diff --git a/src/recipes/GraphViewHelper.cpp b/src/recipes/GraphViewHelper.cpp index b0c99bffb895dc64b20d76991911ae5f4b604c85..9522c0fe7346e78875a08d3ebf19a04dea2909e1 100644 --- a/src/recipes/GraphViewHelper.cpp +++ b/src/recipes/GraphViewHelper.cpp @@ -44,14 +44,3 @@ std::set<std::shared_ptr<Aidge::Tensor>> Aidge::parameters(std::shared_ptr<Aidge } return res; } - -void Aidge::compile_gradient(std::shared_ptr<Aidge::GraphView> gv) { - for (const auto& node : gv->getNodes()) { - // TODO: check that each node is an OperatorTensor - AIDGE_ASSERT(node->getOperator()->operatorType() == OperatorType::Tensor, "Cannot instanciate gradient of an Operator ({}) that doesn't use Tensor.", node->getOperator()->type()); - const std::shared_ptr<OperatorTensor> op = std::dynamic_pointer_cast<OperatorTensor>(node -> getOperator()); - for (std::size_t o = 0; o < node -> nbOutputs(); ++o) { - op->getOutput(o)->initGrad(); - } - } -} diff --git a/src/recipes/HorizontalTiling.cpp b/src/recipes/HorizontalTiling.cpp index 7959e1b70acab617b9c6f92160c6d501712f5945..88691c26d5d7013874c13000535ec2a3842d47d3 100644 --- a/src/recipes/HorizontalTiling.cpp +++ b/src/recipes/HorizontalTiling.cpp @@ -23,6 +23,7 @@ #include "aidge/operator/OperatorTensor.hpp" #include "aidge/data/Data.hpp" #include "aidge/utils/Types.h" +#include "aidge/operator/Producer.hpp" #include "aidge/operator/Add.hpp" #include "aidge/operator/Concat.hpp" @@ -33,32 +34,35 @@ std::set<std::shared_ptr<Aidge::Node>> Aidge::getConvHorizontalTiling(const std: const Aidge::DimIdx_t axis, const std::size_t nbSlices) { + // for now, Tiling works only with Conv Operators if (node->getOperator()->type() != "Conv") { AIDGE_INTERNAL_ASSERT("Operator should be a Convolution."); } - AIDGE_ASSERT(node->getOperator()->operatorType() == OperatorType::Tensor, "Operator must be of Tensor type."); + // TODO: back when tiling works with other Operators + // AIDGE_ASSERT(node->getOperator()->operatorType() == OperatorType::Tensor, "Operator must be of Tensor type."); const auto& op = std::static_pointer_cast<OperatorTensor>(node->getOperator()); - if (op->nbOutputs() != 1 || op->nbData() > 1) { - AIDGE_INTERNAL_ASSERT("Only slice Operators with one output and at most one input for now."); - } + // TODO: back when tiling works with other Operators + // if (op->nbOutputs() != 1 || op->nbData() > 1) { + // AIDGE_INTERNAL_ASSERT("Only slice Operators with one output and at most one input for now."); + // } if (!op->dimsForwarded()) { AIDGE_INTERNAL_ASSERT("Dimensions must be forwarded before any tiling"); } + + const std::shared_ptr<Tensor>& outTensor = op->getOutput(0); + std::vector<DimSize_t> outputDims = outTensor->dims(); + // start by doing a tiling with strict dimensions division - const auto& outTensor = op->getOutput(0); - if (op->getOutput(0)->dims()[axis] % nbSlices != 0) { + if (outputDims[axis] % nbSlices != 0) { AIDGE_INTERNAL_ASSERT("axis should be a multiple of nbSlices"); } // dimensions of a Slice - std::vector<DimSize_t> outputDims = outTensor->dims(); outputDims[axis] /= nbSlices; - std::vector<DimSize_t> currentFirstDims = std::vector<DimSize_t>(outTensor->nbDims(), 0); - std::set<std::shared_ptr<Aidge::Node>> res; auto concat = Concat(nbSlices, axis); - res.insert(concat); + std::set<std::shared_ptr<Aidge::Node>> tiledOperator{concat}; // check slice sizes // const auto inputDims = op->computeReceptiveField(currentFirstDims[axis], outputDims, 0); @@ -70,36 +74,81 @@ std::set<std::shared_ptr<Aidge::Node>> Aidge::getConvHorizontalTiling(const std: // } std::vector<std::shared_ptr<Node>> clonedInputs = std::vector<std::shared_ptr<Node>>(node->nbInputs(), nullptr); - for (std::size_t i = node->nbData(); i < node ->nbInputs(); ++i) { - clonedInputs[i] = node -> getParent(i) -> cloneSharedOperators(); - clonedInputs[i] -> setName(node -> name() + "_0"); - res.insert(clonedInputs[i]); + for (std::size_t i = 0; i < node ->nbInputs(); ++i) { + if (node->inputCategory(i) == InputCategory::Param || node->inputCategory(i) == InputCategory::OptionalParam) { + clonedInputs[i] = node -> getParent(i) -> cloneSharedOperators(); + clonedInputs[i] -> setName(node -> getParent(i) -> name() + "_0"); + tiledOperator.insert(clonedInputs[i]); + } } + const std::vector<std::string> sliceInputsNames = Slice_Op::getInputsName(); + // coordinates of the first value of the current output slice + std::vector<DimSize_t> currentFirstDims = std::vector<DimSize_t>(outTensor->nbDims(), 0); for (IOIndex_t i = 0; currentFirstDims[axis] < outTensor->dims()[axis]; currentFirstDims[axis] += outputDims[axis], ++i) { const auto inputDims = op->computeReceptiveField(currentFirstDims, outputDims, 0); auto newNode = node -> clone(); // no input associated to clones newNode -> setName(node->name() + "_" + std::to_string(currentFirstDims[axis])); clonedInputs[1] -> addChild(newNode, 0, 1); clonedInputs[2] -> addChild(newNode, 0, 2); - // Slice for input and each parameter - std::vector<std::int64_t> inputDimsEnd(inputDims[0].first.size()); - for (std::size_t dim = 0; dim < inputDimsEnd.size(); ++dim) { - inputDimsEnd[dim] = static_cast<std::int64_t>(inputDims[0].first[dim] + inputDims[0].second[dim]) - 1; - } + + auto slice = Slice(); + auto backend = outTensor->getImpl()->backend(); + + // Create Slice's Starts producer node std::vector<std::int64_t> inputDimsStart(inputDims[0].first.size()); for (std::size_t dim = 0; dim < inputDimsStart.size(); ++dim) { inputDimsStart[dim] = static_cast<std::int64_t>(inputDims[0].first[dim]); } - std::vector<std::int64_t> usedDims(inputDimsEnd.size()); - std::iota(usedDims.begin(), usedDims.end(), static_cast<std::int64_t>(0)); - auto slice = Slice(inputDimsStart, inputDimsEnd, usedDims, "Slice_" + std::to_string(currentFirstDims[axis])); + const std::shared_ptr<Tensor> starts = std::make_shared<Tensor>(); + starts -> setDataType(DataType::Int64); + starts -> setBackend(backend); + starts -> resize(std::vector<std::size_t>({inputDimsStart.size()})); + starts -> getImpl() -> copyFromHost(inputDimsStart.data(), inputDimsStart.size()); + auto startsNode = Producer(starts, slice->name() + sliceInputsNames[1]); + startsNode -> addChild(slice, 0, 1); + + // Create Slice's Ends producer node + std::vector<std::int64_t> inputDimsEnd(inputDims[0].first.size()); + for (std::size_t dim = 0; dim < inputDimsEnd.size(); ++dim) { + inputDimsEnd[dim] = static_cast<std::int64_t>(inputDims[0].first[dim] + inputDims[0].second[dim]); + } + const std::shared_ptr<Tensor> ends = std::make_shared<Tensor>(); + ends -> setDataType(DataType::Int64); + ends -> setBackend(backend); + ends -> resize(std::vector<std::size_t>({inputDimsEnd.size()})); + ends -> getImpl() -> copyFromHost(inputDimsEnd.data(), inputDimsEnd.size()); + auto endsNode = Producer(ends, slice->name() + sliceInputsNames[2]); + endsNode -> addChild(slice, 0, 2); + + // Create Slice's Axes producer node + std::vector<std::int8_t> usedDims(inputDimsEnd.size()); + std::iota(usedDims.begin(), usedDims.end(), static_cast<std::int8_t>(0)); + const std::shared_ptr<Tensor> axes = std::make_shared<Tensor>(); + axes -> setDataType(DataType::Int8); + axes -> setBackend(backend); + axes -> resize(std::vector<std::size_t>({usedDims.size()})); + axes -> getImpl() -> copyFromHost(usedDims.data(), usedDims.size()); + auto axesNode = Producer(axes, slice->name() + sliceInputsNames[3]); + axesNode -> addChild(slice, 0, 3); + + // Create Slice's Steps producer node + std::vector<std::int64_t> inputDimsSteps(inputDimsEnd.size(), static_cast<std::int64_t>(1)); + const std::shared_ptr<Tensor> steps = std::make_shared<Tensor>(); + steps -> setDataType(DataType::Int64); + steps -> setBackend(backend); + steps -> resize(std::vector<std::size_t>({inputDimsSteps.size()})); + steps -> getImpl() -> copyFromHost(inputDimsSteps.data(), inputDimsSteps.size()); + auto stepsNode = Producer(steps, slice->name() + sliceInputsNames[4]); + stepsNode -> addChild(slice, 0, 4); + + // auto slice = Slice(inputDimsStart, inputDimsEnd, usedDims, inputDimsSteps); + // auto backend = outTensor->getImpl()->backend(); slice -> addChild(newNode, 0, 0); newNode -> addChild(concat, 0, i); - res.insert(slice); - res.insert(newNode); + tiledOperator.insert({slice, newNode, startsNode, endsNode, axesNode, stepsNode}); } - return res; + return tiledOperator; } \ No newline at end of file diff --git a/src/recipes/LabelGraph.cpp b/src/recipes/LabelGraph.cpp index ac0e6bfe197460c8c422a6c1f3b3240518ee1f29..75bcd36bf61f7c23645038bedb060cd13bdce2c5 100644 --- a/src/recipes/LabelGraph.cpp +++ b/src/recipes/LabelGraph.cpp @@ -22,7 +22,7 @@ Aidge::NodePtr Aidge::nodeLabel(NodePtr node) { if (node->type() == Conv_Op<2>::Type) { auto op = std::dynamic_pointer_cast<Conv_Op<2>>(node->getOperator()); - auto newOp = std::make_shared<MaxPooling_Op<2>>(op->template getAttr<ConvAttr::KernelDims>(), op->template getAttr<ConvAttr::StrideDims>()); + auto newOp = std::make_shared<MaxPooling_Op<2>>(op->kernelDims(), op->strideDims()); return std::make_shared<Node>(newOp, node->name()); } @@ -30,7 +30,7 @@ Aidge::NodePtr Aidge::nodeLabel(NodePtr node) { if (node->type() == ConvDepthWise_Op<2>::Type) { auto op = std::dynamic_pointer_cast<ConvDepthWise_Op<2>>(node->getOperator()); - auto newOp = std::make_shared<MaxPooling_Op<2>>(op->template getAttr<ConvDepthWiseAttr::KernelDims>(), op->template getAttr<ConvDepthWiseAttr::StrideDims>()); + auto newOp = std::make_shared<MaxPooling_Op<2>>(op->kernelDims(), op->strideDims()); return std::make_shared<Node>(newOp, node->name()); } @@ -38,7 +38,7 @@ Aidge::NodePtr Aidge::nodeLabel(NodePtr node) { if (node->type() == AvgPooling_Op<2>::Type) { auto op = std::dynamic_pointer_cast<AvgPooling_Op<2>>(node->getOperator()); - auto newOp = std::make_shared<MaxPooling_Op<2>>(op->template getAttr<AvgPoolingAttr::KernelDims>(), op->template getAttr<AvgPoolingAttr::StrideDims>()); + auto newOp = std::make_shared<MaxPooling_Op<2>>(op->kernelDims(), op->strideDims()); return std::make_shared<Node>(newOp, node->name()); } diff --git a/src/recipes/RemoveDropout.cpp b/src/recipes/RemoveDropout.cpp deleted file mode 100644 index 4f8805845bd1f46fd187cba3564b031c55c4655a..0000000000000000000000000000000000000000 --- a/src/recipes/RemoveDropout.cpp +++ /dev/null @@ -1,56 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#include <memory> - -#include "aidge/graph/Node.hpp" -#include "aidge/graph/GraphView.hpp" -#include "aidge/recipes/Recipes.hpp" - -//Graph Regex -#include "aidge/graphRegex/GraphRegex.hpp" - - -namespace Aidge { - void removeDropout(std::shared_ptr<Node> dropout) { - - std::set<NodePtr> nodesToRemove; - for (auto nodePtr: dropout->getParents()) - { - if(nodePtr->type() == "Producer") - { - nodesToRemove.insert(nodePtr); - } - } - nodesToRemove.insert(dropout); - GraphView::replace(nodesToRemove, {}); - } - - void removeDropout(std::shared_ptr<MatchSolution> solution){ - - assert(solution->at("Dropout").size() == 1 && "Wrong number of nodes Dropout to replace\n"); - - for (const auto& dropout : solution->at("Dropout")) { - - removeDropout(dropout); - } - } - - void removeDropout(std::shared_ptr<GraphView> graphView){ - std::shared_ptr<GraphRegex> regex = std::make_shared<GraphRegex>(); - regex->setNodeKey("Dropout","getType($) =='Dropout'"); - regex->addQuery("Dropout#"); - - for (const auto& solution : regex->match(graphView)) { - removeDropout(solution); - } - } -} diff --git a/src/recipes/RemoveNode.cpp b/src/recipes/RemoveNode.cpp new file mode 100644 index 0000000000000000000000000000000000000000..a09c67991409dfe491d46b4ad739f9ddf5b72aef --- /dev/null +++ b/src/recipes/RemoveNode.cpp @@ -0,0 +1,51 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <memory> + +#include "aidge/graph/Node.hpp" +#include "aidge/graph/GraphView.hpp" +#include "aidge/recipes/Recipes.hpp" + + +//Graph Regex +#include "aidge/graphRegex/GraphRegex.hpp" + +size_t Aidge::removeNode(std::shared_ptr<GraphView> graphView, const std::string& type, bool incProducers) { + std::shared_ptr<GraphRegex> regex = std::make_shared<GraphRegex>(); + regex->setNodeKey(type, "getType($) =='" + type + "'"); + regex->addQuery(type + "#"); + + const auto matches = regex->match(graphView); + for (const auto& solution : matches) { + assert(solution->at(type).size() == 1 && "Wrong number of nodes to replace\n"); + + std::set<NodePtr> nodesToRemove = solution->at(type); + if (incProducers) { + for (const auto& nodePtr: (*solution->at(type).begin())->getParents()) { + if (nodePtr != nullptr && nodePtr->type() == "Producer") { + nodesToRemove.insert(nodePtr); + } + } + } + GraphView::replace(nodesToRemove, {}); + } + + return matches.size(); +} + +size_t Aidge::removeDropout(std::shared_ptr<GraphView> graphView) { + return removeNode(graphView, "Dropout", true); +} + +size_t Aidge::removeIdentity(std::shared_ptr<GraphView> graphView) { + return removeNode(graphView, "Identity"); +} diff --git a/src/scheduler/Scheduler.cpp b/src/scheduler/Scheduler.cpp index af10e3dcd3ead044f8619c40570936f53039d9a2..d63c93deb1ba2d7974ffc6e5b8ccd1e9c57dc76c 100644 --- a/src/scheduler/Scheduler.cpp +++ b/src/scheduler/Scheduler.cpp @@ -197,18 +197,20 @@ std::vector<std::shared_ptr<Aidge::Scheduler::StaticSchedulingElement>> Aidge::S bool isStillConsumer = false; // Only look for data inputs. If no data is available on data input, // by definition, no parameter can be consumed on parameter inputs. - for (IOIndex_t inputIdx = 0; inputIdx < consumer->nbData(); ++inputIdx) { - AIDGE_LOG_CONTEXT("Consumer node {} input #{}", namePtrTable.at(consumer), inputIdx); - - if (consumer->getOperator()->getNbConsumedData(inputIdx) < - getNbAvailableData(consumer, inputIdx)) { - Log::debug(" still consumer: C{} < P{} for input #{}", - consumer->getOperator()->getNbConsumedData(inputIdx), - getNbAvailableData(consumer, inputIdx), inputIdx); - - // there is still data to consume - isStillConsumer = true; - break; + for (IOIndex_t inputIdx = 0; inputIdx < consumer->nbInputs(); ++inputIdx) { + if (consumer->inputCategory(inputIdx) == InputCategory::Data) { + AIDGE_LOG_CONTEXT("Consumer node {} input #{}", namePtrTable.at(consumer), inputIdx); + + if (consumer->getOperator()->getNbConsumedData(inputIdx) < + getNbAvailableData(consumer, inputIdx)) { + Log::debug(" still consumer: C{} < P{} for input #{}", + consumer->getOperator()->getNbConsumedData(inputIdx), + getNbAvailableData(consumer, inputIdx), inputIdx); + + // there is still data to consume + isStillConsumer = true; + break; + } } } @@ -638,32 +640,29 @@ Aidge::Elts_t Aidge::Scheduler::getNbAvailableData(const std::shared_ptr<Node>& // We are inside an upper operator (for instance a MetaOperator) // We need to connect the "local" producer-consumer model to the upper // one, by mapping local node inputs to the upper node inputs. - IOIndex_t nodeInputIdx = 0; + IOIndex_t upperInputIdx = 0; for (const auto& input : mGraphView->getOrderedInputs()) { - if (input.first == node) { + if (input.first == node && input.second == inputIdx) { // Current node is an input - const auto upperInput = upperNode->inputs()[nodeInputIdx]; + const auto upperInput = upperNode->inputs()[upperInputIdx]; if (upperInput.first) { return upperInput.first->getOperator()->getNbProducedData(upperInput.second); } } - ++nodeInputIdx; + ++upperInputIdx; } } - // Otherwise, two cases: + // Otherwise, it means that the input is not connected. Two cases: + // - There is no data, it is assumed to be an optional input + // - A valid tensor exists: if (node->getOperator()->getRawInput(inputIdx)) { - // Input is not connected but a valid tensor exists // => This means data was fed manually to the input, without a Producer // In this case, we assume a single-use data (unlike a Producer, which // keep producing the data each time it is needed). fmt::print("No producer node attached to input#{} for node {} ({})\n", inputIdx, node->name(), node->type()); return Elts_t::DataElts(std::static_pointer_cast<Tensor>(node->getOperator()->getRawInput(inputIdx))->size()); } - else { - // Input is not connected, this is an error - AIDGE_THROW_OR_ABORT(std::runtime_error, "Missing input#{} for node {} ({})\n", inputIdx, node->name(), node->type()); - } return Elts_t::NoneElts(); } diff --git a/src/scheduler/SequentialScheduler.cpp b/src/scheduler/SequentialScheduler.cpp index 74b1b3f0c6e9be164792460669821744661c15b3..88b5e98bc62456bd59dc235c3112396daaeddd24 100644 --- a/src/scheduler/SequentialScheduler.cpp +++ b/src/scheduler/SequentialScheduler.cpp @@ -73,10 +73,7 @@ void Aidge::SequentialScheduler::forward(bool forwardDims, const std::vector<std } } -void Aidge::SequentialScheduler::backward(bool instanciateGrad) { - // create ad set Grad values - if (instanciateGrad) { compile_gradient(mGraphView); } - +void Aidge::SequentialScheduler::backward() { // TODO: Check output grad are not empty // Generate scheduling *only if empty* diff --git a/src/utils/Attributes.cpp b/src/utils/Attributes.cpp new file mode 100644 index 0000000000000000000000000000000000000000..e79db53a60a955e3502e070cda5818d3d7b6c922 --- /dev/null +++ b/src/utils/Attributes.cpp @@ -0,0 +1,96 