diff --git a/include/aidge/graph/StaticAnalysis.hpp b/include/aidge/graph/StaticAnalysis.hpp
index 16592041ce04e16930a757578e4f42db453ed645..c668391310f6e8b09d8ece878f89f234b09c961c 100644
--- a/include/aidge/graph/StaticAnalysis.hpp
+++ b/include/aidge/graph/StaticAnalysis.hpp
@@ -25,7 +25,6 @@
 #include "aidge/operator/ConvDepthWise.hpp"
 #include "aidge/operator/FC.hpp"
 #include "aidge/operator/MatMul.hpp"
-#include "aidge/operator/ReLU.hpp"
 #include "aidge/operator/ReduceMean.hpp"
 #include "aidge/operator/ReduceSum.hpp"
 #include "aidge/operator/Softmax.hpp"
@@ -42,7 +41,7 @@ public:
     const Operator& getOperator() const noexcept { return mOp; }
 
     /**
-     * @brief Get the total number of arithmetic operations for the operator.
+     * @brief Get the worst case total number of arithmetic operations for the operator.
      * This includes base arithmetic operations: +, -, / and *.
      * Example of Operator with only comparison operatons: Conv.
      * 
@@ -51,7 +50,7 @@ public:
     virtual size_t getNbArithmOps() const { return 2 * getNbMACOps(); };
 
     /**
-     * @brief Get the total number of logic operations for the operator.
+     * @brief Get the worst case total number of logic operations for the operator.
      * This includes operations like logical shift, or, and...
      * Example of Operator with only comparison operatons: BitShift.
      * 
@@ -60,7 +59,7 @@ public:
     virtual size_t getNbLogicOps() const { return 0; };
 
     /**
-     * @brief Get the total number of comparison operations for the operator.
+     * @brief Get the worst case total number of comparison operations for the operator.
      * This includes operations like <, >, =...
      * Example of Operator with only comparison operatons: MaxPool.
      * 
@@ -69,7 +68,7 @@ public:
     virtual size_t getNbCompOps() const { return 0; };
 
     /**
-     * @brief Get the total number of non-linear (NL) operations for the operator.
+     * @brief Get the worst case total number of non-linear (NL) operations for the operator.
      * This includes operations like calls to tanh(), erf(), cos()...
      * Example of Operator with only NL operatons: Tanh.
      * Non-linear operations are necessarily of floating-point type.
@@ -79,7 +78,7 @@ public:
     virtual size_t getNbNLOps() const { return 0; };
 
     /**
-     * @brief Get the total number of operations for the operator.
+     * @brief Get the worst case total number of operations for the operator.
      * Total number of operations = arithmetic ops + logic ops + comp ops + NL ops.
      * 
      * @return size_t Number of operations.
@@ -87,7 +86,7 @@ public:
     size_t getNbOps() const { return getNbArithmOps() + getNbLogicOps() + getNbCompOps() + getNbNLOps(); };
 
     /**
-     * @brief Get the total number of INT arithmetic operations for the operator.
+     * @brief Get the worst case total number of INT arithmetic operations for the operator.
      * Such that getNbArithmOps() = getNbArithmIntOps() + getNbArithmFpOps()
      * 
      * @return size_t Number of INT arithmetic operations.
@@ -95,7 +94,7 @@ public:
     virtual size_t getNbArithmIntOps() const;
 
     /**
-     * @brief Get the total number of FP arithmetic operations for the operator.
+     * @brief Get the worst case total number of FP arithmetic operations for the operator.
      * Such that getNbArithmOps() = getNbArithmIntOps() + getNbArithmFpOps()
      * 
      * @return size_t Number of FP arithmetic operations.
@@ -103,7 +102,7 @@ public:
     size_t getNbArithmFpOps() const { return getNbArithmOps() - getNbArithmIntOps(); };
 
     /**
-     * @brief Get the total number of MAC operations for the operator.
+     * @brief Get the worst case total number of MAC operations for the operator.
      * 
      * @return size_t Number of MAC operations.
      */
@@ -123,6 +122,14 @@ public:
     StaticAnalysis(std::shared_ptr<GraphView> graph);
     const std::shared_ptr<GraphView> getGraph() const noexcept { return mGraph; }
 
+    /**
+     * @brief Get the Operator Stats object corresponding to the given node.
+     * 
+     * @param node Node
+     * @return std::shared_ptr<OperatorStats> Node's Operator stats
+     */
+    std::shared_ptr<OperatorStats> getOpStats(std::shared_ptr<Node> node) const;
+
     /**
      * @brief Get the number of parameters associated to a node. This includes
      * all Producers directly connected to the node's inputs as well as all
@@ -165,7 +172,6 @@ public:
 protected:
     const std::shared_ptr<GraphView> mGraph;
 
