diff --git a/aidge_core/unit_tests/test_forward_dims_constant_shape.py b/aidge_core/unit_tests/test_forward_dims_constant_shape.py index 5490ffdd234ab4c90b095f8086c7e2cd5d078b8a..ecab2664a25023d2919324898fc6d84d63d8853d 100644 --- a/aidge_core/unit_tests/test_forward_dims_constant_shape.py +++ b/aidge_core/unit_tests/test_forward_dims_constant_shape.py @@ -11,24 +11,22 @@ SPDX-License-Identifier: EPL-2.0 import unittest import aidge_core import numpy as np -import aidge_backend_cpu - -# class DivImpl(aidge_core.OperatorImpl): -# """Div operator implementation to avoid dependency to backend_cpu""" - -# def __init__(self, op: aidge_core.Operator): -# aidge_core.OperatorImpl.__init__(self, op, "div") -# self.op = op -# print("Creating divImpl") -# def forward(self): -# data_input_0 = np.array(self.op.get_input(0)) -# data_input_1 = np.array(self.op.get_input(1)) -# output = (data_input_0 / data_input_1) -# print(output, " = ", data_input_0, "/", data_input_1) -# self.op.set_output(0, aidge_core.Tensor(output)) # setting operator output - -# # Note: In this test, except Div, every operator are backend independent -# aidge_core.register_DivOp("cpu", DivImpl) + +class DivImpl(aidge_core.OperatorImpl): + """Div operator implementation to avoid dependency to backend_cpu""" + + def __init__(self, op: aidge_core.Operator): + aidge_core.OperatorImpl.__init__(self, op, "div") + self.op = op + print("Creating divImpl") + def forward(self): + data_input_0 = np.array(self.op.get_input(0)) + data_input_1 = np.array(self.op.get_input(1)) + output = (data_input_0 / data_input_1) + self.op.set_output(0, aidge_core.Tensor(output)) # setting operator output + +# Note: In this test, except Div, every operator are backend independent +aidge_core.register_DivOp("cpu", DivImpl) class test_forward_dims_constant_shape(unittest.TestCase): """Test forwardDims with shapeAsConstant=True