diff --git a/aidge_core/mem_info.py b/aidge_core/mem_info.py
index 87f286bcbcde3bc656e7997e65ec0078437e72e9..cabc2c72ee973babdf0342ba82057f7ab0769b52 100644
--- a/aidge_core/mem_info.py
+++ b/aidge_core/mem_info.py
@@ -109,7 +109,7 @@ def log_meminfo(mem_manager:aidge_core.MemoryManager, path: Path, diplay_names:b
     aidge_core.Log.notice(f"Generated memory management info at: {path}")
 
 
-def generate_optimized_memory_info(scheduler: aidge_core.Scheduler, stats_folder: Path = None, wrapping: bool = False, display_names: bool=True) -> Tuple[int, List[dict]]:
+def generate_optimized_memory_info(scheduler: aidge_core.Scheduler, stats_folder: Path = None, wrapping: bool = False, auto_concat: bool = False, display_names: bool=True) -> Tuple[int, List[dict]]:
     """Generates optimized memory information for a computation graph managed by a scheduler.
 
     This function analyzes the memory usage of a computation graph, determining the memory peak
@@ -125,6 +125,9 @@ def generate_optimized_memory_info(scheduler: aidge_core.Scheduler, stats_folder
     :param wrapping: Boolean flag to enable or disable wrap-around buffer optimization.
                      Defaults to `False`.
     :type wrapping: bool, optional
+    :param auto_concat: Boolean flag to enable or disable auto-concatenation optimization.
+                     Defaults to `False`.
+    :type auto_concat: bool, optional
     :param diplay_names: If True Node names are diplayed in the memory plot alongside their block, defaults to False
     :type diplay_names: bool, optional
     :return: A tuple containing the peak memory size and a list of memory information for each
@@ -138,8 +141,12 @@ def generate_optimized_memory_info(scheduler: aidge_core.Scheduler, stats_folder
     # scheduler.generate_scheduling()
     # Generate the memory manager
     # So far, the Producers are not take in consideration in the meory manager => inc_producers=False
-    mem_manager = scheduler.generate_memory(
-        inc_producers=False, wrap_around_buffer=wrapping)
+    if auto_concat:
+        mem_manager = scheduler.generate_memory_auto_concat(
+            inc_producers=False, wrap_around_buffer=wrapping)
+    else:
+        mem_manager = scheduler.generate_memory(
+            inc_producers=False, wrap_around_buffer=wrapping)
 
     # List of nodes which are connected at the input of the graph (None if input is not connected)
     nodes_at_input = [n[0] for n in scheduler.graph_view().inputs()]
diff --git a/include/aidge/recipes/Recipes.hpp b/include/aidge/recipes/Recipes.hpp
index 5f16c480c233c0aee23962549c1d86695af81d89..0a3f5dc4d0ea00ddb5c8d0b8885269c882f7f705 100644
--- a/include/aidge/recipes/Recipes.hpp
+++ b/include/aidge/recipes/Recipes.hpp
@@ -124,6 +124,12 @@ void explicitCastMove(std::shared_ptr<GraphView> graphView);
 */
 void explicitTranspose(std::shared_ptr<GraphView> graphView);
 
+/**
+ * Replace a single meta operator by its micro graph.
+ * @return true if node is indeed a meta operator and could be expanded.
+*/
+bool expandMetaOp(std::shared_ptr<Node> node);
+
 /**
  * Flatten the graph by replacing the meta operators by their micro graph.
  * @param recursive If true, recursively replace meta operators until there is
diff --git a/include/aidge/scheduler/Scheduler.hpp b/include/aidge/scheduler/Scheduler.hpp
index 28ecde6d9319ae05be20f591cc9a6a4e2a29acc0..51f62ed1b7412abed4e0b850183fb101f208a69e 100644
--- a/include/aidge/scheduler/Scheduler.hpp
+++ b/include/aidge/scheduler/Scheduler.hpp
@@ -90,6 +90,12 @@ public:
         NotConnected
     };
 