-    std::shared_ptr<OperatorStats> getOpStats(std::shared_ptr<Node> node) const;
     size_t accumulate(size_t (OperatorStats::*func)() const) const;
 };
 
@@ -198,6 +204,7 @@ public:
 
     size_t getNbMACOps() const override {
         const OP& op_ = dynamic_cast<const OP&>(mOp);
+        AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis");
 	    const std::size_t weightsSize = op_.getInput(1)->size();
         const std::size_t outputSize
             = std::accumulate(op_.getOutput(0)->dims().cbegin() + 2,
@@ -225,6 +232,7 @@ public:
 
     size_t getNbMACOps() const override {
         const FC_Op& op_ = dynamic_cast<const FC_Op&>(mOp);
+        AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis");
 	    const std::size_t weightsSize = op_.getInput(1)->size();
         const std::size_t batchSize = op_.getInput(0)->dims()[0]; // NCHW
         return batchSize * weightsSize;
@@ -243,6 +251,7 @@ public:
 
     size_t getNbMACOps() const override {
         const MatMul_Op& op_ = dynamic_cast<const MatMul_Op&>(mOp);
+        AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis");
         const size_t n = (op_.getInput(0)->dims().size() > 1)
             ? op_.getInput(0)->dims().end()[-2] : 1;
         const size_t k = op_.getInput(0)->dims().back();
@@ -270,13 +279,38 @@ public:
     }
 
     size_t getNbCompOps() const override {
-        const ReLU_Op& op_ = dynamic_cast<const ReLU_Op&>(mOp);
+        const OperatorTensor& op_ = dynamic_cast<const OperatorTensor&>(mOp);
+        AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis");
         return op_.getOutput(0)->size();
     }
 };
 
 REGISTRAR(OperatorStats, "ReLU", ReLUStats::create);
 
+class AbsStats : public OperatorStats {
+public:
+    AbsStats(const Operator& op) : OperatorStats(op) {}
+
+    static std::unique_ptr<AbsStats> create(const Operator& op) {
+        return std::make_unique<AbsStats>(op);
+    }
+
+    size_t getNbCompOps() const override {
+        const OperatorTensor& op_ = dynamic_cast<const OperatorTensor&>(mOp);
+        AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis");
+        return op_.getOutput(0)->size();
+    }
+
+    // This is in the worst case (all values are negative)
+    size_t getNbArithmOps() const override {
+        const OperatorTensor& op_ = dynamic_cast<const OperatorTensor&>(mOp);
+        AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis");
+        return op_.getOutput(0)->size();
+    }
+};
+
+REGISTRAR(OperatorStats, "Abs", AbsStats::create);
+
 class ReduceMeanStats : public OperatorStats {
 public:
     ReduceMeanStats(const Operator& op) : OperatorStats(op) {}
@@ -287,6 +321,7 @@ public:
 
     size_t getNbArithmOps() const override {
         const ReduceMean_Op& op_ = dynamic_cast<const ReduceMean_Op&>(mOp);
+        AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis");
         const size_t nbIn = op_.getInput(0)->size();
         const size_t nbOut = op_.getOutput(0)->size();
         const size_t nbReduce = nbIn / nbOut;
@@ -307,6 +342,7 @@ public:
 
     size_t getNbArithmOps() const override {
         const ReduceSum_Op& op_ = dynamic_cast<const ReduceSum_Op&>(mOp);
+        AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis");
         const size_t nbIn = op_.getInput(0)->size();
         const size_t nbOut = op_.getOutput(0)->size();
         const size_t nbReduce = nbIn / nbOut;
@@ -327,6 +363,7 @@ public:
 
     size_t getNbArithmOps() const override {
         const Softmax_Op& op_ = dynamic_cast<const Softmax_Op&>(mOp);
+        AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis");
         const size_t axis = (op_.axis() >= 0) ? op_.axis() : op_.getInput(0)->nbDims() + op_.axis();
         const size_t nbReduce = op_.getInput(0)->dims()[axis];
         const size_t nbOut = op_.getOutput(0)->size();
@@ -336,6 +373,7 @@ public:
 
     size_t getNbNLOps() const override {
         const Softmax_Op& op_ = dynamic_cast<const Softmax_Op&>(mOp);
+        AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis");
         const size_t axis = (op_.axis() >= 0) ? op_.axis() : op_.getInput(0)->nbDims() + op_.axis();
         const size_t nbReduce = op_.getInput(0)->dims()[axis];
         const size_t nbOut = op_.getOutput(0)->size();
@@ -375,6 +413,7 @@ public:
 
     size_t getNbArithmOps() const override {
         const OperatorTensor& op_ = dynamic_cast<const OperatorTensor&>(mOp);
+        AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis");
         return op_.getOutput(0)->size();
     }
 };
@@ -384,6 +423,23 @@ REGISTRAR(OperatorStats, "Sub", ElemWiseOpStats::create);
 REGISTRAR(OperatorStats, "Mul", ElemWiseOpStats::create);
 REGISTRAR(OperatorStats, "Div", ElemWiseOpStats::create);
 
