diff --git a/CMakeLists.txt b/CMakeLists.txt index 499c2971cb60f979e72419cf65b9897d0613bf0a..beec9fbb427afadccef156139bd277d743e6999f 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -5,7 +5,7 @@ file(STRINGS "${CMAKE_SOURCE_DIR}/version.txt" version) project(aidge_core VERSION ${version} - DESCRIPTION "Core algorithms for operators and graph of the AIDGE framework" + DESCRIPTION "Core algorithms for operators and graph of the AIDGE framework" LANGUAGES CXX) message(STATUS "Project name: ${CMAKE_PROJECT_NAME}") message(STATUS "Project version: ${version}") @@ -14,6 +14,9 @@ add_definitions(-DPROJECT_VERSION="${version}") message(STATUS "Project name: ${CMAKE_PROJECT_NAME}") message(STATUS "Project version: ${version}") +# helper for LSP users +set(CMAKE_EXPORT_COMPILE_COMMANDS ON) + # Note : project name is {project} and python module name is also {project} set(module_name _${CMAKE_PROJECT_NAME}) # target name set(pybind_module_name ${CMAKE_PROJECT_NAME}) # name of submodule for python bindings @@ -26,6 +29,7 @@ option(TEST "Enable tests" ON) option(COVERAGE "Enable coverage" OFF) option(ENABLE_ASAN "Enable ASan (AddressSanitizer) for runtime analysis of memory use (over/underflow, memory leak, ...)" OFF) + ############################################## # Import utils CMakeLists set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_SOURCE_DIR}/cmake") @@ -36,22 +40,28 @@ endif() ############################################## # Find system dependencies -Include(FetchContent) - set(FMT_VERSION 10.2.1) -message(STATUS "Retrieving fmt ${FMT_VERSION} from git") -FetchContent_Declare( - fmt - GIT_REPOSITORY https://github.com/fmtlib/fmt.git - GIT_TAG ${FMT_VERSION} # or a later release -) -set(FMT_SYSTEM_HEADERS ON) -FetchContent_MakeAvailable(fmt) -set_property(TARGET fmt PROPERTY POSITION_INDEPENDENT_CODE ON) +find_package(fmt ${FMT_VERSION} QUIET) -find_package(Threads REQUIRED) +if(NOT fmt_FOUND) + message(STATUS "fmt not found in system, retrieving from git") + Include(FetchContent) + FetchContent_Declare( + fmt + GIT_REPOSITORY https://github.com/fmtlib/fmt.git + GIT_TAG ${FMT_VERSION} + ) + + set(FMT_SYSTEM_HEADERS ON) + FetchContent_MakeAvailable(fmt) + set_property(TARGET fmt PROPERTY POSITION_INDEPENDENT_CODE ON) +else() + message(STATUS "Found system fmt version ${fmt_VERSION}") +endif() + +find_package(Threads REQUIRED) ############################################## # Create target and set properties diff --git a/aidge_core/aidge_export_aidge/registry.py b/aidge_core/aidge_export_aidge/registry.py index fe94a22399438b9a07673d21220ff1d0ba4a1dda..cfed0822ff2d8351af60cd211c190a802fe4a674 100644 --- a/aidge_core/aidge_export_aidge/registry.py +++ b/aidge_core/aidge_export_aidge/registry.py @@ -5,6 +5,3 @@ import aidge_core class ExportSerialize(ExportLib): _name="export_serialize" - -aidge_core.register_Tensor(["export_serialize", aidge_core.dtype.float32], - aidge_core.get_key_value_Tensor(["cpu", aidge_core.dtype.float32])) diff --git a/aidge_core/export_utils/export_registry.py b/aidge_core/export_utils/export_registry.py index 70c3e5fa47cb35cbf6611a5359e6a37e0f17620d..e5b6b2098cd760c4d425b96caf7b41cc8e82c46e 100644 --- a/aidge_core/export_utils/export_registry.py +++ b/aidge_core/export_utils/export_registry.py @@ -2,24 +2,36 @@ from typing import Dict, List import aidge_core from aidge_core.export_utils import ExportNode + class classproperty: - """Helper class to define class properties, - Is equivalent to applying the decorator ``@property`` and ``@classmethod``. - But these two decorator are exclusive with python > 12. - See discussion https://discuss.python.org/t/add-a-supported-read-only-classproperty-decorator-in-the-stdlib/18090/12 + """Helper class to define class-level properties. + + Equivalent to applying both the ``@property`` and ``@classmethod`` decorators, + allowing methods to be accessed as class properties. These two decorators + are otherwise incompatible prior to Python 3.12. + + See discussion: https://discuss.python.org/t/add-a-supported-read-only-classproperty-decorator-in-the-stdlib/18090/12 """ def __init__(self, fget): + """ + :param fget: Function to be wrapped as a class property. + :type fget: Callable + """ self.fget = fget def __get__(self, instance, owner): return self.fget(owner) -# TODO: very naive implementation ! -# error handling should be added ! class ExportLib(aidge_core.OperatorImpl): - """Aidge export lib, define a registry + """Aidge export library that manages a registry for operators and static files. + + This class provides a structure for registering different operator types and + export nodes, facilitating access and management of these elements. + + :ivar _name: The name of the export library, used for namespacing. + :ivar static_files: A dictionary mapping paths of static files to their target locations relative to the export root. """ # PUBLIC # Lib name useful ? @@ -30,12 +42,44 @@ class ExportLib(aidge_core.OperatorImpl): static_files: Dict[str, str] = {} # Main memory section mem_section = None + # Custom forward generation jinja file + forward_template: str = None + forward_header_template: str = None # PRIVATE # Registry of exportNode, class level dictionary, shared across all ExportLib _cls_export_node_registry = {} def __init__(self, operator): super(ExportLib, self).__init__(operator, self._name) + if self._name is None: + raise ValueError("ExportLib {self.__class__.__name__} does not define the attribute ``_name``.") + + # TODO: This is a patch, setBackend method is used to set an ExportLib as an Implementation. + # But it also set the backend of the Tensor and we don't define a backend for Tensor. + # The following code block associate to the export backend the "cpu" implementation. + # This is tracked by the issue : + # https://gitlab.eclipse.org/eclipse/aidge/aidge_core/-/issues/178 + + aidge_core.register_Tensor([self._name, aidge_core.dtype.float32], + aidge_core.get_key_value_Tensor(["cpu", aidge_core.dtype.float32])) + aidge_core.register_Tensor([self._name, aidge_core.dtype.float16], + aidge_core.get_key_value_Tensor(["cpu", aidge_core.dtype.float16])) + aidge_core.register_Tensor([self._name, aidge_core.dtype.int8], + aidge_core.get_key_value_Tensor(["cpu", aidge_core.dtype.int8])) + aidge_core.register_Tensor([self._name, aidge_core.dtype.int16], + aidge_core.get_key_value_Tensor(["cpu", aidge_core.dtype.int16])) + aidge_core.register_Tensor([self._name, aidge_core.dtype.int32], + aidge_core.get_key_value_Tensor(["cpu", aidge_core.dtype.int32])) + aidge_core.register_Tensor([self._name, aidge_core.dtype.int64], + aidge_core.get_key_value_Tensor(["cpu", aidge_core.dtype.int64])) + aidge_core.register_Tensor([self._name, aidge_core.dtype.uint8], + aidge_core.get_key_value_Tensor(["cpu", aidge_core.dtype.uint8])) + aidge_core.register_Tensor([self._name, aidge_core.dtype.uint16], + aidge_core.get_key_value_Tensor(["cpu", aidge_core.dtype.uint16])) + aidge_core.register_Tensor([self._name, aidge_core.dtype.uint32], + aidge_core.get_key_value_Tensor(["cpu", aidge_core.dtype.uint32])) + aidge_core.register_Tensor([self._name, aidge_core.dtype.uint64], + aidge_core.get_key_value_Tensor(["cpu", aidge_core.dtype.uint64])) @classproperty def _export_node_registry(cls) -> Dict[str, List['ExportNode']]: @@ -46,25 +90,48 @@ class ExportLib(aidge_core.OperatorImpl): """ return cls._cls_export_node_registry.setdefault(cls, {}) - # Override the virtual OperatorImpl method, in order to provide available - # implementation specifications - def get_available_impl_specs(self): + def get_available_impl_specs(self) -> List[aidge_core.ImplSpec]: + """Override the virtual OperatorImpl method, in order to provide available + implementation specifications. + + :return: List of implementation specification available for the type of operator. + :rtype: List[aidge_core.ImplSpec] + """ if self.get_operator().type() in self._export_node_registry: spec_vec = [i for i, _ in self._export_node_registry[self.get_operator().type()]] return spec_vec else: return [] - def get_export_node(self, spec: aidge_core.aidge_core.ImplSpec): + def get_export_node(self, spec: aidge_core.ImplSpec) -> ExportNode: + """Given an :py:class:`aidge_core.ImplSpec`, return the ExportNode that is the closest match. + + :param spec: Implementation specification to match + :type spec: :py:class:`aidge_core.ImplSpec + :return: The class ExportNode that is the closest match + :rtype: aidge_core.ImplSpec + """ for registered_spec, export_node in self._export_node_registry[self.get_operator().type()]: if registered_spec == spec: return export_node return None - # Decorator to register kernels for this export @classmethod def register(cls, op_type, spec): + """Decorator to register an operator implementation for a specified operator type. + + Registers an operator under a given operator type and specification, + adding it to the export library registry. This method supports both + single operator types (str) and lists of types (List[str]). + + :param op_type: The operator type(s) to register. + :type op_type: Union[str, List[str]] + :param spec: Implementation specification for the operator. + :type spec: :py:class:``aidge_core.ImplSpec`` + :return: A wrapper class that initializes the registered operator. + :rtype: Callable + """ def decorator(operator): class Wrapper(operator): def __init__(self, *args, **kwargs): @@ -92,9 +159,20 @@ class ExportLib(aidge_core.OperatorImpl): return Wrapper return decorator - # Decorator to register kernels for this export @classmethod def register_metaop(cls, op_type, spec): + """Decorator to register a MetaOperator with the export library. + + Registers a MetaOperator under a given operator type and specification. This decorator + is intended for operator types that are grouped as meta operators. + + :param op_type: Operator type(s) to register as a ``MetaOperator``. + :type op_type: Union[str, List[str]] + :param spec: Implementation specification for the MetaOperator. + :type spec: aidge_core.ImplSpec + :return: A wrapper class that initializes the registered MetaOperator. + :rtype: Callable + """ def decorator(operator): class Wrapper(operator): def __init__(self, *args, **kwargs): @@ -114,3 +192,38 @@ class ExportLib(aidge_core.OperatorImpl): spec.attrs.add_attr("type", type_name) # MetaOperator specs need to verify the type return Wrapper return decorator + + + @classmethod + def register_generic(cls, op_type, spec): + """Decorator to register a GenericOperator with the export library. + + Registers a GenericOperator under a given operator type and specification. This decorator + is intended for operator types that are grouped as meta operators. + + :param op_type: Operator type(s) to register as a ``GenericOperator``. + :type op_type: Union[str, List[str]] + :param spec: Implementation specification for the GenericOperator. + :type spec: aidge_core.ImplSpec + :return: A wrapper class that initializes the registered GenericOperator. + :rtype: Callable + """ + def decorator(operator): + class Wrapper(operator): + def __init__(self, *args, **kwargs): + return operator(*args, **kwargs) + type_list = [] + if isinstance(op_type, list): + type_list = op_type + elif isinstance(op_type, str): + type_list = [op_type] + else: + raise TypeError("Argument 'op_type' of register method should be of type 'List[str]' or 'str', got {type(type)}") + for type_name in type_list: + if (type_name not in cls._export_node_registry): + cls._export_node_registry[type_name] = [] + cls._export_node_registry[type_name].append((spec, operator)) + aidge_core.register_GenericOperatorOp([cls._name, type_name], cls) + spec.attrs.add_attr("type", type_name) # GenericOperator specs need to verify the type + return Wrapper + return decorator diff --git a/aidge_core/export_utils/generate_main.py b/aidge_core/export_utils/generate_main.py index b7eee930669cc5f15f88714acf4884f5e30333b1..58946136fbdbeb35a0919d656efcc1de587e5136 100644 --- a/aidge_core/export_utils/generate_main.py +++ b/aidge_core/export_utils/generate_main.py @@ -2,7 +2,7 @@ import aidge_core from pathlib import Path from aidge_core.export_utils import generate_file, data_conversion -def generate_main_cpp(export_folder: str, graph_view: aidge_core.GraphView) -> None: +def generate_main_cpp(export_folder: str, graph_view: aidge_core.GraphView, inputs_tensor=None) -> None: """ Generate a C++ file to manage the forward pass of a model using the given graph structure. @@ -10,11 +10,15 @@ def generate_main_cpp(export_folder: str, graph_view: aidge_core.GraphView) -> N and tensor sizes. It uses this data to populate a C++ file template (`main.jinja`), creating a file (`main.cpp`) that call the `model_forward` function, which handles data flow and processing for the exported model. + This function also generate files containing input tensor if they have been set. + :param export_folder: Path to the folder where the generated C++ file (`main.cpp`) will be saved. :type export_folder: str :param graph_view: An instance of :py:class:`aidge_core.graph_view`, providing access to nodes and ordered input/output data within the computational graph. :type graph_view: aidge_core.graph_view + :param inputs_tensor: **For future** argument to provide tensor to use in the main function, not implemented yet! + :type inputs_tensor: None :raises RuntimeError: If there is an inconsistency in the output arguments (names, data types, sizes), indicating an internal bug in the graph representation. """ @@ -27,14 +31,23 @@ def generate_main_cpp(export_folder: str, graph_view: aidge_core.GraphView) -> N for in_node, in_idx in gv_inputs: in_node_input, in_node_input_idx = in_node.input(in_idx) - inputs_name.append(f"{in_node.name()}_input_{in_idx}" if in_node_input is None else f"{in_node_input.name()}_output_{in_node_input_idx}") + in_name = f"{in_node.name()}_input_{in_idx}" if in_node_input is None else f"{in_node_input.name()}_output_{in_node_input_idx}" + inputs_name.append(in_name) + input_tensor = in_node.get_operator().get_input(in_idx) + if input_tensor is None or input_tensor.undefined() or not input_tensor.has_impl(): + if inputs_tensor is not None: + aidge_core.Log.notice("No support for inputs_tensor argument yet.") + aidge_core.Log.notice(f"No input tensor set for {in_name}, main generated will not be functionnal after code generation.") + else: + aidge_core.Log.notice(f"No input tensor set for {in_name}, main generated will not be functionnal after code generation.") + else: + aidge_core.export_utils.generate_input_file(export_folder=export_folder, array_name=in_name, tensor=input_tensor) + for out_node, out_id in gv_outputs: outputs_name.append(f"{out_node.name()}_output_{out_id}") out_tensor = out_node.get_operator().get_output(out_id) outputs_dtype.append(data_conversion.aidge2c(out_tensor.dtype())) outputs_size.append(out_tensor.size()) - print(out_tensor.size()) - if len(outputs_name) != len(outputs_dtype) or len(outputs_name) != len(outputs_size): raise RuntimeError("FATAL: Output args list does not have the same length this is an internal bug.") diff --git a/aidge_core/export_utils/node_export.py b/aidge_core/export_utils/node_export.py index 479eaf01ff8c8e85a3bf83adac88f5ee7fe86857..5777814a0b10c49d0f75245bdc4e9681027bdfb8 100644 --- a/aidge_core/export_utils/node_export.py +++ b/aidge_core/export_utils/node_export.py @@ -7,8 +7,6 @@ from typing import List def get_chan(tensor: aidge_core.Tensor) -> int: - """Given a tensor return the number of channel - """ dformat = tensor.dformat() dims = tensor.dims() if dformat == aidge_core.dformat.default: @@ -89,39 +87,78 @@ def get_width(tensor: aidge_core.Tensor) -> int: class ExportNode(ABC): """Abstract class to interface node with export generation. - This class expose a dictionary ``attributes`` which contains all the information required to generate an export: - - All the attributes of the Aidge node are automatically fetch, the key to get an attribute is the attribute name in python format, example ``no_bias`` - - **name**: Name of the Node, ``str`` - - **node**: Aidge Node, :py:class:`aidge_core.Node` - - **nb_in**: Number of inputs, ``int`` - - **in_name**: unique name for each input, if no input node the name is ``{node_name}_input_{in_id}``, if there is a parent, the name is ``{parent_name}_output_{out_id}``, ``list[str]`` - - **in_dims**: A list of the dimension for each inputs, ``list[list[int]]`` - - **in_node**: A list of Node associated for each inputs, ``list[aidge_core.Node]`` - - **in_size**: A list of the size for each inputs, ``list[int]`` - - **in_chan**: A list of channel for each inputs, deduced by the dataformat, ``list[int]`` - - **in_height**: A list of height for each inputs, deduced by the dataformat, ``list[int]`` - - **in_width**: A list of width for each inputs, deduced by the dataformat, ``list[int]`` - - **in_dtype**: A list of type (Aidge format) for each input, ``List[:py:class:`aidge_core.dtype`]`` - - **in_cdtype**: A list of type (C/C++ format) for each input, ``List[str]`` - - **out_name**: unique name for each output, the name is ``{name}_output_{out_id}``, ``list[str]`` - - **out_node**: A list of list of Node associated for each outputs, ``list[list[aidge_core.Node]]`` - - **nb_out**: Number of outputs, ``int`` - - **out_dims**: A list of the dimension for each inputs, ``list[list[int]]`` - - **out_size**: A list of the size for each outputs, ``list[int]`` - - **out_chan**: A list of channel for each outputs, deduced by the dataformat, ``list[int]`` - - **out_height**: A list of height for each outputs, deduced by the dataformat, ``list[int]`` - - **out_width**: A list of width for each outputs, deduced by the dataformat, ``list[int]`` - - **out_dtype**: A list of type (Aidge format) for each output, ``List[:py:class:`aidge_core.dtype`]`` - - **out_cdtype**: A list of type (C/C++ format) for each output, ``List[str]`` - - **mem_info**: True if mem_info is available for this node, ``bool`` - - **mem_info_size**: A list of memory size for each output, ``List[int]`` - - **mem_info_offset**: A list of offset to access each output, ``List[int]`` - - **mem_info_stride**: old N2D2 - - **mem_info_length**: old N2D2 - - **mem_info_cont_size**: old N2D2 - - **mem_info_cont_offset**: old N2D2 - - **mem_info_wrap_offset**: old N2D2 - - **mem_info_wrap_size**: old N2D2 + This class exposes a dictionary, ``attributes``, which contains all the information + required to generate an export for a given node, including input/output names, + dimensions, types, and optional memory information. + + - All the attributes of the Aidge Operator are automatically fetch, the key to get an attribute is the attribute name in python format, example ``no_bias`` + + - **node** (aidge_core.Node): The Aidge Node instance associated with this ExportNode. + + - **name** (str): Name of the node, typically set via the Aidge node. + + - **nb_in** (int): Number of input connections for the node. + + - **nb_out** (int): Number of output connections for the node. + + - **in_name** (list[str]): Unique name for each input connection. + + Format: + - If no input node: ``{node_name}_input_{in_id}`` + - If there is a parent node: ``{parent_name}_output_{out_id}`` + + - **in_dims** (list[list[int]]): Dimensions of each input. + + - **in_node** (list[aidge_core.Node]): List of associated input nodes. + + - **in_size** (list[int]): Size of each input. + + - **in_chan** (list[int]): Channels in each input, based on data format. + + - **in_height** (list[int]): Height of each input, based on data format. + + - **in_width** (list[int]): Width of each input, based on data format. + + - **in_dtype** (list[:py:class:`aidge_core.dtype`]): Data type for each input (Aidge format). + + - **in_cdtype** (list[str]): Data type for each input (C/C++ format). + + - **out_name** (list[str]): Unique name for each output, formatted as ``{name}_output_{out_id}``. + + - **out_node** (list[list[aidge_core.Node]]): Associated output nodes for each output. + + - **out_dims** (list[list[int]]): Dimensions of each output. + + - **out_size** (list[int]): Size of each output. + + - **out_chan** (list[int]): Channels in each output, based on data format. + + - **out_height** (list[int]): Height of each output, based on data format. + + - **out_width** (list[int]): Width of each output, based on data format. + + - **out_dtype** (list[:py:class:`aidge_core.dtype`]): Data type for each output (Aidge format). + + - **out_cdtype** (list[str]): Data type for each output (C/C++ format). + + - **mem_info** (bool): True if `mem_info` is available for this node. + + - **mem_info_size** (list[int]): Memory size for each output, if applicable. + + - **mem_info_offset** (list[int]): Offset to access each output, if applicable. + + - **mem_info_stride** (list[int]): Stride for accessing each output. + + - **mem_info_length** (list[int]): Length of each output. + + - **mem_info_cont_size** (list[int]): Continuous size for each output. + + - **mem_info_cont_offset** (list[int]): Continuous offset for each output. + + - **mem_info_wrap_offset** (list[int]): Wrap offset for each output. + + - **mem_info_wrap_size** (list[int]): Wrap size for each output. + """ @abstractmethod @@ -260,7 +297,64 @@ class ExportNode(ABC): else: raise RuntimeError(f"No output for {self.node.name()}") + # **Class Attributes:** + + # - **config_template** (str): Path to the template defining how to export the node definition. + # This template is required for exporting; if undefined, raises an error, if no config + # template is required set this to an empty string. + + # - **forward_template** (str): Path to the template for generating code to perform a forward pass + # of the node. Required for exporting the forward pass; raises an error if undefined. + + # - **include_list** (list[str]): List of include paths (e.g., "include/toto.hpp") to be added to + # the generated export files. Must be defined before export; raises an error if undefined. + + # - **kernels_to_copy** (list[str]): List of paths to kernel files that should be copied during + # export. The kernels are copied to ``kernels_path``, and are automatically + # added to the include list. + + # - **kernels_path** (str): Path where all kernels are stored in the export, prefixed by the + # `export_root`. Defaults to "include/kernels". + + # - **config_path** (str): Path of the configuration folder where node definitions are exported. + # Defaults to "include/layers". + + # - **config_extension** (str): File extension for the configuration files, typically for header + # files. Defaults to "h". + class ExportNodeCpp(ExportNode): + """Class for exporting Aidge nodes with C++ code generation. + + This subclass of :class:`ExportNode` defines specific templates, + configuration paths, and other attributes required to generate + C++ code for Aidge nodes, including header and source files + for node definitions and forward passes. + + :var config_template: Path to the template defining how to export the node definition. + This template is required for exporting; if undefined, raises an error, if no config + template is required set this to an empty string. + :vartype config_template: str + :var forward_template: Path to the template for generating code to perform a forward pass + of the node. Required for exporting the forward pass; raises an error if undefined. + :vartype forward_template: str + :var include_list: List of include paths (e.g., "include/toto.hpp") to be added to + the generated export files. Must be defined before export; raises an error if undefined. + :vartype include_list: list[str] + :var kernels_to_copy: List of paths to kernel files that should be copied during + export. The kernels are copied to ``kernels_path``, and are automatically + added to the include list. + :vartype kernels_to_copy: list[str] + :var kernels_path: Path where all kernels are stored in the export, prefixed by the + `export_root`. Defaults to "include/kernels". + :vartype kernels_path: str + :var config_path: Path of the configuration folder where node definitions are exported. + Defaults to "include/layers". + :vartype config_path: str + :var config_extension: File extension for the configuration files, typically for header + files. Defaults to "h". + :vartype config_extension: str + """ + # Path to the template defining how to export the node definition config_template: str = None # Path to the template defining how to export the node definition @@ -277,8 +371,20 @@ class ExportNodeCpp(ExportNode): config_path: str = "include/layers" # Config_folder_extension config_extension: str = "h" + + def export(self, export_folder: str): - """Define how to export the node definition. + """Defines how to export the node definition. + + This method checks that `config_template`, `include_list`, and + `kernels_to_copy` are defined, then copies each kernel to the export folder, + appends their paths to the include list, and generates the configuration file + based on the `config_template`. + + :param export_folder: Folder path where the files are exported. + :type export_folder: str + :return: List of include paths with the paths for kernels and configuration files. + :rtype: list[str] """ if self.config_template is None: raise ValueError("config_template have not been defined") @@ -313,7 +419,7 @@ class ExportNodeCpp(ExportNode): return self.include_list + kernel_include_list def forward(self): - """Define how to generate code to perform a forward pass. + """Generates code for a forward pass using the `forward_template`. """ if self.forward_template is None: raise ValueError("forward_template have not been defined") diff --git a/aidge_core/export_utils/scheduler_export.py b/aidge_core/export_utils/scheduler_export.py index f1de6f823356b0d217dc7fd98db006a8c97e450c..90862578f04ecd0bdf5ee0bfd7643e7bc3d0a455 100644 --- a/aidge_core/export_utils/scheduler_export.py +++ b/aidge_core/export_utils/scheduler_export.py @@ -6,130 +6,203 @@ from aidge_core.export_utils import ExportLib, generate_file, copy_file from typing import List, Tuple -def scheduler_export(scheduler, export_folder_path: str, export_lib: ExportLib = None, memory_manager=None, memory_manager_args=None, labels=False) -> None: - graphview = scheduler.graph_view() - export_folder = Path().absolute() / export_folder_path - - os.makedirs(str(export_folder), exist_ok=True) - - dnn_folder = export_folder / "dnn" - os.makedirs(str(dnn_folder), exist_ok=True) - - if memory_manager_args is None: - memory_manager_args = {} - - if memory_manager is None: - raise ValueError("A memory manager is required (no default value yet).") - peak_mem, mem_info = memory_manager( - scheduler, **memory_manager_args) - - # List of function call for forward.cpp - list_actions: List[str] = [] - # List of headers for forward.cpp - list_configs: List[str] = [] - - inputs_name: List[str] = [] - inputs_dtype: List[str] = [] - outputs_name: List[str] = [] - outputs_dtype: List[str] = [] - outputs_size: List[int] = [] - - # List of aidge_core.Node ordered by scheduler - list_forward_nodes: List[aidge_core.Node] = scheduler.get_static_scheduling() - - # If exportLib define use it - # else parse component in