From 642a34e04f68f0dea9152400c50ec5825afd1e1c Mon Sep 17 00:00:00 2001
From: cmoineau <cyril.moineau@cea.fr>
Date: Thu, 14 Mar 2024 13:45:11 +0000
Subject: [PATCH] Update Conv, ConvDW, PaddedConv & PaddedConvDW to handle
 noBias parameter.

---
 include/aidge/operator/Conv.hpp               | 54 ++++++++++++-------
 include/aidge/operator/ConvDepthWise.hpp      | 38 +++++++------
 include/aidge/operator/MetaOperatorDefs.hpp   | 20 ++++---
 python_binding/operator/pybind_BatchNorm.cpp  |  3 ++
 python_binding/operator/pybind_Conv.cpp       | 14 +++--
 .../operator/pybind_ConvDepthWise.cpp         | 14 +++--
 .../operator/pybind_MetaOperatorDefs.cpp      | 16 +++---
 7 files changed, 102 insertions(+), 57 deletions(-)

diff --git a/include/aidge/operator/Conv.hpp b/include/aidge/operator/Conv.hpp
index 82cd5df8e..517af5b05 100644
--- a/include/aidge/operator/Conv.hpp
+++ b/include/aidge/operator/Conv.hpp
@@ -27,21 +27,31 @@
 #include "aidge/utils/Types.h"
 
 namespace Aidge {
-enum class ConvAttr { StrideDims, DilationDims, InChannels, OutChannels, KernelDims };
+enum class ConvAttr { StrideDims, DilationDims, InChannels, OutChannels, KernelDims, NoBias };
 
 template <DimIdx_t DIM>
 class Conv_Op : public OperatorTensor,
                 public Registrable<Conv_Op<DIM>, std::string, std::shared_ptr<OperatorImpl>(const Conv_Op<DIM> &)>,
-                public StaticAttributes<ConvAttr, std::array<DimSize_t, DIM>, std::array<DimSize_t, DIM>, DimSize_t,
-                                       DimSize_t, std::array<DimSize_t, DIM>> {
+                public StaticAttributes<ConvAttr,
+                                        std::array<DimSize_t, DIM>,
+                                        std::array<DimSize_t, DIM>,
+                                        DimSize_t,
+                                        DimSize_t,
+                                        std::array<DimSize_t, DIM>,
+                                        bool> {
 
 public:
     static const std::string Type;
 
     Conv_Op() = delete;
 
-    using Attributes_ = StaticAttributes<ConvAttr, std::array<DimSize_t, DIM>, std::array<DimSize_t, DIM>,
-                                             DimSize_t, DimSize_t, std::array<DimSize_t, DIM>>;
+    using Attributes_ = StaticAttributes<ConvAttr,
+                                        std::array<DimSize_t, DIM>,
+                                        std::array<DimSize_t, DIM>,
+                                        DimSize_t,
+                                        DimSize_t,
+                                        std::array<DimSize_t, DIM>,
+                                        bool>;
     template <ConvAttr e>
     using attr = typename Attributes_::template attr<e>;
 
@@ -49,13 +59,15 @@ public:
                       DimSize_t outChannels,
                       const std::array<DimSize_t, DIM> &kernelDims,
                       const std::array<DimSize_t, DIM> &strideDims = create_array<DimSize_t,DIM>(1),
-                      const std::array<DimSize_t, DIM> &dilationDims = create_array<DimSize_t,DIM>(1))
+                      const std::array<DimSize_t, DIM> &dilationDims = create_array<DimSize_t,DIM>(1),
+                      bool noBias = false)
         : OperatorTensor(Type, 1, 2, 1),
           Attributes_(attr<ConvAttr::StrideDims>(strideDims),
                       attr<ConvAttr::DilationDims>(dilationDims),
                       attr<ConvAttr::InChannels>(inChannels),
                       attr<ConvAttr::OutChannels>(outChannels),
-                      attr<ConvAttr::KernelDims>(kernelDims)) {}
+                      attr<ConvAttr::KernelDims>(kernelDims),
+                      attr<ConvAttr::NoBias>(noBias)) {}
 
