diff --git a/include/aidge/operator/ArithmeticOperator.hpp b/include/aidge/operator/ArithmeticOperator.hpp
index d2a0bfb7759c0644866acd2b535f7ee9e68e5457..7d207c6c216af4e369d8324fa6be303ffb5347f0 100644
--- a/include/aidge/operator/ArithmeticOperator.hpp
+++ b/include/aidge/operator/ArithmeticOperator.hpp
@@ -18,94 +18,41 @@
 
 #include "aidge/backend/OperatorImpl.hpp"
 #include "aidge/data/Tensor.hpp"
-#include "aidge/operator/Operator.hpp"
+#include "aidge/operator/OperatorTensor.hpp"
 #include "aidge/utils/Types.h"
+#include "aidge/graph/Node.hpp"
 
 namespace Aidge {
 
-class ArithmeticOperator : public Operator {
-    /* TODO: Add an attribute specifying the type of Data used by the Operator.
-     * The same way ``Type`` attribute specifies the type of Operator. Hence this
-     * attribute could be checked in the forwardDims function to assert Operators
-     * being used work with Tensors and cast them to OpertorTensor instead of
-     * Operator.
-     */
-    /* TODO: Maybe change type attribute of Data object by an enum instead of an
-     * array of char. Faster comparisons.
-     */
-protected:
-    std::vector<std::shared_ptr<Tensor>> mInputs;
-    std::vector<std::shared_ptr<Tensor>> mOutputs;
+class ArithmeticOperator : public OperatorTensor {
 
 public:
     ArithmeticOperator() = delete;
 
     ArithmeticOperator(const std::string& type)
-        : Operator(type, 2, 0, 1, OperatorType::Tensor),
-          mInputs(std::vector<std::shared_ptr<Tensor>>(2, nullptr)),
-          mOutputs(std::vector<std::shared_ptr<Tensor>>(1)) {
-        mOutputs[0] = std::make_shared<Tensor>();
-        mOutputs[0]->setDataType(DataType::Float32);
+        : OperatorTensor(type, 2, 0, 1) {
     }
 
-    ArithmeticOperator(const ArithmeticOperator& other)
-        : Operator(other),
-          mInputs(std::vector<std::shared_ptr<Tensor>>(2, nullptr)),
-          mOutputs(std::vector<std::shared_ptr<Tensor>>(1)) {
-        mOutputs[0] = std::make_shared<Tensor>();
-    }
+    ArithmeticOperator(const ArithmeticOperator& other) : OperatorTensor(other){ }
 
     ~ArithmeticOperator();
 
+    std::shared_ptr<Operator> clone() const override {
+        return std::make_shared<ArithmeticOperator>(*this);
+    }
+
+    void setBackend(const std::string & /*name*/, DeviceIdx_t /*device*/ = 0) override { printf("setBackend: not available yet.\n"); }
+
 public:
-    ///////////////////////////////////////////////////
-    virtual void associateInput(const IOIndex_t inputIdx,
-                                const std::shared_ptr<Data>& data) override;
-    ///////////////////////////////////////////////////
 
-    ///////////////////////////////////////////////////
-    // Tensor access
-    // input management
-    void setInput(const IOIndex_t inputIdx, const std::shared_ptr<Data>& data) override final;
-    void setInput(const IOIndex_t inputIdx, std::shared_ptr<Data>&& data) override final;
-    const std::shared_ptr<Tensor>& getInput(const IOIndex_t inputIdx) const;
-    inline std::shared_ptr<Data> getRawInput(const IOIndex_t inputIdx) const override final {
-        return std::static_pointer_cast<Data>(getInput(inputIdx));
-    }
+    void computeOutputDims() override final;
 