+class ElemWiseLogicOpStats : public OperatorStats {
+public:
+    ElemWiseLogicOpStats(const Operator& op) : OperatorStats(op) {}
+
+    static std::unique_ptr<ElemWiseLogicOpStats> create(const Operator& op) {
+        return std::make_unique<ElemWiseLogicOpStats>(op);
+    }
+
+    size_t getNbArithmOps() const override {
+        const OperatorTensor& op_ = dynamic_cast<const OperatorTensor&>(mOp);
+        AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis");
+        return op_.getOutput(0)->size();
+    }
+};
+
+REGISTRAR(OperatorStats, "And", ElemWiseLogicOpStats::create);
+
 class ElemWiseNLOpStats : public OperatorStats {
 public:
     ElemWiseNLOpStats(const Operator& op) : OperatorStats(op) {}
@@ -394,10 +450,12 @@ public:
 
     size_t getNbNLOps() const override {
         const OperatorTensor& op_ = dynamic_cast<const OperatorTensor&>(mOp);
+        AIDGE_ASSERT(op_.dimsForwarded(), "Dims must be forwarded for static analysis");
         return op_.getOutput(0)->size();
     }
 };
 
+REGISTRAR(OperatorStats, "Atan", ElemWiseNLOpStats::create);
 REGISTRAR(OperatorStats, "Sqrt", ElemWiseNLOpStats::create);
 REGISTRAR(OperatorStats, "Erf", ElemWiseNLOpStats::create);
 REGISTRAR(OperatorStats, "Ln", ElemWiseNLOpStats::create);
diff --git a/python_binding/graph/pybind_StaticAnalysis.cpp b/python_binding/graph/pybind_StaticAnalysis.cpp
index 04a19f6cce9a0d697d4a735161fa887c395f6130..b7c704d722e81b36e8d4988a4503428918e16a5a 100644
--- a/python_binding/graph/pybind_StaticAnalysis.cpp
+++ b/python_binding/graph/pybind_StaticAnalysis.cpp
@@ -106,12 +106,6 @@ public:
     }
 };
 