     /**
      * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated).
@@ -163,15 +175,17 @@ std::vector<std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>> co
             std::vector<DimSize_t> weightIdxDims = std::vector<DimSize_t>(DIM+2, 0);
             weightIdxDims[0] = firstEltDims[1];
 
-            // Bias
-            const std::vector<DimSize_t> biasDims{outputDims[1]}; // the number of output channel
-            const std::vector<DimSize_t> biasIdxDims{firstEltDims[1]};
-
             // Result
             std::vector<std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>> res;
             res.push_back(std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>(inputIdxDims, inputDims));
             res.push_back(std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>(weightIdxDims, weightDims));
-            res.push_back(std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>(biasIdxDims, biasDims));
+
+            // Bias
+            if (! this->template getAttr<ConvAttr::NoBias>()){
+                const std::vector<DimSize_t> biasDims{outputDims[1]}; // the number of output channel
+                const std::vector<DimSize_t> biasIdxDims{firstEltDims[1]};
+                res.push_back(std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>(biasIdxDims, biasDims));
+            }
             return res;
         }
         AIDGE_THROW_OR_ABORT(std::runtime_error, "Given outputDim out of range or output dim not forwarded yet.");
@@ -215,12 +229,14 @@ inline std::shared_ptr<Node> Conv(DimSize_t inChannels,
                                   const std::array<DimSize_t, DIM> &kernelDims,
                                   const std::string& name = "",
                                   const std::array<DimSize_t, DIM> &strideDims = create_array<DimSize_t,DIM>(1),
-                                  const std::array<DimSize_t, DIM> &dilationDims = create_array<DimSize_t,DIM>(1)) {
+                                  const std::array<DimSize_t, DIM> &dilationDims = create_array<DimSize_t,DIM>(1),
+                                  bool noBias = false) {
     // FIXME: properly handle default w&b initialization in every cases
     static_assert(DIM<=MaxDim,"Too many kernel dimensions required by Conv, not supported");
-    auto conv = std::make_shared<Node>(std::make_shared<Conv_Op<static_cast<DimIdx_t>(DIM)>>(inChannels, outChannels, kernelDims, strideDims, dilationDims), name);
+    auto conv = std::make_shared<Node>(std::make_shared<Conv_Op<static_cast<DimIdx_t>(DIM)>>(inChannels, outChannels, kernelDims, strideDims, dilationDims, noBias), name);
     addProducer(conv, 1, append(outChannels, append(inChannels, kernelDims)), "w");
-    addProducer(conv, 2, {outChannels}, "b");
+    addProducer(conv, 2, {(noBias ? 0 : outChannels)}, "b"); // already sets bias dims
+
     return conv;
 }
 
@@ -232,9 +248,10 @@ inline std::shared_ptr<Node> Conv(
     DimSize_t const (&kernelDims)[DIM],
     const std::string& name = "",
     const std::array<DimSize_t, DIM> &strideDims = create_array<DimSize_t,DIM>(1),
-    const std::array<DimSize_t, DIM> &dilationDims = create_array<DimSize_t,DIM>(1)) {
+    const std::array<DimSize_t, DIM> &dilationDims = create_array<DimSize_t,DIM>(1),
+    bool noBias = false) {
     static_assert(DIM<=MaxDim,"Too many kernel dimensions required by Conv, not supported");
-    return Conv(inChannels, outChannels, to_array(kernelDims), name, strideDims, dilationDims);
+    return Conv(inChannels, outChannels, to_array(kernelDims), name, strideDims, dilationDims, noBias);
 }
 }  // namespace Aidge
 
@@ -245,7 +262,8 @@ const char *const EnumStrings<Aidge::ConvAttr>::data[] = {
     "DilationDims",
     "InChannels",
     "OutChannels",
-    "KernelDims"
+    "KernelDims",
+    "NoBias"
 };
 }
 
diff --git a/include/aidge/operator/ConvDepthWise.hpp b/include/aidge/operator/ConvDepthWise.hpp
index 7fa9124d4..035bd84b6 100644
--- a/include/aidge/operator/ConvDepthWise.hpp
+++ b/include/aidge/operator/ConvDepthWise.hpp
@@ -26,7 +26,7 @@
 #include "aidge/utils/Types.h"
 
 namespace Aidge {
-enum class ConvDepthWiseAttr { StrideDims, DilationDims, Channels, KernelDims };
+enum class ConvDepthWiseAttr { StrideDims, DilationDims, Channels, KernelDims, NoBias };
 
 template <DimIdx_t DIM>
 class ConvDepthWise_Op : public OperatorTensor,
@@ -35,7 +35,8 @@ class ConvDepthWise_Op : public OperatorTensor,
                                        std::array<DimSize_t, DIM>,
                                        std::array<DimSize_t, DIM>,
                                        DimSize_t,
-                                       std::array<DimSize_t, DIM>> {
+                                       std::array<DimSize_t, DIM>,
+                                       bool> {
 public:
     static const std::string Type;
 