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include "aidge/utils/Attributes.hpp" + +#include <cctype> // std::isdigit, std::islower, std::isupper, std::tolower, + // std::toupper +#include <string> + +std::string Aidge::Attributes::snakeToPascal(const std::string& snakeCase) { + std::string result; + bool to_upper = true; // Start with uppercase for PascalCase + + for (char ch : snakeCase) { + if (ch == '_') { + to_upper = true; // Next character should be uppercase + } else { + if (to_upper) { + result += std::toupper(ch); + to_upper = false; // Reset flag after making a character uppercase + } else { + result += ch; + } + } + } + return result; +} + +std::string Aidge::Attributes::pascalToSnake(const std::string& pascalCase) { + std::string result; + + for (char ch : pascalCase) { + if (std::isupper(ch)) { + if (!result.empty()) { + result += '_'; + } + result += std::tolower(ch); + } else { + result += ch; + } + } + return result; +} + +bool Aidge::Attributes::isPascalCase(const std::string& str) { + if (str.empty() || !std::isupper(str[0])) { + return false; + } + + bool expectUpper = false; + for (size_t i = 1; i < str.size(); ++i) { + if (str[i] == '_') { + return false; + } + if (std::isupper(str[i])) { + if (!expectUpper) { + return false; + } + expectUpper = false; + } else if (std::islower(str[i]) || std::isdigit(str[i])) { + expectUpper = true; + } else { + return false; + } + } + return true; +} + +bool Aidge::Attributes::isSnakeCase(const std::string& str) { + if (str.empty()) { + return false; + } + + bool lastCharWasUnderscore = false; + for (char ch : str) { + if (ch == '_') { + if (lastCharWasUnderscore) { + return false; + } + lastCharWasUnderscore = true; + } else if (!std::islower(ch) && !std::isdigit(ch)) { + return false; + } else { + lastCharWasUnderscore = false; + } + } + return true; +} diff --git a/unit_tests/data/Test_Tensor.cpp b/unit_tests/data/Test_Tensor.cpp index 655fd725e9d7d913d24c6552571ae3b91e3605b4..62e90dcbd7c20548019afae1a04f84b3e1d4484a 100644 --- a/unit_tests/data/Test_Tensor.cpp +++ b/unit_tests/data/Test_Tensor.cpp @@ -40,7 +40,7 @@ TEST_CASE("[core/data] Tensor(Construction)", "[Tensor][Constructor]") { (T_default.dims() == std::vector<DimSize_t>({})) && (T_default.strides() == std::vector<DimSize_t>({1})) && (T_default.getImpl() == nullptr) && - (T_default.grad() == nullptr) && + (T_default.grad() != nullptr) && (T_default.isContiguous() == true) )); } @@ -53,7 +53,7 @@ TEST_CASE("[core/data] Tensor(Construction)", "[Tensor][Constructor]") { (T.dims() == std::vector<DimSize_t>({})) && (T.strides() == std::vector<DimSize_t>({1})) && (T.getImpl() != nullptr) && - (T.grad() == nullptr) && + (T.grad() != nullptr) && (T.isContiguous() == true) )); } @@ -67,7 +67,7 @@ TEST_CASE("[core/data] Tensor(Construction)", "[Tensor][Constructor]") { (T.dims() == Tdims) && (T.strides() == std::vector<DimSize_t>({5040,2520,840,210,42,7,1})) && (T.getImpl() == nullptr) && - (T.grad() == nullptr) && + (T.grad() != nullptr) && (T.isContiguous() == true) )); } @@ -83,7 +83,7 @@ TEST_CASE("[core/data] Tensor(Construction)", "[Tensor][Constructor]") { (T.dims() == std::vector<DimSize_t>({2})) && (T.strides() == std::vector<DimSize_t>({1})) && (T.getImpl() != nullptr) && - (T.grad() == nullptr) && + (T.grad() != nullptr) && (T.isContiguous() == true) )); @@ -97,7 +97,7 @@ TEST_CASE("[core/data] Tensor(Construction)", "[Tensor][Constructor]") { (T.dims() == std::vector<DimSize_t>({2,2,2})) && (T.strides() == std::vector<DimSize_t>({4,2,1})) && (T.getImpl() != nullptr) && - (T.grad() == nullptr) && + (T.grad() != nullptr) && (T.isContiguous() == true) )); REQUIRE_NOTHROW(T = Array3D<int, 2, 2, 2>{{{{1, 2}, {3, 4}}, {{5, 6}, {7, 8}}}}); @@ -113,7 +113,7 @@ TEST_CASE("[core/data] Tensor(Construction)", "[Tensor][Constructor]") { (T.dims() == std::vector<DimSize_t>({2,2,2,2})) && (T.strides() == std::vector<DimSize_t>({8,4,2,1})) && (T.getImpl() != nullptr) && - (T.grad() == nullptr) && + (T.grad() != nullptr) && (T.isContiguous() == true) )); } @@ -157,7 +157,7 @@ TEST_CASE("[core/data] Tensor(Construction)", "[Tensor][Constructor]") { (T.dims() == Tclone.dims()) && (T.strides() == Tclone.strides()) && (T.getImpl() != Tclone.getImpl()) && - (Tclone.grad() == nullptr) && + (Tclone.grad() != nullptr) && (Tclone.isContiguous() == true) )); REQUIRE(Tclone == T); diff --git a/unit_tests/graph/Test_GraphView.cpp b/unit_tests/graph/Test_GraphView.cpp index 8403686d16da15e7e8ad4616029a241d6197d450..8e9f5a27e275a5ce56ddf57fa092ec96cec84711 100644 --- a/unit_tests/graph/Test_GraphView.cpp +++ b/unit_tests/graph/Test_GraphView.cpp @@ -399,9 +399,7 @@ TEST_CASE("[core/graph] GraphView(resetConnections)") { conv1->resetConnections(false); REQUIRE(conv->output(0).size() == 0); - for (std::size_t i = 0; i < conv1->nbData(); ++i) { - REQUIRE((conv1->input(i) == std::pair<std::shared_ptr<Node>, IOIndex_t>(nullptr, gk_IODefaultIndex))); - } + REQUIRE((conv1->input(0) == std::pair<std::shared_ptr<Node>, IOIndex_t>(nullptr, gk_IODefaultIndex))); REQUIRE((conv1->input(1) == std::pair<std::shared_ptr<Node>, IOIndex_t>(prod1, 0))); REQUIRE((conv1->input(2) == std::pair<std::shared_ptr<Node>, IOIndex_t>(prod2, 0))); REQUIRE((conv2->input(0) == std::pair<std::shared_ptr<Node>, IOIndex_t>(nullptr, gk_IODefaultIndex))); @@ -554,6 +552,69 @@ TEST_CASE("[core/graph] GraphView(replace)", "[GraphView][replace]") { REQUIRE(g->getNodes() == std::set<std::shared_ptr<Node>>({other1, myConv, other2})); } + SECTION("replace same input category 1") { + std::shared_ptr<GraphView> g = std::make_shared<GraphView>("test_graph"); + auto otherInput = GenericOperator("Producer", {}, 1, "other_input"); + auto other1 = GenericOperator("Other", {InputCategory::Data}, 1, "other1"); + auto myOld = GenericOperator("myOld", {InputCategory::Data}, 1, "old"); + auto other2 = GenericOperator("Other", {InputCategory::Data}, 1, "other2"); + otherInput->addChild(other1); + other1->addChild(myOld); + myOld->addChild(other2); + g->add({other1, myOld, other2}); + + auto myNew = GenericOperator("myNew", {InputCategory::Data, InputCategory::OptionalData, InputCategory::OptionalData}, 1, "new"); + + GraphView::replace({myOld}, {myNew}); + + REQUIRE(g->getNodes() == std::set<std::shared_ptr<Node>>({other1, myNew, other2})); + REQUIRE(myNew->input(0).first == other1); + REQUIRE(myNew->input(1).first == nullptr); + REQUIRE(myNew->input(2).first == nullptr); + } + + SECTION("replace same input category 2") { + std::shared_ptr<GraphView> g = std::make_shared<GraphView>("test_graph"); + auto otherInput = GenericOperator("Producer", {}, 1, "other_input"); + auto other1 = GenericOperator("Other", {InputCategory::Data}, 1, "other1"); + auto myOld = GenericOperator("myOld", {InputCategory::Param}, 1, "old"); + auto other2 = GenericOperator("Other", {InputCategory::Data}, 1, "other2"); + otherInput->addChild(other1); + other1->addChild(myOld, 0, 0); + myOld->addChild(other2); + g->add({other1, myOld, other2}); + + auto myNew = GenericOperator("myNew", {InputCategory::Data, InputCategory::Param, InputCategory::Data}, 1, "new"); + + GraphView::replace({myOld}, {myNew}); + + REQUIRE(g->getNodes() == std::set<std::shared_ptr<Node>>({other1, myNew, other2})); + REQUIRE(myNew->input(0).first == nullptr); + REQUIRE(myNew->input(1).first == other1); + REQUIRE(myNew->input(2).first == nullptr); + } + + SECTION("replace same input category 3") { + std::shared_ptr<GraphView> g = std::make_shared<GraphView>("test_graph"); + auto otherInput = GenericOperator("Producer", {}, 1, "other_input"); + auto other1 = GenericOperator("Other", {InputCategory::Data}, 1, "other1"); + auto myOld = GenericOperator("myOld", {InputCategory::Data}, 1, "old"); + auto other2 = GenericOperator("Other", {InputCategory::Data}, 1, "other2"); + otherInput->addChild(other1); + other1->addChild(myOld); + myOld->addChild(other2); + g->add({other1, myOld, other2}); + + auto myNew = GenericOperator("myNew", {InputCategory::Data, InputCategory::Data, InputCategory::Data}, 1, "new"); + + GraphView::replace({myOld}, {myNew}); + + REQUIRE(g->getNodes() == std::set<std::shared_ptr<Node>>({other1, myNew, other2})); + REQUIRE(myNew->input(0).first == other1); + REQUIRE(myNew->input(1).first == other1); + REQUIRE(myNew->input(2).first == other1); + } + SECTION("Change every Nodes in a GraphView") { auto matmulWeight0 = GenericOperator("Producer", 0, 0, 1, "matmul_w0"); auto addBias0 = GenericOperator("Producer", 0, 0, 1, "add_b0"); diff --git a/unit_tests/graph/Test_Matching.cpp b/unit_tests/graph/Test_Matching.cpp