platform - # if export_lib is None: - # raise ValueError("Export need an ExportLib.") - for node in list_forward_nodes: - if export_lib is not None: - aidge_core.Log.debug(f"Setting backend {export_lib._name} to {node.name()}[{node.type()}].") - node.get_operator().set_backend(export_lib._name) - - op_impl = node.get_operator().get_impl() - if op_impl is None: - raise RuntimeError(f"Operator {node.name()}[{node.type()}] doesn't have an implementation.") - if not isinstance(op_impl, ExportLib): - raise RuntimeError(f"Operator {node.name()}[{node.type()}] doesn't have an exportable backend ({op_impl}).") - - is_input:bool = node in graphview.get_input_nodes() - is_output:bool = node in graphview.get_output_nodes() - - if is_input: - # GraphView.get_inputs_nodes() returns the nodes that have an Input set to None or not in the graph - # However, some inputs are Optional and thus the node may not be an input of the graph! - # So we need ot check that all the inputs of the nodes or in the graph or not optional - # This is what the following code block is checking. - for idx, node_in in enumerate(node.inputs()): - optional:bool = node.get_operator().input_category(idx) == aidge_core.InputCategory.OptionalData - # Note: node_in is a Tuple(Node, out_idx) - in_graph:bool = node_in[0] in graphview.get_nodes() - is_input &= (in_graph or not optional) - - # Get operator current specs - required_specs = op_impl.get_required_spec() - # Get specs of the implementation that match current specs - specs = op_impl.get_best_match(required_specs) - # Retrieve said implementation - export_node = op_impl.get_export_node(specs) - - if export_node is None: - raise RuntimeError(f"Could not find export node for {node.name()}[{node.type()}].") - # Instanciate ExportNode - op = export_node(node, mem_info[node]) - - # For configuration files - list_configs += op.export(dnn_folder) - # For forward file - list_actions += op.forward() - if is_input: - for idx, node_in in enumerate(node.inputs()): - if node_in[0] not in graphview.get_nodes(): - inputs_name.append(op.attributes["in_name"][idx]) - inputs_dtype.append( - op.attributes["in_cdtype"][idx] - ) - if is_output: - for idx in range(len(node.outputs())): - outputs_name.append(op.attributes["out_name"][idx]) - outputs_dtype.append( - op.attributes["out_cdtype"][idx] - ) - outputs_size.append(op.attributes["out_size"][idx]) - - func_name = "model_forward" - ROOT = Path(__file__).resolve().parents[0] - generate_file( - str(dnn_folder / "src" / "forward.cpp"), - str(ROOT / "templates" / "forward.jinja"), - func_name=func_name, - headers=set(list_configs), - actions=list_actions, - mem_ctype=inputs_dtype[0], # Legacy behavior ... - mem_section=export_lib.mem_section, - peak_mem=peak_mem, - inputs_name=inputs_name, - inputs_dtype=inputs_dtype, - outputs_name=outputs_name, - outputs_dtype=outputs_dtype - ) - - # Generate dnn API - generate_file( - str(dnn_folder / "include" / "forward.hpp"), - str(ROOT / "templates" / "forward_header.jinja"), - libraries=[], - func_name=func_name, - inputs_name=inputs_name, - inputs_dtype=inputs_dtype, - outputs_name=outputs_name, - outputs_dtype=outputs_dtype - ) - - if len(outputs_name) != len(outputs_dtype) or len(outputs_name) != len(outputs_size): - raise RuntimeError("FATAL: Output args list does not have the same length this is an internal bug.") - +def scheduler_export(scheduler, export_folder_path: str, export_lib: ExportLib = None, memory_manager=None, memory_manager_args=None, test_mode=False) -> None: + """Exports an aidge_core.Scheduler to C++ code. + + This function generates files for a given computation graph, including forward-pass functions, + configuration headers, and the main API entry point for the exported model. It requires a + memory manager to allocate resources, and optionally an `ExportLib` instance to handle backend + configurations for node operators. + + + 1. **Export Preparation**: + - Initializes export and DNN folders, checking that required memory management functions are defined. + - Retrieves peak memory usage and memory details for each node using the `memory_manager`. + + 2. **Configuration Generation**: + - Iterates over nodes scheduled by `scheduler`, configuring backends if `export_lib` is specified. + - Exports configuration headers and forward-pass actions for each node by invoking `op.export()` + and `op.forward()`, appending these to `list_configs` and `list_actions`, respectively. + - Collects information on input and output nodes, including their names, data types, and sizes. + + 3. **Code Generation**: + - Defines the forward-pass function, `model_forward`, with inputs and outputs based on node attributes. + - Generates the following files: + + - **forward.cpp**: Implements the model forward pass using templates, applying configurations + and actions for each node. + + - **forward.hpp**: Exports the forward API, defining inputs and outputs. + + - **main.cpp**: Main entry file, serving as the model's forward-pass interface. + + 4. **Static File Export (Optional)**: + - If `export_lib` is specified, static files are copied to the export folder based on `export_lib` + specifications. + + + :param scheduler: Scheduler instance managing the computation graph. + Uses `graph_view` and `get_static_scheduling` methods + to retrieve the computation graph layout and ordered nodes. + :type scheduler: aidge_core.Scheduler + :param export_folder_path: Path to the folder where the generated export files will be saved. + Creates this folder, along with subdirectories for model and source files. + :type export_folder_path: str + :param export_lib: Library providing the backend implementation for node operators. + Defaults to None. If provided, each node's backend is set to the library's name. + :type export_lib: ExportLib, optional + :param memory_manager: Required function for managing memory allocation. It should take + `scheduler` and optional `memory_manager_args` as parameters, returning + `peak_mem` (peak memory usage) and `mem_info` (memory details for each node). + :type memory_manager: callable + :param memory_manager_args: Additional arguments passed to `memory_manager`. Defaults to an empty dictionary. + :type memory_manager_args: dict, optional + :param test_mode: Additional argument which may be used during forward generation. + :type test_mode: bool, optional + """ + graphview = scheduler.graph_view() + export_folder = Path().absolute() / export_folder_path + + os.makedirs(str(export_folder), exist_ok=True) + + dnn_folder = export_folder / "dnn" + os.makedirs(str(dnn_folder), exist_ok=True) + + if memory_manager_args is None: + memory_manager_args = {} + + if memory_manager is None: + raise ValueError("A memory manager is required (no default value yet).") + peak_mem, mem_info = memory_manager( + scheduler, **memory_manager_args) + + # List of function call for forward.cpp + list_actions: List[str] = [] + # List of headers for forward.cpp + list_configs: List[str] = [] + + inputs_name: List[str] = [] + inputs_dtype: List[str] = [] + outputs_name: List[str] = [] + outputs_dtype: List[str] = [] + outputs_size: List[int] = [] + + # List of aidge_core.Node ordered by scheduler + list_forward_nodes: List[aidge_core.Node] = scheduler.get_static_scheduling() + + # If exportLib define use it + # else parse component in platform + # if export_lib is None: + # raise ValueError("Export need an ExportLib.") + for node in list_forward_nodes: if export_lib is not None: - # Copy all static files in the export - for source, destination in export_lib.static_files.items(): - copy_file(source, str(export_folder / destination)) + aidge_core.Log.debug(f"Setting backend {export_lib._name} to {node.name()}[{node.type()}].") + node.get_operator().set_backend(export_lib._name) + + op_impl = node.get_operator().get_impl() + if op_impl is None: + raise RuntimeError(f"Operator {node.name()}[{node.type()}] doesn't have an implementation.") + if not isinstance(op_impl, ExportLib): + raise RuntimeError(f"Operator {node.name()}[{node.type()}] doesn't have an exportable backend ({op_impl}).") + + is_input:bool = node in graphview.get_input_nodes() + is_output:bool = node in graphview.get_output_nodes() + + if is_input: + # GraphView.get_inputs_nodes() returns the nodes that have an Input set to None or not in the graph + # However, some inputs are Optional and thus the node may not be an input of the graph! + # So we need to check that all the inputs of the nodes or in the graph or not optional + # This is what the following code block is checking. + for idx, node_in in enumerate(node.inputs()): + optional:bool = node.get_operator().input_category(idx) == aidge_core.InputCategory.OptionalData + # Note: node_in is a Tuple(Node, out_idx) + in_graph:bool = node_in[0] in graphview.get_nodes() + is_input &= (in_graph or not optional) + + # Get operator current specs + required_specs = op_impl.get_required_spec() + # Get specs of the implementation that match current specs + specs = op_impl.get_best_match(required_specs) + # Retrieve said implementation + export_node = op_impl.get_export_node(specs) + + if export_node is None: + raise RuntimeError(f"Could not find export node for {node.name()}[{node.type()}].") + # Instanciate ExportNode + op = export_node(node, mem_info[node]) + + # For configuration files + list_configs += op.export(dnn_folder) + # For forward file + list_actions += op.forward() + if is_input: + for idx, node_in in enumerate(node.inputs()): + if node_in[0] not in graphview.get_nodes(): + inputs_name.append(op.attributes["in_name"][idx]) + inputs_dtype.append( + op.attributes["in_cdtype"][idx] + ) + if is_output: + for idx in range(len(node.outputs())): + outputs_name.append(op.attributes["out_name"][idx]) + outputs_dtype.append( + op.attributes["out_cdtype"][idx] + ) + outputs_size.append(op.attributes["out_size"][idx]) + + func_name = "model_forward" + ROOT = Path(__file__).resolve().parents[0] + + forward_template = str(ROOT / "templates" / "forward.jinja") + if export_lib.forward_template != None: + forward_template = export_lib.forward_template + + list_node_names = [] + for node in list_forward_nodes: + if node.type() != "Producer": + list_node_names.append(node.name()) + + generate_file( + str(dnn_folder / "src" / "forward.cpp"), + forward_template, + func_name=func_name, + headers=set(list_configs), + actions=list_actions, + # Note: Graph may not have inputs, so we need to check with output + # In the future, we should remove this as it is not compatible + # with a mix precision approach. + mem_ctype=outputs_dtype[0], # Legacy behavior ... + mem_section=export_lib.mem_section, + peak_mem=peak_mem, + inputs_name=inputs_name, + inputs_dtype=inputs_dtype, + outputs_name=outputs_name, + outputs_dtype=outputs_dtype, + test_mode=test_mode, + list_node_names=list_node_names + ) + + forward_header_template = str(ROOT / "templates" / "forward_header.jinja") + if export_lib.forward_header_template != None: + forward_header_template = export_lib.forward_header_template + + # Generate dnn API + generate_file( + str(dnn_folder / "include" / "forward.hpp"), + forward_header_template, + libraries=[], + func_name=func_name, + inputs_name=inputs_name, + inputs_dtype=inputs_dtype, + outputs_name=outputs_name, + outputs_dtype=outputs_dtype, + test_mode=test_mode + ) + + if len(outputs_name) != len(outputs_dtype) or len(outputs_name) != len(outputs_size): + raise RuntimeError("FATAL: Output args list does not have the same length this is an internal bug.") + + if export_lib is not None: + # Copy all static files in the export + for source, destination in export_lib.static_files.items(): + copy_file(source, str(export_folder / destination)) diff --git a/aidge_core/export_utils/templates/main.jinja b/aidge_core/export_utils/templates/main.jinja index d0c22719a5d9b9eaa15d3ef9ef86307a060b54be..697a97b53ef05eedddf5ac66f262581475e655c6 100644 --- a/aidge_core/export_utils/templates/main.jinja +++ b/aidge_core/export_utils/templates/main.jinja @@ -26,7 +26,7 @@ int main() {% endfor %} // Call the forward function - {{ func_name }}({{ inputs_name|join(", ") }}, &{{ outputs_name|join(", &") }}); + {{ func_name }}({{ inputs_name|join(", ") }}{% if inputs_name %}, {% endif %}&{{ outputs_name|join(", &") }}); // Print the results of each output {%- for o in range(outputs_name | length) %} diff --git a/aidge_core/mem_info.py b/aidge_core/mem_info.py index 1f2f48dd64aba276e70940d5bf461da6f50a4b38..1a800f9488905a4aed3a907deca8327979effbe4 100644 --- a/aidge_core/mem_info.py +++ b/aidge_core/mem_info.py @@ -42,6 +42,26 @@ def compute_default_mem_info(scheduler: aidge_core.Scheduler) -> Tuple[int, List def generate_optimized_memory_info(scheduler: aidge_core.Scheduler, stats_folder: Path, wrapping: bool = False) -> Tuple[int, List[dict]]: + """Generates optimized memory information for a computation graph managed by a scheduler. + + This function analyzes the memory usage of a computation graph, determining the memory peak + and detailed memory management information for each node in the scheduler. It supports optional + wrapping of memory buffers and logs memory usage statistics to facilitate memory optimization. + + :param scheduler: Scheduler instance that organizes the computation graph. It manages the + nodes and facilitates memory planning by invoking its `generate_memory` method. + :type scheduler: aidge_core.Scheduler + :param stats_folder: Directory path to store memory statistics and plots generated by `mem_manager`. + If provided as a string, it is converted to a `Path` object. + :type stats_folder: Path + :param wrapping: Boolean flag to enable or disable wrap-around buffer optimization. + Defaults to `False`. + :type wrapping: bool, optional + :return: A tuple containing the peak memory size and a list of memory information for each + scheduled node. The memory information for each node includes details such as size, + offset, stride, length, count, and optional wrap-around details. + :rtype: Tuple[int, List[dict]] + """ # The forward dims has to done outside the function # Also supposed the generation of the scheduler has been performed outside # Otherwise decomment the following line diff --git a/aidge_core/simplify_graph.py b/aidge_core/simplify_graph.py new file mode 100644 index 0000000000000000000000000000000000000000..30ee04e6c62c1dfd465d425d1b430d2b5813383b --- /dev/null +++ b/aidge_core/simplify_graph.py @@ -0,0 +1,56 @@ +import numpy as np +import aidge_core + +def simplify_graph(graph: aidge_core.GraphView): + """ + Simplify a graph loaded from ONNX. + + :param graph: The GraphView to simplify. + :type graph: aidge_core.GraphView + """ + + def check_constant_producer(value): + def _check_constant_producer(node): + out = node.get_operator().get_output(0) + return (len(out) == 1 and np.isclose(out[0], value)) + return _check_constant_producer + + gm = aidge_core.SinglePassGraphMatching(graph) + gm.add_node_lambda("Constant_sqrt2", check_constant_producer(np.sqrt(2))) + gm.add_node_lambda("Constant_1", check_constant_producer(1)) + gm.add_node_lambda("Constant_0_5", check_constant_producer(0.5)) + + # Linear [from PyTorch ONNX] + aidge_core.fuse_to_metaops(gm, "MatMul-*>Add", "Linear") + + # LayerNorm [from PyTorch ONNX] + aidge_core.fuse_to_metaops(gm, "ReduceMean-*>Sub#1~>(Pow#1->ReduceMean-*>Add#1->Sqrt)-*>Div#1-*>Mul#1-*>Add#2;" + "Sub#1~*>Div#1;" + "Pow#1<1~Producer;" + "Add#1<*~Producer;" + "Mul#1<*~Producer;" + "Add#2<*~Producer;" + "Sub#1~>$", "LayerNorm") + + # ScaledDotProductAttention [from PyTorch ONNX] + aidge_core.fuse_to_metaops(gm, "MatMul->Div#1->Softmax-*>MatMul;" + "Div#1<1~Producer", "ScaledDotProductAttention") + + # MultiHeadAttention [from PyTorch ONNX] + aidge_core.fuse_to_metaops(gm, "ScaledDotProductAttention#1->Transpose->Reshape#1->Linear;" + "Reshape#1<1~Producer;" + "ScaledDotProductAttention#1<0-(Transpose<-Reshape#2<-Add#1);" + "ScaledDotProductAttention#1<1-(Transpose<-Reshape#3<-Add#2);" + "ScaledDotProductAttention#1<2-(Transpose<-Reshape#4<-Add#3);" + "Reshape#2<1~Producer;" + "Add#1<*-0-Split#1;" + "Add#2<*-1-Split#1;" + "Add#3<*-2-Split#1;" + "Split#1<-MatMul;" + "Split#1<1~Producer", "MultiHeadAttention") + + # GeLU [from PyTorch ONNX] + aidge_core.fuse_to_metaops(gm, "Div#1->Erf->Add#1-*>Mul->Mul#2;" + "Div#1<1~Producer[Constant_sqrt2];" + "Add#1<*~Producer[Constant_1];" + "Mul#2<*~Producer[Constant_0_5]", "GeLU") diff --git a/aidge_core/static_analysis.py b/aidge_core/static_analysis.py new file mode 100644 index 0000000000000000000000000000000000000000..c65a102a10601605cd2ca988a2ad3cf2cbd00e6e --- /dev/null +++ b/aidge_core/static_analysis.py @@ -0,0 +1,195 @@ +import matplotlib +import matplotlib.pyplot as plt +from functools import partial +import numpy as np +import aidge_core + +class StaticAnalysisExt(aidge_core.StaticAnalysis): + def log_nb_params(self, filename, title=None, log_scale=False): + namePtrTable = self.get_graph().get_ranked_nodes_name("{0} ({1}#{3})"); + nodes = self.get_graph().get_ordered_nodes() + series = [] + legend = None + + for node in nodes: + if node.type() == "Producer": + continue + + name = namePtrTable[node] + series.append([name, self.get_nb_params(node)]) + + if title is None: title = "log_nb_params" + if filename is not None: + self._log_bar(series, filename, title, legend, log_scale) + return series + + def log_params_size(self, filename, title=None, log_scale=False): + namePtrTable = self.get_graph().get_ranked_nodes_name("{0} ({1}#{3})"); + nodes = self.get_graph().get_ordered_nodes() + series = [] + legend = None + + for node in nodes: + if node.type() == "Producer": + continue + + name = namePtrTable[node] + series.append([name, self.log_params_size(node)]) + + if title is None: title = "log_params_size" + if filename is not None: + self._log_bar(series, filename, title, legend, log_scale) + return series + + def log_nb_arithm_ops(self, filename, title=None, log_scale=False): + return self._log_callback(aidge_core.OperatorStats.get_nb_arithm_ops, filename, title, log_scale) + + def log_nb_logic_ops(self, filename, title=None, log_scale=False): + return self._log_callback(aidge_core.OperatorStats.get_nb_logic_ops, filename, title, log_scale) + + def log_nb_comp_ops(self, filename, title=None, log_scale=False): + return self._log_callback(aidge_core.OperatorStats.get_nb_comp_ops, filename, title, log_scale) + + def log_nb_nl_ops(self, filename, title=None, log_scale=False): + return self._log_callback(aidge_core.OperatorStats.get_nb_nl_ops, filename, title, log_scale) + + def log_nb_mac_ops(self, filename, title=None, log_scale=False): + return self._log_callback(aidge_core.OperatorStats.get_nb_mac_ops, filename, title, log_scale) + + def log_nb_ops(self, filename, title=None, log_scale=False): + return self._log_callback(aidge_core.OperatorStats.get_nb_ops, filename, title, log_scale) + + def log_nb_arithm_int_ops(self, filename, title=None, log_scale=False): + return self._log_callback(aidge_core.OperatorStats.get_nb_arithm_int_ops, filename, title, log_scale) + + def log_nb_arithm_fp_ops(self, filename, title=None, log_scale=False): + return self._log_callback(aidge_core.OperatorStats.get_nb_arithm_fp_ops, filename, title, log_scale) + + def log_nb_ops_by_type(self, filename, title=None, log_scale=False): + return self._log_callback([aidge_core.OperatorStats.get_nb_arithm_int_ops, + aidge_core.OperatorStats.get_nb_arithm_fp_ops, + aidge_core.OperatorStats.get_nb_logic_ops, + aidge_core.OperatorStats.get_nb_comp_ops, + aidge_core.OperatorStats.get_nb_nl_ops], filename, title, log_scale) + + def _log_callback(self, callback, filename, title=None, log_scale=False): + """ + Log a statistic given by an OperatorStats callback member function. + Usage: + + stats = StaticAnalysisExt(model) + stats.log_callback(aidge_core.OperatorStats.get_nb_params, "stats.png", "Nb params per operator") + + :param func: OperatorStats member function to call. + :param filename: Output graph file name. + :type filename: str + :param title: Title of the graph. + :type title: str + """ + + namePtrTable = self.get_graph().get_ranked_nodes_name("{0} ({1}#{3})"); + nodes = self.get_graph().get_ordered_nodes() + series = [] + legend = None + + for node in nodes: + if node.type() == "Producer": + continue + + stats = self.get_op_stats(node) + name = namePtrTable[node] + attr = {} + if type(node.get_operator()) is aidge_core.GenericOperatorOp: + # Display Generic Op in orange + attr = {'color': 'orange'} + elif not node.get_operator().is_atomic(): + # Display Meta Op in bold + attr = {'fontweight': 'bold'} + elif node.type() not in aidge_core.get_keys_OperatorStats(): + # Display unsupported operator in red labels + attr = {'color': 'red'} + if attr: + name = (name, attr) + if isinstance(callback, list): + series.append([name, [partial(cb, stats)() for cb in callback]]) + legend = [cb.__name__ for cb in callback] + if title is None: title = str(legend) + else: + series.append([name, partial(callback, stats)()]) + if title is None: title = callback.__name__ + + if title is None: title = str(callback) + if filename is not None: + self._log_bar(series, filename, title, legend, log_scale) + return series + + def _log_bar(self, series, filename, title=None, legend=None, log_scale=False): + names, values = zip(*series) + names_only = [item[0] if isinstance(item, tuple) else item for item in names] + fig, ax = plt.subplots(figsize=(max(5, len(names)/4), 5)) + plt.xlim(-0.5, len(names) - 0.5) + if isinstance(values[0], list): + series = [list(i) for i in zip(*values)] + bot = np.zeros(len(series[0])) + for i, serie in enumerate(series): + plt.bar(names_only, serie, bottom=bot) + bot += serie + else: + plt.bar(names_only, values) + ax.yaxis.minorticks_on() + plt.grid(axis='y', which='major', linestyle='--', color='gray') + plt.grid(axis='y', which='minor', linestyle=':', color='lightgray') + formatter0 = matplotlib.ticker.EngFormatter(unit='') + ax.yaxis.set_major_formatter(formatter0) + plt.gca().set_axisbelow(True) + + labels = plt.gca().get_xticks() + tick_labels = plt.gca().get_xticklabels() + for i, label in enumerate(labels): + if isinstance(names[i], tuple): + if 'color' in names[i][1]: + tick_labels[i].set_color(names[i][1]['color']) + elif 'fontweight' in names[i][1]: + tick_labels[i].set_fontweight(names[i][1]['fontweight']) + + plt.xticks(rotation='vertical') + if log_scale: plt.yscale('log') + if title is not None: plt.title(title) + if legend is not None: plt.legend(legend) + plt.savefig(filename, bbox_inches='tight') + + def _log_barh(self, series, filename, title=None, legend=None, log_scale=False): + names, values = zip(*series) + names_only = [item[0] if isinstance(item, tuple) else item for item in names] + fig, ax = plt.subplots(figsize=(10, max(5, len(names)/4))) + plt.ylim(-0.5, len(names) - 0.5) + if isinstance(values[0], list): + series = [list(i) for i in zip(*values)] + left = np.zeros(len(series[0])) + for i, serie in enumerate(series): + plt.barh(names_only, serie, left=left) + left += serie + else: + plt.barh(names_only, values) + ax.xaxis.minorticks_on() + plt.grid(axis='x', which='major', linestyle='--', color='gray') + plt.grid(axis='x', which='minor', linestyle=':', color='lightgray') + formatter0 = matplotlib.ticker.EngFormatter(unit='') + ax.xaxis.set_major_formatter(formatter0) + plt.gca().set_axisbelow(True) + plt.gca().xaxis.set_label_position('top') + plt.gca().xaxis.tick_top() + + labels = plt.gca().get_yticks() + tick_labels = plt.gca().get_yticklabels() + for i, label in enumerate(labels): + if isinstance(names[i], tuple): + if 'color' in names[i][1]: + tick_labels[i].set_color(names[i][1]['color']) + elif 'fontweight' in names[i][1]: + tick_labels[i].set_fontweight(names[i][1]['fontweight']) + + if log_scale: plt.xscale('log') + if title is not None: plt.title(title) + if legend is not None: plt.legend(legend) + plt.savefig(filename, bbox_inches='tight') diff --git a/include/aidge/data/Data.hpp b/include/aidge/data/Data.hpp index acf5b950edadcf67e29b60cf316dac1b10cded8e..623a520f99e8b6e506f19ef2426cd5789287e320 100644 --- a/include/aidge/data/Data.hpp +++ b/include/aidge/data/Data.hpp @@ -52,6 +52,9 @@ enum class DataType { Any }; +bool isDataTypeFloatingPoint(const DataType& type); +size_t getDataTypeBitWidth(const DataType& type); + enum class DataFormat { Default, NCHW, diff --git a/include/aidge/data/Interpolation.hpp b/include/aidge/data/Interpolation.hpp new file mode 100644 index 0000000000000000000000000000000000000000..2d53ebdd0dd5141acc9a3bce8e906f42f7a557a2 --- /dev/null +++ b/include/aidge/data/Interpolation.hpp @@ -0,0 +1,151 @@ +/******************************************************************************** + * Copyright (c) 2024 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#ifndef AIDGE_CORE_UTILS_INTERPOLATION_H_ +#define AIDGE_CORE_UTILS_INTERPOLATION_H_ + +#include <cstdint> // std::int64_t +#include <utility> // std::pair +#include <vector> + +#include "aidge/operator/Pad.hpp" +#include "aidge/utils/Types.h" + +namespace Aidge { +/* @brief generic class to hold interpolation */ +class Interpolation { + public: + /** + * @brief simple type alias to describe a coordinates + * @note the indexes are deliberately chosen to be signed values as some + * points retrieved by interpolation are out of bound, hence their coords + * can be < 0 + */ + using Coords = std::vector<std::int64_t>; + /** + * @brief type alias to designate a point of any type : hence coordinates & + * associated value + */ + template <class T> using Point = std::pair<Coords, T>; + + /** + * @brief details how coordinates are transformed from interpolated tensor + * to original tensor + */ + enum CoordinateTransformation { + HalfPixel, + HalfPixelSymmetric, + PytorchHalfPixel, + AlignCorners, + Asymmetric, + }; + + /** + * @brief apply transformation to coords in interpolated Tensor to find + * equivalent coordinates in original tensor reference frame. + * @warning it is assumed that all parameters have the same + * number of dimensions. + * @param[in] transformedCoords : coords in interpolated tensor + * @param[in] inputDims: input dimensions of tensor + * @param[in] inputDims: output dimensions of tensor + * @return std::vector containing coords in orginal tensor reference frame + */ + static std::vector<float> untransformCoordinates( + const std::vector<DimSize_t> &transformedCoords, + const std::vector<DimSize_t> &inputDims, + const std::vector<DimSize_t> &outputDims, + const Interpolation::CoordinateTransformation coordTransfoMode); + + /** + * @brief retrieves neighbouring value of a given index + * @param[in] tensorValues raw pointer of the tensor values + * retrieved with + * @code + * tensor->getImpl()->rawPtr() + * @endcode + * @param[in] tensorDimensions dimensions of given tensor + * retrieved with + * @code + * tensor->dims() + * @endcode + * @param[in] coords coordinates in the tensor of the values we want to + * find the neighbours of. + * @return static std::vector<std::pair<std::vector<DimSize_t>, T>> + * containing both indexes of neighbours & their values + */ + template <typename T> + static std::set<Point<T>> + retrieveNeighbours(const T *tensorValues, + const std::vector<DimSize_t> &tensorDims, + const std::vector<float> &coords, + const PadBorderType paddingMode = PadBorderType::Zero); + + /* @brief interpolation type */ + enum Mode { + Cubic, + Linear, + RoundPreferFloor, + RoundPreferCeil, + Floor, + Ceil + }; + + /* + * @brief Interpolates values given via input in given mode. + * + * @warning This function is empty and is meant to be overriden in derived + * class in backend libraries. + * + * Values are contiguously arranged in a "square" shape around the point to + * interpolate. Depending on interpolation mode. + * The point that will be interpolated is located right in the + * middle of all points. + * Immediate neighbours : + * 1D interp : 2D interp : + * . . . . . . + * . . 