@@ -45,19 +46,22 @@ public:
                                              std::array<DimSize_t, DIM>,
                                              std::array<DimSize_t, DIM>,
                                              DimSize_t,
-                                             std::array<DimSize_t, DIM>>;
+                                             std::array<DimSize_t, DIM>,
+                                             bool>;
     template <ConvDepthWiseAttr e>
     using attr = typename Attributes_::template attr<e>;
 
     constexpr ConvDepthWise_Op(const DimSize_t nbChannels,
                                const std::array<DimSize_t, DIM> &kernel_dims,
                                const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1),
-                               const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1))
+                               const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1),
+                               bool no_bias=false)
         : OperatorTensor(Type, 1, 2, 1),
           Attributes_(attr<ConvDepthWiseAttr::StrideDims>(stride_dims),
                       attr<ConvDepthWiseAttr::DilationDims>(dilation_dims),
                       attr<ConvDepthWiseAttr::Channels>(nbChannels),
-                      attr<ConvDepthWiseAttr::KernelDims>(kernel_dims)) {}
+                      attr<ConvDepthWiseAttr::KernelDims>(kernel_dims),
+                      attr<ConvDepthWiseAttr::NoBias>(no_bias)) {}
 
     /**
      * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated).
@@ -157,15 +161,17 @@ public:
             std::vector<DimSize_t> weightIdxDims = std::vector<DimSize_t>(DIM+2, 0);
             weightIdxDims[0] = firstEltDims[1];
 
-            // Bias
-            const std::vector<DimSize_t> biasDims{outputDims[1]}; // the number of output channel
-            const std::vector<DimSize_t> biasIdxDims{firstEltDims[1]};
 
             // Result
             std::vector<std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>> res;
             res.push_back(std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>(inputIdxDims, inputDims));
             res.push_back(std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>(weightIdxDims, weightDims));
-            res.push_back(std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>(biasIdxDims, biasDims));
+            // Bias
+            if (! this->template getAttr<ConvDepthWiseAttr::NoBias>()){
+                const std::vector<DimSize_t> biasDims{outputDims[1]}; // the number of output channel
+                const std::vector<DimSize_t> biasIdxDims{firstEltDims[1]};
+                res.push_back(std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>(biasIdxDims, biasDims));
+            }
             return res;
         }
         AIDGE_THROW_OR_ABORT(std::runtime_error, "Given outputDim out of range or output dim not forwarded yet.");
@@ -196,12 +202,13 @@ inline std::shared_ptr<Node> ConvDepthWise(const DimSize_t nbChannels,
                                            const std::array<DimSize_t, DIM> &kernelDims,
                                            const std::string& name = "",
                                            const std::array<DimSize_t, DIM> &strideDims = create_array<DimSize_t,DIM>(1),
-                                           const std::array<DimSize_t, DIM> &dilationDims = create_array<DimSize_t,DIM>(1)) {
+                                           const std::array<DimSize_t, DIM> &dilationDims = create_array<DimSize_t,DIM>(1),
+                                           bool noBias=false) {
     // FIXME: properly handle default w&b initialization in every cases
     static_assert(DIM<=MaxDim,"Too many kernel dimensions required by ConvDepthWise, not supported");
-    auto convDW = std::make_shared<Node>(std::make_shared<ConvDepthWise_Op<static_cast<DimIdx_t>(DIM)>>(nbChannels, kernelDims, strideDims, dilationDims), name);
+    auto convDW = std::make_shared<Node>(std::make_shared<ConvDepthWise_Op<static_cast<DimIdx_t>(DIM)>>(nbChannels, kernelDims, strideDims, dilationDims, noBias), name);
     addProducer(convDW, 1, append(nbChannels, append(DimSize_t(1), kernelDims)), "w");
-    addProducer(convDW, 2, {nbChannels}, "b");
+    addProducer(convDW, 2, {(noBias ? 0 : nbChannels)}, "b");
     return convDW;
 }
 