new file mode 100644 index 0000000000000000000000000000000000000000..6abb4d37114d0952feb13c6cfbee66bd65dc5748 --- /dev/null +++ b/unit_tests/graph/Test_Matching.cpp @@ -0,0 +1,383 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <catch2/catch_test_macros.hpp> + +#include <fmt/chrono.h> + +#include "aidge/data/Tensor.hpp" +#include "aidge/graph/GraphView.hpp" +#include "aidge/graph/Testing.hpp" +#include "aidge/graph/OpArgs.hpp" +#include "aidge/operator/Add.hpp" +#include "aidge/operator/ReLU.hpp" +#include "aidge/operator/MetaOperatorDefs.hpp" +#include "aidge/operator/Producer.hpp" +#include "aidge/graph/Matching.hpp" +#include "aidge/recipes/Recipes.hpp" + +using namespace Aidge; + +void checkMatches(const std::set<SinglePassGraphMatching::MatchingResult>& results, const std::map<std::string, std::set<std::string>>& expected) { + REQUIRE(results.size() == expected.size()); + + for (const auto& result : results) { + const auto found = nodePtrTo(result.graph->getNodes(), nodePtrToName); + fmt::print("Found: {}\n", found); + + const auto rootNode = result.graph->rootNode()->name(); + const auto expectedSet = expected.at(rootNode); + REQUIRE(found == expectedSet); + } +} + +TEST_CASE("[core/graph] Matching") { + auto g1 = Sequential({ + Producer({16, 3, 512, 512}, "dataProvider"), + Conv(3, 4, {5, 5}, "conv1"), + ReLU("relu1"), + PaddedConv(4, 8, {5, 5}, "conv2", {1, 1}, {2, 2, 2, 2}), + ReLU("relu2"), + PaddedConv(8, 16, {3, 3}, "conv3", {1, 1}, {2, 2, 2, 2}), + ReLU("relu3"), + PaddedConv(8, 16, {5, 5}, "conv4", {1, 1}, {2, 2, 2, 2}), + Add(2, "add"), + PaddedConv(8, 16, {5, 5}, "conv5", {1, 1}, {2, 2, 2, 2}), + ReLU("relu5"), + Add(2, "add2") + }); + + g1->getNode("relu3")->addChild(g1->getNode("add"), 0, 1); + g1->getNode("conv5")->addChild(g1->getNode("add2"), 0, 1); + g1->updateInputsOutputs(); + + g1->save("Test_examples_before_expand", true); + expandMetaOps(g1); + g1->save("Test_examples", true); + + SECTION("Conv->(ReLU->Pad->Conv)*") { + const auto results = SinglePassGraphMatching(g1).match("Conv->(ReLU->Pad->Conv)*"); + + checkMatches(results, { + {"conv1", {"conv1", "conv2_conv", "conv2_pad", "conv3_conv", "conv3_pad", "relu1", "relu2"}}, + {"conv2_conv", {"conv2_conv", "conv3_conv", "conv3_pad", "relu2"}}, + {"conv3_conv", {"conv3_conv"}}, + {"conv4_conv", {"conv4_conv"}}, + {"conv5_conv", {"conv5_conv"}} + }); + } + + SECTION("Conv->ReLU;ReLU->Pad") { + REQUIRE_THROWS(SinglePassGraphMatching(g1).match("Conv->ReLU;ReLU->Pad")); + } + + SECTION("Conv->ReLU#1;ReLU#2->Pad") { + REQUIRE_THROWS(SinglePassGraphMatching(g1).match("Conv->ReLU#1;ReLU#2->Pad")); + } + + SECTION("Conv?->ReLU") { + REQUIRE_THROWS(SinglePassGraphMatching(g1).match("Conv?->ReLU")); + } + + SECTION("(Add#<*~.)*") { + REQUIRE_THROWS(SinglePassGraphMatching(g1).match("(Add#<*~.)*")); + } + + SECTION("Conv->(ReLU~>Pad->Conv)*") { + const auto results = SinglePassGraphMatching(g1).match("Conv->(ReLU~>Pad->Conv)*"); + + checkMatches(results, { + {"conv1", {"conv1", "conv2_conv", "conv2_pad", "conv3_conv", "conv3_pad", "conv4_conv", "conv4_pad", "relu1", "relu2", "relu3"}}, + {"conv2_conv", {"conv2_conv", "conv3_conv", "conv3_pad", "conv4_conv", "conv4_pad", "relu2", "relu3"}}, + {"conv3_conv", {"conv3_conv", "conv4_conv", "conv4_pad", "relu3"}}, + {"conv4_conv", {"conv4_conv"}}, + {"conv5_conv", {"conv5_conv"}} + }); + } + + SECTION("Conv->(ReLU~>Pad->Conv)* [disjoint]") { + const auto results = SinglePassGraphMatching(g1).match("Conv->(ReLU~>Pad->Conv)*", true); + + checkMatches(results, { + {"conv1", {"conv1", "conv2_conv", "conv2_pad", "conv3_conv", "conv3_pad", "conv4_conv", "conv4_pad", "relu1", "relu2", "relu3"}}, + {"conv5_conv", {"conv5_conv"}} + }); + } + + SECTION("Conv~>(ReLU~>Pad->Conv)*") { + const auto results = SinglePassGraphMatching(g1).match("Conv~>(ReLU~>Pad->Conv)*"); + + checkMatches(results, { + {"conv1", {"conv1", "conv2_conv", "conv2_pad", "conv3_conv", "conv3_pad", "conv4_conv", "conv4_pad", "relu1", "relu2", "relu3"}}, + {"conv2_conv", {"conv2_conv", "conv3_conv", "conv3_pad", "conv4_conv", "conv4_pad", "relu2", "relu3"}}, + {"conv3_conv", {"conv3_conv", "conv4_conv", "conv4_pad", "relu3"}}, + {"conv4_conv", {"conv4_conv"}}, + {"conv5_conv", {"conv5_conv"}} + }); + } + + SECTION("Pad->Conv#->ReLU;Conv#<1-Producer;Conv#<2-Producer") { + const auto results = SinglePassGraphMatching(g1).match("Pad->Conv#->ReLU;Conv#<1-Producer;Conv#<2-Producer"); + + checkMatches(results, { + {"conv2_pad", {"conv2_b", "conv2_conv", "conv2_pad", "conv2_w", "relu2"}}, + {"conv3_pad", {"conv3_b", "conv3_conv", "conv3_pad", "conv3_w", "relu3"}} + }); + } + + SECTION("Pad->Conv#~>ReLU;Conv#<1-Producer;Conv#<2-Producer") { + const auto results = SinglePassGraphMatching(g1).match("Pad->Conv#~>ReLU;Conv#<1-Producer;Conv#<2-Producer"); + + checkMatches(results, { + {"conv2_pad", {"conv2_b", "conv2_conv", "conv2_pad", "conv2_w", "relu2"}}, + {"conv3_pad", {"conv3_b", "conv3_conv", "conv3_pad", "conv3_w", "relu3"}}, + {"conv5_pad", {"conv5_b", "conv5_conv", "conv5_pad", "conv5_w", "relu5"}} + }); + } + + SECTION("Pad->Conv#~>ReLU;(Conv#<*-Producer){2}") { + const auto results = SinglePassGraphMatching(g1).match("Pad->Conv#~>ReLU;(Conv#<*-Producer){2}"); + + checkMatches(results, { + {"conv2_pad", {"conv2_b", "conv2_conv", "conv2_pad", "conv2_w", "relu2"}}, + {"conv3_pad", {"conv3_b", "conv3_conv", "conv3_pad", "conv3_w", "relu3"}}, + {"conv5_pad", {"conv5_b", "conv5_conv", "conv5_pad", "conv5_w", "relu5"}} + }); + } + + SECTION("Pad->Conv#->ReLU;(Conv#<*-Producer){2}") { + const auto results = SinglePassGraphMatching(g1).match("Pad->Conv#->ReLU;(Conv#<*-Producer){2}"); + + checkMatches(results, { + {"conv2_pad", {"conv2_b", "conv2_conv", "conv2_pad", "conv2_w", "relu2"}}, + {"conv3_pad", {"conv3_b", "conv3_conv", "conv3_pad", "conv3_w", "relu3"}} + }); + } + + SECTION("Pad->Conv#~>ReLU;(Conv#<*-.){2}") { + const auto results = SinglePassGraphMatching(g1).match("Pad->Conv#~>ReLU;(Conv#<*-.){2}"); + + checkMatches(results, { + {"conv2_pad", {"conv2_b", "conv2_conv", "conv2_pad", "conv2_w", "relu2"}}, + {"conv3_pad", {"conv3_b", "conv3_conv", "conv3_pad", "conv3_w", "relu3"}}, + {"conv5_pad", {"conv5_b", "conv5_conv", "conv5_pad", "conv5_w", "relu5"}} + }); + } + + SECTION("Pad->Conv#->ReLU;(Conv#<*-.){2}") { + const auto results = SinglePassGraphMatching(g1).match("Pad->Conv#->ReLU;(Conv#<*-.){2}"); + + checkMatches(results, { + {"conv2_pad", {"conv2_b", "conv2_conv", "conv2_pad", "conv2_w", "relu2"}}, + {"conv3_pad", {"conv3_b", "conv3_conv", "conv3_pad", "conv3_w", "relu3"}} + }); + } + + SECTION("Conv#~>ReLU*;Conv#<-Pad*") { + const auto results = SinglePassGraphMatching(g1).match("Conv#~>ReLU*;Conv#<-Pad*"); + + checkMatches(results, { + {"conv1", {"conv1", "relu1"}}, + {"conv2_conv", {"conv2_conv", "conv2_pad", "relu2"}}, + {"conv3_conv", {"conv3_conv", "conv3_pad", "relu3"}}, + {"conv4_conv", {"conv4_conv", "conv4_pad"}}, + {"conv5_conv", {"conv5_conv", "conv5_pad", "relu5"}} + }); + } + + SECTION("Conv#->ReLU*;Conv#<-Pad*") { + const auto results = SinglePassGraphMatching(g1).match("Conv#->ReLU*;Conv#<-Pad*"); + + checkMatches(results, { + {"conv1", {"conv1", "relu1"}}, + {"conv2_conv", {"conv2_conv", "conv2_pad", "relu2"}}, + {"conv3_conv", {"conv3_conv", "conv3_pad", "relu3"}}, + {"conv4_conv", {"conv4_conv", "conv4_pad"}}, + {"conv5_conv", {"conv5_conv", "conv5_pad"}} + }); + } + + SECTION("Conv#->ReLU?-*>Add#1?->ReLU?;Conv#<-Pad?;(Add#1<*-.)?") { + const auto results = SinglePassGraphMatching(g1).match("Conv#->ReLU?-*>Add#1?->ReLU?;Conv#<-Pad?;(Add#1<*-.)?"); + + checkMatches(results, { + {"conv1", {"conv1", "relu1"}}, + {"conv2_conv", {"conv2_conv", "conv2_pad", "relu2"}}, + {"conv3_conv", {"conv3_conv", "conv3_pad", "relu3"}}, + {"conv4_conv", {"add", "conv4_conv", "conv4_pad"}}, + {"conv5_conv", {"conv5_conv", "conv5_pad"}} + }); + } + + SECTION("Conv#~>ReLU?-*>Add#1?~>ReLU?;Conv#<-Pad?;(Add#1<*-.)?") { + const auto results = SinglePassGraphMatching(g1).match("Conv#~>ReLU?-*>Add#1?~>ReLU?;Conv#<-Pad?;(Add#1<*-.)?"); + + checkMatches(results, { + {"conv1", {"conv1", "relu1"}}, + {"conv2_conv", {"conv2_conv", "conv2_pad", "relu2"}}, + {"conv3_conv", {"conv3_conv", "conv3_pad", "relu3"}}, + {"conv4_conv", {"add", "conv4_conv", "conv4_pad"}}, + {"conv5_conv", {"add2", "conv5_conv", "conv5_pad", "relu5"}} + }); + } + + SECTION("Conv#~>ReLU?~*>Add#1?~>ReLU?;Conv#<-Pad?;(Add#1<*~.)?") { + const auto results = SinglePassGraphMatching(g1).match("Conv#~>ReLU?~*>Add#1?~>ReLU?;Conv#<-Pad?;(Add#1<*~.)