+    enum class EarlyLateSort {
+        Default,
+        AsSoonAsPossible,
+        AsLateAsPossible
+    };
+
     /**
      * @struct PriorProducersConsumers
      * @brief Manages producer-consumer relationships for nodes.
@@ -124,9 +130,10 @@ public:
     /**
      * @brief Get the static scheduling order of nodes.
      * @param step The step of the static schedule to retrieve (default is 0).
+     * @param sorting Sorting mode.
      * @return Vector of shared pointers to Nodes in their scheduled order.
      */
-    std::vector<std::shared_ptr<Node>> getStaticScheduling(std::size_t step = 0) const;
+    std::vector<std::shared_ptr<Node>> getStaticScheduling(std::size_t step = 0, EarlyLateSort sorting = EarlyLateSort::Default) const;
 
     /**
      * @brief Get the GraphView associated with this Scheduler.
@@ -156,6 +163,15 @@ public:
     */
     MemoryManager generateMemory(bool incProducers = false, bool wrapAroundBuffer = false) const;
 
+    /**
+     * Generate the memory layout for the current static scheduling, with auto-
+     * concatenation: the Concat operator is replaced by direct allocation
+     * when possible.
+     * @param incProducers If true, include the producers in the memory layout.
+     * @param wrapAroundBuffer If true, allow wrapping in memory planes.
+    */
+    MemoryManager generateMemoryAutoConcat(bool incProducers = false, bool wrapAroundBuffer = false) const;
+
     /**
      * @brief Connect input tensors to the data input of the GraphView.
      * In case of multiple data input tensors, they are mapped to producers in
diff --git a/python_binding/scheduler/pybind_Scheduler.cpp b/python_binding/scheduler/pybind_Scheduler.cpp
index 472af2a9465b121593613492f5120ddc9d7fe254..d4cd7da44d148aef669c893405cff3101b6090b5 100644
--- a/python_binding/scheduler/pybind_Scheduler.cpp
+++ b/python_binding/scheduler/pybind_Scheduler.cpp
@@ -21,6 +21,12 @@
 namespace py = pybind11;
 namespace Aidge {
 void init_Scheduler(py::module& m){
+    py::enum_<Scheduler::EarlyLateSort>(m, "EarlyLateSort")
+        .value("Default", Scheduler::EarlyLateSort::Default)
+        .value("AsSoonAsPossible", Scheduler::EarlyLateSort::AsSoonAsPossible)
+        .value("AsLateAsPossible", Scheduler::EarlyLateSort::AsLateAsPossible)
+        .export_values();
+
     py::class_<Scheduler, std::shared_ptr<Scheduler>>(m, "Scheduler")
     .def(py::init<std::shared_ptr<GraphView>&>(), py::arg("graph_view"))
     .def("graph_view", &Scheduler::graphView)
@@ -28,9 +34,10 @@ void init_Scheduler(py::module& m){
     .def("save_static_scheduling_diagram", &Scheduler::saveStaticSchedulingDiagram, py::arg("file_name"))
     .def("resetScheduling", &Scheduler::resetScheduling)
     .def("generate_scheduling", &Scheduler::generateScheduling)
-    .def("get_static_scheduling", &Scheduler::getStaticScheduling, py::arg("step") = 0)
+    .def("get_static_scheduling", &Scheduler::getStaticScheduling, py::arg("step") = 0, py::arg("sorting") = Scheduler::EarlyLateSort::Default)
     .def("graph_view", &Scheduler::graphView)
     .def("generate_memory", &Scheduler::generateMemory, py::arg("inc_producers") = false, py::arg("wrap_around_buffer") = false)
+    .def("generate_memory_auto_concat", &Scheduler::generateMemoryAutoConcat, py::arg("inc_producers") = false, py::arg("wrap_around_buffer") = false)
     ;
 