-    // output management
-    void setOutput(const IOIndex_t outputIdx, const std::shared_ptr<Data>& data) override;
-    void setOutput(const IOIndex_t outputIdx, std::shared_ptr<Data>&& data) override;
-    virtual const std::shared_ptr<Tensor>& getOutput(const IOIndex_t outputIdx) const;
-    inline std::shared_ptr<Aidge::Data> getRawOutput(const Aidge::IOIndex_t outputIdx) const override final {
-        return std::static_pointer_cast<Data>(getOutput(outputIdx));
-    }
-    
     static const std::vector<std::string> getInputsName(){
-        return {"data_input1", "data_input2"};
+        return {"data_input_1", "data_input_2"};
     }
     static const std::vector<std::string> getOutputsName(){
         return {"data_output"};
     }
-    ///////////////////////////////////////////////////
-
-    ///////////////////////////////////////////////////
-    // Tensor dimensions
-    /**
-     * @brief For a given output feature area, compute the associated receptive
-     * field for each data input.
-     * @param firstIdx First index of the output feature.
-     * @param outputDims Size of output feature.
-     * @param outputIdx Index of the output. Default 0.
-     * @return std::vector<std::pair<std::size_t, std::vector<DimSize_t>>>
-     * For each dataInput Tensor of the Operator, the first index and dimensions of the feature area.
-     */
-    virtual std::vector<std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>> computeReceptiveField(const std::vector<DimSize_t>& firstEltDims, const std::vector<DimSize_t>& outputDims, const IOIndex_t outputIdx = 0) const;
-    virtual void computeOutputDims();
-    virtual bool outputDimsForwarded() const;
-    ///////////////////////////////////////////////////
-
-    virtual void setDataType(const DataType& dataType) const override;
 };
 }  // namespace Aidge
 
diff --git a/python_binding/operator/pybind_ArithmeticOperator.cpp b/python_binding/operator/pybind_ArithmeticOperator.cpp
index dc3b9214173b46420d75062700a8264985803ed7..cd5d164b924d9347bf3cf25dfa123df69116c529 100644
--- a/python_binding/operator/pybind_ArithmeticOperator.cpp
+++ b/python_binding/operator/pybind_ArithmeticOperator.cpp
@@ -10,18 +10,19 @@
  ********************************************************************************/
 
 #include <pybind11/pybind11.h>
-#include "aidge/backend/OperatorImpl.hpp"
 #include "aidge/operator/ArithmeticOperator.hpp"
-#include "aidge/operator/Operator.hpp"
-#include <pybind11/stl.h>
+#include "aidge/operator/OperatorTensor.hpp"
 
 namespace py = pybind11;
 namespace Aidge {
 void init_ArithmeticOperator(py::module& m){
-    py::class_<ArithmeticOperator, std::shared_ptr<ArithmeticOperator>, Operator>(m, "ArithmeticOperator")
+    py::class_<ArithmeticOperator, std::shared_ptr<ArithmeticOperator>, OperatorTensor>(m, "ArithmeticOperator")
     .def("get_output", &ArithmeticOperator::getOutput, py::arg("outputIdx"))
     .def("get_input", &ArithmeticOperator::getInput, py::arg("inputIdx"))
+
+    .def("set_output", (void (ArithmeticOperator::*)(const IOIndex_t, const std::shared_ptr<Data>&)) &ArithmeticOperator::setOutput, py::arg("outputIdx"), py::arg("data"))
+    .def("set_input", (void (ArithmeticOperator::*)(const IOIndex_t, const std::shared_ptr<Data>&)) &ArithmeticOperator::setInput, py::arg("outputIdx"), py::arg("data"))
     .def("output_dims_forwarded", &ArithmeticOperator::outputDimsForwarded)
     ;
 }
-}
+}  // namespace Aidge
diff --git a/python_binding/pybind_core.cpp b/python_binding/pybind_core.cpp
index a58c48ebb69265dbb71b29c5abb4b1f59db2db20..eded0f53ec60bbff8e574d809e6595fd25a079a8 100644
--- a/python_binding/pybind_core.cpp
+++ b/python_binding/pybind_core.cpp
@@ -17,12 +17,12 @@ namespace Aidge {
 void init_Data(py::module&);
 void init_Tensor(py::module&);
 void init_OperatorImpl(py::module&);
-void init_ArithmeticOperator(py::module&);
 void init_Attributes(py::module&);
 void init_Operator(py::module&);
 void init_OperatorTensor(py::module&);
 
 void init_Add(py::module&);
+void init_ArithmeticOperator(py::module&);
 void init_AvgPooling(py::module&);
 void init_BatchNorm(py::module&);
 void init_Concat(py::module&);
@@ -74,11 +74,11 @@ void init_Aidge(py::module& m){
     init_OpArgs(m);
     init_Connector(m);
 