@@ -212,16 +219,17 @@ inline std::shared_ptr<Node> ConvDepthWise(
     DimSize_t const (&kernelDims)[DIM],
     const std::string& name = "",
     const std::array<DimSize_t, DIM> &strideDims = create_array<DimSize_t,DIM>(1),
-    const std::array<DimSize_t, DIM> &dilationDims = create_array<DimSize_t,DIM>(1)) {
+    const std::array<DimSize_t, DIM> &dilationDims = create_array<DimSize_t,DIM>(1),
+    bool noBias=false) {
     static_assert(DIM<=MaxDim,"Too many kernel dimensions required by ConvDepthWise, not supported");
-    return ConvDepthWise(nbChannels, to_array(kernelDims), name, strideDims, dilationDims);
+    return ConvDepthWise(nbChannels, to_array(kernelDims), name, strideDims, dilationDims, noBias);
 }
 }  // namespace Aidge
 
 namespace {
 template <>
 const char *const EnumStrings<Aidge::ConvDepthWiseAttr>::data[] = {"StrideDims", "DilationDims", "Channels",
-                                                          "KernelDims"};
+                                                          "KernelDims", "NoBias"};
 }
 
 #endif /* AIDGE_CORE_OPERATOR_CONVDEPTHWISE_H_ */
diff --git a/include/aidge/operator/MetaOperatorDefs.hpp b/include/aidge/operator/MetaOperatorDefs.hpp
index 8f1de7c0e..fb3aa6384 100644
--- a/include/aidge/operator/MetaOperatorDefs.hpp
+++ b/include/aidge/operator/MetaOperatorDefs.hpp
@@ -35,11 +35,12 @@ inline std::shared_ptr<Node> PaddedConv(DimSize_t in_channels,
                                   const std::string& name = "",
                                   const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1),
                                   const std::array<DimSize_t, 2*DIM> &padding_dims = create_array<DimSize_t,2*DIM>(0),
-                                  const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1))
+                                  const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1),
+                                  bool no_bias = false)
 {
     // Construct micro-graph
     auto pad = Pad<DIM>(padding_dims, (!name.empty()) ? name + "_pad" : "", PadBorderType::Constant, 0.0);
-    auto conv = std::make_shared<Node>(std::make_shared<Conv_Op<static_cast<DimIdx_t>(DIM)>>(in_channels, out_channels, kernel_dims, stride_dims, dilation_dims), (!name.empty()) ? name + "_conv" : "");
+    auto conv = std::make_shared<Node>(std::make_shared<Conv_Op<static_cast<DimIdx_t>(DIM)>>(in_channels, out_channels, kernel_dims, stride_dims, dilation_dims, no_bias), (!name.empty()) ? name + "_conv" : "");
 
     auto metaOp = MetaOperator("PaddedConv", Sequential({pad, conv}), name);
     addProducer(metaOp, 1, append(out_channels, append(in_channels, kernel_dims)), "w");
@@ -56,9 +57,10 @@ inline std::shared_ptr<Node> PaddedConv(
     const std::string& name = "",
     const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1),
     const std::array<DimSize_t, 2*DIM> &padding_dims = create_array<DimSize_t,2*DIM>(0),
-    const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1))
+    const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1),
+    bool no_bias = false)
 {
-    return PaddedConv(in_channels, out_channels, to_array(kernel_dims), name, stride_dims, padding_dims, dilation_dims);
+    return PaddedConv(in_channels, out_channels, to_array(kernel_dims), name, stride_dims, padding_dims, dilation_dims, no_bias);
 }
 