     py::class_<SequentialScheduler, std::shared_ptr<SequentialScheduler>, Scheduler>(m, "SequentialScheduler")
diff --git a/src/backend/OperatorImpl.cpp b/src/backend/OperatorImpl.cpp
index c74b538a4e566b3b88e77dd4d097344d52838505..8a4924c0e3e6c8f0e6625232451a4267c5d9b318 100644
--- a/src/backend/OperatorImpl.cpp
+++ b/src/backend/OperatorImpl.cpp
@@ -250,9 +250,10 @@ std::shared_ptr<Aidge::Node> Aidge::OperatorImpl::getAdaptation(const ImplSpec&
             && requiredIOSpec.type != IOSpec.type)
         {
             const auto cast = Cast(IOSpec.type);
+            cast->getOperator()->setBackend(node->getOperator()->backend());
             cast->addChild(parent, 0, i);
 
-            op->getInput(i)->setDataType(IOSpec.type);
+            op->getInput(i)->setDataType(requiredIOSpec.type);
         }
 
         // Input format
@@ -263,10 +264,11 @@ std::shared_ptr<Aidge::Node> Aidge::OperatorImpl::getAdaptation(const ImplSpec&
             const auto transpose = getDataFormatTranspose(requiredIOSpec.format, IOSpec.format);
             auto transposeOp = Transpose(std::vector<DimSize_t>(transpose.begin(), transpose.end()));
             transposeOp->getOperator()->setDataFormat(IOSpec.format);
-            transposeOp->getOperator()->setDataType(IOSpec.type);
+            transposeOp->getOperator()->setDataType(requiredIOSpec.type);
+            transposeOp->getOperator()->setBackend(node->getOperator()->backend());
             transposeOp->addChild(parent, 0, i);
 
-            op->getInput(i)->setDataFormat(IOSpec.format);
+            op->getInput(i)->setDataFormat(requiredIOSpec.format);
         }
 
         // Input dims
@@ -301,6 +303,7 @@ std::shared_ptr<Aidge::Node> Aidge::OperatorImpl::getAdaptation(const ImplSpec&
             && requiredIOSpec.type != IOSpec.type)
         {
             const auto cast = Cast(requiredIOSpec.type);
+            cast->getOperator()->setBackend(node->getOperator()->backend());
             parent->addChild(cast, i, 0);
 
             op->getOutput(i)->setDataType(IOSpec.type);
@@ -315,6 +318,7 @@ std::shared_ptr<Aidge::Node> Aidge::OperatorImpl::getAdaptation(const ImplSpec&
             auto transposeOp = Transpose(std::vector<DimSize_t>(transpose.begin(), transpose.end()));
             transposeOp->getOperator()->setDataFormat(requiredIOSpec.format);
             transposeOp->getOperator()->setDataType(requiredIOSpec.type);
+            transposeOp->getOperator()->setBackend(node->getOperator()->backend());
             parent->addChild(transposeOp, i, 0);
 
             op->getOutput(i)->setDataFormat(IOSpec.format);
@@ -340,7 +344,13 @@ std::shared_ptr<Aidge::Node> Aidge::OperatorImpl::getAdaptation(const ImplSpec&
         }
     }
 
-    return MetaOperator(std::string("Adapted_" + op->type()).c_str(), getConnectedGraphView(node));
+    auto adaptedGraph = getConnectedGraphView(node);
+    if (adaptedGraph->getNodes().size() > 1) {
+        return MetaOperator(std::string("Adapted_" + op->type()).c_str(), adaptedGraph);
+    }
+    else {
+        return node;
+    }
 }
 
 std::shared_ptr<Aidge::Node> Aidge::OperatorImpl::getBestAdaptation(const ImplSpec& requiredSpecs) const {
@@ -354,8 +364,13 @@ std::shared_ptr<Aidge::Node> Aidge::OperatorImpl::getBestAdaptation(const ImplSp
         auto adaptation = getAdaptation(availableSpec, requiredSpecs);
 