?"); + + checkMatches(results, { + {"conv1", {"conv1", "relu1"}}, + {"conv2_conv", {"conv2_conv", "conv2_pad", "relu2"}}, + {"conv3_conv", {"add", "conv3_conv", "conv3_pad", "conv4_conv", "relu3"}}, + {"conv4_conv", {"add", "conv4_conv", "conv4_pad", "relu3"}}, + {"conv5_conv", {"add2", "conv5_conv", "conv5_pad", "relu5"}} + }); + } + + SECTION("Conv#->ReLU?;Conv#<-Pad?") { + const auto results = SinglePassGraphMatching(g1).match("Conv#->ReLU?;Conv#<-Pad?"); + + checkMatches(results, { + {"conv1", {"conv1", "relu1"}}, + {"conv2_conv", {"conv2_conv", "conv2_pad", "relu2"}}, + {"conv3_conv", {"conv3_conv", "conv3_pad", "relu3"}}, + {"conv4_conv", {"conv4_conv", "conv4_pad"}}, + {"conv5_conv", {"conv5_conv", "conv5_pad"}} + }); + } + + SECTION("Conv#~>ReLU?;Conv#<-Pad?") { + const auto results = SinglePassGraphMatching(g1).match("Conv#~>ReLU?;Conv#<-Pad?"); + + checkMatches(results, { + {"conv1", {"conv1", "relu1"}}, + {"conv2_conv", {"conv2_conv", "conv2_pad", "relu2"}}, + {"conv3_conv", {"conv3_conv", "conv3_pad", "relu3"}}, + {"conv4_conv", {"conv4_conv", "conv4_pad"}}, + {"conv5_conv", {"conv5_conv", "conv5_pad", "relu5"}} + }); + } + + SECTION("(Conv|ReLU)->Add") { + const auto results = SinglePassGraphMatching(g1).match("(Conv|ReLU)->Add"); + + checkMatches(results, { + {"conv4_conv", {"add", "conv4_conv"}}, + {"relu5", {"add2", "relu5"}} + }); + } + + SECTION("Add<*-.") { + const auto results = SinglePassGraphMatching(g1).match("Add<*-."); + + checkMatches(results, { + {"add", {"add", "conv4_conv"}}, + {"add2", {"add2", "relu5"}} + }); + } + + SECTION("(Add#<*~.)+") { + const auto results = SinglePassGraphMatching(g1).match("(Add#<*~.)+"); + + checkMatches(results, { + {"add", {"add", "conv4_conv", "relu3"}}, + {"add2", {"add2", "conv5_conv", "relu5"}} + }); + } + + SECTION("Conv~*>(ReLU&Add)") { + const auto results = SinglePassGraphMatching(g1).match("Conv~*>(ReLU&Add)"); + + checkMatches(results, { + {"conv5_conv", {"add2", "conv5_conv", "relu5"}} + }); + } + + SECTION("Conv~>(ReLU&Add)") { + const auto results = SinglePassGraphMatching(g1).match("Conv~>(ReLU&Add)"); + REQUIRE(results.size() == 0); + } + + SECTION("ReLU~*>((Pad->Conv-*>Add#)&Add#)") { + const auto results = SinglePassGraphMatching(g1).match("ReLU~*>((Pad->Conv-*>Add#)&Add#)"); + + checkMatches(results, { + {"relu3", {"add", "conv4_conv", "conv4_pad", "relu3"}} + }); + } + + SECTION("ReLU-*>((Pad->Conv-*>Add)&Add)") { + const auto results = SinglePassGraphMatching(g1).match("ReLU-*>((Pad->Conv-*>Add)&Add)"); + REQUIRE(results.size() == 0); + } + + SECTION("Pad->Conv[3x3]->ReLU") { + auto gm = SinglePassGraphMatching(g1); + gm.addNodeLambda("3x3", [](const NodePtr& node) { + const std::shared_ptr<Conv_Op<2>> op = + std::static_pointer_cast<Conv_Op<2>>(node->getOperator()); + return (op->kernelDims() == std::array<DimSize_t, 2>({3, 3})); + }); + + const auto results = gm.match("Pad->Conv[3x3]->ReLU"); + + checkMatches(results, { + {"conv3_pad", {"conv3_conv", "conv3_pad", "relu3"}} + }); + } + + SECTION(".[test]->Pad") { + auto gm = SinglePassGraphMatching(g1); + gm.addNodeLambda("test", [](const NodePtr& node) { + return (node->type() == "Add" || (node->type() == "ReLU" && node->name() == "relu1")); + }); + + const auto results = gm.match(".[test]->Pad"); + + checkMatches(results, { + {"add", {"add", "conv5_pad"}}, + {"relu1", {"relu1", "conv2_pad"}} + }); + } + + SECTION("Conv->ReLU [perf]") { + const size_t nbTests = 3; + std::mt19937::result_type seed(1); + + for (int test = 0; test < nbTests; ++test) { + RandomGraph randGraph; + randGraph.types = {"Conv", "ReLU", "Dummy"}; + randGraph.typesWeights = {0.4, 0.4, 0.2}; + randGraph.avgIn = 1; + randGraph.maxIn = 1; + randGraph.maxOut = 1; + randGraph.avgOut = 1; + randGraph.density = 0.9; + randGraph.acyclic = true; + const auto g1 = std::make_shared<GraphView>("g1"); + + Log::setConsoleLevel(Log::Warn); + g1->add(randGraph.gen(seed, 100)); + g1->save("graph_single_pass"); + + auto gm = SinglePassGraphMatching(g1); + + const auto start = std::chrono::system_clock::now(); + const auto results = gm.match("Conv->ReLU#;ReLU#->Dummy"); + const auto end = std::chrono::system_clock::now(); + const auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(end - start); + + REQUIRE(results.size() > 0); + ++seed; + + fmt::print("Found: {} - duration: {}\n", results.size(), duration); + } + } +} diff --git a/unit_tests/graphRegex/Test_GraphRegex.cpp b/unit_tests/graphRegex/Test_GraphRegex.cpp index a62b9a8602b494f26fb47061b899eaba41129a1f..fbbc3f766857f15af0da8004c35078993d71e973 100644 --- a/unit_tests/graphRegex/Test_GraphRegex.cpp +++ b/unit_tests/graphRegex/Test_GraphRegex.cpp @@ -31,11 +31,11 @@ TEST_CASE("GraphRegexUser") { g1->addChild(fc, "c"); g1->addChild(conv2, "c1"); g1->addChild(fc2, "c2"); - + /// std::shared_ptr<GraphRegex> sut = std::make_shared<GraphRegex>(); sut->setNodeKey("C",+[](NodePtr NodeOp){return NodeOp->type() == "FC";}); - + sut->setNodeKey("A","C($)==True"); sut->addQuery("A"); auto match = sut->match(g1); @@ -163,14 +163,14 @@ TEST_CASE("GraphRegexUser") { auto w1 = Producer({5,5},"W1"); auto input = Producer({2,5}, "input"); - input->addChild(matmul0, 0, 0); - w0->addChild(matmul0, 0, 1); + input->addChild(matmul0, 0, 1); + w0->addChild(matmul0, 0, 0); matmul0->addChild(add0, 0, 0); b0->addChild(add0, 0, 1); - add0->addChild(matmul1, 0, 0); - w1->addChild(matmul1, 0, 1); + add0->addChild(matmul1, 0, 1); + w1->addChild(matmul1, 0, 0); matmul1->addChild(add1, 0, 0); b1->addChild(add1, 0, 1); @@ -201,4 +201,4 @@ TEST_CASE("GraphRegexUser") { } -} \ No newline at end of file +} diff --git a/unit_tests/operator/Test_GatherImpl.cpp b/unit_tests/operator/Test_GatherImpl.cpp index 2995963a35cda5b0c5794b1d15e4064438b58ece..02e8e74890918726212e09fdd9f969ce0863af83 100644 --- a/unit_tests/operator/Test_GatherImpl.cpp +++ b/unit_tests/operator/Test_GatherImpl.cpp @@ -14,12 +14,13 @@ #include "aidge/data/Tensor.hpp" #include "aidge/operator/Gather.hpp" +#include <cstdint> #include <memory> using namespace Aidge; -TEST_CASE("[cpu/operator] Gather(forward)") { +TEST_CASE("[cpu/operator] Gather(forward)", "[Gather][CPU]") { SECTION("2D Tensor axis 0") { std::shared_ptr<Tensor> input = std::make_shared<Tensor>(Array2D<int,3,3> { { @@ -42,10 +43,10 @@ TEST_CASE("[cpu/operator] Gather(forward)") { } }); - std::shared_ptr<Node> myGather = Gather({1, 2}, {1, 2}, 0); + std::shared_ptr<Node> myGather = Gather(std::int8_t(0)); auto op = std::static_pointer_cast<OperatorTensor>(myGather -> getOperator()); op->associateInput(0,input); - // op->associateInput(1,indexes); + op->associateInput(1,indexes); op->setDataType(DataType::Int32); op->setBackend("cpu"); myGather->forward(); @@ -82,10 +83,42 @@ TEST_CASE("[cpu/operator] Gather(forward)") { } }); - std::shared_ptr<Node> myGather = Gather({0, 2}, {1, 2}, 1); + std::shared_ptr<Node> myGather = Gather(1); + auto op = std::static_pointer_cast<OperatorTensor>(myGather -> getOperator()); + op->associateInput(0,input); + op->associateInput(1,indexes); + op->setDataType(DataType::Int32); + op->setBackend("cpu"); + myGather->forward(); + + REQUIRE(*(op->getOutput(0)) == *expectedOutput); + + } + SECTION("Init with attributes") { + std::shared_ptr<Tensor> input = std::make_shared<Tensor>(Array2D<int,3,3> { + { + {1, 2, 3}, + {4, 5, 6}, + {7, 8, 9} + } + }); + std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array3D<int,3,1,2> { + { + { + {1, 3} + }, + { + {4, 6} + }, + { + {7, 9} + } + } + }); + + std::shared_ptr<Node> myGather = Gather(1, {0, 2}, {1, 2}); auto op = std::static_pointer_cast<OperatorTensor>(myGather -> getOperator()); op->associateInput(0,input); - // op->associateInput(1,indexes); op->setDataType(DataType::Int32); op->setBackend("cpu"); myGather->forward(); diff --git a/unit_tests/operator/Test_GenericOperator.cpp b/unit_tests/operator/Test_GenericOperator.cpp index 8d634cc3a105c423b54b6003f41204aeb1fc5335..41bad69749fd82f892c6faa625739d0493396c73 100644 --- a/unit_tests/operator/Test_GenericOperator.cpp +++ b/unit_tests/operator/Test_GenericOperator.cpp @@ -20,7 +20,7 @@ using namespace Aidge; TEST_CASE("[core/operators] GenericOp(add & get attributes)", "[Operator]") { SECTION("INT") { GenericOperator_Op Testop("TestOp", 1, 1, 1); - const char* key = "intAttr"; + const char* key = "IntAttr"; Testop.addAttr(key, int(5)); int registeredVal = Testop.getAttr<int>(key); REQUIRE(registeredVal == 5); @@ -28,21 +28,21 @@ TEST_CASE("[core/operators] GenericOp(add & get attributes)", "[Operator]") { SECTION("LONG") { GenericOperator_Op Testop("TestOp", 