 template <std::array<DimSize_t, 1>::size_type DIM>
@@ -67,11 +69,12 @@ inline std::shared_ptr<Node> PaddedConvDepthWise(const DimSize_t nb_channels,
                                   const std::string& name = "",
                                   const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1),
                                   const std::array<DimSize_t, 2*DIM> &padding_dims = create_array<DimSize_t,2*DIM>(0),
-                                  const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1))
+                                  const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1),
+                                  bool no_bias = false)
 {
     // Construct micro-graph
     auto pad = Pad<DIM>(padding_dims, (!name.empty()) ? name + "_pad" : "", PadBorderType::Constant, 0.0);
-    auto conv = std::make_shared<Node>(std::make_shared<ConvDepthWise_Op<static_cast<DimIdx_t>(DIM)>>(nb_channels, kernel_dims, stride_dims, dilation_dims), (!name.empty()) ? name + "_conv" : "");
+    auto conv = std::make_shared<Node>(std::make_shared<ConvDepthWise_Op<static_cast<DimIdx_t>(DIM)>>(nb_channels, kernel_dims, stride_dims, dilation_dims, no_bias), (!name.empty()) ? name + "_conv" : "");
 
     auto metaOp = MetaOperator("PaddedConvDepthWise", Sequential({pad, conv}), name);
     addProducer(metaOp, 1, append(nb_channels, append(DimSize_t(1), kernel_dims)), "w");
@@ -87,9 +90,10 @@ inline std::shared_ptr<Node> PaddedConvDepthWise(
     const std::string& name = "",
     const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1),
     const std::array<DimSize_t, 2*DIM> &padding_dims = create_array<DimSize_t,2*DIM>(0),
-    const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1))
+    const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1),
+    bool no_bias = false)
 {
-    return PaddedConvDepthWise(nb_channels, to_array(kernel_dims), name, stride_dims, padding_dims, dilation_dims);
+    return PaddedConvDepthWise(nb_channels, to_array(kernel_dims), name, stride_dims, padding_dims, dilation_dims, no_bias);
 }
 
 template <std::array<DimSize_t, 1>::size_type DIM>
diff --git a/python_binding/operator/pybind_BatchNorm.cpp b/python_binding/operator/pybind_BatchNorm.cpp
index 7020c35f6..087c232dc 100644
--- a/python_binding/operator/pybind_BatchNorm.cpp
+++ b/python_binding/operator/pybind_BatchNorm.cpp
@@ -23,6 +23,9 @@ template <DimSize_t DIM>
 void declare_BatchNormOp(py::module& m) {
     const std::string pyClassName("BatchNormOp" + std::to_string(DIM) + "D");
     py::class_<BatchNorm_Op<DIM>, std::shared_ptr<BatchNorm_Op<DIM>>, Attributes, OperatorTensor>(m, pyClassName.c_str(), py::multiple_inheritance())
+    .def(py::init<float, float>(),
+        py::arg("epsilon"),
+        py::arg("momentum"))
     .def("get_inputs_name", &BatchNorm_Op<DIM>::getInputsName)
     .def("get_outputs_name", &BatchNorm_Op<DIM>::getOutputsName)
     .def("attributes_name", &BatchNorm_Op<DIM>::staticGetAttrsName);
diff --git a/python_binding/operator/pybind_Conv.cpp b/python_binding/operator/pybind_Conv.cpp
index aea402017..d1016869c 100644
--- a/python_binding/operator/pybind_Conv.cpp
+++ b/python_binding/operator/pybind_Conv.cpp
@@ -33,12 +33,14 @@ template <DimIdx_t DIM> void declare_ConvOp(py::module &m) {
                 DimSize_t,
                 const std::array<DimSize_t, DIM> &,
                 const std::array<DimSize_t, DIM> &,
-                const std::array<DimSize_t, DIM> &>(),
+                const std::array<DimSize_t, DIM> &,
+                bool>(),
         py::arg("in_channels"),
         py::arg("out_channels"),
         py::arg("kernel_dims"),
         py::arg("stride_dims"),
-        py::arg("dilation_dims"))
+        py::arg("dilation_dims"),
+        py::arg("no_bias"))
     .def("get_inputs_name", &Conv_Op<DIM>::getInputsName)
     .def("get_outputs_name", &Conv_Op<DIM>::getOutputsName)
     .def("attributes_name", &Conv_Op<DIM>::staticGetAttrsName)
@@ -51,18 +53,20 @@ template <DimIdx_t DIM> void declare_ConvOp(py::module &m) {
                                                          const std::vector<DimSize_t>& kernel_dims,
                                                          const std::string& name,
                                                          const std::vector<DimSize_t> &stride_dims,
-                                                         const std::vector<DimSize_t> &dilation_dims) {
+                                                         const std::vector<DimSize_t> &dilation_dims,
+                                                         bool noBias) {
         AIDGE_ASSERT(kernel_dims.size() == DIM, "kernel_dims size [{}] does not match DIM [{}]", kernel_dims.size(), DIM);
         AIDGE_ASSERT(stride_dims.size() == DIM, "stride_dims size [{}] does not match DIM [{}]", stride_dims.size(), DIM);
         AIDGE_ASSERT(dilation_dims.size() == DIM, "dilation_dims size [{}] does not match DIM [{}]", dilation_dims.size(), DIM);
 