         if (adaptation) {
-            auto microGraph = std::dynamic_pointer_cast<MetaOperator_Op>(adaptation->getOperator())->getMicroGraph();
-            adaptations.insert(std::make_pair(adaptation, microGraph->getNodes().size()));
+            if (adaptation->getOperator()->isAtomic()) {
+                adaptations.insert(std::make_pair(adaptation, 1));
+            }
+            else {
+                auto microGraph = std::dynamic_pointer_cast<MetaOperator_Op>(adaptation->getOperator())->getMicroGraph();
+                adaptations.insert(std::make_pair(adaptation, microGraph->getNodes().size()));
+            }
         }
     }
 
diff --git a/src/data/Tensor.cpp b/src/data/Tensor.cpp
index c47f3c33efd8348f8bac4f0ab2221e39e3d5e62a..a14ae4187707490cfb70681fc418daf961cb053b 100644
--- a/src/data/Tensor.cpp
+++ b/src/data/Tensor.cpp
@@ -572,6 +572,7 @@ void Tensor::copyTranspose(const Tensor& src, const std::vector<DimSize_t>& tran
         }
     }
 
+    AIDGE_ASSERT(mImpl, "Tensor::copyTranspose(): an implementation is required, use setBackend() first!");
     std::shared_ptr<TensorImpl> newImpl = Registrar<Tensor>::create({mImpl->backend(), mDataType})(mImpl->device().second, newDims);
 
     std::vector<size_t> indices(newDims.size(), 0);
diff --git a/src/operator/Transpose.cpp b/src/operator/Transpose.cpp
index d24b9c90927830db6f1c1256d133d871ba3dc37f..b550db16dfee8286242df7cfbed9b3b300ee96d5 100644
--- a/src/operator/Transpose.cpp
+++ b/src/operator/Transpose.cpp
@@ -66,12 +66,17 @@ bool Aidge::Transpose_Op::forwardDims(bool /*allowDataDependency*/) {
             std::iota(this->outputDimsOrder().rbegin(), this->outputDimsOrder().rend(), 0);
         }
 
-        AIDGE_ASSERT(outputDimsOrder().size() == getInput(0)->nbDims(),
-                     "Permutation vector must have the same rank as input tensor.");
+        AIDGE_ASSERT(outputDimsOrder().size() >= getInput(0)->nbDims(),
+            "Permutation vector ({}) must have at least the same rank as input tensor ({}).", outputDimsOrder(), getInput(0)->dims());
         std::vector<DimSize_t> outputDims;
-        for (std::size_t i = 0; i < outputDimsOrder().size(); ++i) {
+        std::size_t i = 0;
+        for (; i < getInput(0)->nbDims(); ++i) {
             outputDims.push_back(getInput(0)->dims()[outputDimsOrder()[i]]);
         }
+        for (; i < outputDimsOrder().size(); ++i) {
+            AIDGE_ASSERT(i == outputDimsOrder()[i],
+                "Permutation vector ({}) must be the identity above the input tensor rank ({}).", outputDimsOrder(), getInput(0)->dims());
+        }
         mOutputs[0]->resize(outputDims);
         return true;
     }
diff --git a/src/recipes/AdaptToBackend.cpp b/src/recipes/AdaptToBackend.cpp
index e625a52f6545c3b2b34f85745fd88087a1b9883b..bb4222c492f6b0bff17f7de68decd3e8c77efba5 100644
--- a/src/recipes/AdaptToBackend.cpp
+++ b/src/recipes/AdaptToBackend.cpp
@@ -33,6 +33,7 @@ void Aidge::adaptToBackend(std::shared_ptr<GraphView> graphView) {
             Log::info("Adapted node {} (of type {}) to backend {}",
                 node->name(), node->type(), impl->backend());
             AIDGE_ASSERT(GraphView::replace({node}, {adaptedNode}), "Unable to replace adapted node!");
+            expandMetaOp(adaptedNode);
         }
     }
 }
diff --git a/src/recipes/ExpandMetaOps.cpp b/src/recipes/ExpandMetaOps.cpp
index 16f0b4c52f394e32e24fa49951c39a7c2cb35162..459a1ca852c486e83af5b1ab18893fa475caecf8 100644
--- a/src/recipes/ExpandMetaOps.cpp
+++ b/src/recipes/ExpandMetaOps.cpp
@@ -14,6 +14,21 @@
 #include "aidge/recipes/Recipes.hpp"
 #include "aidge/operator/MetaOperator.hpp"
 