1 2 . . . . . . . . + * . . 1 2 . . + * . . 3 4 . . + * . . . . . . + * . . . . . . + * + * 2 neighbours : + * 1D interp : 2D interp : + * . . . . . . . . + * . . . . . . . . + * . . 1 2 3 4 . . . . 1 2 3 4 . . + * . . 5 6 7 8 . . + * . . 9 10 11 12 . . + * . . 13 14 15 16 . . + * . . . . . . . . + * . . . . . . . . + * + * @param[in] originalIndex: index of the point to in the original picture + * Since the coord are being transformed from the interpolatedTensor frame + * to originalTensor frame, the result might be in float. + * @param[in] points : points to interpolate, arranged in a vector of a + * pairs ((point_coord), value) : + * [[[X1, X2, ..., XN], Xval], ...., [[A1, A2, ..., AN],Aval]]. + * With : + * - N: the number of dimensions. + * - A: the number of points of the grid to interpolate. + * - All coordinates expressed in originalTensor frame. + * @param[in] interpMode: interpolation mode + * @return interpolated value + */ + template <typename T> + [[noreturn]] static T interpolate(const std::vector<float> &originalIndex, + const std::vector<Point<T>> &points, + const Mode interpMode); +}; +} // namespace Aidge + +#endif diff --git a/include/aidge/data/Tensor.hpp b/include/aidge/data/Tensor.hpp index 58e893ca5d5339d93799415f076dd69d54db69ca..5c84f52e052e67ca27bfc851f510e522d485e4b7 100644 --- a/include/aidge/data/Tensor.hpp +++ b/include/aidge/data/Tensor.hpp @@ -12,6 +12,7 @@ #ifndef AIDGE_CORE_DATA_TENSOR_H_ #define AIDGE_CORE_DATA_TENSOR_H_ +#include <algorithm> #include <cstddef> // std::size_t #include <cstring> #include <functional> // std::multiplies @@ -24,10 +25,10 @@ #include "aidge/backend/TensorImpl.hpp" #include "aidge/data/Data.hpp" - +#include "aidge/utils/ArrayHelpers.hpp" +#include "aidge/utils/ErrorHandling.hpp" #include "aidge/utils/Registrar.hpp" #include "aidge/utils/Types.h" -#include "aidge/utils/ArrayHelpers.hpp" namespace Aidge { /** @@ -486,13 +487,14 @@ public: /** * @brief Return the current capacity of the tensor, i.e. the actual memory * currently being allocated. It can be different from the size: + * - Capacity conservatively returns 0 is no implementation is provided. * - Capacity can be 0 if the tensor memory was not yet initialized (because * of lazy initialization, memory is allocated only when it needs to be * accessed the first time). * - Capacity can be > size if the tensor was downsized but memory was not * reallocated. */ - inline std::size_t capacity() const noexcept { return mImpl->capacity(); } + inline std::size_t capacity() const noexcept { return mImpl ? mImpl->capacity(): 0; } /** @@ -561,9 +563,9 @@ public: template <typename expectedType> const expectedType& get(std::size_t idx) const { - AIDGE_ASSERT(NativeType<expectedType>::type == mDataType, "wrong data type"); - AIDGE_ASSERT(mImpl->hostPtr() != nullptr, "get() can only be used for backends providing a valid host pointer"); - AIDGE_ASSERT(idx < mSize, "idx out of range"); + AIDGE_ASSERT(NativeType<expectedType>::type == mDataType, "Tensor::get<>({}): wrong data type, expected {}, got {}", idx, mDataType, NativeType<expectedType>::type); + AIDGE_ASSERT(mImpl->hostPtr() != nullptr, "Tensor::get<>({}): can only be used for backends providing a valid host pointer.", idx); + AIDGE_ASSERT(idx < mSize, "Tensor::get<>({}): idx {} out of range, tensor size {}", idx, mSize); return *reinterpret_cast<expectedType *>(mImpl->hostPtr(mImplOffset + idx)); } @@ -620,20 +622,41 @@ public: * @brief From the the 1D contiguous index, return the coordinate of an element in the tensor. * Beware: do not use this function with the storage index! * - * @param flatIdx 1D contiguous index of the value considering a flatten, contiguous, tensor. + * @param index 1D contiguous index of the value considering a flatten, contiguous, tensor. * @return std::vector<DimSize_t> */ - std::vector<std::size_t> getCoord(std::size_t flatIdx) const { - std::vector<std::size_t> coordIdx(mDims.size()); - std::size_t i = mDims.size(); + static std::vector<std::size_t> + toCoord(const std::vector<Aidge::DimSize_t> &dimensions, std::size_t index); + - while (i-- > 0) { - coordIdx[i] = (flatIdx % mDims[i]); - flatIdx/=mDims[i]; + /** + * @brief From the the 1D contiguous index, return the coordinate of an element in the tensor. + * Beware: do not use this function with the storage index! + * + * @param flatIdx 1D contiguous index of the value considering a flatten, contiguous, tensor. + * @return std::vector<DimSize_t> + */ + std::vector<std::size_t> getCoord(std::size_t index) const { + if (isInBounds(mDims, index)) { + return toCoord(mDims, index); + } else { + AIDGE_THROW_OR_ABORT(std::runtime_error, "Out of bound coordinates."); } - return coordIdx; } + /** + * @brief From the coordinate returns the 1D contiguous index of an element in the tensor. + * If the number of coordinates is inferior to the number of dimensions, + * the remaining coordinates are assumed to be 0. + * Beware: the contiguous index will only correspond to the storage index + * if the tensor is contiguous! + * Note that the coordIdx may be an empty vector. + * + * @param coords Coordinate to an element in the tensor + * @return DimSize_t Contiguous index + */ + static std::size_t toIndex(const std::vector<DimSize_t>& dimensions, const std::vector<std::size_t>& coords); + /** * @brief From the coordinate returns the 1D contiguous index of an element in the tensor. * If the number of coordinates is inferior to the number of dimensions, @@ -645,18 +668,27 @@ public: * @param coordIdx Coordinate to an element in the tensor * @return DimSize_t Contiguous index */ - std::size_t getIdx(const std::vector<std::size_t>& coordIdx) const { - AIDGE_ASSERT(coordIdx.size() <= mDims.size(), "Coordinates does not match number of dimensions"); - std::size_t flatIdx = 0; - for(std::size_t i = 0; i < mDims.size(); ++i) { - auto coord = i < coordIdx.size() ? coordIdx[i]: 0; - AIDGE_ASSERT(coord < mDims[i], "Coordinates dimensions does not fit the dimensions of the tensor"); - auto nextDimSize = i + 1 < mDims.size() ? mDims[i + 1]: 1; - flatIdx = (flatIdx + coord) * nextDimSize; + std::size_t getIdx(const std::vector<std::size_t>& coords) const { + if (isInBounds<std::size_t>(mDims, coords)) { + return toIndex(mDims, coords); + } else { + AIDGE_THROW_OR_ABORT(std::runtime_error, "Out of bound coordinates."); } - return flatIdx; } + /** + * @brief check if index is in bound of given tensor dimensions + * @warning this function is templated in order to welcome cases like interpolation where indexes are not integers. + * However, the only types accepted are floating, integer & size_t + * @param tensorDims : tensor dimensions + * @param coords : coords of the tensor you want to flattened index of + * @return true if all coords are in bound. False otherwise + */ + template<typename T> + static bool isInBounds(const std::vector<DimSize_t>& dimensions, const std::vector<T>& coords); + + static bool isInBounds(const std::vector<DimSize_t>& dimensions, const std::size_t index); + /** * @brief From the coordinate returns the 1D storage index of an element in the tensor. * If the number of coordinates is inferior to the number of dimensions, diff --git a/include/aidge/data/half_fmt.hpp b/include/aidge/data/half_fmt.hpp new file mode 100644 index 0000000000000000000000000000000000000000..5e2072038c10fffd8db5f7fe93381f002f2119b1 --- /dev/null +++ b/include/aidge/data/half_fmt.hpp @@ -0,0 +1,18 @@ +#include "aidge/data/half.hpp" +#include <fmt/core.h> + +// Specialize fmt::formatter for half_float::half +template <> +struct fmt::formatter<half_float::half> : fmt::formatter<float> { + // Parses the format specifications and stores them in the base formatter + template <typename ParseContext> + constexpr auto parse(ParseContext& ctx) { + return fmt::formatter<float>::parse(ctx); + } + + // Formats the half type by first converting it to float + template <typename FormatContext> + auto format(const half_float::half& value, FormatContext& ctx) const { + return fmt::formatter<float>::format(static_cast<float>(value), ctx); + } +}; diff --git a/include/aidge/graph/Matching.hpp b/include/aidge/graph/Matching.hpp index 951aa6b29d73d9055cf9f13c8ddc6313cb506879..b846af10b87b4088dab7fee41187ded91bf531d1 100644 --- a/include/aidge/graph/Matching.hpp +++ b/include/aidge/graph/Matching.hpp @@ -154,13 +154,13 @@ public: */ std::set<MatchingResult> filterLonguestDisjoint(const std::set<MatchingResult>& matches); - inline void addNodeLambda(const std::string& name, bool(func)(const NodePtr&)) { + inline void addNodeLambda(const std::string& name, std::function<bool(const NodePtr&)> func) { mLambda[name] = func; } private: std::shared_ptr<GraphView> mGraph; - std::map<std::string, bool(*)(const NodePtr&)> mLambda; + std::map<std::string, std::function<bool(const NodePtr&)>> mLambda; /** * QUANTIFIER = '?' | '*' | '+' | ('{' [0-9]+ '}') diff --git a/include/aidge/graph/StaticAnalysis.hpp b/include/aidge/graph/StaticAnalysis.hpp new file mode 100644 index 0000000000000000000000000000000000000000..d92356b72b8f1408c3084f9afa6f467d2043e620 --- /dev/null +++ b/include/aidge/graph/StaticAnalysis.hpp @@ -0,0 +1,571 @@ + +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#ifndef AIDGE_CORE_GRAPH_STATICANALYSIS_H_ +#define AIDGE_CORE_GRAPH_STATICANALYSIS_H_ + +#include <memory> + +#include "aidge/utils/Registrar.hpp" +#include "aidge/graph/GraphView.hpp" +#include "aidge/data/Tensor.hpp" +#include "aidge/operator/OperatorTensor.hpp" + +#include "aidge/operator/AvgPooling.hpp" +#include "aidge/operator/Producer.hpp" +#include "aidge/operator/Conv.hpp" +#include "aidge/operator/ConvDepthWise.hpp" +#include "aidge/operator/FC.hpp" +#include "aidge/operator/MatMul.hpp" +#include "aidge/operator/MaxPooling.hpp" +#include "aidge/operator/ReduceMean.hpp" +#include "aidge/operator/ReduceSum.hpp" +#include "aidge/operator/Softmax.hpp" +#include "aidge/operator/MetaOperator.hpp" + +namespace Aidge { +/** + * @brief Base class to compute statistics from an Operator. + * + */ +class OperatorStats : public Registrable<OperatorStats, std::string, std::function<std::shared_ptr<OperatorStats>(const Operator&)>> { +public: + OperatorStats(const Operator& op); + const Operator& getOperator() const noexcept { return mOp; } + + /** + * @brief Get the worst case total number of arithmetic operations for the + * operator data flow. This includes base arithmetic operations: +, -, / and *. + * Control flow operations (loop counters, index computation...) and memory + * accesses are not included. + * A naive implementation is considered (more operations might be required + * for numerical stability in an actual implementation). + * Example of Operator with only arithmetic operatons: Conv. + * + * @return size_t Number of arithmetic operations. + */ + virtual size_t getNbArithmOps() const { return 2 * getNbMACOps(); }; + + /** + * @brief Get the worst case total number of logic operations for the + * operator data flow. This includes operations like logical shift, or, and... + * Control flow operations (loop counters, index computation...) and memory + * accesses are not included. + * A naive implementation is considered (more operations might be required + * for numerical stability in an actual implementation). + * Example of Operator with only logic operatons: BitShift. + * + * @return size_t Number of logic operations. + */ + virtual size_t getNbLogicOps() const { return 0; }; + + /** + * @brief Get the worst case total number of comparison operations for the + * operator data flow. This includes operations like <, >, =... + * Control flow operations (loop counters, index computation...) and memory + * accesses are not included. + * A naive implementation is considered (more operations might be required + * for numerical stability in an actual implementation). + * Example of Operator with only comparison operatons: MaxPool. + * + * @return size_t Number of comparison operations. + */ + virtual size_t getNbCompOps() const { return 0; }; + + /** + * @brief Get the worst case total number of non-linear (NL) operations for the + * operator data flow. This includes operations like calls to tanh(), erf(), cos()... + * Control flow operations (loop counters, index computation...) and memory + * accesses are not included. + * A naive implementation is considered (more operations might be required + * for numerical stability in an actual implementation). + * Example of Operator with only NL operatons: Tanh. + * Non-linear operations are necessarily of floating-point type. + * + * @return size_t Number of non-linear (NL) operations. + */ + virtual size_t getNbNLOps() const { return 0; }; + + /** + * @brief Get the worst case total number of operations for the operator data flow. + * Total number of operations = arithmetic ops + logic ops + comp ops + NL ops. + * Control flow operations (loop counters, index computation...) and memory + * accesses are not included. + * A naive implementation is considered (more operations might be required + * for numerical stability in an actual implementation). + * + * @return size_t Number of operations. + */ + size_t getNbOps() const { return getNbArithmOps() + getNbLogicOps() + getNbCompOps() + getNbNLOps(); }; + + /** + * @brief Get the worst case total number of INT arithmetic operations for + * the operator data flow. + * Such that getNbArithmOps() = getNbArithmIntOps() + getNbArithmFpOps() + * Control flow operations (loop counters, index computation...) and memory + * accesses are not included. + * A naive implementation is considered (more operations might be required + * for numerical stability in an actual implementation). + * + * @return size_t Number of INT arithmetic operations. + */ + virtual size_t getNbArithmIntOps() const; + + /** + * @brief Get the worst case total number of FP arithmetic operations for + * the operator data flow. + * Such that getNbArithmOps() = getNbArithmIntOps() + getNbArithmFpOps() + * Control flow operations (loop counters, index computation...) and memory + * accesses are not included. + * A naive implementation is considered (more operations might be required + * for numerical stability in an actual implementation). + * + * @return size_t Number of FP arithmetic operations. + */ + size_t getNbArithmFpOps() const { return getNbArithmOps() - getNbArithmIntOps(); }; + + /** + * @brief Get the worst case total number of MAC operations for the operator + * data flow. MAC operations are included in getNbArithmOps(), with 1 MAC + * operation counted as 2 arithmetic operations. MAC can be INT of FP. + * Control flow operations (loop counters, index computation...) and memory + * accesses are not included. + * A naive implementation is considered (more operations might be required + * for numerical stability in an actual implementation). + * + * @return size_t Number of MAC operations. + */ + virtual size_t getNbMACOps() const { return 0; }; + virtual ~OperatorStats() = default; + +protected: + const Operator &mOp; +}; + +/** + * @brief Base class to compute statistics from a GraphView + * + */ +class StaticAnalysis : public std::enable_shared_from_this<StaticAnalysis> { +public: + StaticAnalysis(std::shared_ptr<GraphView> graph); + const std::shared_ptr<GraphView> getGraph() const noexcept { return mGraph; } + + /** + * @brief Get the Operator Stats object corresponding to the given node. + * + * @param node Node + * @return std::shared_ptr<OperatorStats> Node's Operator stats + */ + std::shared_ptr<OperatorStats> getOpStats(std::shared_ptr<Node> node) const; + + /** + * @brief Get the number of parameters associated to a node. This includes + * all Producers directly connected to the node's inputs as well as all + * internal Producers (in case of a meta operator). + * + * Note: this function does not check if parameters are shared between + * several nodes or not. This means that simply adding parameters count from + * several nodes may lead to a higher number of parameters than in reality + * if some of them are shared. + * + * @param node Node + * @return size_t Number of parameters + */ + virtual size_t getNbParams(std::shared_ptr<Node> node) const; + + /** + * @brief Get the total parameters memory size, in bits, associated to a node. + * This includes all Producers directly connected to the node's inputs as + * well as all internal Producers (in case of a meta operator). + * + * Note: this function does not check if parameters are shared between + * several nodes or not. This means that simply adding parameters size from + * several nodes may lead to a higher parameter size than in reality + * if some of them are shared. + * + * @param node Node + * @return size_t Total parameters memory, in bits + */ + virtual size_t getParamsSize(std::shared_ptr<Node> node) const; + + size_t getNbArithmOps() const { return accumulate(&OperatorStats::getNbArithmOps); } + size_t getNbLogicOps() const { return accumulate(&OperatorStats::getNbLogicOps); } + size_t getNbCompOps() const { return accumulate(&OperatorStats::getNbCompOps); } + size_t getNbNLOps() const { return accumulate(&OperatorStats::getNbNLOps); } + size_t getNbOps() const { return accumulate(&OperatorStats::getNbOps); } + size_t getNbArithmIntOps() const { return accumulate(&OperatorStats::getNbArithmIntOps); } + size_t getNbArithmFpOps() const { return accumulate(&OperatorStats::getNbArithmFpOps); } + size_t getNbMACOps() const { return accumulate(&OperatorStats::getNbMACOps); } + virtual void summary(bool incProducers = false) const; + virtual ~StaticAnalysis() = default; + +protected: + const std::shared_ptr<GraphView> mGraph; + + size_t accumulate(size_t (OperatorStats::*func)() const) const; +}; + +//////////////////////////////////////////////////////////////////////////////// + +class MetaOpStats : public OperatorStats { +public: + MetaOpStats(const Operator& op) : OperatorStats(op) {} + + static std::unique_ptr<MetaOpStats> create(const Operator& op) { + return std::make_unique<MetaOpStats>(op); + } + + size_t getNbArithmOps() const override { return StaticAnalysis(dynamic_cast<const MetaOperator_Op&>(mOp).getMicroGraph()).getNbArithmOps(); } + size_t getNbLogicOps() const override { return StaticAnalysis(dynamic_cast<const MetaOperator_Op&>(mOp).getMicroGraph()).getNbLogicOps(); } + size_t getNbCompOps() const override { return StaticAnalysis(dynamic_cast<const MetaOperator_Op&>(mOp).getMicroGraph()).getNbCompOps(); } + size_t getNbNLOps() const override { return StaticAnalysis(dynamic_cast<const MetaOperator_Op&>(mOp).getMicroGraph()).getNbNLOps(); } + size_t getNbArithmIntOps() const override { return StaticAnalysis(dynamic_cast<const MetaOperator_Op&>(mOp).getMicroGraph()).getNbArithmIntOps(); } + size_t getNbMACOps() const override { return StaticAnalysis(dynamic_cast<const MetaOperator_Op&>(mOp).getMicroGraph()).getNbMACOps(); } +}; + +template <class OP> +class ConvStats : public OperatorStats { +public: + ConvStats(const Operator& op) : OperatorStats(op) {} + + static std::unique_ptr<ConvStats<OP>> create(const Operator& op) { + return std::make_unique<ConvStats<OP>>(op); + } + + size_t getNbMACOps() const override { + const OP& op_ = dynamic_cast<const OP&>(mOp); + AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis"); + const std::size_t weightsSize = op_.getInput(1)->size(); + const std::size_t outputSize + = std::accumulate(op_.getOutput(0)->dims().cbegin() + 2, + op_.getOutput(0)->dims().cend(), + 1, + std::multiplies<size_t>()); // NCHW... + const std::size_t batchSize = op_.getInput(0)->dims()[0]; // NCHW + return batchSize * (weightsSize * outputSize); + } +}; + +// Beware: cannot use Conv_Op<2>::Type as key because static variable initialization order is undefined! +REGISTRAR(OperatorStats, "Conv1D", ConvStats<Conv_Op<1>>::create); +REGISTRAR(OperatorStats, "ConvDepthWise1D", ConvStats<ConvDepthWise_Op<1>>::create); +REGISTRAR(OperatorStats, "Conv2D", ConvStats<Conv_Op<2>>::create); +REGISTRAR(OperatorStats, "ConvDepthWise2D", ConvStats<ConvDepthWise_Op<2>>::create); + +template <class OP> +class MaxPoolingStats : public OperatorStats { +public: + MaxPoolingStats(const Operator& op) : OperatorStats(op) {} + + static std::unique_ptr<MaxPoolingStats<OP>> create(const Operator& op) { + return std::make_unique<MaxPoolingStats<OP>>(op); + } + + size_t getNbCompOps() const override { + const OP& op_ = dynamic_cast<const OP&>(mOp); + AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis"); + const std::size_t poolSize + = std::accumulate(op_.kernelDims().cbegin(), + op_.kernelDims().cend(), + 1, + std::multiplies<size_t>()); + const std::size_t outputSize + = std::accumulate(op_.getOutput(0)->dims().cbegin() + 2, + op_.getOutput(0)->dims().cend(), + 1, + std::multiplies<size_t>()); // NCHW... + const std::size_t batchSize = op_.getInput(0)->dims()[0]; // NCHW + return batchSize * ((poolSize - 1) * outputSize); + } +}; + +REGISTRAR(OperatorStats, "MaxPooling1D", MaxPoolingStats<MaxPooling_Op<1>>::create); +REGISTRAR(OperatorStats, "MaxPooling2D", MaxPoolingStats<MaxPooling_Op<2>>::create); +REGISTRAR(OperatorStats, "MaxPooling3D", MaxPoolingStats<MaxPooling_Op<3>>::create); + +template <class OP> +class AvgPoolingStats : public OperatorStats { +public: + AvgPoolingStats(const Operator& op) : OperatorStats(op) {} + + static std::unique_ptr<AvgPoolingStats<OP>> create(const Operator& op) { + return std::make_unique<AvgPoolingStats<OP>>(op); + } + + size_t getNbArithmOps() const override { + const OP& op_ = dynamic_cast<const OP&>(mOp); + AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis"); + const std::size_t poolSize + = std::accumulate(op_.kernelDims().cbegin(), + op_.kernelDims().cend(), + 1, + std::multiplies<size_t>()); + const std::size_t outputSize + = std::accumulate(op_.getOutput(0)->dims().cbegin() + 2, + op_.getOutput(0)->dims().cend(), + 1, + std::multiplies<size_t>()); // NCHW... + const std::size_t batchSize = op_.getInput(0)->dims()[0]; // NCHW + // (poolSize - 1) additions + 1 division for each output + return batchSize * (poolSize * outputSize); + } +}; + +REGISTRAR(OperatorStats, "AvgPooling1D", AvgPoolingStats<AvgPooling_Op<1>>::create); +REGISTRAR(OperatorStats, "AvgPooling2D", AvgPoolingStats<AvgPooling_Op<2>>::create); +REGISTRAR(OperatorStats, "AvgPooling3D", AvgPoolingStats<AvgPooling_Op<3>>::create); +REGISTRAR(OperatorStats, "AvgPooling4D", AvgPoolingStats<AvgPooling_Op<4>>::create); + +class FCStats : public OperatorStats { +public: + FCStats(const Operator& op) : OperatorStats(op) {} + + static std::unique_ptr<FCStats> create(const Operator& op) { + return std::make_unique<FCStats>(op); + } + + size_t getNbMACOps() const override { + const FC_Op& op_ = dynamic_cast<const FC_Op&>(mOp); + AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis"); + const std::size_t weightsSize = op_.getInput(1)->size(); + const std::size_t batchSize = op_.getInput(0)->dims()[0]; // NCHW + return batchSize * weightsSize; + } +}; + +REGISTRAR(OperatorStats, "FC", FCStats::create); + +class MatMulStats : public OperatorStats { +public: + MatMulStats(const Operator& op) : OperatorStats(op) {} + + static std::unique_ptr<MatMulStats> create(const Operator& op) { + return std::make_unique<MatMulStats>(op); + } + + size_t getNbMACOps() const override { + const MatMul_Op& op_ = dynamic_cast<const MatMul_Op&>(mOp); + AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis"); + const size_t n = (op_.getInput(0)->dims().size() > 1) + ? op_.getInput(0)->dims().end()[-2] : 1; + const size_t k = op_.getInput(0)->dims().back(); + const size_t m = (op_.getInput(1)->dims().size() > 1) + ? op_.getInput(1)->dims().back() : 1; + const size_t nb = (op_.getInput(0)->dims().size() > 2) + ? std::accumulate(op_.getInput(0)->dims().cbegin(), + op_.getInput(0)->dims().cend() - 2, + 1, + std::multiplies<size_t>()) + : 1; + + return nb * n * m * k; + } +}; + +REGISTRAR(OperatorStats, "MatMul", MatMulStats::create); + +class ReLUStats : public OperatorStats { +public: + ReLUStats(const Operator& op) : OperatorStats(op) {} + + static std::unique_ptr<ReLUStats> create(const Operator& op) { + return std::make_unique<ReLUStats>(op); + } + + size_t getNbCompOps() const override { + const OperatorTensor& op_ = dynamic_cast<const OperatorTensor&>(mOp); + AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis"); + return op_.getOutput(0)->size(); + } +}; + +REGISTRAR(OperatorStats, "ReLU", ReLUStats::create); + +class AbsStats : public OperatorStats { +public: + AbsStats(const Operator& op) : OperatorStats(op) {} + + static std::unique_ptr<AbsStats> create(const Operator& op) { + return std::make_unique<AbsStats>(op); + } + + size_t getNbCompOps() const override { + const OperatorTensor& op_ = dynamic_cast<const OperatorTensor&>(mOp); + AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis"); + return op_.getOutput(0)->size(); + } + + // This is in the worst case (all values are negative) + size_t getNbArithmOps() const override { + const OperatorTensor& op_ = dynamic_cast<const OperatorTensor&>(mOp); + AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis"); + return op_.getOutput(0)->size(); + } +}; + +REGISTRAR(OperatorStats, "Abs", AbsStats::create); + +class ReduceMeanStats : public OperatorStats { +public: + ReduceMeanStats(const Operator& op) : OperatorStats(op) {} + + static std::unique_ptr<ReduceMeanStats> create(const Operator& op) { + return std::make_unique<ReduceMeanStats>(op); + } + + size_t getNbArithmOps() const override { + const ReduceMean_Op& op_ = dynamic_cast<const ReduceMean_Op&>(mOp); + AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis"); + const size_t nbIn = op_.getInput(0)->size(); + const size_t nbOut = op_.getOutput(0)->size(); + const size_t nbReduce = nbIn / nbOut; + // (nbReduce - 1) additions + 1 division for each output + return nbOut * nbReduce; + } +}; + +REGISTRAR(OperatorStats, "ReduceMean", ReduceMeanStats::create); + +class ReduceSumStats : public OperatorStats { +public: + ReduceSumStats(const Operator& op) : OperatorStats(op) {} + + static std::unique_ptr<ReduceSumStats> create(const Operator& op) { + return std::make_unique<ReduceSumStats>(op); + } + + size_t getNbArithmOps() const override { + const ReduceSum_Op& op_ = dynamic_cast<const ReduceSum_Op&>(mOp); + AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis"); + const size_t nbIn = op_.getInput(0)->size(); + const size_t nbOut = op_.getOutput(0)->size(); + const size_t nbReduce = nbIn / nbOut; + // (nbReduce - 1) additions for each output + return nbOut * (nbReduce - 1); + } +}; + +REGISTRAR(OperatorStats, "ReduceSum", ReduceSumStats::create); + +class SoftmaxStats : public OperatorStats { +public: + SoftmaxStats(const Operator& op) : OperatorStats(op) {} + + static std::unique_ptr<SoftmaxStats> create(const Operator& op) { + return std::make_unique<SoftmaxStats>(op); + } + + size_t getNbArithmOps() const override { + const Softmax_Op& op_ = dynamic_cast<const Softmax_Op&>(mOp); + AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis"); + const size_t axis = (op_.axis() >= 0) ? op_.axis() : op_.getInput(0)->nbDims() + op_.axis(); + const size_t nbReduce = op_.getInput(0)->dims()[axis]; + const size_t nbOut = op_.getOutput(0)->size(); + // nbOut divisions + (nbReduce - 1) additions + return nbOut + (nbReduce - 1); + } + + size_t getNbNLOps() const override { + const Softmax_Op& op_ = dynamic_cast<const Softmax_Op&>(mOp); + AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis"); + const size_t axis = (op_.axis() >= 0) ? op_.axis() : op_.getInput(0)->nbDims() + op_.axis(); + const size_t nbReduce = op_.getInput(0)->dims()[axis]; + const size_t nbOut = op_.getOutput(0)->size(); + // nbOut exp + nbReduce exp + return nbOut + nbReduce; + } +}; + +REGISTRAR(OperatorStats, "Softmax", SoftmaxStats::create); + +class MemOpStats : public OperatorStats { +public: + MemOpStats(const Operator& op) : OperatorStats(op) {} + + static std::unique_ptr<MemOpStats> create(const Operator& op) { + return std::make_unique<MemOpStats>(op); + } +}; + +REGISTRAR(OperatorStats, "Reshape", MemOpStats::create); +REGISTRAR(OperatorStats, "Transpose", MemOpStats::create); +REGISTRAR(OperatorStats, "Concat", MemOpStats::create); +REGISTRAR(OperatorStats, "Split", MemOpStats::create); +REGISTRAR(OperatorStats, "Slice", MemOpStats::create); +REGISTRAR(OperatorStats, "Squeeze", MemOpStats::create); +REGISTRAR(OperatorStats, "Unsqueeze", MemOpStats::create); +REGISTRAR(OperatorStats, "Gather", MemOpStats::create); +REGISTRAR(OperatorStats, "Identity", MemOpStats::create); + +class ElemWiseOpStats : public OperatorStats { +public: + ElemWiseOpStats(const Operator& op) : OperatorStats(op) {} + + static std::unique_ptr<ElemWiseOpStats> create(const Operator& op) { + return std::make_unique<ElemWiseOpStats>(op); + } + + size_t getNbArithmOps() const override { + const OperatorTensor& op_ = dynamic_cast<const OperatorTensor&>(mOp); + AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis"); + return op_.getOutput(0)->size(); + } +}; + +REGISTRAR(OperatorStats, "Add", ElemWiseOpStats::create); +REGISTRAR(OperatorStats, "Sub", ElemWiseOpStats::create); +REGISTRAR(OperatorStats, "Mul", ElemWiseOpStats::create); +REGISTRAR(OperatorStats, "Div", ElemWiseOpStats::create); + +class ElemWiseLogicOpStats : public OperatorStats { +public: + ElemWiseLogicOpStats(const Operator& op) : OperatorStats(op) {} + + static std::unique_ptr<ElemWiseLogicOpStats> create(const Operator& op) { + return std::make_unique<ElemWiseLogicOpStats>(op); + } + + size_t getNbArithmOps() const override { + const OperatorTensor& op_ = dynamic_cast<const OperatorTensor&>(mOp); + AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis"); + return op_.getOutput(0)->size(); + } +}; + +REGISTRAR(OperatorStats, "And", ElemWiseLogicOpStats::create); + +class ElemWiseNLOpStats : public OperatorStats { +public: + ElemWiseNLOpStats(const Operator& op) : OperatorStats(op) {} + + static std::unique_ptr<ElemWiseNLOpStats> create(const Operator& op) { + return std::make_unique<ElemWiseNLOpStats>(op); + } + + size_t getNbNLOps() const override { + const OperatorTensor& op_ = dynamic_cast<const OperatorTensor&>(mOp); + AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis"); + return op_.getOutput(0)->size(); + } +}; + +REGISTRAR(OperatorStats, "Atan", ElemWiseNLOpStats::create); +REGISTRAR(OperatorStats, "Sqrt", ElemWiseNLOpStats::create); +REGISTRAR(OperatorStats, "Erf", ElemWiseNLOpStats::create); +REGISTRAR(OperatorStats, "Ln", ElemWiseNLOpStats::create); +REGISTRAR(OperatorStats, "Sigmoid", ElemWiseNLOpStats::create); +REGISTRAR(OperatorStats, "Tanh", ElemWiseNLOpStats::create); +REGISTRAR(OperatorStats, "Pow", ElemWiseNLOpStats::create); +} + +#endif /* AIDGE_CORE_GRAPH_STATICANALYSIS_H_ */ diff --git a/include/aidge/operator/GenericOperator.hpp b/include/aidge/operator/GenericOperator.hpp index 89b2c06a52f180ffb35363cb6ab07d4242e12033..327f4f7c3d43b5194f23cfaed8674ee0b47bd6a2 100644 --- a/include/aidge/operator/GenericOperator.hpp +++ b/include/aidge/operator/GenericOperator.hpp @@ -26,7 +26,7 @@ namespace Aidge { class GenericOperator_Op : public OperatorTensor, - public Registrable<GenericOperator_Op, std::string, std::function<std::unique_ptr<OperatorImpl>(std::shared_ptr<GenericOperator_Op>)>> { + public Registrable<GenericOperator_Op, std::array<std::string, 2>, std::function<std::shared_ptr<OperatorImpl>(const GenericOperator_Op &)>> { private: using ComputeDimsFunc = std::function<std::vector<std::vector<size_t>>(const std::vector<std::vector<size_t>>&)>; diff --git a/include/aidge/operator/LRN.hpp b/include/aidge/operator/LRN.hpp new file mode 100644 index 0000000000000000000000000000000000000000..669564d4a8fb0da2fac4f67e164fc08653131472 --- /dev/null +++ b/include/aidge/operator/LRN.hpp @@ -0,0 +1,84 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#ifndef AIDGE_CORE_OPERATOR_LRN_H_ +#define AIDGE_CORE_OPERATOR_LRN_H_ + +#include <memory> +#include <vector> + +#include "aidge/backend/OperatorImpl.hpp" +#include "aidge/graph/Node.hpp" +#include "aidge/operator/OperatorTensor.hpp" +#include "aidge/operator/Producer.hpp" +#include "aidge/utils/Registrar.hpp" +#include "aidge/utils/StaticAttributes.hpp" +#include "aidge/utils/Types.h" + +namespace Aidge { +enum class LRNAttr { Alpha, Beta, Bias, Size }; + +class LRN_Op : public OperatorTensor, + public Registrable<LRN_Op, + std::string, + std::function<std::shared_ptr<OperatorImpl>(const LRN_Op&)>> { + +public: + static const std::string Type; + +private: + using Attributes_ = StaticAttributes<LRNAttr, float, float, float, std::int32_t>; + template <LRNAttr e> using attr = typename Attributes_::template attr<e>; + const std::shared_ptr<Attributes_> mAttributes; + +public: + LRN_Op() = delete; + + LRN_Op(std::int32_t size); + + /** + * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated). + * @param op Operator to copy. + */ + LRN_Op(const LRN_Op& op); + + /** + * @brief Clone the operator using its copy-constructor. + * @see Operator::LRN_Op + */ + std::shared_ptr<Operator> clone() const override; + + void setBackend(const std::string& name, DeviceIdx_t device = 0) override final; + std::set<std::string> getAvailableBackends() const override; + + inline std::shared_ptr<Attributes> attributes() const override { return mAttributes; } + inline float& alpha() const noexcept { return mAttributes -> getAttr<LRNAttr::Alpha>(); } + inline float& beta() const noexcept { return mAttributes -> getAttr<LRNAttr::Beta>(); } + inline float& bias() const noexcept { return mAttributes -> getAttr<LRNAttr::Bias>(); } + inline std::int32_t& size() const noexcept { return mAttributes -> getAttr<LRNAttr::Size>(); } + + static const std::vector<std::string> getInputsName(){ + return {"data_input"}; + } + static const std::vector<std::string> getOutputsName(){ + return {"data_output"}; + } +}; + +std::shared_ptr<Node> LRN(std::int32_t size, const std::string& name = ""); +} // namespace Aidge + +namespace { +template <> +const char *const EnumStrings<Aidge::LRNAttr>::data[] = {"alpha", "beta", "bias", "size"}; +} + +#endif /* AIDGE_CORE_OPERATOR_LRN_H_ */ diff --git a/include/aidge/operator/Pad.hpp b/include/aidge/operator/Pad.hpp index bc1852ec0759ffaafa015143f22b0a1c8f6c893e..181a4e88a0fe30e2a86c44adda2195d7e6f5293d 100644 --- a/include/aidge/operator/Pad.hpp +++ b/include/aidge/operator/Pad.hpp @@ -26,7 +26,15 @@ namespace Aidge { enum class PadAttr { BeginEndBorders, BorderType, BorderValue }; -enum class PadBorderType { Constant, Edge, Reflect, Wrap }; +enum class PadBorderType { + /** @brief all out of bound values will be set to a given value.*/ + Constant, + Edge, + Reflect, + Wrap, + /** @brief all out of bound values will be set to 0.*/ + Zero, +}; template <DimIdx_t DIM> class Pad_Op : public OperatorTensor, diff --git a/include/aidge/operator/Resize.hpp b/include/aidge/operator/Resize.hpp index a48b95aff2a18750d83f12a62c408ad41b20afee..c3c7838efc16a0d091f5f0422442225cef8a0ab5 100644 --- a/include/aidge/operator/Resize.hpp +++ b/include/aidge/operator/Resize.hpp @@ -9,60 +9,226 @@ * ********************************************************************************/ -#ifndef AIDGE_CORE_OPERATOR_Resize_H_ -#define AIDGE_CORE_OPERATOR_Resize_H_ +#ifndef AIDGE_CORE_OPERATOR_RESIZE_H_ +#define AIDGE_CORE_OPERATOR_RESIZE_H_ #include <memory> #include <string> #include <vector> #include "aidge/backend/OperatorImpl.hpp" +#include "aidge/data/Interpolation.hpp" #include "aidge/graph/Node.hpp" #include "aidge/operator/OperatorTensor.hpp" +#include "aidge/operator/Pad.hpp" #include "aidge/utils/Registrar.hpp" +#include "aidge/utils/StaticAttributes.hpp" #include "aidge/utils/Types.h" namespace Aidge { -class Resize_Op : public OperatorTensor, - public Registrable<Resize_Op, std::string, std::function<std::shared_ptr<OperatorImpl>(const Resize_Op&)>>{ +/* @brief attributes for the aidge operator */ +enum class ResizeAttr { + // antialias, + // axes, + CoordinateTransformationMode, + CubicCoeffA, + // excludeOutside, + // extrapolation_value, + // keep_aspect_ratio_policy, + InterpolationMode, + PaddingMode +}; -public: +/** + * @brief Resize operator, will up/downscale a given tensor given the input. + * @verbatim + * Output size can be computed in 2 ways : + * 1. Image can be rescaled proportionally to the input size : + * output_dimension = floor(input_dimension * (roi_end - roi_start) * scale) + * 2. Output dimensions are directly given via the size input(#4) + * + * Hence, either input Scale or Input Sizes can be defined, if both are + * connected, the operator will throw an error. + * + * Resize takes (up to) 4 different inputs : + * #1 Input to resize : + * N-D tensor. + * + * #2 ROI (optional) : + * 1-D tensor of coordinates given as [start1, …, startN, end1, …, endN] + * where N is the rank of X or the length of axes, if provided. The RoIs’ + * coordinates are normalized in the coordinate system of the input image. + * If not set default ROI is the entier image. + * #3 scales (optional) - tensor(float): + * The scale array along each dimension. + * The number of elements of ‘scales’ should be the same as the rank of + * input ‘X’ or the length of ‘axes’, if provided. Accepted values: (0,inf) + * - (0,1) : downsampling + * - 1 : identity + * - (1,inf) : upsampling + * #4. Sizes - tensor(int64): + * Target size of the output tensor. + * Its interpretation depends on the ‘keep_aspect_ratio_policy’ value. + * The number of elements of ‘sizes’ should be the same as either : + * - The rank of input ‘X’ + * - The length of ‘axes’ attribute, if provided. + * @endverbatim + * @warning : Only one of ‘scales’ and ‘sizes’ can be specified. + * @param coordinate_transformation_mode + * @param cubic_coeff_a the a coefficient of cubic interpolation. Moost often + * it is set to -0.75 + * @param InterpolationMode type of interpolation (currently only support cubic + * interpolation) + */ +class Resize_Op + : public OperatorTensor, + public Registrable< + Resize_Op, + std::string, + std::function<std::shared_ptr<OperatorImpl>(const Resize_Op &)>> { + + private: + using Attributes_ = + StaticAttributes<ResizeAttr, + Interpolation::CoordinateTransformation, + float, + Interpolation::Mode, + PadBorderType>; + template <ResizeAttr e> + using attr = typename Attributes_::template attr<e>; + const std::shared_ptr<Attributes_> mAttributes; + + public: static const std::string Type; - - Resize_Op(); + /** + * @brief creates a resize operator + * This node can take 4 different inputs, more details in the class + * doxygen. + * 1. Input to resize : + * 2. ROI NOT SUPPORTED (optional) : + * 3. scales (optional) - tensor(float): + * 4. sizes - tensor(int64): + * @param[in] coordinate_transformation_mode + * @param[in] cubic_coeff_a the a coefficient of cubic interpolation. Only + * used if interpolation_mode = Interpolation::Mode::Cubic + * @param[in] interpolationMode : Type of interpolation used for + * up/downsampling + * @warning Scales & ROI input cannot be set simultaneously. If bot are + * set, forward will fail. + * @return NodePtr + */ + Resize_Op( + Interpolation::CoordinateTransformation coordTransfoMode, + Interpolation::Mode interpol_mode = Interpolation::Mode::RoundPreferFloor, + float cubic_coef_a = -.75f, + PadBorderType paddingMode = PadBorderType::Edge) + : OperatorTensor(Type, + {InputCategory::Data, + InputCategory::OptionalData, + InputCategory::OptionalData, + InputCategory::OptionalData}, + 1), + mAttributes(std::make_shared<Attributes_>( + attr<ResizeAttr::CubicCoeffA>(cubic_coef_a), + attr<ResizeAttr::CoordinateTransformationMode>(coordTransfoMode), + attr<ResizeAttr::InterpolationMode>(interpol_mode), + attr<ResizeAttr::PaddingMode>(paddingMode))) {} /** - * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), - * but not its input tensors (the new operator has no input associated). + * @brief Copy-constructor. Copy the operator attributes and its output + * tensor(s), but not its input tensors : The new operator has no input + * associated). * @param op Operator to copy. */ - Resize_Op(const Resize_Op& op); + Resize_Op(const Resize_Op &op) + : OperatorTensor(op), mAttributes(op.mAttributes) { + if (!op.backend().empty()) { + SET_IMPL_MACRO(Resize_Op, *this, op.backend()); + } else { + mImpl = nullptr; + } + } /** * @brief Clone the operator using its copy-constructor. * @see Operator::Resize_Op */ - std::shared_ptr<Operator> clone() const override; + std::shared_ptr<Operator> clone() const override final { + return std::make_shared<Resize_Op>(*this); + } bool dimsForwarded() const override final; bool forwardDims(bool allowDataDependency = false) override final; - void setBackend(const std::string& name, DeviceIdx_t device = 0) override final; - std::set<std::string> getAvailableBackends() const override; + void setBackend(const std::string &name, + DeviceIdx_t device = 0) override final; + std::set<std::string> getAvailableBackends() const override { + return Registrar<Resize_Op>::getKeys(); + } + + inline std::shared_ptr<Attributes> attributes() const override { return mAttributes; } + + inline Interpolation::CoordinateTransformation + coordinateTransformationMode() const { + return mAttributes + ->template getAttr<ResizeAttr::CoordinateTransformationMode>(); + } + inline float cubicCoefA() const { + return mAttributes->template getAttr<ResizeAttr::CubicCoeffA>(); + } + inline Interpolation::Mode interpolationMode() const { + return mAttributes->template getAttr<ResizeAttr::InterpolationMode>(); + } + inline PadBorderType paddingMode() const { + return mAttributes->template getAttr<ResizeAttr::PaddingMode>(); + } - static const std::vector<std::string> getInputsName(){ + static const std::vector<std::string> getInputsName() { // roi, scales, sizes, even if considered as const parameters/input return {"data_input", "roi ", "scales", "sizes"}; } - static const std::vector<std::string> getOutputsName(){ + static const std::vector<std::string> getOutputsName() { return {"data_output"}; } }; -std::shared_ptr<Node> Resize(const std::string &name = ""); - -} // namespace Aidge - - -#endif /* AIDGE_CORE_OPERATOR_Resize_H_ */ \ No newline at end of file +/** + * @brief creates a node that contains a resize operator + * This node can take 4 different inputs, more details in the class doxygen. + * #0 Input to resize + * #1 ROI NOT SUPPORTED (optional) - Tensor(double|float|float16) + * #2 scales (optional) - tensor(float) + * #3 sizes - tensor(int64) + * @param[in] coordinate_transformation_mode + * @param[in] interpolationMode type of interpolation used in case of + * upsampling + * @param[in] cubic_coeff_a the "a" coefficient of cubic interpolation. Only + * used if interpolation_mode = Interpolation::Mode::Cubic + * @warning Scales & ROI input cannot be set simultaneously. If bot are set, + * forward will fail. + * @warning Padding mode will tell how values out of bound are treated. + * @return NodePtr + */ +std::shared_ptr<Node> +Resize(std::vector<float> scale = std::vector<float>(), + std::vector<std::size_t> size = std::vector<std::size_t>(), + Interpolation::CoordinateTransformation coordTransfoMode = + Interpolation::CoordinateTransformation::HalfPixel, + Interpolation::Mode interpolMode = + Interpolation::Mode::RoundPreferFloor, + float cubicCoefA = -.75f, + const std::string &name = ""); + +} // namespace Aidge + +namespace { +template <> +const char *const EnumStrings<Aidge::ResizeAttr>::data[] = { + "coordinateTransformationMode", + "cubicCoeffA", + "InterpolationMode", + "PaddingMode" +}; +} +#endif /* AIDGE_CORE_OPERATOR_RESIZE_H_ */ diff --git a/include/aidge/operator/Stack.hpp b/include/aidge/operator/Stack.hpp new file mode 100644 index 0000000000000000000000000000000000000000..9644620d71276c5e35fc9daaf634f4d4cdb28405 --- /dev/null +++ b/include/aidge/operator/Stack.hpp @@ -0,0 +1,106 @@ +#ifndef AIDGE_CORE_OPERATOR_STACK_H_ +#define AIDGE_CORE_OPERATOR_STACK_H_ + +#include <memory> +#include <string> + +#include "aidge/backend/OperatorImpl.hpp" +#include "aidge/graph/Node.hpp" +#include "aidge/operator/OperatorTensor.hpp" +#include "aidge/utils/Registrar.hpp" +#include "aidge/utils/StaticAttributes.hpp" +#include "aidge/utils/Types.h" + +namespace Aidge { +class StackProdConso : public ProdConso { + public: + StackProdConso(const Operator &op) : ProdConso(op) {} + Elts_t getRequiredMemory( + const IOIndex_t outputIdx, + const std::vector<DimSize_t> &inputsSize) const override final; + void resetConsummerProducer() override; +}; + +class StackOpImpl : public OperatorImpl { + public: + StackOpImpl(const Operator &op, const std::string &backend = "") + : OperatorImpl(op, backend) {} + + std::shared_ptr<ProdConso> getProdConso() const override { + return std::make_shared<StackProdConso>(mOp); + }; + void forward() override; +}; + +enum class StackAttr { ForwardStep, MaxElements }; + +class StackOp + : public OperatorTensor, + public Registrable< + StackOp, + std::string, + std::function<std::unique_ptr<OperatorImpl>(const StackOp &)>> { + + private: + using Attributes_ = + StaticAttributes<StackAttr, std::uint32_t, std::uint32_t>; + template <StackAttr e> using attr = typename Attributes_::template attr<e>; + const std::shared_ptr<Attributes_> mAttributes; + + public: + static const std::string s_type; + + StackOp(std::uint32_t maxElements); + + /** + * @brief Copy-constructor. Copy the operator attributes and its output + * tensor(s), but not its input tensors (the new operator has no input + * associated). + * @param op Operator to copy. + */ + StackOp(const StackOp &op); + + /** + * @brief Clone the operator using its copy-constructor. + * @see Operator::StackOp + */ + std::shared_ptr<Operator> clone() const override; + + void setBackend(const std::string &name, + DeviceIdx_t device = 0) override final; + + std::set<std::string> getAvailableBackends() const override; + + bool forwardDims(bool allowDataDependency = false) override final; + void forward() override; + + inline std::shared_ptr<Attributes> attributes() const override { + return mAttributes; + } + + inline std::uint32_t &maxElements() const { + return mAttributes->template getAttr<StackAttr::MaxElements>(); + } + + inline std::uint32_t &forwardStep() const { + return mAttributes->template getAttr<StackAttr::ForwardStep>(); + } + + static const std::vector<std::string> getInputsName() { + return {"data_input"}; + } + static const std::vector<std::string> getOutputsName() { + return {"data_output"}; + } +}; + +std::shared_ptr<Node> stack(std::uint32_t maxElements, + const std::string &name = ""); +} // namespace Aidge + +namespace { +template <> +const char *const EnumStrings<Aidge::StackAttr>::data[] = {"max_elements"}; +} + +#endif diff --git a/include/aidge/recipes/GraphViewHelper.hpp b/include/aidge/recipes/GraphViewHelper.hpp index 3b8ba7627362c945a6bfbe587ec952fdda013e98..bfd0a5364f858c7518de4be0c18888d37ab669da 100644 --- a/include/aidge/recipes/GraphViewHelper.hpp +++ b/include/aidge/recipes/GraphViewHelper.hpp @@ -22,11 +22,12 @@ namespace Aidge { /** - * @brief Getter for every Producer operator in a GraphView. + * @brief Getter for every Tensor held by a Producer operator in a GraphView. * @param graphview GraphView instance where Producers should be searched. + * @param constant If true, Producer with attribute ``constant=true`` are also included in the returned set, default=false * @return std::set<std::shared_ptr<Node>> */ -std::set<std::shared_ptr<Tensor>> producers(std::shared_ptr<GraphView> graphview); +std::set<std::shared_ptr<Tensor>> producers(std::shared_ptr<GraphView> graphview, bool constant=false); // TODO: change for every Tensor of Operator Producer not constant diff --git a/include/aidge/recipes/Recipes.hpp b/include/aidge/recipes/Recipes.hpp index 82ecc7d28b723d2b3e268f4fb6fbf20d595240ff..86c722b158657633d4509c1181b1f18201d0d514 100644 --- a/include/aidge/recipes/Recipes.hpp +++ b/include/aidge/recipes/Recipes.hpp @@ -17,7 +17,7 @@ #include "aidge/graph/Node.hpp" #include "aidge/graph/GraphView.hpp" -#include "aidge/graphRegex/matchFsm/MatchResult.hpp" +#include "aidge/graph/Matching.hpp" namespace Aidge { @@ -81,9 +81,6 @@ size_t removeIdentity(std::shared_ptr<GraphView> graph); */ void removeFlatten(std::shared_ptr<Node> flatten); - -void removeFlatten(std::shared_ptr<MatchSolution> solution); - /** * @brief Remove ``Flatten`` before :cpp:function:`Aidge::FC` Node. * @@ -151,6 +148,15 @@ void expandMetaOps(std::shared_ptr<GraphView> graph, bool recursive = false); */ void matMulTiling(NodePtr matMul, const std::vector<DimSize_t>& maxDims); +/** + * Fuse each sub-graph matching a query in a Meta Operator. + * @param gm SinglePassGraphMatching containing the graph to manipulate + * @param query Sub-graph matching query + * @param type Type name of the resulting meta operators + * @return size_t Number of replacement +*/ +size_t fuseToMetaOps(SinglePassGraphMatching& gm, const std::string& query, const std::string& type = ""); + /** * Fuse each sub-graph matching a query in a Meta Operator. * @param graph Graph to manipulate diff --git a/include/aidge/utils/DynamicAttributes.hpp b/include/aidge/utils/DynamicAttributes.hpp index 52056852bc454f65f7d12cfc0608e5b6b0b1d933..1b55d7afbf8263a77cf70752fc92f72ef5027904 100644 --- a/include/aidge/utils/DynamicAttributes.hpp +++ b/include/aidge/utils/DynamicAttributes.hpp @@ -166,7 +166,14 @@ public: attributes[elt.first.c_str()] = future_std::any_cast<const DynamicAttributes&>(elt.second).dict(); } else { - attributes[elt.first.c_str()] = mAnyUtils.at(elt.second.type())->cast(elt.second); + // At this point, not every attribute may be known to mAnyUtils + const auto anyUtilsIt = mAnyUtils.find(elt.second.type()); + if (anyUtilsIt != mAnyUtils.end()) { + attributes[elt.first.c_str()] = anyUtilsIt->second->cast(elt.second); + } + else { + attributes[elt.first.c_str()] = "???"; + } } } return attributes; diff --git a/include/aidge/utils/Log.hpp b/include/aidge/utils/Log.hpp index 6b2ace1c6aa013ae81e5144665e2edde830cdc54..794f14124436668cd9ab0895ff602b8d43ad5dcc 100644 --- a/include/aidge/utils/Log.hpp +++ b/include/aidge/utils/Log.hpp @@ -9,7 +9,6 @@ * ********************************************************************************/ - #ifndef AIDGE_LOG_H_ #define AIDGE_LOG_H_ @@ -19,44 +18,36 @@ #include <fmt/format.h> #include <fmt/ranges.h> +#include "aidge/data/half_fmt.hpp" + #include "aidge/utils/Attributes.hpp" namespace Aidge { /** * Helper to define a context anywhere, hidding the scoped variable name * which has no relevance. -*/ -#define AIDGE_LOG_CONTEXT(...) const Log::Context logContext_##__LINE__(__VA_ARGS__) - + */ +#define AIDGE_LOG_CONTEXT(...) \ + const Log::Context logContext_##__LINE__(__VA_ARGS__) -template<class U> -static void discard_args(U parg) { +template <class U> static void discard_args(U parg) { (void)parg; } -template<class U, class... Us> -static void discard_args(U parg, Us... pargs) { +template <class U, class... Us> static void discard_args(U parg, Us... pargs) { (void)parg; discard_args(pargs...); } /** * Aidge logging class, for displaying and file logging of events. -*/ + */ class Log { -public: - enum Level { - Debug = 0, - Info, - Notice, - Warn, - Error, - Fatal - }; + public: + enum Level { Debug = 0, Info, Notice, Warn, Error, Fatal }; class Context { - public: - template <typename... Args> - Context(Args&&... args) { + public: + template <typename... Args> Context(Args &&...args) { Log::mContext.push_back(fmt::format(std::forward<Args>(args)...)); } @@ -68,13 +59,12 @@ public: /** * Detailed messages for debugging purposes, providing information helpful * for developers to trace and identify issues. - * Detailed insights of what is appening in an operation, not useful for the - * end-user. The operation is performed nominally. + * Detailed insights of what is appening in an operation, not useful for + * the end-user. The operation is performed nominally. * @note This level is disabled at compile time for Release, therefore * inducing no runtime overhead for Release. - */ - template <typename... Args> - static void debug(Args&&... args) { + */ + template <typename... Args> static void debug(Args &&...args) { #ifndef NDEBUG // only when compiled in Debug log(Debug, fmt::format(std::forward<Args>(args)...)); @@ -86,22 +76,19 @@ public: /** * Messages that provide a record of the normal operation, about * the application's state, progress, or important events. - * Reports normal start, end and key steps in an operation. The operation is - * performed nominally. - */ - template <typename... Args> - static void info(Args&&... args) { + * Reports normal start, end and key steps in an operation. The operation + * is performed nominally. + */ + template <typename... Args> static void info(Args &&...args) { log(Info, fmt::format(std::forward<Args>(args)...)); } /** - * Applies to normal but significant conditions that may require monitoring, - * like unusual or normal fallback events. - * Reports specific paths in an operation. The operation can still be - * performed normally. - */ - template <typename... Args> - static void notice(Args&&... args) { + * Applies to normal but significant conditions that may require + * monitoring, like unusual or normal fallback events. Reports specific + * paths in an operation. The operation can still be performed normally. + */ + template <typename... Args> static void notice(Args &&...args) { log(Notice, fmt::format(std::forward<Args>(args)...)); } @@ -110,9 +97,8 @@ public: * not necessarily cause immediate problems. * Some specific steps of the operation could not be performed, but it can * still provide an exploitable