1, 1, 1); long value = 3; - const char* key = "longAttr"; + const char* key = "LongAttr"; Testop.addAttr(key, value); REQUIRE(Testop.getAttr<long>(key) == value); } SECTION("FLOAT") { GenericOperator_Op Testop("TestOp", 1, 1, 1); float value = 2.0; - const char* key = "floatAttr"; + const char* key = "FloatAttr"; Testop.addAttr(key, value); REQUIRE(Testop.getAttr<float>(key) == value); } SECTION("VECTOR<BOOL>") { GenericOperator_Op Testop("TestOp", 1, 1, 1); std::vector<bool> value = {true, false, false, true, true}; - const char* key = "vect"; + const char* key = "Vect"; Testop.addAttr(key, value); REQUIRE(Testop.getAttr<std::vector<bool>>(key).size() == value.size()); @@ -53,7 +53,7 @@ TEST_CASE("[core/operators] GenericOp(add & get attributes)", "[Operator]") { SECTION("VECTOR<INT>") { GenericOperator_Op Testop("TestOp", 1, 1, 1); std::vector<int> value = {1, 2, 3, 4, 5, 6, 7, 8, 9}; - const char* key = "vect"; + const char* key = "Vect"; Testop.addAttr(key, value); REQUIRE(Testop.getAttr<std::vector<int>>(key).size() == value.size()); @@ -66,23 +66,23 @@ TEST_CASE("[core/operators] GenericOp(add & get attributes)", "[Operator]") { Goal : Test that the offsets are well done by adding different attributes with different size. */ GenericOperator_Op Testop("TestOp", 1, 1, 1); - Testop.addAttr<long>("longAttr", 3); - Testop.addAttr<float>("floatAttr", 2.0); - Testop.addAttr<uint8_t>("uint8Attr", 5); - Testop.addAttr<long long>("llAttr", 10); - REQUIRE(Testop.getAttr<long>("longAttr") == 3); - REQUIRE(Testop.getAttr<float>("floatAttr") == 2.0); - REQUIRE(Testop.getAttr<uint8_t>("uint8Attr") == 5); - REQUIRE(Testop.getAttr<long long>("llAttr") == 10); + Testop.addAttr<long>("LongAttr", 3); + Testop.addAttr<float>("FloatAttr", 2.0); + Testop.addAttr<uint8_t>("Uint8Attr", 5); + Testop.addAttr<long long>("LlAttr", 10); + REQUIRE(Testop.getAttr<long>("LongAttr") == 3); + REQUIRE(Testop.getAttr<float>("FloatAttr") == 2.0); + REQUIRE(Testop.getAttr<uint8_t>("Uint8Attr") == 5); + REQUIRE(Testop.getAttr<long long>("LlAttr") == 10); } } TEST_CASE("[core/operator] GenericOp(type check)", "[Operator]") { SECTION("WRONG TYPE FOR GETTER") { GenericOperator_Op Testop("TestOp", 1, 1, 1); - Testop.addAttr<long>("longAttr", 3); + Testop.addAttr<long>("LongAttr", 3); // This line should raise a failled assert - REQUIRE_THROWS(Testop.getAttr<int>("longAttribute")); + REQUIRE_THROWS(Testop.getAttr<int>("LongAttribute")); } } diff --git a/unit_tests/operator/Test_MetaOperator.cpp b/unit_tests/operator/Test_MetaOperator.cpp index ed4afafe39a367ecabb25ff949eb3d03999d1ea9..d1b4e2e31e8c57e2c3eebd42019ba9f42c4d39e0 100644 --- a/unit_tests/operator/Test_MetaOperator.cpp +++ b/unit_tests/operator/Test_MetaOperator.cpp @@ -39,7 +39,9 @@ TEST_CASE("[core/operators] MetaOperator", "[Operator][MetaOperator]") { REQUIRE(microGraph->outputNodes().size() == 1); REQUIRE((*microGraph->outputNodes().begin())->getOperator()->type() == "Conv"); REQUIRE(op->nbInputs() == 3); - REQUIRE(op->nbData() == 1); + REQUIRE(op->inputCategory(0) == InputCategory::Data); + REQUIRE(op->inputCategory(1) == InputCategory::Param); + REQUIRE(op->inputCategory(2) == InputCategory::OptionalParam); REQUIRE(op->nbOutputs() == 1); std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(std::vector<std::size_t>({2,1,5,5})); @@ -66,7 +68,13 @@ TEST_CASE("[core/operators] MetaOperator", "[Operator][MetaOperator]") { microGraph->save("lstm", false, false); REQUIRE(myLSTM->nbInputs() == 3 + 8 + 8); - REQUIRE(myLSTM->nbData() == 1); + REQUIRE(myLSTM->inputCategory(0) == InputCategory::Data); + for (size_t i = 1; i < 9; ++i) { + REQUIRE(myLSTM->inputCategory(i) == InputCategory::Param); + } + for (size_t i = 9; i < 17; ++i) { + REQUIRE(myLSTM->inputCategory(i) == InputCategory::OptionalParam); + } REQUIRE(myLSTM->nbOutputs() == 2); std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(); @@ -94,7 +102,13 @@ TEST_CASE("[core/operators] MetaOperator", "[Operator][MetaOperator]") { auto op = std::static_pointer_cast<OperatorTensor>(myLSTM->getOperator()); REQUIRE(myLSTM->nbInputs() == 3 + 8 + 8); - REQUIRE(myLSTM->nbData() == 1); + REQUIRE(myLSTM->inputCategory(0) == InputCategory::Data); + for (size_t i = 1; i < 9; ++i) { + REQUIRE(myLSTM->inputCategory(i) == InputCategory::Param); + } + for (size_t i = 9; i < 17; ++i) { + REQUIRE(myLSTM->inputCategory(i) == InputCategory::OptionalParam); + } REQUIRE(myLSTM->nbOutputs() == 2); std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>( @@ -129,6 +143,6 @@ TEST_CASE("[core/operators] MetaOperator", "[Operator][MetaOperator]") { REQUIRE(g->rootNode() == pop); g->save("lstm_expanded", true, true); - REQUIRE(g->getNodes().size() == 41); + REQUIRE(g->getNodes().size() == 33); } } diff --git a/unit_tests/operator/Test_ReshapeImpl.cpp b/unit_tests/operator/Test_ReshapeImpl.cpp index 5d28005eb40534742aae495948e5269373b81ad1..2685518b5c49f13ff4aee4202163e3aa3267aa5f 100644 --- a/unit_tests/operator/Test_ReshapeImpl.cpp +++ b/unit_tests/operator/Test_ReshapeImpl.cpp @@ -20,48 +20,105 @@ using namespace Aidge; TEST_CASE("[cpu/operator] Reshape(forward)") { SECTION("1D Tensor") { - std::shared_ptr<Tensor> input = std::make_shared<Tensor>(Array1D<float,6> { - {1.0, 2.0, 3.0, 4.0, 5.0, 6.0} - }); - std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array2D<float,2,3> { - { - {1.0, 2.0, 3.0}, - {4.0, 5.0, 6.0} - } - }); + SECTION("Shape As Input") { + std::shared_ptr<Tensor> input = std::make_shared<Tensor>(Array1D<float,6> { + {1.0, 2.0, 3.0, 4.0, 5.0, 6.0} + }); + std::shared_ptr<Tensor> shape = std::make_shared<Tensor>(Array1D<float,2> { + {2, 3} + }); + std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array2D<float,2,3> { + { + {1.0, 2.0, 3.0}, + {4.0, 5.0, 6.0} + } + }); - std::shared_ptr<Node> myReshape = Reshape({2, 3}); - auto op = std::static_pointer_cast<OperatorTensor>(myReshape -> getOperator()); - op->associateInput(0, input); - op->setDataType(DataType::Float32); - op->setBackend("cpu"); - myReshape->forward(); + std::shared_ptr<Node> myReshape = Reshape(); + auto op = std::static_pointer_cast<OperatorTensor>(myReshape -> getOperator()); + op->associateInput(0, input); + op->associateInput(1, shape); + op->setDataType(DataType::Float32); + op->setBackend("cpu"); + myReshape->forward(); - REQUIRE(*(op->getOutput(0)) == *expectedOutput); + REQUIRE(*(op->getOutput(0)) == *expectedOutput); + } + SECTION("Shape As Input") { + std::shared_ptr<Tensor> input = std::make_shared<Tensor>(Array1D<float,6> { + {1.0, 2.0, 3.0, 4.0, 5.0, 6.0} + }); + std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array2D<float,2,3> { + { + {1.0, 2.0, 3.0}, + {4.0, 5.0, 6.0} + } + }); + + std::shared_ptr<Node> myReshape = Reshape({2, 3}); + auto op = std::static_pointer_cast<OperatorTensor>(myReshape -> getOperator()); + op->associateInput(0, input); + op->setDataType(DataType::Float32); + op->setBackend("cpu"); + myReshape->forward(); + + REQUIRE(*(op->getOutput(0)) == *expectedOutput); + } } - SECTION("2D Tensor") { - std::shared_ptr<Tensor> input = std::make_shared<Tensor>(Array2D<float,2,3> { - { - {1.0, 2.0, 3.0}, - {4.0, 5.0, 6.0} - } + SECTION("2D Tensor - Shape Input") { + SECTION("Shape As Input") { + std::shared_ptr<Tensor> input = std::make_shared<Tensor>(Array2D<float,2,3> { + { + {1.0, 2.0, 3.0}, + {4.0, 5.0, 6.0} + } + + }); + std::shared_ptr<Tensor> shape = std::make_shared<Tensor>(Array1D<float,2> { + {3, 2} + }); + std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array2D<float,3,2> { + { + {1.0, 2.0}, + {3.0, 4.0}, + {5.0, 6.0} + } + }); + + std::shared_ptr<Node> myReshape = Reshape(); + auto op = std::static_pointer_cast<OperatorTensor>(myReshape -> getOperator()); + op->associateInput(0, input); + op->associateInput(1, shape); + op->setDataType(DataType::Float32); + op->setBackend("cpu"); + myReshape->forward(); + + REQUIRE(*(op->getOutput(0)) == *expectedOutput); + } + SECTION("Shape As Attribute") { + std::shared_ptr<Tensor> input = std::make_shared<Tensor>(Array2D<float,2,3> { + { + {1.0, 2.0, 3.0}, + {4.0, 5.0, 6.0} + } - }); - std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array2D<float,3,2> { - { - {1.0, 2.0}, - {3.0, 4.0}, - {5.0, 6.0} - } - }); + }); + std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array2D<float,3,2> { + { + {1.0, 2.0}, + {3.0, 4.0}, + {5.0, 6.0} + } + }); - std::shared_ptr<Node> myReshape = Reshape({3, 2}); - auto op = std::static_pointer_cast<OperatorTensor>(myReshape -> getOperator()); - op->associateInput(0, input); - op->setDataType(DataType::Float32); - op->setBackend("cpu"); - myReshape->forward(); + std::shared_ptr<Node> myReshape = Reshape({3, 2}); + auto op = std::static_pointer_cast<OperatorTensor>(myReshape -> getOperator()); + op->associateInput(0, input); + op->setDataType(DataType::Float32); + op->setBackend("cpu"); + myReshape->forward(); - REQUIRE(*(op->getOutput(0)) == *expectedOutput); + REQUIRE(*(op->getOutput(0)) == *expectedOutput); + } } } \ No newline at end of file diff --git a/unit_tests/operator/Test_ShapeImpl.cpp b/unit_tests/operator/Test_ShapeImpl.cpp new file mode 100644 index 0000000000000000000000000000000000000000..45df89df061148fbfb892112e3c6d01edf27ffb4 --- /dev/null +++ b/unit_tests/operator/Test_ShapeImpl.cpp @@ -0,0 +1,86 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <catch2/catch_test_macros.hpp> + +#include "aidge/data/Tensor.hpp" +#include "aidge/operator/Shape.hpp" + +#include <cstdint> +#include <memory> + + +using namespace Aidge; + +TEST_CASE("[cpu/operator] Shape(forward)", "[Shape][CPU]") { + SECTION("Default attributes") { + std::shared_ptr<Tensor> input = std::make_shared<Tensor>(Array4D<int,1,2,3,5> { + { + { + { + { 1, 2, 3, 4, 5}, + { 6, 7, 8, 9, 10}, + {11, 12, 13, 14, 15} + }, + { + {16, 17, 18, 19, 20}, + {21, 22, 23, 24, 25}, + {26, 27, 28, 29, 30} + } + } + } + }); + std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array1D<int,4> { + {1, 2, 3, 5} + }); + + std::shared_ptr<Node> myShape = Shape(); + auto op = std::static_pointer_cast<OperatorTensor>(myShape -> getOperator()); + op->associateInput(0,input); + op->setDataType(DataType::Int32); + op->setBackend("cpu"); + myShape->forward(); + + REQUIRE(*(op->getOutput(0)) == *expectedOutput); + + } + SECTION("Using attributes") { + std::shared_ptr<Tensor> input = std::make_shared<Tensor>(Array4D<int,1,2,3,5> { + { + { + { + { 1, 2, 3, 4, 5}, + { 6, 7, 8, 9, 10}, + {11, 12, 13, 14, 15} + }, + { + {16, 17, 18, 19, 20}, + {21, 22, 23, 24, 25}, + {26, 27, 28, 29, 30} + } + } + } + }); + std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array1D<int,2> { + {2, 3} + }); + + std::shared_ptr<Node> myShape = Shape(1, 2); + auto op = std::static_pointer_cast<OperatorTensor>(myShape -> getOperator()); + op->associateInput(0,input); + op->setDataType(DataType::Int32); + op->setBackend("cpu"); + myShape->forward(); + + REQUIRE(*(op->getOutput(0)) == *expectedOutput); + + } +} \ No newline at end of file diff --git a/unit_tests/operator/Test_SliceImpl.cpp b/unit_tests/operator/Test_SliceImpl.cpp deleted file mode 100644 index 91ae92848b552a6038a4cb5f8dd3848b20ac2168..0000000000000000000000000000000000000000 --- a/unit_tests/operator/Test_SliceImpl.cpp +++ /dev/null @@ -1,160 +0,0 @@ -/******************************************************************************** - * Copyright (c) 2023 CEA-List - * - * This program and the accompanying materials are made available under the - * terms of the Eclipse Public License 2.0 which is available at - * http://www.eclipse.org/legal/epl-2.0. - * - * SPDX-License-Identifier: EPL-2.0 - * - ********************************************************************************/ - -#include <catch2/catch_test_macros.hpp> - -#include "aidge/data/Tensor.hpp" -#include "aidge/operator/Slice.hpp" - -using namespace Aidge; - -TEST_CASE("[cpu/operator] Slice(forward)", "[Slice][CPU]") { - SECTION("1D Tensor") { - std::shared_ptr<Tensor> input0 = std::make_shared<Tensor>(Array1D<int,10> { - {0, 1, 2,-3, 4,-5,-6, 7, 8, 9} - }); - std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array1D<int,4> { - {0, 1, 2,-3} - }); - - std::shared_ptr<Node> mySlice = Slice({0}, {3}, {0}); - auto op = std::static_pointer_cast<OperatorTensor>(mySlice -> getOperator()); - mySlice->getOperator()->associateInput(0,input0); - mySlice->getOperator()->setDataType(DataType::Int32); - mySlice->getOperator()->setBackend("cpu"); - mySlice->forward(); - - REQUIRE(*(op->getOutput(0)) == *expectedOutput); - REQUIRE(op->getOutput(0)->dims() == expectedOutput->dims()); - REQUIRE(op->getOutput(0)->dataType() == expectedOutput->dataType()); - } - - SECTION("2D Tensor") { - std::shared_ptr<Tensor> input0 = std::make_shared<Tensor>(Array2D<int,2,10> { - { - { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, - {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} - } - }); - std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array2D<int,2,3> { - { - {-5,-6, 7}, - {-5,-6, 7} - } - }); - - std::shared_ptr<Node> mySlice = Slice({0,5}, {1,7}, {0,1}); - auto op = std::static_pointer_cast<OperatorTensor>(mySlice -> getOperator()); - mySlice->getOperator()->associateInput(0,input0); - mySlice->getOperator()->setDataType(DataType::Int32); - mySlice->getOperator()->setBackend("cpu"); - mySlice->forward(); - // mySlice->getOperator()->output(0).print(); - REQUIRE(*(op->getOutput(0)) == *expectedOutput); - REQUIRE(op->getOutput(0)->dims() == expectedOutput->dims()); - REQUIRE(op->getOutput(0)->dataType() == expectedOutput->dataType()); - } - - SECTION("3D Tensor") { - std::shared_ptr<Tensor> input0 = std::make_shared<Tensor>(Array3D<int,2,2,10> { - { - { - { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, - {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} - }, - { - { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, - {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} - } - } - }); - std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array3D<int,1,1,3> { - { - { - { 4,-5,-6} - } - } - }); - - std::shared_ptr<Node> mySlice = Slice({0,1,4}, {0,1,6}, {0,1,2}); - auto op = std::static_pointer_cast<OperatorTensor>(mySlice -> getOperator()); - mySlice->getOperator()->associateInput(0,input0); - mySlice->getOperator()->setDataType(DataType::Int32); - mySlice->getOperator()->setBackend("cpu"); - mySlice->forward(); - // mySlice->getOperator()->output(0).print(); - REQUIRE(*(op->getOutput(0)) == *expectedOutput); - REQUIRE(op->getOutput(0)->dims() == expectedOutput->dims()); - REQUIRE(op->getOutput(0)->dataType() == expectedOutput->dataType()); - } - - SECTION("4D Tensor") { - std::shared_ptr<Tensor> input0 = std::make_shared<Tensor>(Array4D<int,2,2,2,10> { - { - { - { - { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, - {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} - }, - { - { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, - {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} - } - }, - { - { - { 0, 1, 2,-3, 6,-5,-6, 7, 8, 9}, - {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} - }, - { - { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, - {-5, 4, 2,-3,11,-5,-6, 7,-1,10} - } - } - } - }); - std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array4D<int,2,2,2,10> { - { - { - { - { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, - {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} - }, - { - { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, - {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} - } - }, - { - { - { 0, 1, 2,-3, 6,-5,-6, 7, 8, 9}, - {-5, 4, 2,-3, 4,-5,-6, 7,-1,10} - }, - { - { 0, 1, 2,-3, 4,-5,-6, 7, 8, 9}, - {-5, 4, 2,-3,11,-5,-6, 7,-1,10} - } - } - } - }); - - std::shared_ptr<Node> mySlice = Slice({0,0,0,0}, {1,1,1,9}, {0,1,2,3}); - auto op = std::static_pointer_cast<OperatorTensor>(mySlice -> getOperator()); - mySlice->getOperator()->associateInput(0,input0); - mySlice->getOperator()->setDataType(DataType::Int32); - mySlice->getOperator()->setBackend("cpu"); - mySlice->forward(); - // mySlice->getOperator()->output(0).print(); - REQUIRE(*(op->getOutput(0)) == *expectedOutput); - REQUIRE(op->getOutput(0)->dims() == expectedOutput->dims()); - REQUIRE(op->getOutput(0)->dataType() == expectedOutput->dataType()); - } -} diff --git a/unit_tests/operator/Test_SplitImpl.cpp b/unit_tests/operator/Test_SplitImpl.cpp new file mode 100644 index 0000000000000000000000000000000000000000..5f6f191fccbc0ee5331a9ccaf83563e169eb6abe --- /dev/null +++ b/unit_tests/operator/Test_SplitImpl.cpp @@ -0,0 +1,119 @@ +/******************************************************************************** + * Copyright (c) 2024 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <catch2/catch_test_macros.hpp> + +#include "aidge/data/Tensor.hpp" +#include "aidge/operator/Split.hpp" + +using namespace Aidge; + +TEST_CASE("[cpu/operator] Split(forward)", "[Split][CPU]") { + std::shared_ptr<Tensor> input = std::make_shared<Tensor>(Array4D<int,1,3,7,2> { + { + { + {{ 1, 2},{ 3, 4},{ 5, 6},{ 7, 8},{ 9, 10},{11, 12},{13, 14}}, + {{15, 16},{17, 18},{19, 20},{21, 22},{23, 24},{25, 26},{27, 28}}, + {{30, 