+bool Aidge::expandMetaOp(std::shared_ptr<Node> node) {
+    auto metaOp = std::dynamic_pointer_cast<MetaOperator_Op>(node->getOperator());
+
+    if (metaOp != nullptr) {
+        // Replace meta op by its micro-graph
+        // graph will be updated accordingly in GraphView::replace()
+        auto g = std::make_shared<GraphView>();
+        g->add(node, false);
+        GraphView::replace(g, metaOp->getMicroGraph());
+        return true;
+    }
+
+    return false;
+}
+
 void Aidge::expandMetaOps(std::shared_ptr<GraphView> graph, bool recursive) {
     bool found = false;
     const auto nodes = graph->getNodes();
diff --git a/src/scheduler/Scheduler.cpp b/src/scheduler/Scheduler.cpp
index 2e9dc034ef0bf2b0be2ee27c26b1995a2d0e4244..ac73b8264502b970cead955262e482eb97592b84 100644
--- a/src/scheduler/Scheduler.cpp
+++ b/src/scheduler/Scheduler.cpp
@@ -33,6 +33,7 @@
 #include "aidge/operator/MetaOperator.hpp"
 #include "aidge/operator/OperatorTensor.hpp"
 #include "aidge/operator/Producer.hpp"
+#include "aidge/operator/Concat.hpp"
 #include "aidge/utils/Log.hpp"
 #include "aidge/utils/Types.h"
 
@@ -475,8 +476,7 @@ Aidge::MemoryManager Aidge::Scheduler::generateMemory(bool incProducers, bool wr
                 std::size_t length = 1;
                 std::size_t count = 1;
 
-                if (op->getOutput(outputIdx) && op->getOutput(outputIdx)->dims().size() > 3) {
-                    // If it is possible, assume a NCHW layout
+                if (op->getOutput(outputIdx) && op->getOutput(outputIdx)->dataFormat() == DataFormat::NHWC) {
                     size = op->getOutput(outputIdx)->dims().end()[-3];
                     stride = size;
                     length = op->getOutput(outputIdx)->dims().end()[-1];
@@ -561,6 +561,228 @@ Aidge::MemoryManager Aidge::Scheduler::generateMemory(bool incProducers, bool wr
     return memManager;
 }
 