-// See https://pybind11.readthedocs.io/en/stable/advanced/classes.html#binding-protected-member-functions
-class StaticAnalysis_Publicist : public StaticAnalysis {
-public:
-    using StaticAnalysis::getOpStats;
-};
-
 void init_StaticAnalysis(py::module& m){
     py::class_<OperatorStats, std::shared_ptr<OperatorStats>, pyOperatorStats>(m, "OperatorStats", py::multiple_inheritance(), py::dynamic_attr())
     .def(py::init<const Operator&>(), py::arg("op"))
@@ -141,7 +135,7 @@ void init_StaticAnalysis(py::module& m){
     .def("get_nb_arithm_fp_ops", &StaticAnalysis::getNbArithmFpOps)
     .def("get_nb_mac_ops", &StaticAnalysis::getNbMACOps)
     .def("summary", &StaticAnalysis::summary, py::arg("inc_producers") = false)
-    .def("get_op_stats", &StaticAnalysis_Publicist::getOpStats, py::arg("node"))
+    .def("get_op_stats", &StaticAnalysis::getOpStats, py::arg("node"))
     ;
 }
 }
diff --git a/unit_tests/graph/Test_Matching.cpp b/unit_tests/graph/Test_Matching.cpp
index d6d98d4701cba900548d127879c9b3940cf1d739..8c5fa222a68a7f2eed329be7c49ca62d0d7ba52f 100644
--- a/unit_tests/graph/Test_Matching.cpp
+++ b/unit_tests/graph/Test_Matching.cpp
@@ -50,9 +50,9 @@ TEST_CASE("[core/graph] Matching") {
         ReLU("relu2"),
         PaddedConv(8, 16, {3, 3}, "conv3", {1, 1}, {2, 2, 2, 2}),
         ReLU("relu3"),
-        PaddedConv(8, 16, {5, 5}, "conv4", {1, 1}, {2, 2, 2, 2}),
+        PaddedConv(16, 16, {5, 5}, "conv4", {1, 1}, {2, 2, 2, 2}),
         Add("add"),
-        PaddedConv(8, 16, {5, 5}, "conv5", {1, 1}, {2, 2, 2, 2}),
+        PaddedConv(16, 16, {5, 5}, "conv5", {1, 1}, {2, 2, 2, 2}),
         ReLU("relu5"),
         Add("add2")
     });
diff --git a/unit_tests/graph/Test_StaticAnalysis.cpp b/unit_tests/graph/Test_StaticAnalysis.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..c1a76f0e2a0db4ce092ed109fda71dd3b25741c8
--- /dev/null
+++ b/unit_tests/graph/Test_StaticAnalysis.cpp
@@ -0,0 +1,68 @@
+/********************************************************************************
+ * Copyright (c) 2023 CEA-List
+ *
+ * This program and the accompanying materials are made available under the
+ * terms of the Eclipse Public License 2.0 which is available at
+ * http://www.eclipse.org/legal/epl-2.0.
+ *
+ * SPDX-License-Identifier: EPL-2.0
+ *
+ ********************************************************************************/
+
+#include <catch2/catch_test_macros.hpp>
+
+#include <fmt/chrono.h>
+
+#include "aidge/data/Tensor.hpp"
+#include "aidge/graph/GraphView.hpp"
+#include "aidge/graph/OpArgs.hpp"
+#include "aidge/graph/StaticAnalysis.hpp"
+#include "aidge/operator/Add.hpp"
+#include "aidge/operator/BatchNorm.hpp"
+#include "aidge/operator/FC.hpp"
+#include "aidge/operator/ReLU.hpp"
+#include "aidge/operator/MetaOperatorDefs.hpp"
+#include "aidge/operator/Producer.hpp"
+
+using namespace Aidge;
+
+TEST_CASE("[core/graph] StaticAnalysis") {
+    SECTION("Conv") {
+        auto g1 = Sequential({
+            Conv(3, 4, {5, 5}, "conv1"),
+            ReLU("relu1"),
+            PaddedConv(4, 8, {5, 5}, "conv2", {1, 1}, {2, 2, 2, 2}),
+            ReLU("relu2"),
+            PaddedConv(8, 16, {3, 3}, "conv3", {1, 1}, {2, 2, 2, 2}),
+            ReLU("relu3"),
+            PaddedConv(16, 16, {5, 5}, "conv4", {1, 1}, {2, 2, 2, 2}),
+            Add("add"),
+            PaddedConv(16, 16, {5, 5}, "conv5", {1, 1}, {2, 2, 2, 2}),
+            ReLU("relu5"),
+            Add("add2")
+        });
+
+        g1->getNode("relu3")->addChild(g1->getNode("add"), 0, 1);
+        g1->getNode("conv5")->addChild(g1->getNode("add2"), 0, 1);
+        g1->updateInputsOutputs();
+
+        g1->forwardDims({{16, 3, 512, 512}});
+
+        StaticAnalysis stats(g1);
+        REQUIRE(stats.getNbParams(g1->getNode("conv1")) == 3 * 4 * 5 * 5 + 4);
+        REQUIRE(stats.getNbParams(g1->getNode("conv2")) == 4 * 8 * 5 * 5 + 8);
+        REQUIRE(stats.getNbParams(g1->getNode("conv3")) == 8 * 16 * 3 * 3 + 16);
+
+        const auto conv1Stats = stats.getOpStats(g1->getNode("conv1"));
+        REQUIRE(conv1Stats->getNbMACOps() == 1L * (16 * 508 * 508) * (5 * 5 * 3 * 4));
+        REQUIRE(conv1Stats->getNbArithmOps() == 2L * (16 * 508 * 508) * (5 * 5 * 3 * 4));
+        REQUIRE(conv1Stats->getNbArithmFpOps() == 2L * (16 * 508 * 508) * (5 * 5 * 3 * 4));
+        REQUIRE(conv1Stats->getNbArithmIntOps() == 0);
+
+        g1->getNode("conv1")->getOperator()->setDataType(DataType::Int8);
+        REQUIRE(conv1Stats->getNbMACOps() == 1L * (16 * 508 * 508) * (5 * 5 * 3 * 4));
+        REQUIRE(conv1Stats->getNbArithmOps() == 2L * (16 * 508 * 508) * (5 * 5 * 3 * 4));
+        REQUIRE(conv1Stats->getNbArithmFpOps() == 0);
+        REQUIRE(conv1Stats->getNbArithmIntOps() == 2L * (16 * 508 * 508) * (5 * 5 * 3 * 4));
+    }
+}