31},{32, 33},{34, 35},{36, 37},{38, 39},{40, 41},{42, 43}} + } + } + }); + SECTION("Default split") { + std::shared_ptr<Tensor> expectedOutput0 = std::make_shared<Tensor>(Array4D<int,1,3,2,2> { + { + { + {{ 1, 2},{ 3, 4}}, + {{15, 16},{17, 18}}, + {{30, 31},{32, 33}} + } + } + }); + std::shared_ptr<Tensor> expectedOutput1 = std::make_shared<Tensor>(Array4D<int,1,3,2,2> { + { + { + {{ 5, 6},{ 7, 8}}, + {{19, 20},{21, 22}}, + {{34, 35},{36, 37}} + } + } + }); + std::shared_ptr<Tensor> expectedOutput2 = std::make_shared<Tensor>(Array4D<int,1,3,3,2> { + { + { + {{ 9, 10},{11, 12},{13, 14}}, + {{23, 24},{25, 26},{27, 28}}, + {{38, 39},{40, 41},{42, 43}} + } + } + }); + auto mySplit = Split(DimSize_t(3), int8_t(2)); // Split on axis 2 into 3 outputs + mySplit->getOperator()->associateInput(0, input); + mySplit->getOperator()->setBackend("cpu"); + mySplit->getOperator()->setDataType(DataType::Int32); + mySplit->forward(); + + REQUIRE(*std::static_pointer_cast<OperatorTensor>(mySplit->getOperator())->getOutput(0) == *expectedOutput0); + REQUIRE(*std::static_pointer_cast<OperatorTensor>(mySplit->getOperator())->getOutput(1) == *expectedOutput1); + REQUIRE(*std::static_pointer_cast<OperatorTensor>(mySplit->getOperator())->getOutput(2) == *expectedOutput2); + } + SECTION("Split with different chunk size") { + std::shared_ptr<Tensor> expectedOutput0 = std::make_shared<Tensor>(Array4D<int,1,3,4,2> { + { + { + {{ 1, 2},{ 3, 4},{ 5, 6},{ 7, 8}}, + {{15, 16},{17, 18},{19, 20},{21, 22}}, + {{30, 31},{32, 33},{34, 35},{36, 37}} + } + } + }); + std::shared_ptr<Tensor> expectedOutput1 = std::make_shared<Tensor>(Array4D<int,1,3,1,2> { + { + { + {{ 9, 10}}, + {{23, 24}}, + {{38, 39}} + } + } + }); + std::shared_ptr<Tensor> expectedOutput2 = std::make_shared<Tensor>(Array4D<int,1,3,2,2> { + { + { + {{11, 12},{13, 14}}, + {{25, 26},{27, 28}}, + {{40, 41},{42, 43}} + } + } + }); + auto mySplit = Split(DimSize_t(3), int8_t(2), {DimSize_t(4), DimSize_t(1), DimSize_t(2)}); + mySplit->getOperator()->associateInput(0, input); + mySplit->getOperator()->setBackend("cpu"); + mySplit->getOperator()->setDataType(DataType::Int32); + mySplit->forward(); + + REQUIRE(*std::static_pointer_cast<OperatorTensor>(mySplit->getOperator())->getOutput(0) == *expectedOutput0); + REQUIRE(*std::static_pointer_cast<OperatorTensor>(mySplit->getOperator())->getOutput(1) == *expectedOutput1); + REQUIRE(*std::static_pointer_cast<OperatorTensor>(mySplit->getOperator())->getOutput(2) == *expectedOutput2); + } + SECTION("Split with bad split attribute") { + auto mySplit = Split(DimSize_t(3), int8_t(2), {DimSize_t(4), DimSize_t(1), DimSize_t(3)}); + mySplit->getOperator()->associateInput(0, input); + mySplit->getOperator()->setBackend("cpu"); + mySplit->getOperator()->setDataType(DataType::Int32); + REQUIRE_THROWS(mySplit->forward()); + } + SECTION("Split with bad outNumber") { + auto mySplit = Split(DimSize_t(8), int8_t(2)); + mySplit->getOperator()->associateInput(0, input); + mySplit->getOperator()->setBackend("cpu"); + mySplit->getOperator()->setDataType(DataType::Int32); + REQUIRE_THROWS(mySplit->forward()); + } +} \ No newline at end of file diff --git a/unit_tests/recipes/Test_ExplicitTranspose.cpp b/unit_tests/recipes/Test_ExplicitTranspose.cpp new file mode 100644 index 0000000000000000000000000000000000000000..0c0a46710d69606508a22e7b01dac708db9b8f34 --- /dev/null +++ b/unit_tests/recipes/Test_ExplicitTranspose.cpp @@ -0,0 +1,54 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <catch2/catch_test_macros.hpp> + +#include "aidge/recipes/Recipes.hpp" +#include "aidge/operator/Conv.hpp" +#include "aidge/operator/Producer.hpp" +#include "aidge/graph/OpArgs.hpp" +#include <cstddef> + +using namespace Aidge; + +TEST_CASE("[ExplicitTranspose] conv") { + auto conv1 = Conv(3, 32, {3, 3}, "conv1"); + auto conv2 = Conv(32, 64, {3, 3}, "conv2"); + auto conv3 = Conv(64, 10, {1, 1}, "conv3", {2, 2}); + + auto g1 = Sequential({ + Producer({16, 3, 224, 224}, "dataProvider"), + conv1, + conv2, + conv3 + }); + + g1->setDataFormat(DataFormat::NCHW); + conv2->getOperator()->setDataFormat(DataFormat::NHWC); + + g1->save("explicitTranspose_before"); + REQUIRE(g1->getNodes().size() == 10); + const auto initialNodes = g1->getNodes(); + + g1->forwardDims(); + explicitTranspose(g1); + + // Check that Tranpose were inserted + g1->save("explicitTranspose_after"); + REQUIRE(g1->getNodes().size() == 12); + + // Check that Tranpose are removed + conv2->getOperator()->setDataFormat(DataFormat::NCHW); + explicitTranspose(g1); + + REQUIRE(g1->getNodes().size() == 10); + REQUIRE(g1->getNodes() == initialNodes); +} diff --git a/unit_tests/recipes/Test_FuseMulAdd.cpp b/unit_tests/recipes/Test_FuseMulAdd.cpp index 4c6e3f9d563d2e74958e68f8876a49a8323f4403..9ea151039f07e5c688572d61b746d8fc26f1c3fe 100644 --- a/unit_tests/recipes/Test_FuseMulAdd.cpp +++ b/unit_tests/recipes/Test_FuseMulAdd.cpp @@ -42,8 +42,8 @@ TEST_CASE("[cpu/recipes] FuseMulAdd", "[FuseMulAdd][recipes]") { matmul0->addChild(add0, 0, 0); b0->addChild(add0, 0, 1); - add0->addChild(matmul1, 0, 0); - w1->addChild(matmul1, 0, 1); + add0->addChild(matmul1, 0, 1); + w1->addChild(matmul1, 0, 0); matmul1->addChild(add1, 0, 0); b1->addChild(add1, 0, 1); @@ -56,14 +56,14 @@ TEST_CASE("[cpu/recipes] FuseMulAdd", "[FuseMulAdd][recipes]") { std::set<std::shared_ptr<Node>>({w0, matmul0, b0, add0, w1, matmul1, b1, add1})); REQUIRE(((matmul0->getParent(0) == input) && (matmul0->getParent(1) == w0))); REQUIRE(((add0->getParent(0) == matmul0) && (add0->getParent(1) == b0))); - REQUIRE(((matmul1->getParent(0) == add0) && (matmul1->getParent(1) == w1))); + REQUIRE(((matmul1->getParent(1) == add0) && (matmul1->getParent(0) == w1))); REQUIRE(((add1->getParent(0) == matmul1) && (add1->getParent(1) == b1))); // Transform GraphView inplace fuseMulAdd(g); // Check new GraphView - std::set<std::shared_ptr<Node>> newNodes = g->getNodes(); + std::set<std::shared_ptr<Node>> newNodes = g->getNodes(); REQUIRE(newNodes != std::set<std::shared_ptr<Node>>({w0, matmul0, b0, add0, w1, matmul1, b1, add1})); REQUIRE(newNodes.size() == 6); for (const auto& node : newNodes) { @@ -71,4 +71,4 @@ TEST_CASE("[cpu/recipes] FuseMulAdd", "[FuseMulAdd][recipes]") { } } -} // namespace Aidge \ No newline at end of file +} // namespace Aidge diff --git a/unit_tests/recipes/Test_FuseToMetaOps.cpp b/unit_tests/recipes/Test_FuseToMetaOps.cpp new file mode 100644 index 0000000000000000000000000000000000000000..9fceedf2feef0a3ed79b83a8494a1a2b49f77291 --- /dev/null +++ b/unit_tests/recipes/Test_FuseToMetaOps.cpp @@ -0,0 +1,44 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <catch2/catch_test_macros.hpp> +#include <set> + +#include "aidge/data/Tensor.hpp" +#include "aidge/graph/GraphView.hpp" +#include "aidge/graph/OpArgs.hpp" +#include "aidge/operator/Conv.hpp" +#include "aidge/operator/ReLU.hpp" +#include "aidge/operator/Producer.hpp" +#include "aidge/recipes/Recipes.hpp" + +namespace Aidge { + + +TEST_CASE("[cpu/recipes] FuseToMetaOps", "[FuseToMetaOps][recipes]") { + auto g1 = Sequential({ + Producer({16, 3, 224, 224}, "dataProvider"), + Conv(3, 32, {3, 3}, "conv1"), + ReLU("relu1"), + Conv(32, 64, {3, 3}, "conv2"), + ReLU("relu2"), + Conv(64, 10, {1, 1}, "conv3") + }); + g1->save("FuseToMetaOps_before"); + + // FIXME: GraphRegex also matches the Conv Producers, which are not in the query! + const auto nbFused = fuseToMetaOps(g1, "Conv->ReLU", "ConvReLU"); + g1->save("FuseToMetaOps_after", true); + + REQUIRE(nbFused == 2); +} + +} // namespace Aidge diff --git a/unit_tests/recipes/Test_removeFlatten.cpp b/unit_tests/recipes/Test_removeFlatten.cpp index 84099ac0b77a633893af6a7550464e539c95d806..24f5aa2e231b5204add1c8f87cdeb7a71175ea05 100644 --- a/unit_tests/recipes/Test_removeFlatten.cpp +++ b/unit_tests/recipes/Test_removeFlatten.cpp @@ -27,8 +27,8 @@ namespace Aidge { TEST_CASE("[cpu/recipies] RemoveFlatten", "[RemoveFlatten][recipies]") { std::shared_ptr<Node> flatten = GenericOperator("Flatten", 1, 0, 1, "myFlatten"); - std::shared_ptr<Node> fc0 = FC(10, 10, "FC_1"); - std::shared_ptr<Node> fc1 = FC(10, 10, "FC_2"); + std::shared_ptr<Node> fc0 = FC(10, 10, false, "FC_1"); + std::shared_ptr<Node> fc1 = FC(10, 10, false, "FC_2"); std::shared_ptr<Node> prod = Producer(std::array<DimSize_t, 10>(), "myProd"); SECTION("flatten last layer : nothing removed because pattern searched is " diff --git a/version.txt b/version.txt index 0c62199f16ac1e2d7f7ae75b420c1231325dff4e..ee1372d33a29e27945406f0527f8af8e6ee119c9 100644 --- a/version.txt +++ b/version.txt @@ -1 +1 @@ -0.2.1 +0.2.2