+Aidge::MemoryManager Aidge::Scheduler::generateMemoryAutoConcat(bool incProducers, bool wrapAroundBuffer) const {
+    MemoryManager memManager;
+    std::map<NodePtr, MemoryManager::MemoryPlane> concatMemPlane;
+
+    for (std::size_t step = 0; step < mStaticSchedule.size(); ++step) {
+        // AsLateAsPossible ensures that when a node child is Concat, all the parents
+        // of the Concat parents have already been memory mapped!
+        for (const auto& node : getStaticScheduling(step, EarlyLateSort::AsLateAsPossible)) {
+            if (!incProducers && node->type() == Producer_Op::Type) {
+                memManager.releaseDependencies(node);
+                continue;
+            }
+
+            auto itConcat = concatMemPlane.find(node);
+            if (itConcat != concatMemPlane.end()) {
+                // Skip Concat
+                AIDGE_INTERNAL_ASSERT(itConcat->first->type() == Concat_Op::Type);
+                concatMemPlane.erase(itConcat);
+                continue;
+            }
+            itConcat = concatMemPlane.end();
+
+            auto childs = node->getChildren();
+            AIDGE_ASSERT(node->getOperator()->operatorType() == OperatorType::Tensor,
+                "Operator must be of Tensor type for node {} (of type {}).",
+                node->name(), node->type());
+            const auto op = std::static_pointer_cast<OperatorTensor>(node->getOperator());
+
+            std::shared_ptr<Node> concat = nullptr;
+            // If the only child is a concatenation, check if we can allocate
+            // the concatenation result directly and skip allocation for this 
+            // node output:
+            if (childs.size() == 1 && (*childs.begin())->type() == Concat_Op::Type) {
+                concat = *childs.begin();
+
+                for (const auto& concatParent : concat->getParents()) {
+                    if (concatParent->getChildren().size() > 1) {
+                        // not possible: at least one of the Concat parent has
+                        // multiple children.
+                        concat = nullptr;
+                        break;
+                    }
+                }
+            }
+
+            if (concat) {
+                itConcat = concatMemPlane.find(concat);
+            }
+
+            std::vector<const MemoryManager::MemoryPlane*> wrapAroundMemPlane;
+
+            // Allocate a memory plane for each node's output
+            AIDGE_INTERNAL_ASSERT(!concat || node->nbOutputs() == 1);
+            for (IOIndex_t outputIdx = 0; outputIdx < node->nbOutputs(); ++outputIdx) {
+                auto requiredSize = op->getRequiredMemory(outputIdx, {});
+                auto outputDims = (op->getOutput(outputIdx)) ? op->getOutput(outputIdx)->dims() : std::vector<DimSize_t>();
+                auto outputFormat = (op->getOutput(outputIdx)) ? op->getOutput(outputIdx)->dataFormat() : DataFormat::Default;
+
+                // If concat is not nullptr, we directly allocate the concatenation result
+                // Must check that we are on the right output too.
+                if (concat && node->getChildren(outputIdx).size() == 1) {
+                    const auto concatOp = std::static_pointer_cast<OperatorTensor>(concat->getOperator());
+                    requiredSize = concatOp->getRequiredMemory(0, {});
+                    outputDims = (concatOp->getOutput(0)) ? concatOp->getOutput(0)->dims() : std::vector<DimSize_t>();
+                    outputFormat = (concatOp->getOutput(0)) ? concatOp->getOutput(0)->dataFormat() : DataFormat::Default;
+                }
+
+                AIDGE_ASSERT(requiredSize.type == Elts_t::Data,
+                    "Cannot generate memory with token-based producer-consumer model for node {} (of type {}).",
+                    node->name(), node->type());
+
+                // By default, specifies a fully monolithic memory block
+                std::size_t size = requiredSize.data;
+                std::size_t stride = 0;
+                std::size_t length = 1;
+                std::size_t count = 1;
+
+                if (outputFormat == DataFormat::NHWC) {
+                    size = op->getOutput(outputIdx)->dims().end()[-3];
+                    stride = outputDims.end()[-3];
+                    length = outputDims.end()[-1];
+                    count = outputDims.end()[-2];
+
+                    AIDGE_INTERNAL_ASSERT(stride >= size);
+                    AIDGE_INTERNAL_ASSERT(length == op->getOutput(outputIdx)->dims().end()[-1]);
+                    AIDGE_INTERNAL_ASSERT(count == op->getOutput(outputIdx)->dims().end()[-2]);
+                }
+
+                // Check if wrap around buffer is possible for this node
+                // (re-using previous node outputs memory for this node outputs).
+                // => only if this node is the only child of its parent(s)
+                std::size_t wrapAroundSize = 0;
+                std::size_t wrapAroundExtra = 0;
+                wrapAroundMemPlane.push_back(nullptr); // default value of wrapAroundMemPlane[outputIdx]
+
+                // Select the best parent among all allocable nodes for
+                // reallocation, which is the one with most memory (in order
+                // to minimize the reallocation size).
+                const auto allocableNodes = (concat) ? concat->getParents() : std::vector<NodePtr>{node};
+                for (const auto& allocableNode : allocableNodes) {
+                    IOIndex_t inputIdx = 0;
+                    for (const auto& parent : allocableNode->dataInputs()) {
+                        if (parent.first && parent.first->getChildren(parent.second).size() == 1
+                            // there might be no existing plane if the parent was
+                            // not yet scheduled (because it may be a recurrent connection)
+                            && memManager.getNbPlanes(parent.first) >= parent.first->nbOutputs()
+                            // memSpace should not be already released
+                            && memManager.getPlanes(parent.first).end()[-parent.first->nbOutputs()+parent.second].memSpace->released == -1)
+                        {