result. - */ - template <typename... Args> - static void warn(Args&&... args) { + */ + template <typename... Args> static void warn(Args &&...args) { log(Warn, fmt::format(std::forward<Args>(args)...)); } @@ -121,26 +107,24 @@ public: * recover from, but attention is needed to prevent further issues. * The operation could not be performed, but it does not prevent potential * further operations. - */ - template <typename... Args> - static void error(Args&&... args) { + */ + template <typename... Args> static void error(Args &&...args) { log(Error, fmt::format(std::forward<Args>(args)...)); } /** - * Represents a critical error or condition that leads to the termination of - * the application, indicating a severe and unrecoverable problem. - * The operation could not be performed and any further operation is + * Represents a critical error or condition that leads to the termination + * of the application, indicating a severe and unrecoverable problem. The + * operation could not be performed and any further operation is * impossible. - */ - template <typename... Args> - static void fatal(Args&&... args) { + */ + template <typename... Args> static void fatal(Args &&...args) { log(Fatal, fmt::format(std::forward<Args>(args)...)); } /** * Set the minimum log level displayed in the console. - */ + */ static void setConsoleLevel(Level level) { mConsoleLevel = level; } @@ -148,14 +132,14 @@ public: /** * Set or disable colors on console. * Initial value should be assumed true. - */ + */ static void setConsoleColor(bool enabled) { mConsoleColor = enabled; } /** * Set the minimum log level saved in the log file. - */ + */ constexpr static void setFileLevel(Level level) { mFileLevel = level; } @@ -164,8 +148,8 @@ public: * Set the log file name. * Close the current log file and open the one with the new file name. * If empty, stop logging into a file. - */ - static void setFileName(const std::string& fileName) { + */ + static void setFileName(const std::string &fileName) { if (fileName != mFileName) { mFileName = fileName; mFile.release(); @@ -176,6 +160,22 @@ public: } } + /** + * @struct fcloseDeleter + * @brief Custom deleter to prevent compiler warnings when using + * std::unique_ptr with FILE*. + * + * Using function pointers with attributes (e.g., __attribute__((nonnull))) + * as deleters can trigger warnings like -Wignored-attributes. By defining a + * custom deleter struct, these attributes are preserved, eliminating the + * warnings. + */ + struct fcloseDeleter { + void operator()(FILE *f) const noexcept { + std::fclose(f); + } + }; + private: static void log(Level level, const std::string& msg); static void initFile(const std::string& fileName); @@ -184,14 +184,15 @@ private: static bool mConsoleColor; static Level mFileLevel; static std::string mFileName; - static std::unique_ptr<FILE, decltype(&std::fclose)> mFile; + static std::unique_ptr<FILE, fcloseDeleter> mFile; static std::vector<std::string> mContext; }; -} +} // namespace Aidge namespace { template <> -const char *const EnumStrings<Aidge::Log::Level>::data[] = {"Debug", "Info", "Notice", "Warn", "Error", "Fatal"}; +const char *const EnumStrings<Aidge::Log::Level>::data[] = + {"Debug", "Info", "Notice", "Warn", "Error", "Fatal"}; } -#endif //AIDGE_LOG_H_ +#endif // AIDGE_LOG_H_ diff --git a/include/aidge/utils/TensorUtils.hpp b/include/aidge/utils/TensorUtils.hpp index 1bfe0929bf67bb0c6d3b893f3dbaf6993dcfd6ff..88312280d572302ecce4157c34db0ba1efd52da9 100644 --- a/include/aidge/utils/TensorUtils.hpp +++ b/include/aidge/utils/TensorUtils.hpp @@ -49,6 +49,7 @@ bool approxEq(const Tensor& t1, const Tensor& t2, float relative = 1e-5f, float } return true; } -} + +} // namespace Aidge #endif /* AIDGE_CORE_UTILS_TENSOR_UTILS_H_s */ diff --git a/python_binding/data/pybind_Data.cpp b/python_binding/data/pybind_Data.cpp index b1e879d8387a71a3819ee7e0f8bbcd1e9936c146..cdf8cc23250366c62a4102118a95e68cec28ec3d 100644 --- a/python_binding/data/pybind_Data.cpp +++ b/python_binding/data/pybind_Data.cpp @@ -10,6 +10,7 @@ ********************************************************************************/ #include <pybind11/pybind11.h> +#include <pybind11/stl.h> #include "aidge/data/Data.hpp" @@ -65,6 +66,7 @@ void init_Data(py::module& m){ m.def("format_as", (const char* (*)(DataType)) &format_as, py::arg("dt")); m.def("format_as", (const char* (*)(DataFormat)) &format_as, py::arg("df")); + m.def("get_data_format_transpose", &getDataFormatTranspose, py::arg("src"), py::arg("dst")); } } diff --git a/python_binding/data/pybind_Interpolation.cpp b/python_binding/data/pybind_Interpolation.cpp new file mode 100644 index 0000000000000000000000000000000000000000..0839d1c04925f46595630191da9291217d40f10f --- /dev/null +++ b/python_binding/data/pybind_Interpolation.cpp @@ -0,0 +1,42 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <pybind11/pybind11.h> + +#include "aidge/operator/OperatorTensor.hpp" +#include "aidge/data/Interpolation.hpp" +#include "aidge/utils/Registrar.hpp" + +namespace py = pybind11; +namespace Aidge { + +void init_Interpolation(py::module &m) { + auto pyInterpolation = py::class_<Aidge::Interpolation>(m, "Interpolation"); + + py::enum_<Interpolation::Mode>(pyInterpolation, "Mode") + .value("CUBIC", Interpolation::Mode::Cubic) + .value("LINEAR", Interpolation::Mode::Linear) + .value("ROUND_PREFER_FLOOR", Interpolation::Mode::RoundPreferFloor) + .value("ROUND_PREFER_CEIL", Interpolation::Mode::RoundPreferCeil) + .value("FLOOR", Interpolation::Mode::Floor) + .value("CEIL", Interpolation::Mode::Ceil) + .export_values(); + + py::enum_<Interpolation::CoordinateTransformation>(pyInterpolation, "CoordinateTransformation") + .value("HALF_PIXEL", Interpolation::CoordinateTransformation::HalfPixel) + .value("HALF_PIXEL_SYMETRIC", Interpolation::CoordinateTransformation::HalfPixelSymmetric) + .value("PYTORCH_HALF_PIXEL", Interpolation::CoordinateTransformation::PytorchHalfPixel) + .value("ALIGN_CORNERS", Interpolation::CoordinateTransformation::AlignCorners) + .value("ASYMMETRIC", Interpolation::CoordinateTransformation::Asymmetric) + .export_values(); +} + +} // namespace Aidge diff --git a/python_binding/data/pybind_Tensor.cpp b/python_binding/data/pybind_Tensor.cpp index d94acaa817eb3c9cbeb9f60c359ea1451852973b..570da04f5123d497478784d495bd92501d66146b 100644 --- a/python_binding/data/pybind_Tensor.cpp +++ b/python_binding/data/pybind_Tensor.cpp @@ -320,6 +320,7 @@ void init_Tensor(py::module& m){ .def("clone", &Tensor::clone) .def("sqrt", &Tensor::sqrt) .def("set_datatype", &Tensor::setDataType, py::arg("datatype"), py::arg("copyCast") = true) + .def("set_data_format", &Tensor::setDataFormat, py::arg("data_format"), py::arg("copyTrans") = true) .def("set_backend", &Tensor::setBackend, py::arg("name"), py::arg("device") = 0, py::arg("copyFrom") = true) .def("dims", (const std::vector<DimSize_t>& (Tensor::*)()const) &Tensor::dims) .def("grad", &Tensor::grad) @@ -330,18 +331,14 @@ void init_Tensor(py::module& m){ .def("capacity", &Tensor::capacity) .def("resize", (void (Tensor::*)(const std::vector<DimSize_t>&, std::vector<DimSize_t>)) &Tensor::resize, py::arg("dims"), py::arg("strides") = std::vector<DimSize_t>()) .def("has_impl", &Tensor::hasImpl) - .def("get_coord", &Tensor::getCoord) - .def("get_idx", &Tensor::getIdx) + .def("get_coord", (std::vector<std::size_t> (Tensor::*)(const std::size_t)) &Tensor::getCoord, py::arg("flatIdx")) + .def("get_idx",(std::size_t (Tensor::*)(const std::vector<std::size_t> &)) &Tensor::getIdx, py::arg("coords")) .def_static("get_available_backends", &Tensor::getAvailableBackends) .def("undefined", &Tensor::undefined) .def("cpy_transpose", (void (Tensor::*)(const Tensor& src, const std::vector<DimSize_t>& transpose)) &Tensor::copyTranspose, py::arg("src"), py::arg("transpose")) .def("__str__", [](Tensor& b) { - if (b.empty() && b.undefined()) { - return std::string("{}"); - } else { - return b.toString(); - } + return b.toString(); }) .def("__repr__", [](Tensor& b) { return fmt::format("Tensor(dims = {}, dtype = {})", b.dims(), std::string(EnumStrings<DataType>::data[static_cast<int>(b.dataType())])); diff --git a/python_binding/graph/pybind_GraphView.cpp b/python_binding/graph/pybind_GraphView.cpp index febb6f2ed594174a7aeef60f26b8f9a5ee0e23e3..4b9d2ad545c47971b7c0dff029585bb4c9ae5638 100644 --- a/python_binding/graph/pybind_GraphView.cpp +++ b/python_binding/graph/pybind_GraphView.cpp @@ -149,8 +149,8 @@ void init_GraphView(py::module& m) { // } // }) .def("get_ranked_nodes", &GraphView::getRankedNodes) + .def("get_ranked_nodes_name", &GraphView::getRankedNodesName, py::arg("format"), py::arg("mark_non_unicity") = true) .def("set_dataformat", &GraphView::setDataFormat, py::arg("dataformat")) - ; m.def("get_connected_graph_view", &getConnectedGraphView); diff --git a/python_binding/graph/pybind_Matching.cpp b/python_binding/graph/pybind_Matching.cpp index 94f2471c3f234c1e401484c099a3815dd26d3c30..af385798175afe68d2e89cd65f3645fc7b806eb3 100644 --- a/python_binding/graph/pybind_Matching.cpp +++ b/python_binding/graph/pybind_Matching.cpp @@ -10,6 +10,7 @@ ********************************************************************************/ #include <pybind11/pybind11.h> +#include <pybind11/functional.h> #include <pybind11/stl.h> #include <memory> #include <string> @@ -31,21 +32,20 @@ void init_SinglePassGraphMatching(py::module& m) { py::class_<Aidge::SinglePassGraphMatching>(m, "SinglePassGraphMatching") .def(py::init<std::shared_ptr<GraphView>>(), py::arg("graph")) .def("match", - [](Aidge::SinglePassGraphMatching& self, const std::string& query, bool disjoint){ - // Note: Need to convert set to vector has MatchingResult is not hashable and - // set<MatchingResult> cannot be binded - std::set<Aidge::SinglePassGraphMatching::MatchingResult> set_res = self.match(query, disjoint); - std::vector<Aidge::SinglePassGraphMatching::MatchingResult> vec_res(set_res.begin(), set_res.end()); - return vec_res; - }, - py::arg("query"), py::arg("disjoint") = false, - R"mydelimiter( Matches a query by direct, single-pass parse and match. - :param query: The query string to search. - :param disjoint: If true, only keep the longest disjoint matches. - :return: A set of MatchingResult instances. - )mydelimiter"); - - + [](Aidge::SinglePassGraphMatching& self, const std::string& query, bool disjoint){ + // Note: Need to convert set to vector has MatchingResult is not hashable and + // set<MatchingResult> cannot be binded + std::set<Aidge::SinglePassGraphMatching::MatchingResult> set_res = self.match(query, disjoint); + std::vector<Aidge::SinglePassGraphMatching::MatchingResult> vec_res(set_res.begin(), set_res.end()); + return vec_res; + }, + py::arg("query"), py::arg("disjoint") = false, + R"mydelimiter( Matches a query by direct, single-pass parse and match. + :param query: The query string to search. + :param disjoint: If true, only keep the longest disjoint matches. + :return: A set of MatchingResult instances. + )mydelimiter") + .def("add_node_lambda", &SinglePassGraphMatching::addNodeLambda, py::arg("name"), py::arg("func")); } } // namespace Aidge diff --git a/python_binding/graph/pybind_StaticAnalysis.cpp b/python_binding/graph/pybind_StaticAnalysis.cpp new file mode 100644 index 0000000000000000000000000000000000000000..b7c704d722e81b36e8d4988a4503428918e16a5a --- /dev/null +++ b/python_binding/graph/pybind_StaticAnalysis.cpp @@ -0,0 +1,141 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <pybind11/pybind11.h> +#include <pybind11/stl.h> + +#include "aidge/graph/StaticAnalysis.hpp" + +namespace py = pybind11; +namespace Aidge { + +/** + * @brief Trampoline class for binding + * + */ +class pyOperatorStats: public OperatorStats { +public: + using OperatorStats::OperatorStats; // Inherit constructors + + size_t getNbArithmOps() const override { + PYBIND11_OVERRIDE( + size_t, + OperatorStats, + getNbArithmOps + ); + } + + size_t getNbLogicOps() const override { + PYBIND11_OVERRIDE( + size_t, + OperatorStats, + getNbLogicOps + ); + } + + size_t getNbCompOps() const override { + PYBIND11_OVERRIDE( + size_t, + OperatorStats, + getNbCompOps + ); + } + + size_t getNbNLOps() const override { + PYBIND11_OVERRIDE( + size_t, + OperatorStats, + getNbNLOps + ); + } + + size_t getNbArithmIntOps() const override { + PYBIND11_OVERRIDE( + size_t, + OperatorStats, + getNbArithmIntOps + ); + } + + size_t getNbMACOps() const override { + PYBIND11_OVERRIDE( + size_t, + OperatorStats, + getNbMACOps + ); + } +}; + +class pyStaticAnalysis: public StaticAnalysis { +public: + using StaticAnalysis::StaticAnalysis; // Inherit constructors + + size_t getNbParams(std::shared_ptr<Node> node) const override { + PYBIND11_OVERRIDE( + size_t, + StaticAnalysis, + getNbParams, + node + ); + } + + size_t getParamsSize(std::shared_ptr<Node> node) const override { + PYBIND11_OVERRIDE( + size_t, + StaticAnalysis, + getParamsSize, + node + ); + } + + void summary(bool incProducers) const override { + PYBIND11_OVERRIDE( + void, + StaticAnalysis, + summary, + incProducers + ); + } +}; + +void init_StaticAnalysis(py::module& m){ + py::class_<OperatorStats, std::shared_ptr<OperatorStats>, pyOperatorStats>(m, "OperatorStats", py::multiple_inheritance(), py::dynamic_attr()) + .def(py::init<const Operator&>(), py::arg("op")) + .def("get_operator", &OperatorStats::getOperator) + .def("get_nb_arithm_ops", &OperatorStats::getNbArithmOps) + .def("get_nb_logic_ops", &OperatorStats::getNbLogicOps) + .def("get_nb_comp_ops", &OperatorStats::getNbCompOps) + .def("get_nb_nl_ops", &OperatorStats::getNbNLOps) + .def("get_nb_ops", &OperatorStats::getNbOps) + .def("get_nb_arithm_int_ops", &OperatorStats::getNbArithmIntOps) + .def("get_nb_arithm_fp_ops", &OperatorStats::getNbArithmFpOps) + .def("get_nb_mac_ops", &OperatorStats::getNbMACOps) + ; + declare_registrable<OperatorStats>(m, "OperatorStats"); + + py::class_<StaticAnalysis, std::shared_ptr<StaticAnalysis>, pyStaticAnalysis>(m, "StaticAnalysis", py::multiple_inheritance(), py::dynamic_attr()) + .def(py::init<std::shared_ptr<GraphView>>(), py::arg("graph")) + .def("get_graph", &StaticAnalysis::getGraph) + .def("get_nb_params", &StaticAnalysis::getNbParams, py::arg("node")) + .def("get_params_size", &StaticAnalysis::getParamsSize, py::arg("node")) + .def("get_nb_arithm_ops", &StaticAnalysis::getNbArithmOps) + .def("get_nb_logic_ops", &StaticAnalysis::getNbLogicOps) + .def("get_nb_comp_ops", &StaticAnalysis::getNbCompOps) + .def("get_nb_nl_ops", &StaticAnalysis::getNbNLOps) + .def("get_nb_ops", &StaticAnalysis::getNbOps) + .def("get_nb_arithm_int_ops", &StaticAnalysis::getNbArithmIntOps) + .def("get_nb_arithm_fp_ops", &StaticAnalysis::getNbArithmFpOps) + .def("get_nb_mac_ops", &StaticAnalysis::getNbMACOps) + .def("summary", &StaticAnalysis::summary, py::arg("inc_producers") = false) + .def("get_op_stats", &StaticAnalysis::getOpStats, py::arg("node")) + ; +} +} diff --git a/python_binding/operator/pybind_Cast.cpp b/python_binding/operator/pybind_Cast.cpp new file mode 100644 index 0000000000000000000000000000000000000000..960a084ff063e6310a4526dd65e8dabb0e8f905a --- /dev/null +++ b/python_binding/operator/pybind_Cast.cpp @@ -0,0 +1,46 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <pybind11/pybind11.h> + +#include <string> +#include "aidge/backend/OperatorImpl.hpp" +#include "aidge/data/Tensor.hpp" +#include "aidge/operator/Cast.hpp" +#include "aidge/operator/OperatorTensor.hpp" +#include "aidge/utils/Types.h" + +namespace py = pybind11; +namespace Aidge { + +void init_Cast(py::module &m) { + // Binding for CastOp class + auto pyCastOp = py::class_<Cast_Op, std::shared_ptr<Cast_Op>, OperatorTensor>(m, "CastOp", py::multiple_inheritance(),R"mydelimiter( + CastOp is a tensor operator that casts the input tensor to a data type specified by the target_type argument. + :param target_type: data type of the output tensor + :type target_type: Datatype + :param name: name of the node. + )mydelimiter") + .def(py::init<DataType>(), py::arg("target_type")) + .def("target_type", &Cast_Op::targetType, "Get the targeted type, output tensor data type") + .def_static("get_inputs_name", &Cast_Op::getInputsName, "Get the names of the input tensors.") + .def_static("get_outputs_name", &Cast_Op::getOutputsName, "Get the names of the output tensors."); + + // Binding for the Cast function + m.def("Cast", &Cast, py::arg("target_type"), py::arg("name") = "", + R"mydelimiter( + CastOp is a tensor operator that casts the input tensor to a data type specified by the target_type argument. + :param target_type: data type of the output tensor + :type target_type: Datatype + :param name: name of the node. + )mydelimiter"); +} +} // namespace Aidge \ No newline at end of file diff --git a/python_binding/operator/pybind_GenericOperator.cpp b/python_binding/operator/pybind_GenericOperator.cpp index 6af8fef88e411af0a3ecbe5a771bf7af24de411a..f125291fafb89ec7ae81678a37e2bde2222a1054 100644 --- a/python_binding/operator/pybind_GenericOperator.cpp +++ b/python_binding/operator/pybind_GenericOperator.cpp @@ -64,5 +64,7 @@ void init_GenericOperator(py::module& m) { } return genericNode; }, py::arg("type"), py::arg("nb_data"), py::arg("nb_param"), py::arg("nb_out"), py::arg("name") = ""); + + declare_registrable<GenericOperator_Op>(m, "GenericOperatorOp"); } } // namespace Aidge diff --git a/python_binding/operator/pybind_LRN.cpp b/python_binding/operator/pybind_LRN.cpp new file mode 100644 index 0000000000000000000000000000000000000000..178af540b3efb280eaba67572e07cb673e563b22 --- /dev/null +++ b/python_binding/operator/pybind_LRN.cpp @@ -0,0 +1,31 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <pybind11/pybind11.h> +#include <string> + +#include "aidge/data/Tensor.hpp" +#include "aidge/operator/LRN.hpp" +#include "aidge/operator/OperatorTensor.hpp" + +namespace py = pybind11; +namespace Aidge { + +void init_LRN(py::module& m) { + py::class_<LRN_Op, std::shared_ptr<LRN_Op>, OperatorTensor>(m, "LRNOp", py::multiple_inheritance()) + .def(py::init<std::int32_t>(), py::arg("size")) + .def_static("get_inputs_name", &LRN_Op::getInputsName) + .def_static("get_outputs_name", &LRN_Op::getOutputsName) + .def_readonly_static("Type", &LRN_Op::Type); + declare_registrable<LRN_Op>(m, "LRNOp"); + m.def("LRN", &LRN, py::arg("size"), py::arg("name") = ""); +} +} // namespace Aidge diff --git a/python_binding/operator/pybind_Operator.cpp b/python_binding/operator/pybind_Operator.cpp index e22f88687eff6856ce57fab6621781ffc86873b4..a1d1889c9a1881d3aa7b6eb9ccb4c23c5314cc80 100644 --- a/python_binding/operator/pybind_Operator.cpp +++ b/python_binding/operator/pybind_Operator.cpp @@ -63,6 +63,7 @@ void init_Operator(py::module& m){ .def_property_readonly("attr", &Operator::attributes) .def("set_back_edges", &Operator::setBackEdges, py::arg("input_indexes")) .def("is_back_edge", &Operator::isBackEdge, py::arg("input_index")) + .def("is_atomic", &Operator::isAtomic) ; } } diff --git a/python_binding/operator/pybind_Resize.cpp b/python_binding/operator/pybind_Resize.cpp index 35321f525e486107af3715ce1c09f48b7c5cd60f..2aa62609835a7042dd0df54f28b453b7e33a3b5b 100644 --- a/python_binding/operator/pybind_Resize.cpp +++ b/python_binding/operator/pybind_Resize.cpp @@ -9,22 +9,51 @@ * ********************************************************************************/ +#include <cstddef> // std::size_t + #include <pybind11/pybind11.h> -#include "aidge/operator/Resize.hpp" +#include "aidge/data/Interpolation.hpp" #include "aidge/operator/OperatorTensor.hpp" +#include "aidge/operator/Pad.hpp" +#include "aidge/operator/Resize.hpp" +#include "aidge/utils/Registrar.hpp" namespace py = pybind11; namespace Aidge { -void init_Resize(py::module& m) { - py::class_<Resize_Op, std::shared_ptr<Resize_Op>, OperatorTensor>(m, "ResizeOp", py::multiple_inheritance()) - .def_static("get_inputs_name", &Resize_Op::getInputsName) - .def_static("get_outputs_name", &Resize_Op::getOutputsName) - .def_readonly_static("Type", &Resize_Op::Type); +void init_Resize(py::module &m) { + py::class_<Resize_Op, std::shared_ptr<Resize_Op>, OperatorTensor>( + m, "ResizeOp", py::multiple_inheritance()) + .def(py::init<Interpolation::CoordinateTransformation, Interpolation::Mode, float, PadBorderType>(), py::arg("coordinate_transformation_mode"), py::arg("interpolation_mode"), py::arg("cubic_coeff_a") = -0.75f, py::arg("padding_mode") = PadBorderType::Edge) + .def_static("get_inputs_name", &Resize_Op::getInputsName) + .def_static("get_outputs_name", &Resize_Op::getOutputsName) + .def_readonly_static("Type", &Resize_Op::Type); - declare_registrable<Resize_Op>(m, "ResizeOp"); + declare_registrable<Resize_Op>(m, "ResizeOp"); - m.def("Resize", &Resize, py::arg("name") = ""); + m.def("Resize", &Resize, + py::arg("scale") = std::vector<float>({}), + py::arg("size") = std::vector<std::size_t>({}), + py::arg("coord_transfo_mode") = + Interpolation::CoordinateTransformation::HalfPixel, + py::arg("interpolation_mode") = + Interpolation::Mode::RoundPreferFloor, + py::arg("cubic_interpolation_coefficient_a") = -.75f, + py::arg("name") = "", R"mydelimiter( + Initialize a node containing a Resize operator. + This node can take 4 different inputs. + #0 Input to resize + #1 ROI NOT SUPPORTED (optional) - Tensor(double|float|float16) + #2 scales (optional) - tensor(float): #3 sizes - tensor(int64) + #3 sizes - tensor(int64) + :type coordinate_transformation_mode : :py:class: List[Int] + :param interpolationMode : Type of interpolation used in case of upsampling + :type interpolationMode : Interpolation::Mode + :param cubic_coeff_a : "A" coefficient of cubic interpolation. Only used if interpolation_mode = Interpolation::Mode::Cubic + :type cubic_coeff_a : float + :param name : name of the node. + :type name : str + )mydelimiter"); } -} // namespace Aidge +} // namespace Aidge diff --git a/python_binding/operator/pybind_Stack.cpp b/python_binding/operator/pybind_Stack.cpp new file mode 100644 index 0000000000000000000000000000000000000000..2328892108d724438a39cc37eaf97b856caa3a8a --- /dev/null +++ b/python_binding/operator/pybind_Stack.cpp @@ -0,0 +1,41 @@ +/******************************************************************************** + * Copyright (c) 2024 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <pybind11/pybind11.h> + +#include "aidge/data/Tensor.hpp" +#include "aidge/operator/OperatorTensor.hpp" +#include "aidge/operator/Stack.hpp" + +namespace py = pybind11; +namespace Aidge { +void init_Stack(py::module &m) { + py::class_<StackOp, std::shared_ptr<StackOp>, OperatorTensor>( + m, + "StackOp", + py::multiple_inheritance(), + R"mydelimiter(Initialize a Stack operator.)mydelimiter") + .def(py::init<const std::uint32_t>(), py::arg("max_elements")) + .def_static("get_inputs_name", &StackOp::getInputsName) + .def_static("get_outputs_name", &StackOp::getOutputsName) + .def_readonly_static("Type", &StackOp::s_type); + + m.def("Stack", + &stack, + py::arg("max_elements"), + py::arg("name") = "", + R"mydelimiter( + Initialize a node containing a Stack operator. + :param max_elements : the maximum number of tensors to be stacked. + :param name: name of the node. + )mydelimiter"); +} +} // namespace Aidge diff --git a/python_binding/pybind_core.cpp b/python_binding/pybind_core.cpp index 02f4b732c39ef5cbc1755eb314d32c25c96d01fd..006eeb289f25570ddf337f048b05816102624028 100644 --- a/python_binding/pybind_core.cpp +++ b/python_binding/pybind_core.cpp @@ -20,6 +20,7 @@ void init_Random(py::module&); void init_Data(py::module&); void init_Database(py::module&); void init_DataProvider(py::module&); +void init_Interpolation(py::module&); void init_Tensor(py::module&); void init_TensorImpl(py::module&); void init_Attributes(py::module&); @@ -27,6 +28,7 @@ void init_OperatorImpl(py::module&); void init_Log(py::module&); void init_Operator(py::module&); void init_OperatorTensor(py::module&); +void init_StaticAnalysis(py::module&); void init_Add(py::module&); void init_And(py::module&); @@ -35,6 +37,7 @@ void init_Atan(py::module&); void init_AvgPooling(py::module&); void init_BatchNorm(py::module&); void init_BitShift(py::module&); +void init_Cast(py::module&); void init_Clip(py::module&); void init_Concat(py::module&); void init_ConstantOfShape(py::module&); @@ -50,6 +53,7 @@ void init_GlobalAveragePooling(py::module&); void init_GridSample(py::module&); void init_Heaviside(py::module&); void init_Identity(py::module&); +void init_LRN(py::module&); void init_LeakyReLU(py::module&); void init_MatMul(py::module&); void init_MaxPooling(py::module&); @@ -74,6 +78,7 @@ void init_Softmax(py::module&); void init_Split(py::module&); void init_Sqrt(py::module&); void init_Squeeze(py::module&); +void init_Stack(py::module&); void init_Sub(py::module&); void init_Tanh(py::module&); void init_Transpose(py::module&); @@ -103,6 +108,7 @@ void init_Aidge(py::module& m) { init_Data(m); init_Database(m); init_DataProvider(m); + init_Interpolation(m); init_Tensor(m); init_TensorImpl(m); init_Attributes(m); @@ -117,6 +123,7 @@ void init_Aidge(py::module& m) { init_Log(m); init_Operator(m); init_OperatorTensor(m); + init_StaticAnalysis(m); init_Add(m); init_And(m); @@ -125,6 +132,7 @@ void init_Aidge(py::module& m) { init_AvgPooling(m); init_BatchNorm(m); init_BitShift(m); + init_Cast(m); init_Clip(m); init_Concat(m); init_Conv(m); @@ -140,6 +148,7 @@ void init_Aidge(py::module& m) { init_GridSample(m); init_Heaviside(m); init_Identity(m); + init_LRN(m); init_LeakyReLU(m); init_MatMul(m); init_MaxPooling(m); @@ -163,6 +172,7 @@ void init_Aidge(py::module& m) { init_Split(m); init_Sqrt(m); init_Squeeze(m); + init_Stack(m); init_Sub(m); init_Tanh(m); init_Transpose(m); diff --git a/python_binding/recipes/pybind_GraphViewHelper.cpp b/python_binding/recipes/pybind_GraphViewHelper.cpp index ac56fb4b43eb5b0a737157ec9e64c6771a692816..eee5b6a61771b4b0724699f1c45dad6c8a35f04d 100644 --- a/python_binding/recipes/pybind_GraphViewHelper.cpp +++ b/python_binding/recipes/pybind_GraphViewHelper.cpp @@ -23,6 +23,6 @@ namespace py = pybind11; namespace Aidge { void init_GraphViewHelper(py::module &m) { - m.def("producers", &producers, py::arg("graphview")); + m.def("producers", &producers, py::arg("graphview"), py::arg("constant")=false); } } // namespace Aidge diff --git a/python_binding/recipes/pybind_Recipes.cpp b/python_binding/recipes/pybind_Recipes.cpp index 6908cbd912b506a7adb7f33a02416d0173174969..77f20b9d655c6d9f6e95b23c4884bd1bc4f9ffd6 100644 --- a/python_binding/recipes/pybind_Recipes.cpp +++ b/python_binding/recipes/pybind_Recipes.cpp @@ -112,7 +112,20 @@ void init_Recipes(py::module &m) :type recursive: bool )mydelimiter"); - m.def("fuse_to_metaops", fuseToMetaOps, py::arg("graph_view"), py::arg("query"), py::arg("type") = "", R"mydelimiter( + m.def("fuse_to_metaops", py::overload_cast<SinglePassGraphMatching&, const std::string&, const std::string&>(fuseToMetaOps), py::arg("gm"), py::arg("query"), py::arg("type") = "", R"mydelimiter( + Fuse each sub-graph matching a query in a Meta Operator. + + :param gm: SinglePassGraphMatching containing the graph to manipulate + :type gm: :py:class:`aidge_core.SinglePassGraphMatching` + :param query: Sub-graph matching query + :type query: str + :param type: Type