-        return Conv<DIM>(in_channels, out_channels, to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()), to_array<DIM>(dilation_dims.begin()));
+        return Conv<DIM>(in_channels, out_channels, to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()), to_array<DIM>(dilation_dims.begin()), noBias);
     }, py::arg("in_channels"),
        py::arg("out_channels"),
        py::arg("kernel_dims"),
        py::arg("name") = "",
        py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1),
-       py::arg("dilation_dims") = std::vector<DimSize_t>(DIM,1));
+       py::arg("dilation_dims") = std::vector<DimSize_t>(DIM,1),
+       py::arg("no_bias") = false);
 }
 
 
diff --git a/python_binding/operator/pybind_ConvDepthWise.cpp b/python_binding/operator/pybind_ConvDepthWise.cpp
index 83eac8742..bbb94c377 100644
--- a/python_binding/operator/pybind_ConvDepthWise.cpp
+++ b/python_binding/operator/pybind_ConvDepthWise.cpp
@@ -33,11 +33,13 @@ template <DimIdx_t DIM> void declare_ConvDepthWiseOp(py::module &m) {
   .def(py::init<const DimSize_t,
                 const std::array<DimSize_t, DIM> &,
                 const std::array<DimSize_t, DIM> &,
-                const std::array<DimSize_t, DIM> &>(),
+                const std::array<DimSize_t, DIM> &,
+                bool>(),
         py::arg("nb_channels"),
         py::arg("kernel_dims"),
         py::arg("stride_dims"),
-        py::arg("dilation_dims"))
+        py::arg("dilation_dims"),
+        py::arg("no_bias"))
   .def("get_inputs_name", &ConvDepthWise_Op<DIM>::getInputsName)
   .def("get_outputs_name", &ConvDepthWise_Op<DIM>::getOutputsName)
   .def("attributes_name", &ConvDepthWise_Op<DIM>::staticGetAttrsName);
@@ -46,17 +48,19 @@ template <DimIdx_t DIM> void declare_ConvDepthWiseOp(py::module &m) {
                                                                   const std::vector<DimSize_t>& kernel_dims,
                                                                   const std::string& name,
                                                                   const std::vector<DimSize_t> &stride_dims,
-                                                                  const std::vector<DimSize_t> &dilation_dims) {
+                                                                  const std::vector<DimSize_t> &dilation_dims,
+                                                                  bool no_bias) {
         AIDGE_ASSERT(kernel_dims.size() == DIM, "kernel_dims size [{}] does not match DIM [{}]", kernel_dims.size(), DIM);
         AIDGE_ASSERT(stride_dims.size() == DIM, "stride_dims size [{}] does not match DIM [{}]", stride_dims.size(), DIM);
         AIDGE_ASSERT(dilation_dims.size() == DIM, "dilation_dims size [{}] does not match DIM [{}]", dilation_dims.size(), DIM);
 
-        return ConvDepthWise<DIM>(nb_channels, to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()), to_array<DIM>(dilation_dims.begin()));
+        return ConvDepthWise<DIM>(nb_channels, to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()), to_array<DIM>(dilation_dims.begin()), no_bias);
     }, py::arg("nb_channenls"),
        py::arg("kernel_dims"),
        py::arg("name") = "",
        py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1),
-       py::arg("dilation_dims") = std::vector<DimSize_t>(DIM,1));
+       py::arg("dilation_dims") = std::vector<DimSize_t>(DIM,1),
+       py::arg("no_bias")= false);
 