+                            const auto requiredData = allocableNode->getOperator()->getNbRequiredData(inputIdx);
+                            const auto requiredProtected = allocableNode->getOperator()->getNbRequiredProtected(inputIdx);
+                            AIDGE_ASSERT(requiredData.type == Elts_t::Data && requiredProtected.type == Elts_t::Data,
+                                "Cannot generate memory with token-based producer-consumer model for node {} (of type {}).",
+                                node->name(), node->type());
+
+                            const bool isWrappable = (requiredProtected.data < requiredData.data);
+                            const MemoryManager::MemoryPlane& memPlane
+                                = (concat && itConcat != concatMemPlane.end())
+                                    ? itConcat->second
+                                    : memManager.getPlanes(parent.first).end()[-parent.first->nbOutputs()+parent.second];
+
+                            if (isWrappable || !memManager.isWrapAround(
+                                        memPlane.memSpace,
+                                        memPlane.getFinalOffset()
+                                            - memPlane.memSpace->offset,
+                                        requiredSize.data))
+                            {
+                                if (memPlane.getSize() > wrapAroundSize + requiredProtected.data
+                                    && std::find(wrapAroundMemPlane.begin(), wrapAroundMemPlane.end(), &memPlane) == wrapAroundMemPlane.end())
+                                {
+                                    wrapAroundSize = memPlane.getSize() - requiredProtected.data;
+                                    if (requiredSize.data > wrapAroundSize) {
+                                        wrapAroundExtra = requiredSize.data - wrapAroundSize;
+                                    }
+                                    wrapAroundMemPlane[outputIdx] = &memPlane;
+                                }
+
+                                if (wrapAroundExtra == 0) {
+                                    break;
+                                }
+                            }
+                        }
+                        ++inputIdx;
+                    }
+                }
+
+                size_t concatSize = size;
+                size_t concatOffset = 0;
+
+                if (concat) {
+                    // Dependencies should be concat node *childs*, not concat node
+                    childs = concat->getChildren();
+
+                    // Compute concatOffset
+                    for (auto concatParent : concat->getParents()) {
+                        const auto parentOp = std::static_pointer_cast<OperatorTensor>(concatParent->getOperator());
+                        const auto parentRequiredSize = parentOp->getRequiredMemory(outputIdx, {});
+                        const auto parentOutputDims = (parentOp->getOutput(outputIdx)) ? parentOp->getOutput(outputIdx)->dims() : std::vector<DimSize_t>();
+                        const auto parentOutputFormat = (parentOp->getOutput(outputIdx)) ? parentOp->getOutput(outputIdx)->dataFormat() : DataFormat::Default;
+
+                        if (concatParent == node) {
+                            if (parentOutputFormat != DataFormat::NHWC) {
+                                concatSize = parentRequiredSize.data;
+                            }
+                            break;
+                        }
+                        else {
+                            // By default, specifies a fully monolithic memory block
+                            std::size_t parentSize = parentRequiredSize.data;
+
+                            if (parentOutputFormat == DataFormat::NHWC) {
+                                parentSize = parentOutputDims.end()[-3];
+                            }
+
+                            concatOffset += parentSize;
+                        }
+                    }
+                }
+
+                // MemoryPlane to (re)use
+                const MemoryManager::MemoryPlane& memPlane
+                    = (concat && itConcat != concatMemPlane.end())
+                        ? itConcat->second :
+                      (wrapAroundBuffer && wrapAroundSize > 0)
+                        ? (*wrapAroundMemPlane[outputIdx]) :
+                            memManager.allocate(size, childs, stride, length, count);
+
+                if (wrapAroundBuffer && wrapAroundSize > 0) {
+                    memManager.reallocate(memPlane,
+                        node, concatOffset,
+                        concatSize, true, wrapAroundExtra, childs, stride, length, count);
+                }
+                else {
+                    memManager.reallocate(memPlane.memSpace,
+                        node, memPlane.offset + concatOffset,
+                        concatSize, false, 0, childs, stride, length, count);
+                }
+
+                if (concat && itConcat == concatMemPlane.end()) {
+                    concatMemPlane.emplace(concat, memPlane);
+
+                    if (wrapAroundBuffer && wrapAroundSize > 0) {
+                        memManager.reallocate(memPlane,
+                            concat, 0,
+                            size, true, wrapAroundExtra, childs, stride, length, count);
+                    }
+                    else {
+                        memManager.reallocate(memPlane.memSpace,
+                            concat, memPlane.offset,
+                            size, false, 0, childs, stride, length, count);
+                    }
+                }
+            }
+
+            memManager.releaseDependencies(node);
+            memManager.tick();
+        }
+    }
+
+    return memManager;
+}
+
 void Aidge::Scheduler::connectInputs(const std::vector<std::shared_ptr<Aidge::Tensor>>& data){
     // This version of connect inputs only connects tensor inputs in input data producers.
     auto inputNodes = mGraphView->getOrderedInputs();
@@ -649,11 +871,21 @@ void Aidge::Scheduler::saveStaticSchedulingDiagram(const std::string& fileName)
     fmt::print(fp.get(), "\n");
 }
 