name of the resulting meta operators + :type type: str, optional + :return: Number of sub-graph actually fused in a Meta Operator. + :rtype: int + )mydelimiter"); + + m.def("fuse_to_metaops", py::overload_cast<std::shared_ptr<GraphView>, const std::string&, const std::string&>(fuseToMetaOps), py::arg("graph_view"), py::arg("query"), py::arg("type") = "", R"mydelimiter( Fuse each sub-graph matching a query in a Meta Operator. :param graph_view: Graph view on which we want to apply the recipe diff --git a/src/backend/OperatorImpl.cpp b/src/backend/OperatorImpl.cpp index dd5c5c110154427a8af7afbf70b2c76b61e507a8..1708d9e36c174527c648e37b63b080211aa6df05 100644 --- a/src/backend/OperatorImpl.cpp +++ b/src/backend/OperatorImpl.cpp @@ -95,6 +95,10 @@ Aidge::ImplSpec Aidge::OperatorImpl::getBestMatch(const ImplSpec& requiredSpecs) Log::debug("getBestMatch() for requirements: {}", requiredSpecs); const auto availableSpecsSet = getAvailableImplSpecs(); + AIDGE_ASSERT(availableSpecsSet.size() > 0 , + "OperatorImpl::getBestMatch(): No available specs found by" + "getAvailableSpecs(). " + "Cannot find best implementation for required specs, aborting."); const std::vector<ImplSpec> availableSpecs(availableSpecsSet.begin(), availableSpecsSet.end()); std::vector<int> matchingSpecs(availableSpecs.size(), -1); diff --git a/src/data/Data.cpp b/src/data/Data.cpp index 62a883d08a401e02c86408214a061f893ffbfb4a..865b4ff2dcff68753fb5a4cc9cafccdd129e3c8a 100644 --- a/src/data/Data.cpp +++ b/src/data/Data.cpp @@ -11,6 +11,50 @@ #include "aidge/data/Data.hpp" +bool Aidge::isDataTypeFloatingPoint(const DataType& type) { + switch (type) { + case DataType::Float64: + case DataType::Float32: + case DataType::Float16: + case DataType::BFloat16: return true; + default: return false; + } + return false; +} + +size_t Aidge::getDataTypeBitWidth(const DataType& type) { + switch (type) { + case DataType::Float64: return 64; + case DataType::Float32: return 32; + case DataType::Float16: return 16; + case DataType::BFloat16: return 16; + case DataType::Binary: return 1; + case DataType::Ternary: return 2; + case DataType::Int2: return 2; + case DataType::Int3: return 3; + case DataType::Int4: return 4; + case DataType::Int5: return 5; + case DataType::Int6: return 6; + case DataType::Int7: return 7; + case DataType::Int8: return 8; + case DataType::Int16: return 16; + case DataType::Int32: return 32; + case DataType::Int64: return 64; + case DataType::UInt2: return 2; + case DataType::UInt3: return 3; + case DataType::UInt4: return 4; + case DataType::UInt5: return 5; + case DataType::UInt6: return 6; + case DataType::UInt7: return 7; + case DataType::UInt8: return 8; + case DataType::UInt16: return 16; + case DataType::UInt32: return 32; + case DataType::UInt64: return 64; + default: return 0; + } + return 0; +} + Aidge::DataFormatTranspose Aidge::getDataFormatTranspose(const DataFormat& src, const DataFormat& dst) { // Permutation array from default format to src format const auto srcDefToFormat = DataFormatTransposeDict[static_cast<int>(src)]; diff --git a/src/data/Tensor.cpp b/src/data/Tensor.cpp index 2a06aacbee974e07d5aa81313677a140aac853b1..d406f8d0d9f0a9b412465d8524a5d4410f9d48d1 100644 --- a/src/data/Tensor.cpp +++ b/src/data/Tensor.cpp @@ -14,6 +14,7 @@ #include <cstddef> #include <vector> +#include "aidge/data/half.hpp" #include "aidge/utils/ErrorHandling.hpp" #include "aidge/utils/Registrar.hpp" #include "aidge/operator/Abs.hpp" @@ -23,14 +24,14 @@ #include "aidge/operator/ReduceMean.hpp" #include "aidge/operator/Sub.hpp" #include "aidge/operator/Sqrt.hpp" -#include "aidge/operator/Transpose.hpp" #include "aidge/utils/Types.h" +namespace Aidge { -Aidge::Tensor::~Tensor() noexcept = default; +Tensor::~Tensor() noexcept = default; -Aidge::Tensor Aidge::Tensor::operator+(const Aidge::Tensor& other) const { +Tensor Tensor::operator+(const Tensor& other) const { AIDGE_ASSERT(hasImpl() && other.hasImpl(), "At least one Tensor cannot perform any binary operation because it has no implementation."); AIDGE_ASSERT(mImpl->backend() == other.mImpl->backend(), "Tensors must have the same backend"); AIDGE_ASSERT(dataType() == other.dataType(), "Tensors must have the same data type"); @@ -47,7 +48,7 @@ Aidge::Tensor Aidge::Tensor::operator+(const Aidge::Tensor& other) const { } -Aidge::Tensor Aidge::Tensor::operator-(const Aidge::Tensor& other) const { +Tensor Tensor::operator-(const Tensor& other) const { AIDGE_ASSERT(hasImpl() && other.hasImpl(), "At least one Tensor cannot perform any binary operation because it has no implementation."); AIDGE_ASSERT(mImpl->backend() == other.mImpl->backend(), "Tensors must have the same backend"); AIDGE_ASSERT(dataType() == other.dataType(), "Tensors must have the same data type"); @@ -64,7 +65,7 @@ Aidge::Tensor Aidge::Tensor::operator-(const Aidge::Tensor& other) const { } -Aidge::Tensor Aidge::Tensor::operator*(const Aidge::Tensor& other) const { +Tensor Tensor::operator*(const Tensor& other) const { AIDGE_ASSERT(hasImpl() && other.hasImpl(), "At least one Tensor cannot perform any binary operation because it has no implementation."); AIDGE_ASSERT(mImpl->backend() == other.mImpl->backend(), "Tensors must have the same backend"); AIDGE_ASSERT(dataType() == other.dataType(), "Tensors must have the same data type"); @@ -81,7 +82,7 @@ Aidge::Tensor Aidge::Tensor::operator*(const Aidge::Tensor& other) const { } -Aidge::Tensor Aidge::Tensor::operator/(const Aidge::Tensor& other) const { +Tensor Tensor::operator/(const Tensor& other) const { AIDGE_ASSERT(hasImpl() && other.hasImpl(), "At least one Tensor cannot perform any binary operation because it has no implementation."); AIDGE_ASSERT(mImpl->backend() == other.mImpl->backend(), "Tensors must have the same backend"); AIDGE_ASSERT(dataType() == other.dataType(), "Tensors must have the same data type"); @@ -97,7 +98,7 @@ Aidge::Tensor Aidge::Tensor::operator/(const Aidge::Tensor& other) const { return div_.getOutput(0)->clone(); } -Aidge::Tensor Aidge::Tensor::sqrt() const { +Tensor Tensor::sqrt() const { AIDGE_ASSERT(hasImpl(), "Tensor has no implementation."); auto sqrt_ = Sqrt_Op(); sqrt_.associateInput(0, std::make_shared<Tensor>(*this)); @@ -108,7 +109,7 @@ Aidge::Tensor Aidge::Tensor::sqrt() const { return sqrt_.getOutput(0)->clone(); } -Aidge::Tensor Aidge::Tensor::abs() const { +Tensor Tensor::abs() const { AIDGE_ASSERT(hasImpl(), "Tensor has no implementation."); auto abs_ = Abs_Op(); abs_.associateInput(0, std::make_shared<Tensor>(*this)); @@ -119,7 +120,7 @@ Aidge::Tensor Aidge::Tensor::abs() const { return abs_.getOutput(0)->clone(); } -Aidge::Tensor Aidge::Tensor::mean() const { +Tensor Tensor::mean() const { AIDGE_ASSERT(hasImpl(), "Tensor has no implementation."); // TODO: should be the default behavior of ReduceMean_Op // No need to specify the list of all axes! @@ -134,7 +135,7 @@ Aidge::Tensor Aidge::Tensor::mean() const { return mean_.getOutput(0)->clone(); } -Aidge::Tensor& Aidge::Tensor::operator=(const Aidge::Tensor& other) { +Tensor& Tensor::operator=(const Tensor& other) { if (this == &other) { return *this; } @@ -154,7 +155,7 @@ Aidge::Tensor& Aidge::Tensor::operator=(const Aidge::Tensor& other) { } -void Aidge::Tensor::setBackend(const std::string &name, Aidge::DeviceIdx_t device, bool copyFrom) { +void Tensor::setBackend(const std::string &name, DeviceIdx_t device, bool copyFrom) { if (mImpl) { if (mImpl->device() != std::make_pair(name, device)) { // Backend change: create new impl, copy from old to new and replace @@ -171,8 +172,8 @@ void Aidge::Tensor::setBackend(const std::string &name, Aidge::DeviceIdx_t devic } } -void Aidge::Tensor::resize(const std::vector<Aidge::DimSize_t>& dims, - std::vector<Aidge::DimSize_t> strides) { +void Tensor::resize(const std::vector<DimSize_t>& dims, + std::vector<DimSize_t> strides) { if (dims.empty()) { // scalar mDims = std::vector<DimSize_t>(0); mStrides = std::vector<DimSize_t>({1}); @@ -234,11 +235,12 @@ void Aidge::Tensor::resize(const std::vector<Aidge::DimSize_t>& dims, } } -std::string Aidge::Tensor::toString() const { - AIDGE_ASSERT( - mImpl && (undefined() || (dims() == std::vector<DimSize_t>({0})) || - (mImpl->hostPtr() != nullptr)), - "tensor should have a valid host pointer"); +std::string Tensor::toString() const { + + if (!hasImpl() || undefined()) { + // Return no value on no implementation or undefined size + return std::string("{}"); + } // TODO: move lambda elsewhere? auto ptrToString = [](DataType dt, void* ptr, std::size_t idx) { @@ -284,8 +286,10 @@ std::string Aidge::Tensor::toString() const { }; if (dims().empty()) { + // The Tensor is defined with rank 0, hence scalar return ptrToString(mDataType, mImpl->hostPtr(), 0); } + std::string res; std::size_t dim = 0; std::size_t counter = 0; @@ -352,7 +356,7 @@ std::string Aidge::Tensor::toString() const { return res; } -Aidge::Tensor Aidge::Tensor::extract( +Tensor Tensor::extract( const std::vector<std::size_t>& fixedCoord) const { AIDGE_ASSERT(isContiguous(), "Tensor must be contiguous"); AIDGE_ASSERT(fixedCoord.size() <= mDims.size(), @@ -368,7 +372,7 @@ Aidge::Tensor Aidge::Tensor::extract( return subTensor; } -Aidge::Tensor Aidge::Tensor::extract( +Tensor Tensor::extract( const std::vector<std::size_t>& startCoord, const std::vector<std::size_t>& dims) const { AIDGE_ASSERT(isContiguous(), "Tensor must be contiguous"); @@ -382,7 +386,7 @@ Aidge::Tensor Aidge::Tensor::extract( return subTensor; } -void Aidge::Tensor::makeContiguous() { +void Tensor::makeContiguous() { if (!mImpl || isContiguous()) { return; } @@ -420,7 +424,7 @@ void Aidge::Tensor::makeContiguous() { resize(mDims); } -void Aidge::Tensor::copyCast(const Tensor& src) { +void Tensor::copyCast(const Tensor& src) { if (&src == this) { return; } @@ -441,7 +445,7 @@ void Aidge::Tensor::copyCast(const Tensor& src) { src.size(), mImplOffset); } -void Aidge::Tensor::copyFrom(const Tensor& src) { +void Tensor::copyFrom(const Tensor& src) { if (&src == this) { return; } @@ -462,7 +466,7 @@ void Aidge::Tensor::copyFrom(const Tensor& src) { mImplOffset); } -void Aidge::Tensor::copyTranspose(const Tensor& src, const std::vector<DimSize_t>& transpose) { +void Tensor::copyTranspose(const Tensor& src, const std::vector<DimSize_t>& transpose) { std::vector<DimSize_t> newDims; for (std::size_t i = 0; i < src.dims().size(); ++i) { newDims.push_back(src.dims()[transpose[i]]); @@ -504,11 +508,11 @@ void Aidge::Tensor::copyTranspose(const Tensor& src, const std::vector<DimSize_t setImpl(newImpl); } -void Aidge::Tensor::copyTranspose(const Tensor& src, const DataFormatTranspose& transpose) { +void Tensor::copyTranspose(const Tensor& src, const DataFormatTranspose& transpose) { copyTranspose(src, std::vector<DimSize_t>(transpose.begin(), transpose.end())); } -void Aidge::Tensor::copyCastFrom(const Tensor& src, +void Tensor::copyCastFrom(const Tensor& src, std::shared_ptr<Tensor>& movedSrcPtr) { if (&src == this) { return; @@ -541,13 +545,13 @@ void Aidge::Tensor::copyCastFrom(const Tensor& src, } } -Aidge::Tensor& Aidge::Tensor::refContiguous(std::shared_ptr<Tensor>& fallback) { +Tensor& Tensor::refContiguous(std::shared_ptr<Tensor>& fallback) { // Scott Meyers' solution to avoid code duplication return const_cast<Tensor&>( static_cast<const Tensor&>(*this).refContiguous(fallback)); } -const Aidge::Tensor& Aidge::Tensor::refContiguous( +const Tensor& Tensor::refContiguous( std::shared_ptr<Tensor>& fallback) const { AIDGE_ASSERT(getImpl(), "no backend was set for tensor, cannot refCast() it"); @@ -566,15 +570,15 @@ const Aidge::Tensor& Aidge::Tensor::refContiguous( } } -Aidge::Tensor& Aidge::Tensor::refCast(std::shared_ptr<Tensor>& fallback, - const Aidge::DataType& dt) { +Tensor& Tensor::refCast(std::shared_ptr<Tensor>& fallback, + const DataType& dt) { // Scott Meyers' solution to avoid code duplication return const_cast<Tensor&>( static_cast<const Tensor&>(*this).refCast(fallback, dt)); } -const Aidge::Tensor& Aidge::Tensor::refCast(std::shared_ptr<Tensor>& fallback, - const Aidge::DataType& dt) const { +const Tensor& Tensor::refCast(std::shared_ptr<Tensor>& fallback, + const DataType& dt) const { AIDGE_ASSERT(getImpl(), "no backend was set for tensor, cannot refCast() it"); @@ -607,7 +611,7 @@ const Aidge::Tensor& Aidge::Tensor::refCast(std::shared_ptr<Tensor>& fallback, } } -Aidge::Tensor& Aidge::Tensor::refFrom(std::shared_ptr<Tensor>& fallback, +Tensor& Tensor::refFrom(std::shared_ptr<Tensor>& fallback, const std::string& backend, DeviceIdx_t device) { // Scott Meyers' solution to avoid code duplication @@ -615,7 +619,7 @@ Aidge::Tensor& Aidge::Tensor::refFrom(std::shared_ptr<Tensor>& fallback, static_cast<const Tensor&>(*this).refFrom(fallback, backend, device)); } -const Aidge::Tensor& Aidge::Tensor::refFrom(std::shared_ptr<Tensor>& fallback, +const Tensor& Tensor::refFrom(std::shared_ptr<Tensor>& fallback, const std::string& backend, DeviceIdx_t device) const { AIDGE_ASSERT(getImpl(), @@ -648,8 +652,8 @@ const Aidge::Tensor& Aidge::Tensor::refFrom(std::shared_ptr<Tensor>& fallback, } } -Aidge::Tensor& Aidge::Tensor::ref(std::shared_ptr<Tensor>& fallback, - const Aidge::DataType& dt, +Tensor& Tensor::ref(std::shared_ptr<Tensor>& fallback, + const DataType& dt, const std::string& backend, DeviceIdx_t device) { // Scott Meyers' solution to avoid code duplication @@ -657,8 +661,8 @@ Aidge::Tensor& Aidge::Tensor::ref(std::shared_ptr<Tensor>& fallback, static_cast<const Tensor&>(*this).ref(fallback, dt, backend, device)); } -const Aidge::Tensor& Aidge::Tensor::ref(std::shared_ptr<Tensor>& fallback, - const Aidge::DataType& dt, +const Tensor& Tensor::ref(std::shared_ptr<Tensor>& fallback, + const DataType& dt, const std::string& backend, DeviceIdx_t device) const { AIDGE_ASSERT(getImpl(), "no backend was set for tensor, cannot ref() it"); @@ -682,9 +686,64 @@ const Aidge::Tensor& Aidge::Tensor::ref(std::shared_ptr<Tensor>& fallback, } } -std::set<std::string> Aidge::Tensor::getAvailableBackends() { + +std::vector<std::size_t> +Tensor::toCoord(const std::vector<DimSize_t>& dimensions, std::size_t index) { + std::vector<std::size_t> coord(dimensions.size()); + std::size_t i = dimensions.size(); + + while (i-- > 0) { + coord[i] = (index % dimensions[i]); + index /= dimensions[i]; + } + return coord; +} + + +std::size_t Tensor::toIndex(const std::vector<DimSize_t> &dimensions, const std::vector<std::size_t>& coords) { + AIDGE_ASSERT(coords.size() == dimensions.size(), "Tensor::getIdx(): Coordinates does not match number of dimensions.\n\tCoords : {}\n\tDimensions: {}",coords, dimensions); + std::size_t index = 0; + std::size_t dimensions_s = 1; // stride + std::size_t i = dimensions.size(); + while (i-- > 0) { + index += coords[i] * dimensions_s; + dimensions_s *= dimensions[i]; + } + return index; +} + +template<typename T> +bool Tensor::isInBounds(const std::vector<DimSize_t>& dimensions, const std::vector<T>& coords){ + AIDGE_ASSERT(coords.size() == dimensions.size(), + "Coordinates({}) to compare have not " + "the same number of dimension as tensor dimensions({}), aborting.", + coords, + dimensions); + bool isInBound {true}; + for(std::size_t i = 0 ; i < coords.size() && isInBound; ++i ){ + isInBound = coords[i] >= 0 && coords[i] < static_cast<T>(dimensions[i]) ; + } + return isInBound; +} + + +bool Tensor::isInBounds(const std::vector<DimSize_t>& dimensions, const std::size_t index){ + return index < std::accumulate(dimensions.cbegin(), dimensions.cend(), std::size_t(1), std::multiplies<std::size_t>()); +} + +template bool Tensor::isInBounds(const std::vector<DimSize_t>& dimensions, const std::vector<std::int16_t>& coords); +template bool Tensor::isInBounds(const std::vector<DimSize_t>& dimensions, const std::vector<std::int32_t>& coords); +template bool Tensor::isInBounds(const std::vector<DimSize_t>& dimensions, const std::vector<std::int64_t>& coords); +template bool Tensor::isInBounds(const std::vector<DimSize_t>& dimensions, const std::vector<std::size_t>& coords); +template bool Tensor::isInBounds(const std::vector<DimSize_t>& dimensions, const std::vector<float>& coords); +template bool Tensor::isInBounds(const std::vector<DimSize_t>& dimensions, const std::vector<double>& coords); + + +std::set<std::string> Tensor::getAvailableBackends() { std::set<std::string> backendsList; - for (const auto& tupleKey : Registrar<Tensor>::getKeys()) + for (const auto& tupleKey : Registrar<Tensor>::getKeys()) { backendsList.insert(std::get<0>(tupleKey)); + } return backendsList; } +} // namespace Aidge diff --git a/src/data/interpolation.cpp b/src/data/interpolation.cpp new file mode 100644 index 0000000000000000000000000000000000000000..ce5431a2b3bd742f98a169666811bd5d373a5c24 --- /dev/null +++ b/src/data/interpolation.cpp @@ -0,0 +1,237 @@ +/******************************************************************************** + * Copyright (c) 2024 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include "aidge/data/Interpolation.hpp" + +#include <algorithm> // std::clamp +#include <bitset> +#include <cmath> // std::ceil, std::floor +#include <cstddef> // std::size_t +#include <cstdint> // std::int64_t +#include <stdexcept> // std::runtime_error +#include <utility> // std::make_pair, std::set +#include <vector> + +#include "aidge/data/Tensor.hpp" +#include "aidge/data/half.hpp" +#include "aidge/operator/Pad.hpp" +#include "aidge/utils/ErrorHandling.hpp" +#include "aidge/utils/Log.hpp" +#include "aidge/utils/Types.h" + +namespace Aidge { + +template <typename T> +[[noreturn]] T +Interpolation::interpolate(const std::vector<float> & /*originalIndex*/, + const std::vector<Point<T>> & /*points*/, + const Mode /*interpMode*/) { + AIDGE_THROW_OR_ABORT( + std::runtime_error, + "interpolate() is backend dependendant and should be" + "called from derived classes: Interpolation<Backend>::interpolate(...)" + "Meaning that for CPU backend, InterpolationCPU::interpolate() should " + "be called."); +} + +std::vector<float> Interpolation::untransformCoordinates( + const std::vector<DimSize_t> &transformedCoords, + const std::vector<DimSize_t> &inputDims, + const std::vector<DimSize_t> &outputDims, + const Interpolation::CoordinateTransformation coordTransfoMode) { + AIDGE_ASSERT( + inputDims.size() == outputDims.size(), + "Interpolate::untransformCoordinates: input and output coordinates " + "dimension number mismatch, they should be equal." + "Got inputDims({}) and outputDims ({}).", + inputDims, + outputDims); + AIDGE_ASSERT( + transformedCoords.size() == outputDims.size(), + "Interpolate::untransformCoordinates: coordinates dimension mismatch, " + "transformed coords number should be equal to output dimension number." + "Got coords to transform ({}) and outputDims ({})", + transformedCoords, + outputDims); + std::vector<float> originalCoords(transformedCoords.size()); + + for (DimIdx_t i = 0; i < transformedCoords.size(); ++i) { + float scale = static_cast<float>(outputDims[i]) / + static_cast<float>(inputDims[i]); + + switch (coordTransfoMode) { + case CoordinateTransformation::AlignCorners: + AIDGE_THROW_OR_ABORT( + std::runtime_error, + "Interpolation::untransformCoords: Unsupported Coordinate " + "transform : AlignCorners"); + break; + case CoordinateTransformation::Asymmetric: + originalCoords[i] = transformedCoords[i] / scale; + break; + case CoordinateTransformation::HalfPixel: + originalCoords[i] = (transformedCoords[i] + 0.5) / scale - 0.5; + break; + case CoordinateTransformation::HalfPixelSymmetric: + AIDGE_THROW_OR_ABORT( + std::runtime_error, + "Interpolation::untransformCoords: Unsupported Coordinate " + "transform : HalfPixelSymmetric"); + break; + case Interpolation::CoordinateTransformation::PytorchHalfPixel: + + AIDGE_THROW_OR_ABORT( + std::runtime_error, + "Interpolation::untransformCoords: Unsupported Coordinate " + "transform : PytorchHalfPixel"); + break; + } + } + return originalCoords; +} + +/** + * @details Generates a list of all neighbours of a given coordinate. + * Since the coordinates are floating points as they are the result of + * Interpolation::untransformCoords, they are approximation of coordinates in + * originalTensor frame from coordinates in interpolatedTensor frame. + * + * So to retrieve the neghbouring values, we must apply either floor() or + * ceil() to each coordinate. + * + * In order to generate the list of all combinations + * available, we simply iterate through the bits of each values from 0 to + * tensorDims. + * @example : in 2 dimensions , we have the point (1.3, 3.4) + * we iterate up to 2^2 - 1 and + * 0 = 0b00 -> (floor(x), floor(y)) = (1,3) + * 1 = 0b01 -> (floor(x), ceil(y)) = (1,4) + * 2 = 0b10 -> (ceil(x) , floor(y)) = (2,3) + * 3 = 0b11 -> (ceil(x) , ceil(y)) = (2,4) + */ +template <typename T> +std::set<Interpolation::Point<T>> +Interpolation::retrieveNeighbours(const T *tensorValues, + const std::vector<DimSize_t> &tensorDims, + const std::vector<float> &coords, + const PadBorderType paddingMode) { + + Log::debug("retrieveNeighbours: TensorDims : {}", tensorDims); + Log::debug("retrieveNeighbours: coords to interpolate : {}", coords); + + // Will retrieve out of bound values depending on given padding mode. + // auto retrieveOutOfBoundValue = + // [&tensorValues, &tensorDims, &paddingMode](Coords coord) -> T { + // std::vector<DimSize_t> rectifiedCoord; + // rectifiedCoord.reserve(coord.size()); + // switch (paddingMode) { + // case Aidge::PadBorderType::Edge: { + // for (DimSize_t i = 0; i < coord.size(); ++i) { + // rectifiedCoord[i] = coord[i] < 0 ? 0 : tensorDims[i] - 1; + // } + // return tensorValues[Tensor::getIdx(tensorDims, rectifiedCoord)]; + // } + // case Aidge::PadBorderType::Zero: { + // return static_cast<T>(0); + // } + // default: { + // AIDGE_THROW_OR_ABORT( + // std::runtime_error, + // "Unsupported padding mode as of now for interpolation."); + // } + // } + // }; + + std::set<Point<T>> neighbours; + const std::size_t nbNeighbours = std::size_t(1) << tensorDims.size(); + Coords neighbourCoords(tensorDims.size()); + + for (std::size_t i = 0; i < nbNeighbours; ++i) { + const std::bitset<MaxDim> bits = std::bitset<MaxDim>{i}; + for (size_t j = 0; j < tensorDims.size(); ++j) { + neighbourCoords[j] = + bits[j] == 0 ? std::ceil(coords[j]) : std::floor(coords[j]); + } + + T value; + if (Tensor::isInBounds(tensorDims, neighbourCoords)) { + // cast from unsigned to signed won't create problem as we ensured + // that all neighboursCoords values are > 0 with isInBounds + value = tensorValues[Tensor::toIndex( + tensorDims, + std::vector<DimSize_t>(neighbourCoords.begin(), + neighbourCoords.end()))]; + } else { + switch (paddingMode) { + case PadBorderType::Edge: + for (DimSize_t j = 0; j < tensorDims.size(); ++j) { + neighbourCoords[j] = (neighbourCoords[j] < 0) ? 0 : + ((neighbourCoords[j] >= static_cast<std::int64_t>(tensorDims[j])) ? (tensorDims[j] - 1) : + neighbourCoords[j]); + } + value = tensorValues[Tensor::toIndex( + tensorDims, + std::vector<DimSize_t>(neighbourCoords.begin(), + neighbourCoords.end()))]; + break; + case PadBorderType::Zero: + value = static_cast<T>(0); + break; + default: + AIDGE_THROW_OR_ABORT( + std::runtime_error, + "Unsupported padding mode as of now for interpolation."); + } + } + neighbours.insert(std::make_pair(neighbourCoords, value)); + } + Log::debug("Interpolation::retrieveNeighbours(): neighbourCoords: {}", + neighbours); + return neighbours; +} + +template std::set<Interpolation::Point<int16_t>> +Interpolation::retrieveNeighbours(const int16_t *tensorValues, + const std::vector<DimSize_t> &tensorDims, + const std::vector<float> &coords, + const PadBorderType paddingMode); + +template std::set<Interpolation::Point<int32_t>> +Interpolation::retrieveNeighbours(const int32_t *tensorValues, + const std::vector<DimSize_t> &tensorDims, + const std::vector<float> &coords, + const PadBorderType paddingMode); + +template std::set<Interpolation::Point<int64_t>> +Interpolation::retrieveNeighbours(const int64_t *tensorValues, + const std::vector<DimSize_t> &tensorDims, + const std::vector<float> &coords, + const PadBorderType paddingMode); + +template std::set<Interpolation::Point<half_float::half>> +Interpolation::retrieveNeighbours(const half_float::half *tensorValues, + const std::vector<DimSize_t> &tensorDims, + const std::vector<float> &coords, + const PadBorderType paddingMode); + +template std::set<Interpolation::Point<float>> +Interpolation::retrieveNeighbours(const float *tensorValues, + const std::vector<DimSize_t> &tensorDims, + const std::vector<float> &coords, + const PadBorderType paddingMode); + +template std::set<Interpolation::Point<double>> +Interpolation::retrieveNeighbours(const double *tensorValues, + const std::vector<DimSize_t> &tensorDims, + const std::vector<float> &coords, + const PadBorderType paddingMode); + +} // namespace Aidge diff --git a/src/graph/GraphView.cpp b/src/graph/GraphView.cpp index b2c03e794888a0909ada5db208fc07ad266d4ae2..e1f25e86827e81b26436876dce1b98fe0cda80b8 100644 --- a/src/graph/GraphView.cpp +++ b/src/graph/GraphView.cpp @@ -153,18 +153,20 @@ void Aidge::GraphView::save(const std::string& path, bool verbose, bool showProd if (parent.first == node_ptr && parent.second == outputIdx) { // Add-on to display the operator's output dimensions std::string dims = ""; + std::string dtype = ""; const auto op = std::dynamic_pointer_cast<OperatorTensor>(node_ptr->getOperator()); if (op && !op->getOutput(outputIdx)->undefined()) { dims += " " + fmt::format("{}", op->getOutput(outputIdx)->dims()); + dtype += "\n" + fmt::format("{}", op->getOutput(outputIdx)->dataType()); } if (mNodes.find(child) != mNodes.end()) { - fmt::print(fp.get(), "{}_{}-->|\"{}{}→{}\"|{}_{}\n", node_ptr->type(), namePtrTable.at(node_ptr), - outputIdx, dims, inputIdx, child->type(), namePtrTable.at(child)); + fmt::print(fp.get(), "{}_{}-->|\"{}{}{}→{}\"|{}_{}\n", node_ptr->type(), namePtrTable.at(node_ptr), + outputIdx, dims, dtype, inputIdx, child->type(), namePtrTable.at(child)); } else if (verbose) { - fmt::print(fp.get(), "{}_{}-->|\"{}{}→{}\"|{}:::externalCls\n", node_ptr->type(), namePtrTable.at(node_ptr), - outputIdx, dims, inputIdx, static_cast<void*>(child.get())); + fmt::print(fp.get(), "{}_{}-->|\"{}{}{}→{}\"|{}:::externalCls\n", node_ptr->type(), namePtrTable.at(node_ptr), + outputIdx, dims, dtype, inputIdx, static_cast<void*>(child.get())); } // Do no break here because the same child can be connected to several inputs } diff --git a/src/graph/StaticAnalysis.cpp b/src/graph/StaticAnalysis.cpp new file mode 100644 index 0000000000000000000000000000000000000000..033e51022842983caacba9385248c9f02c1e5568 --- /dev/null +++ b/src/graph/StaticAnalysis.cpp @@ -0,0 +1,171 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include "aidge/graph/StaticAnalysis.hpp" + +Aidge::OperatorStats::OperatorStats(const Operator& op) + : mOp(op) +{ + //ctor +} + +size_t Aidge::OperatorStats::getNbArithmIntOps() const { + const auto opTensor = dynamic_cast<const OperatorTensor*>(&mOp); + if (opTensor) { + if (!isDataTypeFloatingPoint(opTensor->getOutput(0)->dataType())) { + return getNbArithmOps(); + } + } + return 0; +} + +Aidge::StaticAnalysis::StaticAnalysis(std::shared_ptr<GraphView> graph) + : mGraph(graph) +{ + //ctor +} + +void Aidge::StaticAnalysis::summary(bool incProducers) const { + fmt::println("--------------------------------------------------------------------------------"); + fmt::println(" Layer (type) Output Shape Param #"); + fmt::println("================================================================================"); + + size_t nbParams = 0; + size_t paramsSize = 0; // Size in bits + size_t fwdBwdSize = 0; // Size in bits + + const auto namePtrTable = mGraph->getRankedNodesName("{0} ({1}#{3})"); + for (const auto node : mGraph->getOrderedNodes()) { + if (node->type() == Producer_Op::Type && !incProducers) { + continue; + } + + auto opTensor = std::dynamic_pointer_cast<OperatorTensor>(node->getOperator()); + std::string outputDimsStr = fmt::format("{: >27}", "?"); + if (opTensor) { + const auto outputDims = opTensor->getOutput(0)->dims(); + outputDimsStr = fmt::format("{: >27}", fmt::format("{}", outputDims)); + + for (size_t out = 0; out < node->nbOutputs(); ++out) { + const auto output = opTensor->getOutput(out); + if (output && node->type() != Producer_Op::Type) { + fwdBwdSize += output->size() + * getDataTypeBitWidth(output->dataType()); + } + } + } + + nbParams += getNbParams(node); + paramsSize += getParamsSize(node); + fmt::println("{: >36}{}{: >16}", + namePtrTable.at(node), outputDimsStr, getNbParams(node)); + } + + size_t inputSize = 0; // Size in bits + for (const auto input : mGraph->getOrderedInputs()) { + if (input.first) { + auto opTensor = std::dynamic_pointer_cast<OperatorTensor>(input.first->getOperator()); + if (opTensor && opTensor->getInput(input.second)) { + inputSize += opTensor->getInput(input.second)->size() + * getDataTypeBitWidth(opTensor->getInput(input.second)->dataType()); + } + } + } + + fmt::println("================================================================================"); + fmt::println("Total params: {}", nbParams); + fmt::println("--------------------------------------------------------------------------------"); + fmt::println("Input size (MB): {}", inputSize / 8.0 / 1024 / 1024); + fmt::println("Forward/backward pass size (MB): {}", fwdBwdSize / 8.0 / 1024 / 1024); + fmt::println("Params size (MB): {}", paramsSize / 8.0 / 1024 / 1024); + fmt::println("Estimated Total Size (MB): {}", (inputSize + fwdBwdSize + paramsSize) / 8.0 / 1024 / 1024); + fmt::println("--------------------------------------------------------------------------------"); +} + +size_t Aidge::StaticAnalysis::getNbParams(std::shared_ptr<Node> node) const { + const auto opTensor = std::dynamic_pointer_cast<OperatorTensor>(node->getOperator()); + + size_t nbParams = 0; + + // Look for Producers directly attached to the node's inputs. + size_t i = 0; + for (auto parent : node->inputs()) { + if (parent.first && mGraph->inView(parent.first)) { + if (parent.first->type() == Producer_Op::Type && opTensor->getInput(i)) { + nbParams += opTensor->getInput(i)->size(); + } + } + ++i; + } + + // Look for internal Producers, in case of meta-op. + if (!node->getOperator()->isAtomic()) { + const auto microGraph = std::dynamic_pointer_cast<MetaOperator_Op>(node->getOperator())->getMicroGraph(); + for (const auto internalNode : microGraph->getNodes()) { + if (internalNode->type() == Producer_Op::Type) { + const auto internalOpTensor = std::dynamic_pointer_cast<OperatorTensor>(internalNode->getOperator()); + nbParams += internalOpTensor->getOutput(0)->size(); + } + } + } + + return nbParams; +} + +size_t Aidge::StaticAnalysis::getParamsSize(std::shared_ptr<Node> node) const { + const auto opTensor = std::dynamic_pointer_cast<OperatorTensor>(node->getOperator()); + + size_t paramsSize = 0; + + // Look for Producers directly attached to the node's inputs. + size_t i = 0; + for (auto parent : node->inputs()) { + if (parent.first && mGraph->inView(parent.first)) { + if (parent.first->type() == Producer_Op::Type && opTensor->getInput(i)) { + paramsSize += opTensor->getInput(i)->size() + * getDataTypeBitWidth(opTensor->getInput(i)->dataType()); + } + } + ++i; + } + + // Look for internal Producers, in case of meta-op. + if (!node->getOperator()->isAtomic()) { + const auto microGraph = std::dynamic_pointer_cast<MetaOperator_Op>(node->getOperator())->getMicroGraph(); + for (const auto internalNode : microGraph->getNodes()) { + if (internalNode->type() == Producer_Op::Type) { + const auto internalOpTensor = std::dynamic_pointer_cast<OperatorTensor>(internalNode->getOperator()); + paramsSize += internalOpTensor->getOutput(0)->size() + * getDataTypeBitWidth(internalOpTensor->getOutput(0)->dataType()); + } + } + } + + return paramsSize; +} + +std::shared_ptr<Aidge::OperatorStats> Aidge::StaticAnalysis::getOpStats(std::shared_ptr<Node> node) const { + return (Registrar<OperatorStats>::exists(node->type())) + ? Registrar<OperatorStats>::create(node->type())(*(node->getOperator())) + : (node->getOperator()->isAtomic()) + ? std::make_shared<OperatorStats>(*(node->getOperator())) + : std::make_shared<MetaOpStats>(*(node->getOperator())); +} + +size_t Aidge::StaticAnalysis::accumulate(size_t (OperatorStats::*func)() const) const { + return std::accumulate( + mGraph->getNodes().cbegin(), + mGraph->getNodes().cend(), + std::size_t(0), + [this, func](const size_t& lhs, const std::shared_ptr<Node>& rhs) { + return lhs + (this->getOpStats(rhs).get()->*func)(); + }); +} diff --git a/src/operator/GenericOperator.cpp b/src/operator/GenericOperator.cpp index 0f90a5a58dbd8d69b847022c336075ecc3f3d553..c5bca92406e518df593fcc6c3a40525a4ba81dfa 100644 --- a/src/operator/GenericOperator.cpp +++ b/src/operator/GenericOperator.cpp @@ -86,7 +86,15 @@ bool Aidge::GenericOperator_Op::forwardDims(bool /*allowDataDependency*/) { } void Aidge::GenericOperator_Op::setBackend(const std::string & name, DeviceIdx_t device) { - Log::warn("GenericOperator::setBackend(): cannot set backend for a generic operator, as no implementation has been provided!"); + if (Registrar<GenericOperator_Op>::exists({name, type()})) { + // A custom implementation exists for this meta operator + mImpl = Registrar<GenericOperator_Op>::create({name, type()})(*this); + }else{ + Log::warn("GenericOperator::setBackend(): cannot set backend for a generic operator, as no implementation has been provided!"); + } + + + for (std::size_t i = 0; i < nbOutputs(); ++i) { mOutputs[i]->setBackend(name, device); @@ -108,4 +116,4 @@ std::shared_ptr<Aidge::Node> Aidge::GenericOperator(const std::string& type, Aidge::IOIndex_t nbOut, const std::string& name) { return std::make_shared<Node>(std::make_shared<GenericOperator_Op>(type, nbData, nbParam, nbOut), name); -} \ No newline at end of file +} diff --git a/src/operator/GlobalAveragePooling.cpp b/src/operator/GlobalAveragePooling.cpp index bbcfd0d28ca039318647d206af876727793e1bfc..57886ec2faec86bc5d3a515ed685fdcfd0e15e4e 100644 --- a/src/operator/GlobalAveragePooling.cpp +++ b/src/operator/GlobalAveragePooling.cpp @@ -44,8 +44,10 @@ bool Aidge::GlobalAveragePooling_Op::forwardDims(bool /*allowDataDependency*/) { // Global average pooling takes each filter, averages its values and uses // it as an output(Much like a fancier flatten). 1st dim is batch 2nd is // number of filter - mOutputs[0]->resize({getInput(0)->dims().at(0), - getInput(0)->dims().at(1)}); + std::vector<DimSize_t> outputDims(getInput(0)->nbDims(), 1); + outputDims[0] = getInput(0)->dims()[0]; + outputDims[1] = getInput(0)->dims()[1]; + mOutputs[0]->resize(outputDims); return true; } diff --git a/src/operator/LRN.cpp b/src/operator/LRN.cpp new file mode 100644 index 0000000000000000000000000000000000000000..c5ce243bd6a48ae4b1ce8461924b498c804b53e6 --- /dev/null +++ b/src/operator/LRN.cpp @@ -0,0 +1,60 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include "aidge/operator/LRN.hpp" + +#include <memory> +#include <string> + +#include "aidge/data/Tensor.hpp" +#include "aidge/utils/Registrar.hpp" +#include "aidge/utils/Types.h" + +const std::string Aidge::LRN_Op::Type = "LRN"; + +Aidge::LRN_Op::LRN_Op(std::int32_t size) + : OperatorTensor(Type, {InputCategory::Data}, 1), + mAttributes(std::make_shared<Attributes_>( + attr<LRNAttr::Alpha>(0.0001), + attr<LRNAttr::Beta>(0.75), + attr<LRNAttr::Bias>(1.0), + attr<LRNAttr::Size>(size))) +{} + +Aidge::LRN_Op::LRN_Op(const Aidge::LRN_Op& op) + : OperatorTensor(op), + mAttributes(op.mAttributes) +{ + if (op.mImpl){ + SET_IMPL_MACRO(LRN_Op, *this, op.backend()); + }else{ + mImpl = nullptr; + } +} + +std::shared_ptr<Aidge::Operator> Aidge::LRN_Op::clone() const { + return std::make_shared<LRN_Op>(*this); +} + +void Aidge::LRN_Op::setBackend(const std::string& name, Aidge::DeviceIdx_t device) { + mImpl = Registrar<LRN_Op>::create(name)(*this); + mOutputs[0]->setBackend(name, device); +} + +std::set<std::string> Aidge::LRN_Op::getAvailableBackends() const { + return Registrar<LRN_Op>::getKeys(); +} + +//////////////////////////////////////////////// + +std::shared_ptr<Aidge::Node> Aidge::LRN(std::int32_t size, const std::string& name) { + return std::make_shared<Node>(std::make_shared<LRN_Op>(size), name); +} \ No newline at end of file diff --git a/src/operator/Memorize.cpp b/src/operator/Memorize.cpp index 61239071a99a9dfca8613ef78eba17757c4276b7..cd4a4808137a786b04d8d143e50b96b9648e7d9a 100644 --- a/src/operator/Memorize.cpp +++ b/src/operator/Memorize.cpp @@ -150,7 +150,7 @@ void Aidge::Memorize_Op::setBackend(const std::string& name, Aidge::DeviceIdx_t } void Aidge::Memorize_Op::forward() { - Operator::forward(); + OperatorTensor::forward(); ++mAttributes->template getAttr<MemorizeAttr::ForwardStep>(); mAttributes->template getAttr<MemorizeAttr::ScheduleStep>() = 0; } diff --git a/src/operator/MetaOperator.cpp b/src/operator/MetaOperator.cpp index d93d7d320f0f508b20714943ae3c8ed7fc561ec8..060c725482fedf4d6093e5acb988b2c721c27edc 100644 --- a/src/operator/MetaOperator.cpp +++ b/src/operator/MetaOperator.cpp @@ -87,12 +87,26 @@ void Aidge::MetaOperator_Op::setBackend(const std::string &name, Aidge::DeviceId if (Registrar<MetaOperator_Op>::exists({name, type()})) { // A custom implementation exists for this meta operator mImpl = Registrar<MetaOperator_Op>::create({name, type()})(*this); + + // Set backend for in/out tensor of the MetaOp + for(auto i: mGraph->inputNodes()){ + auto op_i = std::static_pointer_cast<OperatorTensor>(i->getOperator()); + for(std::size_t in_idx=0; in_idx < op_i->nbInputs(); ++in_idx){ + op_i->getInput(in_idx)->setBackend(name, device); + } + } + for(auto o: mGraph->outputNodes()){ + auto op_o = std::static_pointer_cast<OperatorTensor>(o->getOperator()); + for(std::size_t out_idx=0; out_idx < op_o->nbOutputs(); ++out_idx){ + op_o->getOutput(out_idx)->setBackend(name, device); + } + } + }else{ + // Input/output tensors backend are also updated here. + mGraph->setBackend(name, device); } - // The micro-graph should always be set to the right backend, since it - // shares input/output tensors. - // Input/output tensors backend are updated here. - mGraph->setBackend(name, device); + } std::set<std::string> Aidge::MetaOperator_Op::getAvailableBackends() const { diff --git a/src/operator/OperatorTensor.cpp b/src/operator/OperatorTensor.cpp index ff6fb9ce4b6b8596477dfdd1f43f8927e534459b..586dbc2037d36d26f39dd06404b3b70b99270c1e 100644 --- a/src/operator/OperatorTensor.cpp +++ b/src/operator/OperatorTensor.cpp @@ -45,7 +45,8 @@ Aidge::OperatorTensor::OperatorTensor(const OperatorTensor& other) void Aidge::OperatorTensor::associateInput(const Aidge::IOIndex_t inputIdx, const std::shared_ptr<Aidge::Data>& data) { AIDGE_ASSERT(inputIdx < nbInputs(), "{} Operator has {} inputs", type(), nbInputs()); - AIDGE_ASSERT(data->type() == Tensor::Type, "Input data must be of Tensor type"); + AIDGE_ASSERT(data != nullptr, "Undefined data argument, make sure that the associated tensor holds data before associating the input.") + AIDGE_ASSERT(data->type() == Tensor::Type, "OperatorTensor::associateInput(): Input data must be of Tensor type, got {}", data->type()); mInputs[inputIdx] = std::dynamic_pointer_cast<Tensor>(data); } diff --git a/src/operator/Pop.cpp b/src/operator/Pop.cpp index cd5b18759cdd743f292054bca91ffee5da722ea6..a27e2745b8929e84456ac079d063d94ffa359679 100644 --- a/src/operator/Pop.cpp +++ b/src/operator/Pop.cpp @@ -24,6 +24,7 @@ Aidge::Elts_t Aidge::Pop_ProdConso::getNbRequiredData(const Aidge::IOIndex_t inp assert(mOp.getRawInput(inputIdx) && "requires valid input"); const Pop_Op& op = dynamic_cast<const Pop_Op&>(mOp); + AIDGE_ASSERT(!op.getInput(inputIdx)->empty(), "Pop operator requires known, non-empty, input dims for scheduling. You might have an unresolved data dependency upstream in the computing graph."); return Elts_t::DataElts(op.getInput(inputIdx)->size() / op.getInput(inputIdx)->dims()[0]); } @@ -93,7 +94,7 @@ std::set<std::string> Aidge::Pop_Op::getAvailableBackends() const { } void Aidge::Pop_Op::forward() { - Operator::forward(); + OperatorTensor::forward(); ++mAttributes->template getAttr<PopAttr::ForwardStep>(); } diff --git a/src/operator/Resize.cpp b/src/operator/Resize.cpp index 9e5762452e382a31c1e5da25708507653da2e474..252f55a6abdea13cc43cf21d3e8c7ab33ddbb86e 100644 --- a/src/operator/Resize.cpp +++ b/src/operator/Resize.cpp @@ -11,56 +11,31 @@ #include "aidge/operator/Resize.hpp" -#include <cstddef> // std::size_t -#include <cstdint> // std::int64_t -#include <stdexcept> // std::runtime_error +#include <algorithm> +#include <cstddef> // std::size_t +#include <cstdint> // std::int64_t +#include <fmt/core.h> +#include <stdexcept> // std::runtime_error #include <string> #include <vector> -#include <fmt/core.h> -#include "aidge/backend/OperatorImpl.hpp" +#include "aidge/data/Data.hpp" +#include "aidge/data/Interpolation.hpp" #include "aidge/data/Tensor.hpp" +#include "aidge/operator/Producer.hpp" +#include "aidge/utils/ArrayHelpers.hpp" #include "aidge/utils/ErrorHandling.hpp" #include "aidge/utils/Types.h" -const std::string Aidge::Resize_Op::Type = "Resize"; - -Aidge::Resize_Op::Resize_Op() - : OperatorTensor(Type, - {InputCategory::Data, - InputCategory::OptionalData, - InputCategory::OptionalData, - InputCategory::OptionalData}, - 1) {} - -/** - * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), - * but not its input tensors (the new operator has no input associated). - * @param op Operator to copy. - */ - -Aidge::Resize_Op::Resize_Op(const Aidge::Resize_Op& op) - : OperatorTensor(op) -{ - if (!op.backend().empty()) { - SET_IMPL_MACRO(Resize_Op, *this, op.backend()); - } - else { - mImpl = nullptr; - } -} +namespace Aidge { -std::shared_ptr<Aidge::Operator> Aidge::Resize_Op::clone() const { - return std::make_shared<Resize_Op>(*this); -} +const std::string Resize_Op::Type = "Resize"; -bool Aidge::Resize_Op::dimsForwarded() const { +bool Resize_Op::dimsForwarded() const { // in case of ROI add getInput(1) condition - if ((getInput(1) && !getInput(1)->undefined()) - || (getInput(2) && !getInput(2)->undefined()) - || (getInput(3) && !getInput(3)->undefined()) - ) - { + if ((getInput(1) && !getInput(1)->undefined()) || + (getInput(2) && !getInput(2)->undefined()) || + (getInput(3) && !getInput(3)->undefined())) { // output dims are data dependent return false; } @@ -68,93 +43,137 @@ bool Aidge::Resize_Op::dimsForwarded() const { return OperatorTensor::dimsForwarded(); } -bool Aidge::Resize_Op::forwardDims(bool allowDataDependency) { - if (inputsAssociated()) { - AIDGE_ASSERT(getInput(0)->nbDims() == 4, - "input tensor must have dimensions = 4 (batch, channel, height, width)."); - - const bool input1ROIPresent = getInput(1) && !getInput(1)->undefined(); - const bool input2ScalesPresent = getInput(2) && !getInput(2)->undefined(); - const bool input3SizesPresent = getInput(3) && !getInput(3)->undefined(); +bool Resize_Op::forwardDims(bool allowDataDependency) { + if (!allowDataDependency) { + Log::warn("{}: cannot execute forwardDims() as the output " + "dimensions are computed from some input data.", + type()); + return false; + } - AIDGE_ASSERT(input2ScalesPresent != input3SizesPresent, "Only one of scales and sizes can be specified.") + // Some optional input may be linked but undefined because of ONNX import + if (!inputsAssociated(false)) { + return false; + } - if (input1ROIPresent) { - AIDGE_THROW_OR_ABORT(std::runtime_error, "Input #1 (ROI) is given and it is not supported."); + /** @brief input #0 */ + constexpr IOIndex_t inDataIdx = 0; + /** @brief input #1 */ + constexpr IOIndex_t inROIIdx = 1; + /** @brief input #2 */ + constexpr IOIndex_t inScalesIdx = 2; + /** @brief input #3 */ + constexpr IOIndex_t inSizesIdx = 3; + + std::vector<DimSize_t> outDims = getInput(inDataIdx)->dims(); + ///////////////////////////////////////////////////// + // Ensuring operator is connected properly + const bool inputROIPresent = + getInput(inROIIdx) && !getInput(inROIIdx)->undefined(); + if (inputROIPresent) { + AIDGE_THROW_OR_ABORT( + std::runtime_error, + "{}: input ROI(#{}) is present but it is not supported.", + type(), + inROIIdx); } - else if (input2ScalesPresent) { - if (!allowDataDependency) { - Log::warn("Resize_Op: cannot execute forwardDims() as the output dimensions depend on the input #2"); - return false; - } - - AIDGE_ASSERT(getInput(0)->nbDims() == getInput(2)->size(), - "input #0 and input #2 (Scales) must have the same dimensions."); - - std::vector<DimSize_t> outDims = getInput(0)->dims(); - const std::vector<DimSize_t> inDims = getInput(0)->dims(); - std::shared_ptr<Tensor> fallback; - const auto& scales = getInput(2)->refCastFrom(fallback, NativeType<int64_t>::type, "cpu"); - - for (std::size_t dim=0; dim < getInput(2)->size(); ++dim) { - outDims[dim] = inDims[dim]*static_cast<int64_t*>(scales.getImpl()->hostPtr())[dim]; - } - - mOutputs[0]->resize(outDims); - return true; + const bool inputScalesPresent = + getInput(inScalesIdx) && !getInput(inScalesIdx)->undefined(); + const bool inputSizesPresent = + getInput(inSizesIdx) && !getInput(inSizesIdx)->undefined(); + + AIDGE_ASSERT(inputScalesPresent ^ inputSizesPresent, + "{}: Only one of the two inputs must be defined between input " + "Scales(#2) " + "and Sizes(#3). They cannot be specified at the same time.", + type()) + + std::shared_ptr<Tensor> resizeParam = inputScalesPresent ? getInput(inScalesIdx) : getInput(inSizesIdx); + AIDGE_ASSERT(getInput(inDataIdx)->nbDims() == resizeParam->size(), + "{}: data input #0 and resizing parameter input #{} must have the " + "same dimensions.", + type(), inputScalesPresent ? inScalesIdx :inSizesIdx); + + + //////////////////////////////////////////// + // Case resize is done using Scales formula + if (inputScalesPresent) { + + std::shared_ptr<Tensor> fallback; + const auto &scales = + resizeParam + ->refCastFrom(fallback, + DataType::Float32, + resizeParam->backend()); + + const std::vector<DimSize_t> inDims = getInput(inDataIdx)->dims(); + for (std::size_t dim = 0; dim < getInput(inScalesIdx)->size(); ++dim) { + const auto scaleAlongDim = scales.get<cpptype_t<DataType::Float32>>(dim); + AIDGE_ASSERT(scaleAlongDim > 0, + "{}: all scales values must be sctricly positive, " + "got {}.", + type(), + scaleAlongDim); + outDims[dim] = + static_cast<DimSize_t>(inDims[dim] * scaleAlongDim); } - else if (input3SizesPresent) { - if (!allowDataDependency) { - Log::warn("Resize_Op: cannot execute forwardDims() as the output dimensions depend on the input #3"); - return false; - } - - AIDGE_ASSERT(getInput(0)->nbDims() == getInput(3)->size(), - "input #0 and input #3 (Sizes) must have the same dimensions."); - - std::vector<DimSize_t> outDims = getInput(0)->dims(); - std::shared_ptr<Tensor> fallback; - const auto& sizes = getInput(3)->refCastFrom(fallback, NativeType<int64_t>::type, "cpu"); - - for (std::size_t dim=0; dim < getInput(3)->size(); ++dim) { - outDims[dim] = static_cast<int64_t*>(sizes.getImpl()->hostPtr())[dim]; - } - - mOutputs[0]->resize(outDims); - return true; - } - else { - AIDGE_THROW_OR_ABORT(std::runtime_error, "Error: Either Input #2 or Input #3 must be present."); + /////////////////////////////////////////////////////////////// + // case where resize output dims are given via the Size input + } else { + std::shared_ptr<Tensor> fallback; + const auto &sizes = resizeParam + ->refCastFrom(fallback, + NativeType<DimSize_t>::type, + resizeParam->backend()); + + for (std::size_t dim = 0; dim < getInput(inSizesIdx)->size(); ++dim) { + outDims[dim] = sizes.get<DimSize_t>(dim); } } - - return false; + mOutputs[0]->resize(outDims); + return true; } -void Aidge::Resize_Op::setBackend(const std::string& name, Aidge::DeviceIdx_t device) { +void Resize_Op::setBackend(const std::string &name, DeviceIdx_t device) { SET_IMPL_MACRO(Resize_Op, *this, name); mOutputs[0]->setBackend(name, device); - // By default, automatically set backend for all inputs: roi, scales and sizes - if(getInput(1)) { + // By default, automatically set backend for all optional inputs: roi, scales and + // sizes + if (getInput(1)) { getInput(1)->setBackend(name, device); } - if(getInput(2)) { + if (getInput(2)) { getInput(2)->setBackend(name, device); } - if(getInput(3)) { + if (getInput(3)) { getInput(3)->setBackend(name, device); } } -std::set<std::string> Aidge::Resize_Op::getAvailableBackends() const { - return Registrar<Resize_Op>::getKeys(); -} - -///////////////////////////////////////////// +std::shared_ptr<Node> +Resize(std::vector<float> scale, + std::vector<std::size_t> size, + Interpolation::CoordinateTransformation coordTransfoMode, + Interpolation::Mode interpolMode, + float cubicCoefA, + const std::string &name) { + std::shared_ptr<Node> node_resize = std::make_shared<Node>(std::make_shared<Resize_Op>(coordTransfoMode, + interpolMode, + cubicCoefA), + name); + if (scale.size()) { + std::shared_ptr<Node> prod_scale = Producer(std::make_shared<Tensor>(Vector<float>(scale))); + prod_scale->addChild(node_resize, 0, 2); + } + if (size.size()) + { + std::shared_ptr<Node> prod_size = Producer(std::make_shared<Tensor>(Vector<std::size_t>(size))); + prod_size->addChild(node_resize, 0, 3); + } + return node_resize; -std::shared_ptr<Aidge::Node> Aidge::Resize(const std::string &name) { - return std::make_shared<Node>(std::make_shared<Resize_Op>(), name); -} \ No newline at end of file +} +} // namespace Aidge diff --git a/src/operator/Stack.cpp b/src/operator/Stack.cpp new file mode 100644 index 0000000000000000000000000000000000000000..efe6296a351f69ef3a11d4e1bc04bd0b52d46a06 --- /dev/null +++ b/src/operator/Stack.cpp @@ -0,0 +1,124 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include "aidge/operator/Stack.hpp" + +#include <memory> +#include <string> + +#include "aidge/data/Tensor.hpp" +#include "aidge/utils/ErrorHandling.hpp" +#include "aidge/utils/Registrar.hpp" +#include "aidge/utils/StaticAttributes.hpp" +#include "aidge/utils/Types.h" + +namespace Aidge { + +// TODO: Check why getRequiredMemory is always called with empty vector as +// inputSize +Elts_t StackProdConso::getRequiredMemory( + const Aidge::IOIndex_t inputIdx, + const std::vector<DimSize_t> &inputsSize) const { + assert(mOp.getRawInput(inputIdx) && "requires valid input"); + + const StackOp &op = dynamic_cast<const StackOp &>(mOp); + // The produced data after one forward pass is simply the input size, + // we do not produce the whole output tensor everytime. + if (op.forwardStep() <= op.maxElements()) { + return Elts_t::DataElts(op.getInput(inputIdx)->size()); + } else { + return Elts_t::NoneElts(); + } +} + +void StackProdConso::resetConsummerProducer() { + ProdConso::resetConsummerProducer(); + + const StackOp &op = dynamic_cast<const StackOp &>(mOp); + op.forwardStep() = 0; +} + +const std::string StackOp::s_type = "Stack"; + +void StackOpImpl::forward() { + const StackOp &op = dynamic_cast<const StackOp &>(mOp); + AIDGE_ASSERT(op.getInput(0), "missing input #0"); + AIDGE_ASSERT((op.forwardStep() < op.maxElements()), + "cannot forward anymore, maximum number of elements to stack " + "exceeded"); + + op.getOutput(0)->getImpl()->copy( + op.getInput(0)->getImpl()->rawPtr(), + op.getInput(0)->size(), + op.forwardStep() * op.getInput(0)->size()); +} + +StackOp::StackOp(std::uint32_t maxElements) + : OperatorTensor(s_type, {InputCategory::Data}, 1), + mAttributes(std::make_shared<Attributes_>( + attr<StackAttr::MaxElements>(maxElements), + attr<StackAttr::ForwardStep>(0))) { + if (maxElements == 0) { + AIDGE_THROW_OR_ABORT( + std::invalid_argument, + "StackOp creation failed: maxElements must be greater than 0."); + } + mImpl = std::make_shared<StackOpImpl>(*this); +} + +StackOp::StackOp(const Aidge::StackOp &op) + : OperatorTensor(op), mAttributes(op.mAttributes) { + if (!op.backend().empty()) { + SET_IMPL_MACRO(StackOp, *this, op.backend()); + } else { + mImpl = std::make_shared<StackOpImpl>(*this); + } +} + +std::shared_ptr<Aidge::Operator> Aidge::StackOp::clone() const { + return std::make_shared<StackOp>(*this); +} + +bool Aidge::StackOp::forwardDims(bool /*allowDataDependency*/) { + if (inputsAssociated()) { + auto inputDims = getInput(0)->dims(); + inputDims.insert(inputDims.begin(), maxElements()); + getOutput(0)->resize(inputDims); + return true; + } + + return false; +} + +void StackOp::setBackend(const std::string &name, DeviceIdx_t device) { + if (Registrar<StackOp>::exists({name})) { + SET_IMPL_MACRO(StackOp, *this, name); + } else { + mImpl = std::make_shared<StackOpImpl>(*this); + } + mOutputs[0]->setBackend(name, device); +} + +std::set<std::string> StackOp::getAvailableBackends() const { + return Registrar<StackOp>::getKeys(); +} + +void StackOp::forward() { + Operator::forward(); + ++forwardStep(); +} + +std::shared_ptr<Node> stack(std::uint32_t maxElements, + const std::string &name) { + return std::make_shared<Node>(std::make_shared<StackOp>(maxElements), + name); +} +} // namespace Aidge diff --git a/src/recipes/FuseToMetaOps.cpp b/src/recipes/FuseToMetaOps.cpp index 0ad5e5a1da0e6aef74f7e47751dd2d4e8648980b..ac6536d7e7ec89c5eb1b9efb0c301cfa979739cf 100644 --- a/src/recipes/FuseToMetaOps.cpp +++ b/src/recipes/FuseToMetaOps.cpp @@ -17,9 +17,9 @@ #include "aidge/operator/MetaOperator.hpp" #include "aidge/recipes/Recipes.hpp" -size_t Aidge::fuseToMetaOps(std::shared_ptr<GraphView> graphView, const std::string& query, const std::string& type) { +size_t Aidge::fuseToMetaOps(SinglePassGraphMatching& gm, const std::string& query, const std::string& type) { const auto metaType = (!type.empty()) ? type : query; - const auto matches = SinglePassGraphMatching(graphView).match(query); + const auto matches = gm.match(query); size_t nbReplaced = 0; for (const auto& match : matches) { @@ -48,3 +48,8 @@ size_t Aidge::fuseToMetaOps(std::shared_ptr<GraphView> graphView, const std::str Log::info("Replaced {} (out of {}) matching sub-graph with meta operators", nbReplaced, matches.size()); return nbReplaced; } + +size_t Aidge::fuseToMetaOps(std::shared_ptr<GraphView> graphView, const std::string& query, const std::string& type) { + SinglePassGraphMatching gm(graphView); + return fuseToMetaOps(gm, query, type); +} diff --git a/src/recipes/GraphViewHelper.cpp b/src/recipes/GraphViewHelper.cpp index 9522c0fe7346e78875a08d3ebf19a04dea2909e1..bbc6524ccbe7158476a6bd846d77da754f186091 100644 --- a/src/recipes/GraphViewHelper.cpp +++ b/src/recipes/GraphViewHelper.cpp @@ -16,17 +16,20 @@ #include "aidge/graph/Node.hpp" #include "aidge/graph/GraphView.hpp" #include "aidge/operator/OperatorTensor.hpp" +#include "aidge/operator/Producer.hpp" #include "aidge/utils/ErrorHandling.hpp" #include "aidge/recipes/GraphViewHelper.hpp" -std::set<std::shared_ptr<Aidge::Tensor>> Aidge::producers(std::shared_ptr<Aidge::GraphView> graphview) { +std::set<std::shared_ptr<Aidge::Tensor>> Aidge::producers(std::shared_ptr<Aidge::GraphView> graphview, bool constant) { std::set<std::shared_ptr<Tensor>> res; const auto& nodes = graphview->getNodes(); for (const auto& node : nodes) { if (node->type() == "Producer") { - const auto& param = std::static_pointer_cast<OperatorTensor>(node->getOperator()); - res.insert(param->getOutput(0)); + const auto& producer = std::static_pointer_cast<Producer_Op>(node->getOperator()); + if (!producer->constant() || constant) { + res.insert(producer->getOutput(0)); + } } } return res; diff --git a/src/utils/Log.cpp b/src/utils/Log.cpp index da32a8e0ec6a3c9f27da5c47f9e6166c1fc879bc..136fcc16fe5f83f684f0686fe64105023f8cc688 100644 --- a/src/utils/Log.cpp +++ b/src/utils/Log.cpp @@ -56,13 +56,13 @@ std::string Aidge::Log::mFileName = []() { } return std::string(); }(); -std::unique_ptr<FILE, decltype(&std::fclose)> Aidge::Log::mFile {nullptr, nullptr}; +std::unique_ptr<FILE, Aidge::Log::fcloseDeleter> Aidge::Log::mFile {nullptr, Aidge::Log::fcloseDeleter()}; std::vector<std::string> Aidge::Log::mContext; void Aidge::Log::log(Level level, const std::string& msg) { if (level >= mConsoleLevel) { // Apply log level style only for console. - // Styles that were already applied to msg with fmt are kept also in + // Styles that were already applied to msg with fmt are kept also in // the log file. const auto modifier = !mConsoleColor ? fmt::text_style() @@ -94,14 +94,17 @@ void Aidge::Log::log(Level level, const std::string& msg) { } void Aidge::Log::initFile(const std::string& fileName) { - mFile = std::unique_ptr<FILE, decltype(&std::fclose)>(std::fopen(fileName.c_str(), "a"), &std::fclose); + FILE* rawFile = std::fopen(fileName.c_str(), "a"); - if (!mFile) { + if (!rawFile) { mFileName.clear(); // prevents AIDGE_THROW_OR_ABORT() to try to log into file AIDGE_THROW_OR_ABORT(std::runtime_error, "Could not create log file: {}", fileName); } + // Assign the new FILE* with the deleter + mFile = std::unique_ptr<FILE, fcloseDeleter>(rawFile, fcloseDeleter()); + const std::time_t t = std::time(nullptr); fmt::println(mFile.get(), "###### {:%Y-%m-%d %H:%M:%S} ######", fmt::localtime(t)); } diff --git a/unit_tests/CMakeLists.txt b/unit_tests/CMakeLists.txt index fd96b060630c162e93143e8f51019a0ce3e82cc9..2c0c746a412643c568ff07d8c50b5f5d8cbf72d5 100644 --- a/unit_tests/CMakeLists.txt +++ b/unit_tests/CMakeLists.txt @@ -1,12 +1,17 @@ -Include(FetchContent) +find_package(Catch2 3.7.1) -FetchContent_Declare( - Catch2 - GIT_REPOSITORY https://github.com/catchorg/Catch2.git - GIT_TAG v3.0.1 # or a later release -) +if(NOT Catch2_FOUND) + message(STATUS "Catch2 not found in system, retrieving from git") + Include(FetchContent) -FetchContent_MakeAvailable(Catch2) + FetchContent_Declare( + Catch2 + GIT_REPOSITORY https://github.com/catchorg/Catch2.git + GIT_TAG v3.7.1 # or a later release + ) + + FetchContent_MakeAvailable(Catch2) +endif() file(GLOB_RECURSE src_files "*.cpp") diff --git a/unit_tests/data/Test_Interpolation.cpp b/unit_tests/data/Test_Interpolation.cpp new file mode 100644 index 0000000000000000000000000000000000000000..73a48125a7f6e300cebe483dfc1cf025fdfc7707 --- /dev/null +++ b/unit_tests/data/Test_Interpolation.cpp @@ -0,0 +1,76 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <cstdlib> +#include <memory> +#include <string> +#include <vector> + +#include <catch2/catch_test_macros.hpp> +#include <catch2/generators/catch_generators_random.hpp> + +#include "aidge/data/Data.hpp" +#include "aidge/data/Interpolation.hpp" +#include "aidge/data/Tensor.hpp" +#include "aidge/filler/Filler.hpp" +#include "aidge/operator/Pad.hpp" +#include "aidge/utils/Types.h" + +namespace Aidge { + +TEST_CASE("[core/data] Interpolation", "[Interpolation][Data]") { + Log::setConsoleLevel(Log::Debug); + + auto tensor = std::make_shared<Tensor>(std::vector<DimSize_t>({10, 10})); + tensor->setDataType(DataType::Float32); + tensor->setBackend("cpu"); + Aidge::constantFiller(tensor, 1337.F); + + SECTION("retrieveNeighbours") { + std::set<Interpolation::Point<float>> neighbours; + std::set<Interpolation::Point<float>> expectedResult; + + std::vector<float> coords; + SECTION("Out of bounds") { + coords = {-0.5, -0.5}; + expectedResult = {{{-1, -1}, 0.f}, + {{0, -1}, 0.F}, + {{-1, 0}, 0.F}, + {{0, 0}, 1337.F}}; + neighbours = Interpolation::retrieveNeighbours<float>( + reinterpret_cast<float *>(tensor->getImpl()->rawPtr()), + tensor->dims(), + coords, + PadBorderType::Zero); + + CHECK(neighbours == expectedResult); + } + SECTION("Some coords are rounds hence duplicates are filtered out") { + tensor = std::make_shared<Tensor>( + std::vector<DimSize_t>({5, 10, 10, 10})); + tensor->setDataType(DataType::Float32); + tensor->setBackend("cpu"); + Aidge::constantFiller(tensor, 1337.F); + + expectedResult = {{{0, 0, -1, -1}, 0.F}, + {{0, 0, 0, -1}, 0.F}, + {{0, 0, -1, 0}, 0.F}, + {{0, 0, 0, 0}, 1337.F}}; + + neighbours = Interpolation::retrieveNeighbours( + reinterpret_cast<float *>(tensor->getImpl()->rawPtr()), + tensor->dims(), + std::vector<float>({0, 0, -0.25, -0.25})); + CHECK(expectedResult == neighbours); + } + } +} +} // namespace Aidge diff --git a/unit_tests/data/Test_Tensor.cpp b/unit_tests/data/Test_Tensor.cpp index d5cd8cdcfb88beee9aab2393b0c5591c79a70b80..58003bb4009a484ca63acffdb50fbda156a48787 100644 --- a/unit_tests/data/Test_Tensor.cpp +++ b/unit_tests/data/Test_Tensor.cpp @@ -9,9 +9,9 @@ * ********************************************************************************/ -#include <array> #include <cstddef> // std::size_t #include <cstdint> // std::uint8_t, std::uint16_t, std::int32_t +#include <cstdlib> #include <numeric> // std::accumulate, std::inner_product #include <functional> // std::multiplies #include <random> // std::mt19937, @@ -42,7 +42,8 @@ TEST_CASE("[core/data] Tensor(Construction)", "[Tensor][Constructor]") { (T_default.strides() == std::vector<DimSize_t>({1})) && (T_default.getImpl() == nullptr) && (T_default.grad() != nullptr) && - (T_default.isContiguous() == true) + (T_default.isContiguous() == true) && + (T_default.capacity() == 0) )); } SECTION("scalar constructor") { @@ -339,32 +340,63 @@ TEST_CASE("[core/data] Tensor(other)", "[Tensor][extract][zeros][print]") { } // Test get() and set() by coords - // We create coords of rank 0 to the number of dimensions - for (std::size_t coord_size = 0; coord_size < dims.size(); ++coord_size) { - std::vector<std::size_t> coords(coord_size); - for (std::size_t coord_idx = 0; coord_idx < coord_size; ++coord_idx) { - std::size_t dim_idx = (dimsDist(gen)-1) % dims[coord_idx]; - coords[coord_idx] = dim_idx; - } - std::size_t flat_idx, flat_storage_idx; - // As it is continuous we have getIdx() == getStorageIdx() - REQUIRE_NOTHROW(flat_idx = x.getIdx(coords)); - REQUIRE_NOTHROW(flat_storage_idx = x.getStorageIdx(coords)); - REQUIRE(flat_storage_idx == flat_idx); - float val, val_flat; - // Test get() by index and by coords - REQUIRE_NOTHROW(val_flat = x.get<float>(flat_idx)); - REQUIRE_NOTHROW(val = x.get<float>(coords)); - REQUIRE(val == val_flat); - REQUIRE(val == values[flat_idx]); - // Test set() by coords, also update the reference array - REQUIRE_NOTHROW(x.set(coords, val + 1)); - values[flat_idx] += 1; + // We create coords of the number of dimensions + std::vector<std::size_t> coords(nb_dims); + for (std::size_t coord_idx = 0; coord_idx < nb_dims; ++coord_idx) { + std::size_t dim_idx = (dimsDist(gen)-1) % dims[coord_idx]; + coords[coord_idx] = dim_idx; } + std::size_t flat_idx, flat_storage_idx; + // As it is continuous we have getIdx() == getStorageIdx() + REQUIRE_NOTHROW(flat_idx = x.getIdx(coords)); + REQUIRE_NOTHROW(flat_storage_idx = x.getStorageIdx(coords)); + REQUIRE(flat_storage_idx == flat_idx); + float val, val_flat; + // Test get() by index and by coords + REQUIRE_NOTHROW(val_flat = x.get<float>(flat_idx)); + REQUIRE_NOTHROW(val = x.get<float>(coords)); + REQUIRE(val == val_flat); + REQUIRE(val == values[flat_idx]); + // Test set() by coords, also update the reference array + REQUIRE_NOTHROW(x.set(coords, val + 1)); + values[flat_idx] += 1; } } } - + SECTION("Index & coord manipulation"){ + Tensor tensor; + std::vector<DimSize_t> dims {2,2}; + int nbVal = std::accumulate(dims.begin(), + dims.end(), + 1, + std::multiplies<DimSize_t>()); + float* values = static_cast<float*>(malloc(nbVal * sizeof(float))); + values[0] = 0; + values[1] = 1; + values[2] = 2; + values[3] = 3; + tensor.setDataType(DataType::Int32); + tensor.setBackend("cpu"); + tensor.resize(dims); + tensor.getImpl()->setRawPtr(values, 4); + std::vector<std::size_t> coords; + SECTION("getIdx"){ + CHECK(Tensor::toIndex(tensor.dims(), std::vector<std::size_t>({1,1}) ) == 3); + CHECK(Tensor::toIndex(tensor.dims(), std::vector<std::size_t>({1,0}) ) == 2); + // No check to ensure if value is in bounds + CHECK_THROWS(tensor.getIdx(std::vector<std::size_t>({0,2}))); + } + SECTION("getCoord"){ + CHECK(Tensor::toCoord(tensor.dims(), 3 ) ==std::vector<std::size_t>({1,1})); + CHECK(Tensor::toCoord(tensor.dims(), 2 ) ==std::vector<std::size_t>({1,0})); + } + SECTION("isInBound"){ + CHECK_THROWS(Tensor::isInBounds(dims, std::vector<DimSize_t>({1,2,4,5})) == true); + CHECK(Tensor::isInBounds(dims, std::vector<DimSize_t>({1,2})) == false); + CHECK(Tensor::isInBounds(dims, std::vector<int>({-1,1})) == false); + CHECK(Tensor::isInBounds(dims, std::vector<DimSize_t>({1,1})) == true); + } + } SECTION("Tensor extract") { bool equal; @@ -457,7 +489,7 @@ TEST_CASE("[core/data] Tensor(other)", "[Tensor][extract][zeros][print]") { SECTION("Pretty printing for debug") { Tensor x{}; // Empty Tensor - REQUIRE_THROWS(x.print()); + REQUIRE_NOTHROW(x.print()); // scalar x = Tensor(42); REQUIRE_NOTHROW(x.print()); diff --git a/unit_tests/graph/Test_Matching.cpp b/unit_tests/graph/Test_Matching.cpp index d6d98d4701cba900548d127879c9b3940cf1d739..8c5fa222a68a7f2eed329be7c49ca62d0d7ba52f 100644 --- a/unit_tests/graph/Test_Matching.cpp +++ b/unit_tests/graph/Test_Matching.cpp @@ -50,9 +50,9 @@ TEST_CASE("[core/graph] Matching") { ReLU("relu2"), PaddedConv(8, 16, {3, 3}, "conv3", {1, 1}, {2, 2, 2, 2}), ReLU("relu3"), - PaddedConv(8, 16, {5, 5}, "conv4", {1, 1}, {2, 2, 2, 2}), + PaddedConv(16, 16, {5, 5}, "conv4", {1, 1}, {2, 2, 2, 2}), Add("add"), - PaddedConv(8, 16, {5, 5}, "conv5", {1, 1}, {2, 2, 2, 2}), + PaddedConv(16, 16, {5, 5}, "conv5", {1, 1}, {2, 2, 2, 2}), ReLU("relu5"), Add("add2") }); diff --git a/unit_tests/graph/Test_StaticAnalysis.cpp b/unit_tests/graph/Test_StaticAnalysis.cpp new file mode 100644 index 0000000000000000000000000000000000000000..9488cbaf60fffcaee32a573993a46a0a440a4dea --- /dev/null +++ b/unit_tests/graph/Test_StaticAnalysis.cpp @@ -0,0 +1,68 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <catch2/catch_test_macros.hpp> + +#include <fmt/chrono.h> + +#include "aidge/data/Tensor.hpp" +#include "aidge/graph/GraphView.hpp" +#include "aidge/graph/OpArgs.hpp" +#include "aidge/graph/StaticAnalysis.hpp" +#include "aidge/operator/Add.hpp" +#include "aidge/operator/BatchNorm.hpp" +#include "aidge/operator/FC.hpp" +#include "aidge/operator/ReLU.hpp" +#include "aidge/operator/MetaOperatorDefs.hpp" +#include "aidge/operator/Producer.hpp" + +using namespace Aidge; + +TEST_CASE("[core/graph] StaticAnalysis") { + SECTION("Conv") { + auto g1 = Sequential({ + Conv(3, 4, {5, 5}, "conv1"), + ReLU("relu1"), + PaddedConv(4, 8, {5, 5}, "conv2", {1, 1}, {2, 2, 2, 2}), + ReLU("relu2"), + PaddedConv(8, 16, {3, 3}, "conv3", {1, 1}, {2, 2, 2, 2}), + ReLU("relu3"), + PaddedConv(16, 16, {5, 5}, "conv4", {1, 1}, {2, 2, 2, 2}), + Add("add"), + PaddedConv(16, 16, {5, 5}, "conv5", {1, 1}, {2, 2, 2, 2}), + ReLU("relu5"), + Add("add2") + }); + + g1->getNode("relu3")->addChild(g1->getNode("add"), 0, 1); + g1->getNode("conv5")->addChild(g1->getNode("add2"), 0, 1); + g1->updateInputsOutputs(); + + g1->forwardDims({{16, 3, 512, 512}}); + + StaticAnalysis stats(g1); + REQUIRE(stats.getNbParams(g1->getNode("conv1")) == 3 * 4 * 5 * 5 + 4); + REQUIRE(stats.getNbParams(g1->getNode("conv2")) == 4 * 8 * 5 * 5 + 8); + REQUIRE(stats.getNbParams(g1->getNode("conv3")) == 8 * 16 * 3 * 3 + 16); + + const auto conv1Stats = stats.getOpStats(g1->getNode("conv1")); + REQUIRE(conv1Stats->getNbMACOps() == 1LL * (16 * 508 * 508) * (5 * 5 * 3 * 4)); + REQUIRE(conv1Stats->getNbArithmOps() == 2LL * (16 * 508 * 508) * (5 * 5 * 3 * 4)); + REQUIRE(conv1Stats->getNbArithmFpOps() == 2LL * (16 * 508 * 508) * (5 * 5 * 3 * 4)); + REQUIRE(conv1Stats->getNbArithmIntOps() == 0); + + g1->getNode("conv1")->getOperator()->setDataType(DataType::Int8); + REQUIRE(conv1Stats->getNbMACOps() == 1LL * (16 * 508 * 508) * (5 * 5 * 3 * 4)); + REQUIRE(conv1Stats->getNbArithmOps() == 2LL * (16 * 508 * 508) * (5 * 5 * 3 * 4)); + REQUIRE(conv1Stats->getNbArithmFpOps() == 0); + REQUIRE(conv1Stats->getNbArithmIntOps() == 2LL * (16 * 508 * 508) * (5 * 5 * 3 * 4)); + } +} diff --git a/unit_tests/operator/Test_GlobalAveragePooling_Op.cpp b/unit_tests/operator/Test_GlobalAveragePooling_Op.cpp index 15c714b63c2b86e156b43cdaec390ddf60eb7353..29e6f0a56d34935ab5c061897a27b902e03db790 100644 --- a/unit_tests/operator/Test_GlobalAveragePooling_Op.cpp +++ b/unit_tests/operator/Test_GlobalAveragePooling_Op.cpp @@ -70,12 +70,14 @@ TEST_CASE("[core/operator] GlobalAveragePooling_Op(forwardDims)", for (uint16_t i = 0; i < nb_dims; ++i) { dims[i] = dimsDist(gen) + 1; } - std::vector<DimSize_t> dims_out{dims[0], dims[1]}; + std::vector<DimSize_t> dims_out(nb_dims, 1); + dims_out[0] = dims[0]; + dims_out[1] = dims[1]; input_T->resize(dims); op->setInput(0, input_T); REQUIRE_NOTHROW(op->forwardDims()); REQUIRE(op->getOutput(0)->dims() == dims_out); - REQUIRE((op->getOutput(0)->dims().size()) == static_cast<size_t>(2)); + REQUIRE((op->getOutput(0)->dims().size()) == nb_dims); } } } diff --git a/unit_tests/operator/Test_PopImpl.cpp b/unit_tests/operator/Test_PopImpl.cpp new file mode 100644 index 0000000000000000000000000000000000000000..f46131ed8c324f38874eb433f97d13977b4253a4 --- /dev/null +++ b/unit_tests/operator/Test_PopImpl.cpp @@ -0,0 +1,36 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <catch2/catch_test_macros.hpp> +#include <memory> + +#include "aidge/data/Tensor.hpp" +#include "aidge/operator/Pop.hpp" +#include "aidge/utils/TensorUtils.hpp" + +using Aidge::Tensor; +using Aidge::Pop; + +TEST_CASE("[cpu/operator] Pop(forward)", "[Pop][CPU]") { + std::shared_ptr<Tensor> pop1 = std::make_shared<Tensor>(Aidge::Array1D<int,3>{{4,5,6}}); + std::shared_ptr<Tensor> pop2 = std::make_shared<Tensor>(Aidge::Array1D<int,3>{{1,2,3}}); + std::shared_ptr<Tensor> input = std::make_shared<Tensor>(Aidge::Array2D<int,2,3>{{{1,2,3}, {4,5,6}}}); + + auto pop = Aidge::Pop("pop"); + pop->getOperator()->associateInput(0, input); + pop->getOperator()->setBackend("cpu"); + pop->getOperator()->setDataType(Aidge::DataType::Int32); + + REQUIRE_NOTHROW(pop->forward()); + REQUIRE(*std::static_pointer_cast<Aidge::OperatorTensor>(pop->getOperator())->getOutput(0) == *pop2); + REQUIRE_NOTHROW(pop->forward()); + REQUIRE(*std::static_pointer_cast<Aidge::OperatorTensor>(pop->getOperator())->getOutput(0) == *pop1); +} diff --git a/unit_tests/operator/Test_Resize_Op.cpp b/unit_tests/operator/Test_Resize_Op.cpp new file mode 100644 index 0000000000000000000000000000000000000000..111e8fb4f62040127f8b5da8125ba9d91c546f23 --- /dev/null +++ b/unit_tests/operator/Test_Resize_Op.cpp @@ -0,0 +1,180 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include "aidge/operator/Resize.hpp" +#include <catch2/catch_test_macros.hpp> +#include <cstddef> // std::size_t +#include <cstdint> +#include <memory> +#include <vector> + +#include "aidge/data/Tensor.hpp" +#include "aidge/operator/OperatorTensor.hpp" +#include "aidge/utils/Log.hpp" + +namespace Aidge { + + +TEST_CASE("[core/operator] Resize_Op(forwardDims)", + "[Resize][forwardDimsScales]") { + std::vector<Aidge::DimSize_t> input_dims; + std::vector<float> scales; + std::vector<std::size_t> sizes; + std::vector<Aidge::DimSize_t> expected_dims; + + SECTION("Un-connected input leads to failure.") { + input_dims = std::vector<Aidge::DimSize_t>({1, 1, 2, 2}); + std::shared_ptr<Tensor> input_data = std::make_shared<Tensor>(input_dims); + + auto resize_node = Resize(); + auto op = std::static_pointer_cast<Resize_Op>(resize_node->getOperator()); + op->associateInput(0, input_data); + + REQUIRE_THROWS(op->forwardDims(true)); + } + + SECTION("Connecting both Scales & Sizes leads to failure") { + input_dims = std::vector<Aidge::DimSize_t>({1, 1, 2, 2}); + std::shared_ptr<Tensor> input_data = std::make_shared<Tensor>(input_dims); + + scales = std::vector<float>({.5, 3.0f, 2.0f, 2.0f}); + sizes = std::vector<std::size_t>({1, 3, 4, 4}); + expected_dims = std::vector<Aidge::DimSize_t>({2, 3, 4, 4}); + + auto resize_node = Resize(scales, sizes); + auto op = std::static_pointer_cast<Resize_Op>(resize_node->getOperator()); + op->associateInput(0, input_data); + + REQUIRE_THROWS(op->forwardDims(true)); + } + + SECTION("Input Scales") { + SECTION("TEST 1") { + input_dims = std::vector<Aidge::DimSize_t>({1, 1, 2, 2}); + std::shared_ptr<Tensor> input_data = std::make_shared<Tensor>(input_dims); + + scales = std::vector<float>({1, 1, 2, 2}); + sizes = std::vector<std::size_t>({}); + expected_dims = std::vector<Aidge::DimSize_t>({1, 1, 4, 4}); + auto resize_node = Resize(scales, sizes); + auto op = std::static_pointer_cast<Resize_Op>(resize_node->getOperator()); + op->associateInput(0, input_data); + + REQUIRE_NOTHROW(op->forwardDims(true)); + REQUIRE(op->getOutput(0)->dims() == expected_dims); + } + + SECTION("TEST 2") { + input_dims = std::vector<Aidge::DimSize_t>({4, 4, 10, 10}); + std::shared_ptr<Tensor> input_data = std::make_shared<Tensor>(input_dims); + + scales = std::vector<float>({1, 1, 2, 3}); + sizes = std::vector<std::size_t>({}); + expected_dims = std::vector<Aidge::DimSize_t>({4, 4, 20, 30}); + auto resize_node = Resize(scales, sizes); + auto op = std::static_pointer_cast<Resize_Op>(resize_node->getOperator()); + op->associateInput(0, input_data); + + REQUIRE_NOTHROW(op->forwardDims(true)); + REQUIRE(op->getOutput(0)->dims() == expected_dims); + } + SECTION("TEST 3") { + input_dims = std::vector<Aidge::DimSize_t>({4, 2, 10, 10}); + std::shared_ptr<Tensor> input_data = std::make_shared<Tensor>(input_dims); + + scales = std::vector<float>({1, 1, 0.5, 0.5}); + sizes = std::vector<std::size_t>({}); + expected_dims = std::vector<Aidge::DimSize_t>({4, 2, 5, 5}); + auto resize_node = Resize(scales, sizes); + auto op = std::static_pointer_cast<Resize_Op>(resize_node->getOperator()); + op->associateInput(0, input_data); + + REQUIRE_NOTHROW(op->forwardDims(true)); + REQUIRE(op->getOutput(0)->dims() == expected_dims); + } + SECTION("TEST 4") { + input_dims = std::vector<Aidge::DimSize_t>({11, 11, 4, 4}); + std::shared_ptr<Tensor> input_data = std::make_shared<Tensor>(input_dims); + + + scales = std::vector<float>({1, 1, 0.3, 0.3}); + sizes = std::vector<std::size_t>({}); + expected_dims = std::vector<Aidge::DimSize_t>({11, 11, 1, 1}); + auto resize_node = Resize(scales, sizes); + auto op = std::static_pointer_cast<Resize_Op>(resize_node->getOperator()); + op->associateInput(0, input_data); + + REQUIRE_NOTHROW(op->forwardDims(true)); + REQUIRE(op->getOutput(0)->dims() == expected_dims); + } + } + + SECTION("Input Sizes") { + SECTION("TEST 1") { + input_dims = std::vector<Aidge::DimSize_t>({1, 1, 2, 2}); + std::shared_ptr<Tensor> input_data = std::make_shared<Tensor>(input_dims); + + scales = std::vector<float>({}); + sizes = std::vector<std::size_t>({4, 5, 8, 8}); + expected_dims = std::vector<Aidge::DimSize_t>({4, 5, 8, 8}); + auto resize_node = Resize(scales, sizes); + auto op = std::static_pointer_cast<Resize_Op>(resize_node->getOperator()); + op->associateInput(0, input_data); + + REQUIRE_NOTHROW(op->forwardDims(true)); + REQUIRE(op->getOutput(0)->dims() == expected_dims); + } + SECTION("TEST 2") { + input_dims = std::vector<Aidge::DimSize_t>({60, 60, 30, 30}); + std::shared_ptr<Tensor> input_data = std::make_shared<Tensor>(input_dims); + + scales = std::vector<float>({}); + sizes = std::vector<std::size_t>({1, 1, 75, 75}); + expected_dims = std::vector<Aidge::DimSize_t>({1, 1, 75, 75}); + auto resize_node = Resize(scales, sizes); + auto op = std::static_pointer_cast<Resize_Op>(resize_node->getOperator()); + op->associateInput(0, input_data); + + REQUIRE_NOTHROW(op->forwardDims(true)); + REQUIRE(op->getOutput(0)->dims() == expected_dims); + } + SECTION("TEST 3") { + input_dims = std::vector<Aidge::DimSize_t>({11, 11, 20, 20}); + std::shared_ptr<Tensor> input_data = std::make_shared<Tensor>(input_dims); + + scales = std::vector<float>({}); + sizes = std::vector<std::size_t>({19, 6, 8, 8}); + expected_dims = std::vector<Aidge::DimSize_t>({19, 6, 8, 8}); + auto resize_node = Resize(scales, sizes); + auto op = std::static_pointer_cast<Resize_Op>(resize_node->getOperator()); + op->associateInput(0, input_data); + + REQUIRE_NOTHROW(op->forwardDims(true)); + REQUIRE(op->getOutput(0)->dims() == expected_dims); + } + SECTION("TEST 4") { + input_dims = std::vector<Aidge::DimSize_t>({43, 211, 22, 22}); + std::shared_ptr<Tensor> input_data = std::make_shared<Tensor>(input_dims); + + scales = std::vector<float>({}); + sizes = std::vector<std::size_t>({1, 1, 10, 10}); + expected_dims = std::vector<Aidge::DimSize_t>({1, 1, 10, 10}); + auto resize_node = Resize(scales, sizes); + auto op = std::static_pointer_cast<Resize_Op>(resize_node->getOperator()); + op->associateInput(0, input_data); + + REQUIRE_NOTHROW(op->forwardDims(true)); + REQUIRE(op->getOutput(0)->dims() == expected_dims); + } + } +} + +} // namespace Aidge diff --git a/unit_tests/operator/Test_StackImpl.cpp b/unit_tests/operator/Test_StackImpl.cpp new file mode 100644 index 0000000000000000000000000000000000000000..d853a1ba27fea0a071c1c2373bbd7ef7f4eacd11 --- /dev/null +++ b/unit_tests/operator/Test_StackImpl.cpp @@ -0,0 +1,172 @@ +/******************************************************************************** + * Copyright (c) 2024 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <catch2/catch_test_macros.hpp> +#include <catch2/generators/catch_generators_random.hpp> +#include <catch2/matchers/catch_matchers_string.hpp> +#include <cstddef> +#include <memory> +#include <numeric> +#include <random> +#include <stdexcept> +#include <vector> + +#include "aidge/data/Tensor.hpp" +#include "aidge/operator/Stack.hpp" +#include "aidge/utils/TensorUtils.hpp" + +using Catch::Matchers::Equals; + +namespace Aidge { + +TEST_CASE("[core/operator] Stack(forward)", "[Stack]") { + constexpr auto nbTrials = 10; + auto rd = Catch::Generators::Detail::getSeed; + std::mt19937 gen(rd()); + std::uniform_int_distribution<std::size_t> nbDist(1, 100); + std::uniform_int_distribution<std::size_t> dimsDist(1, 10); + std::uniform_int_distribution<std::size_t> nbDimsDist(2, 5); + std::uniform_real_distribution<float> valueDist(0.1f, 1.1f); + // std::uniform_int_distribution<std::size_t> tensorNbDimsDist(2U, 5U); + + const std::size_t nbDimsTensor = nbDimsDist(gen); + std::vector<std::size_t> dimsIn(nbDimsTensor); + std::shared_ptr<Tensor> t1 = std::make_shared<Tensor>(); + + SECTION("Constructors") { + // Valid arguments + for (auto i = 0; i < nbTrials; ++i) { + auto maxElements = nbDist(gen); + REQUIRE_NOTHROW(StackOp(maxElements)); + + auto op1 = StackOp(maxElements); + REQUIRE(op1.maxElements() == maxElements); + REQUIRE(op1.forwardStep() == 0); + + // Copy Constructor + auto op2 = op1; + REQUIRE(op2.maxElements() == maxElements); + REQUIRE(op2.forwardStep() == 0); + } + + // Invalid arguments + REQUIRE_THROWS_AS(StackOp(0), std::invalid_argument); + } + + SECTION("forwardDims") { + for (auto i = 0; i < nbTrials; ++i) { + auto maxElements = nbDist(gen); + auto op = StackOp(maxElements); + + const std::size_t nbDims = nbDimsDist(gen); + std::vector<std::size_t> dims(nbDims); + for (std::size_t i = 0; i < nbDims; ++i) { + dims[i] = dimsDist(gen); + } + t1->resize(dims); + + REQUIRE_THROWS_WITH( + op.forwardDims(), + Equals("Stack: input #0 should be associated with a Tensor")); + op.associateInput(0, t1); + REQUIRE_NOTHROW(op.forwardDims()); + REQUIRE(op.getOutput(0)->dims()[0] == maxElements); + } + } + + SECTION("forward") { + + std::generate(dimsIn.begin(), dimsIn.end(), [&gen, &dimsDist]() { + return dimsDist(gen); + }); + const std::size_t nbElems = + std::accumulate(dimsIn.cbegin(), + dimsIn.cend(), + 1u, + std::multiplies<std::size_t>()); + + std::uniform_int_distribution<std::size_t> numTensorsDist(2, 10); + const std::size_t numTensors = numTensorsDist(gen); + + std::vector<std::shared_ptr<Tensor>> tensors(numTensors); + std::vector<float *> arrays(numTensors); + + for (std::size_t i = 0; i < numTensors; ++i) { + arrays[i] = new float[nbElems]; + for (std::size_t j = 0; j < nbElems; ++j) { + arrays[i][j] = valueDist(gen); + } + tensors[i] = std::make_shared<Tensor>(); + tensors[i]->resize(dimsIn); + tensors[i]->setBackend("cpu"); + tensors[i]->setDataType(DataType::Float32); + tensors[i]->getImpl()->setRawPtr(arrays[i], nbElems); + } + + auto myStack = stack(numTensors); + myStack->getOperator()->setBackend("cpu"); + myStack->getOperator()->setDataType(DataType::Float32); + auto op = + std::static_pointer_cast<OperatorTensor>(myStack->getOperator()); + + op->associateInput(0, tensors[0]); + op->forwardDims(); + op->getOutput(0)->zeros(); + + // Perform forward passes for each tensor + for (std::size_t i = 0; i < numTensors; ++i) { + if (i > 0) { + op->associateInput(0, tensors[i]); + } + op->forward(); + } + + auto output = op->getOutput(0); + + std::vector<DimSize_t> expectedDims = dimsIn; + expectedDims.insert(expectedDims.begin(), numTensors); + + REQUIRE(output->dims() == expectedDims); + + // Compare output slices with input tensors + for (std::size_t i = 0; i < numTensors; ++i) { + Tensor outputTensor = output->extract( + {static_cast<std::uint64_t>(static_cast<int>(i))}); + Tensor inputTensor(DataType::Float32); + inputTensor.resize(dimsIn); + inputTensor.setBackend("cpu"); + inputTensor.getImpl()->setRawPtr(arrays[i], nbElems); + + REQUIRE(approxEq<float>(outputTensor, inputTensor)); + } + + // Attempt to exceed maxElements + std::shared_ptr<Tensor> extraTensor = std::make_shared<Tensor>(); + extraTensor->resize(dimsIn); + extraTensor->setBackend("cpu"); + extraTensor->setDataType(DataType::Float32); + float *extraArray = new float[nbElems]; + for (std::size_t j = 0; j < nbElems; ++j) { + extraArray[j] = valueDist(gen); + } + extraTensor->getImpl()->setRawPtr(extraArray, nbElems); + + REQUIRE_THROWS_AS((op->associateInput(0, extraTensor), op->forward()), + std::runtime_error); + + // Clean up + delete[] extraArray; + for (std::size_t i = 0; i < numTensors; ++i) { + delete[] arrays[i]; + } + } +} +} // namespace Aidge