-    init_ArithmeticOperator(m);
     init_OperatorImpl(m);
     init_Attributes(m);
     init_Operator(m);
     init_OperatorTensor(m);
+    init_ArithmeticOperator(m);
     init_Add(m);
     init_AvgPooling(m);
     init_BatchNorm(m);
diff --git a/src/operator/ArithmeticOperator.cpp b/src/operator/ArithmeticOperator.cpp
index 9a786ae279ce90c81500294d60bc896d3826b1d1..2e02109d36e1e50db5f78b92c5a580ee4477922d 100644
--- a/src/operator/ArithmeticOperator.cpp
+++ b/src/operator/ArithmeticOperator.cpp
@@ -19,99 +19,8 @@
 #include "aidge/utils/ErrorHandling.hpp"
 
 
-void Aidge::ArithmeticOperator::associateInput(const Aidge::IOIndex_t inputIdx, const std::shared_ptr<Aidge::Data>& data) {
-    if (inputIdx >= 2) {
-        AIDGE_THROW_OR_ABORT(std::runtime_error, "%s Operator has 2 inputs", type().c_str());
-    }
-    if (strcmp((data)->type(), Tensor::Type) != 0) {
-        AIDGE_THROW_OR_ABORT(std::runtime_error, "Input data must be of Tensor type");
-    }
-        mInputs[inputIdx] = std::dynamic_pointer_cast<Tensor>(data);
-}
-
-void Aidge::ArithmeticOperator::setInput(const Aidge::IOIndex_t inputIdx, const std::shared_ptr<Aidge::Data>& data) {
-    if (strcmp(data->type(), "Tensor") != 0) {
-        AIDGE_THROW_OR_ABORT(std::runtime_error, "%s Operator only accepts Tensors as inputs", type().c_str());
-    }
-    if (getInput(inputIdx)) {
-        *mInputs[inputIdx] = *std::dynamic_pointer_cast<Tensor>(data);
-    } else {
-        mInputs[inputIdx] = std::make_shared<Tensor>(*std::dynamic_pointer_cast<Tensor>(data));
-    }
-}
-
 Aidge::ArithmeticOperator::~ArithmeticOperator() = default;
 