-std::vector<std::shared_ptr<Aidge::Node>> Aidge::Scheduler::getStaticScheduling(std::size_t step) const {
+std::vector<std::shared_ptr<Aidge::Node>> Aidge::Scheduler::getStaticScheduling(std::size_t step, EarlyLateSort sorting) const {
     AIDGE_ASSERT(!mStaticSchedule.empty(), "Scheduler::getStaticScheduling(): static scheduling is empty, did you generate scheduling first?");
     AIDGE_ASSERT(step < mStaticSchedule.size(), "Scheduler::getStaticScheduling(): no static scheduling at step {} (available steps: {})", mStaticSchedule.size(), step);
 
-    const auto& staticSchedule = mStaticSchedule.at(step);
+    std::deque<StaticSchedulingElement*> staticSchedule(mStaticSchedule.at(step).begin(), mStaticSchedule.at(step).end());
+
+    if (sorting == EarlyLateSort::AsSoonAsPossible) {
+        std::stable_sort(staticSchedule.begin(), staticSchedule.end(),
+            [](const auto& lhs, const auto& rhs) { return ((lhs->early < rhs->early) || (lhs->early == rhs->early && lhs->late < rhs->late)); });
+    }
+    else if (sorting == EarlyLateSort::AsLateAsPossible) {
+        std::stable_sort(staticSchedule.begin(), staticSchedule.end(),
+            [](const auto& lhs, const auto& rhs) { return ((lhs->late < rhs->late) || (lhs->late == rhs->late && lhs->early < rhs->early)); });
+    }
+
     std::vector<std::shared_ptr<Node>> schedule;
     std::transform(staticSchedule.begin(), staticSchedule.end(), std::back_inserter(schedule), [](const auto& v) { return v->node; });
     return schedule;