 }
 
diff --git a/python_binding/operator/pybind_MetaOperatorDefs.cpp b/python_binding/operator/pybind_MetaOperatorDefs.cpp
index 20a620cee..20cd3f156 100644
--- a/python_binding/operator/pybind_MetaOperatorDefs.cpp
+++ b/python_binding/operator/pybind_MetaOperatorDefs.cpp
@@ -30,21 +30,23 @@ template <DimIdx_t DIM> void declare_PaddedConvOp(py::module &m) {
                                                          const std::string& name,
                                                          const std::vector<DimSize_t> &stride_dims,
                                                          const std::vector<DimSize_t> &padding_dims,
-                                                         const std::vector<DimSize_t> &dilation_dims)
+                                                         const std::vector<DimSize_t> &dilation_dims,
+                                                         bool no_bias)
     {
         AIDGE_ASSERT(kernel_dims.size() == DIM, "kernel_dims size [{}] does not match DIM [{}]", kernel_dims.size(), DIM);
         AIDGE_ASSERT(stride_dims.size() == DIM, "stride_dims size [{}] does not match DIM [{}]", stride_dims.size(), DIM);
         AIDGE_ASSERT(padding_dims.size() == 2*DIM, "padding_dims size [{}] does not match DIM [{}]", padding_dims.size(), 2*DIM);
         AIDGE_ASSERT(dilation_dims.size() == DIM, "dilation_dims size [{}] does not match DIM [{}]", dilation_dims.size(), DIM);
 
-        return PaddedConv<DIM>(in_channels, out_channels, to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()), to_array<2*DIM>(padding_dims.begin()), to_array<DIM>(dilation_dims.begin()));
+        return PaddedConv<DIM>(in_channels, out_channels, to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()), to_array<2*DIM>(padding_dims.begin()), to_array<DIM>(dilation_dims.begin()), no_bias);
     }, py::arg("in_channels"),
        py::arg("out_channels"),
        py::arg("kernel_dims"),
        py::arg("name") = "",
        py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1),
        py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0),
-       py::arg("dilation_dims") = std::vector<DimSize_t>(DIM,1));
+       py::arg("dilation_dims") = std::vector<DimSize_t>(DIM,1),
+       py::arg("no_bias")= false);
 }
 
 template <DimIdx_t DIM> void declare_PaddedConvDepthWiseOp(py::module &m) {
@@ -53,20 +55,22 @@ template <DimIdx_t DIM> void declare_PaddedConvDepthWiseOp(py::module &m) {
                                                          const std::string& name,
                                                          const std::vector<DimSize_t> &stride_dims,
                                                          const std::vector<DimSize_t> &padding_dims,
-                                                         const std::vector<DimSize_t> &dilation_dims)
+                                                         const std::vector<DimSize_t> &dilation_dims,
+                                                         bool no_bias)
     {
         AIDGE_ASSERT(kernel_dims.size() == DIM, "kernel_dims size [{}] does not match DIM [{}]", kernel_dims.size(), DIM);
         AIDGE_ASSERT(stride_dims.size() == DIM, "stride_dims size [{}] does not match DIM [{}]", stride_dims.size(), DIM);
         AIDGE_ASSERT(padding_dims.size() == 2*DIM, "padding_dims size [{}] does not match DIM [{}]", padding_dims.size(), 2*DIM);
         AIDGE_ASSERT(dilation_dims.size() == DIM, "dilation_dims size [{}] does not match DIM [{}]", dilation_dims.size(), DIM);
 
-        return PaddedConvDepthWise<DIM>(nb_channels, to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()), to_array<2*DIM>(padding_dims.begin()), to_array<DIM>(dilation_dims.begin()));
+        return PaddedConvDepthWise<DIM>(nb_channels, to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()), to_array<2*DIM>(padding_dims.begin()), to_array<DIM>(dilation_dims.begin()), no_bias);
     }, py::arg("nb_channels"),
        py::arg("kernel_dims"),
        py::arg("name") = "",
        py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1),
        py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0),
-       py::arg("dilation_dims") = std::vector<DimSize_t>(DIM,1));
+       py::arg("dilation_dims") = std::vector<DimSize_t>(DIM,1),
+       py::arg("no_bias") = false);
 
 }
 
-- 
GitLab