-void Aidge::ArithmeticOperator::setInput(const Aidge::IOIndex_t inputIdx, std::shared_ptr<Aidge::Data>&& data) {
-    if (strcmp(data->type(), "Tensor") != 0) {
-        AIDGE_THROW_OR_ABORT(std::runtime_error, "%s Operator only accepts Tensors as inputs", type().c_str());
-    }
-    if (getInput(inputIdx)) {
-        *mInputs[inputIdx] = std::move(*std::dynamic_pointer_cast<Tensor>(data));
-    } else {
-        mInputs[inputIdx] = std::make_shared<Tensor>(std::move(*std::dynamic_pointer_cast<Tensor>(data)));
-    }
-}
-
-const std::shared_ptr<Aidge::Tensor>& Aidge::ArithmeticOperator::getInput(const Aidge::IOIndex_t inputIdx) const {
-    if (inputIdx >= nbInputs()) {
-        AIDGE_THROW_OR_ABORT(std::runtime_error, "%s Operator has 2 inputs", type().c_str());
-    }
-    return mInputs[inputIdx];
-}
-
-void Aidge::ArithmeticOperator::setOutput(const Aidge::IOIndex_t outputIdx, const std::shared_ptr<Aidge::Data>& data) {
-    if (strcmp(data->type(), "Tensor") != 0) {
-        AIDGE_THROW_OR_ABORT(std::runtime_error, "%s Operator only accepts Tensors as inputs", type().c_str());
-    }
-    if (outputIdx >= nbOutputs()) {
-        AIDGE_THROW_OR_ABORT(std::runtime_error, "%s Operator has 1 outputs", type().c_str());
-    }
-    *mOutputs[outputIdx] = *std::dynamic_pointer_cast<Tensor>(data);
-}
-
-void Aidge::ArithmeticOperator::setOutput(const Aidge::IOIndex_t outputIdx, std::shared_ptr<Aidge::Data>&& data) {
-    if (strcmp(data->type(), "Tensor") != 0) {
-        AIDGE_THROW_OR_ABORT(std::runtime_error, "%s Operator only accepts Tensors as inputs", type().c_str());
-    }
-    if (outputIdx >= nbOutputs()) {
-        AIDGE_THROW_OR_ABORT(std::runtime_error, "%s Operator has 1 output", type().c_str());
-    }
-    *mOutputs[outputIdx] = std::move(*std::dynamic_pointer_cast<Tensor>(data));
-}
-
-const std::shared_ptr<Aidge::Tensor>& Aidge::ArithmeticOperator::getOutput(const Aidge::IOIndex_t outputIdx) const {
-    if (outputIdx >= nbOutputs()) {
-        AIDGE_THROW_OR_ABORT(std::runtime_error, "%s Operator has 1 output", type().c_str());
-    }
-    return mOutputs[outputIdx];
-}
-
-
-std::vector<std::pair<std::vector<Aidge::DimSize_t>, std::vector<Aidge::DimSize_t>>> Aidge::ArithmeticOperator::computeReceptiveField(
-        const std::vector<DimSize_t>& firstEltDims,
-        const std::vector<Aidge::DimSize_t>& outputDims,
-        const Aidge::IOIndex_t outputIdx) const
-{
-    static_cast<void>(outputIdx);
-    if (outputIdx >= nbOutputs()) {
-        AIDGE_THROW_OR_ABORT(std::runtime_error, "Operator output index out of range.");
-    }
-    if (nbInputs() != nbData()) {
-        AIDGE_THROW_OR_ABORT(std::runtime_error, "Operator has attributes. Must be handled in an overrided function.");
-    }
-    if (!outputDimsForwarded() || getOutput(0)->nbDims() != outputDims.size()) {
-        AIDGE_THROW_OR_ABORT(std::runtime_error, "Given outputDim out of range or output dim not forwarded yet.");
-    }
-    for (DimIdx_t i = 0; i < outputDims.size(); ++i) {
-        if (((outputDims[i] + firstEltDims[i]) > getOutput(0)->dims()[i]) || (outputDims[i] == 0)) {
-            AIDGE_THROW_OR_ABORT(std::runtime_error, "Given outputDim out of range for dimension %lu (%lu + %lu)", static_cast<std::size_t>(i), firstEltDims[i], outputDims[i]);
-        }
-    }
-    // return the same Tensor description as given in function parameter for each data input
-    return std::vector<std::pair<std::vector<Aidge::DimSize_t>, std::vector<Aidge::DimSize_t>>>(nbData(),std::pair<std::vector<Aidge::DimSize_t>, std::vector<Aidge::DimSize_t>>(firstEltDims, outputDims));
-}
-
 void Aidge::ArithmeticOperator::computeOutputDims() {
     // check inputs have been associated
     if (!getInput(0) || !getInput(1)) {
@@ -163,30 +72,4 @@ void Aidge::ArithmeticOperator::computeOutputDims() {
         }
     }
     mOutputs[0]->resize(outDims);
-}
-
-bool Aidge::ArithmeticOperator::outputDimsForwarded() const {
-    bool forwarded = true;
-    // check both inputs and outputs have been filled
-    for (IOIndex_t i = 0; i < nbInputs(); ++i) {
-        forwarded &= mInputs[i] ? !(getInput(i)->empty()) : false;
-    }
-    for (IOIndex_t i = 0; i < nbOutputs(); ++i) {
-        forwarded &= !(getOutput(i)->empty());
-    }
-    return forwarded;
-}
-
-void Aidge::ArithmeticOperator::setDataType(const DataType& dataType) const {
-    for (IOIndex_t i = 0; i < nbOutputs(); ++i) {
-        getOutput(i)->setDataType(dataType);
-    }
-    for (IOIndex_t i = 0; i < nbInputs(); ++i) {
-        if (!getInput(i)) {
-            AIDGE_THROW_OR_ABORT(std::runtime_error, "Input was not set");
-        }
-        else {
-            getInput(i)->setDataType(dataType);
-        }
-    }
 }
\ No newline at end of file