diff --git a/.gitlab/ci/_global.gitlab-ci.yml b/.gitlab/ci/_global.gitlab-ci.yml
index aab5d745367d22052f82c6e3ef144680a822cd45..94e5658ff6adc8e07036d3d59ea39a68fbddc4bf 100644
--- a/.gitlab/ci/_global.gitlab-ci.yml
+++ b/.gitlab/ci/_global.gitlab-ci.yml
@@ -9,6 +9,14 @@ variables:
   GIT_SSL_NO_VERIFY: 1
   DEBIAN_FRONTEND: noninteractive
 
+# See https://docs.gitlab.com/ee/ci/yaml/workflow.html#switch-between-branch-pipelines-and-merge-request-pipelines
+workflow:
+  rules:
+    - if: $CI_PIPELINE_SOURCE == "merge_request_event"
+    - if: $CI_COMMIT_BRANCH && $CI_OPEN_MERGE_REQUESTS
+      when: never
+    - if: $CI_COMMIT_BRANCH
+
 default:
   image: nvidia/cuda:12.2.0-devel-ubuntu22.04
   before_script:
diff --git a/include/aidge/aidge.hpp b/include/aidge/aidge.hpp
index 7c327e256b513659bf8d5fd245a0a08a3a2b9052..cc8763580076957d550c7c0702468a593e218569 100644
--- a/include/aidge/aidge.hpp
+++ b/include/aidge/aidge.hpp
@@ -46,6 +46,7 @@
 #include "aidge/operator/ReLU.hpp"
 #include "aidge/operator/Scaling.hpp"
 #include "aidge/operator/Softmax.hpp"
+#include "aidge/operator/Sqrt.hpp"
 #include "aidge/operator/Sub.hpp"
 #include "aidge/scheduler/Scheduler.hpp"
 #include "aidge/utils/Attributes.hpp"
diff --git a/include/aidge/operator/Sqrt.hpp b/include/aidge/operator/Sqrt.hpp
new file mode 100644
index 0000000000000000000000000000000000000000..90b2ae6a8ae1311aef14e4eba4d3563a28a3d18e
--- /dev/null
+++ b/include/aidge/operator/Sqrt.hpp
@@ -0,0 +1,141 @@
+/********************************************************************************
+ * Copyright (c) 2023 CEA-List
+ *
+ * This program and the accompanying materials are made available under the
+ * terms of the Eclipse Public License 2.0 which is available at
+ * http://www.eclipse.org/legal/epl-2.0.
+ *
+ * SPDX-License-Identifier: EPL-2.0
+ *
+ ********************************************************************************/
+
+#ifndef AIDGE_CORE_OPERATOR_SQRT_H_
+#define AIDGE_CORE_OPERATOR_SQRT_H_
+
+#include <cassert>
+#include <memory>
+#include <vector>
+
+#include "aidge/utils/Registrar.hpp"
+#include "aidge/operator/Operator.hpp"
+#include "aidge/backend/OperatorImpl.hpp"
+#include "aidge/data/Tensor.hpp"
+#include "aidge/data/Data.hpp"
+#include "aidge/graph/Node.hpp"
+#include "aidge/utils/Types.h"
+
+namespace Aidge {
+
+class Sqrt_Op : public Operator,
+    public Registrable<Sqrt_Op, std::string, std::unique_ptr<OperatorImpl>(const Sqrt_Op&)> {
+public:
+    // FIXME: change accessibility
+    std::shared_ptr<Tensor> mInput = std::make_shared<Tensor>();
+    const std::shared_ptr<Tensor> mOutput = std::make_shared<Tensor>();
+
+public:
+    static constexpr const char* Type = "Sqrt";
+
+    Sqrt_Op()
+            : Operator(Type)
+    {
+        setDatatype(DataType::Float32);
+    }
+
+    /**
+     * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated).
+     * @param op Operator to copy.
+     */
+    Sqrt_Op(const Sqrt_Op& op)
+        : Operator(Type),
+          mOutput(std::make_shared<Tensor>(*op.mOutput))
+    {
+        // cpy-ctor
+        setDatatype(op.mOutput->dataType());
+        mImpl = op.mImpl ? Registrar<Sqrt_Op>::create(mOutput->getImpl()->backend())(*this) : nullptr;
+    }
+
+    /**
+     * @brief Clone the operator using its copy-constructor.
+     * @see Operator::Sqrt_Op
+     */
+    std::shared_ptr<Operator> clone() const override {
+        return std::make_shared<Sqrt_Op>(*this);
+    }
+
+    void associateInput(const IOIndex_t inputIdx, std::shared_ptr<Data> data) override final {
+        assert(inputIdx == 0 && "operator supports only 1 input");
+        (void) inputIdx; // avoid unused warning
+        assert(strcmp(data->type(), Tensor::Type)==0 && "input data must be of Tensor type");
+        mInput = std::dynamic_pointer_cast<Tensor>(data);
+    }
+
+    void computeOutputDims() override final {
+        if (!mInput->empty())
+            mOutput->resize(mInput->dims());
+    }
+
+    bool outputDimsForwarded() const override final {
+        return !(mOutput->empty());
+    }
+
+
+    inline Tensor& input(const IOIndex_t /*inputIdx*/) const override final { return *(mInput.get()); }
+    inline Tensor& output(const IOIndex_t /*outputIdx*/) const override final { return *(mOutput.get()); }
+
+
+    inline std::shared_ptr<Tensor> getInput(const IOIndex_t inputIdx) const override final {
+        assert((inputIdx == 0) && "Sqrt Operator has only 1 input");
+        (void) inputIdx; // avoid unused warning
+        return mInput;
+    }
+    inline std::shared_ptr<Tensor> getOutput(const IOIndex_t outputIdx) const override final {
+        assert((outputIdx == 0) && "Sqrt Operator has only 1 output");
+        (void) outputIdx; // avoid unused warning
+        return mOutput;
+    }
+
+
+    std::shared_ptr<Data> getRawInput(const IOIndex_t inputIdx) const override final {
+        assert(inputIdx == 0 && "operator supports only 1 input");
+        (void) inputIdx; // avoid unused warning
+        return std::static_pointer_cast<Data>(mInput);
+    }
+    std::shared_ptr<Data> getRawOutput(const IOIndex_t outputIdx) const override final {
+        assert(outputIdx == 0 && "operator supports only 1 output");
+        (void) outputIdx; // avoid unused warning
+        return std::static_pointer_cast<Data>(mOutput);
+    }
+
+
+    void setBackend(const std::string& name) override {
+        mImpl = Registrar<Sqrt_Op>::create(name)(*this);
+        mOutput->setBackend(name);
+
+        // FIXME: temporary workaround
+        mInput->setBackend(name);
+    }
+    void setDatatype(const DataType& datatype) override {
+        mOutput->setDatatype(datatype);
+
+        // FIXME: temporary workaround
+        mInput->setDatatype(datatype);
+    }
+
+    inline IOIndex_t nbInputs() const noexcept override final { return 1; }
+    inline IOIndex_t nbDataInputs() const noexcept override final { return 1; }
+    inline IOIndex_t nbOutputs() const noexcept override final { return 1; }
+    static const std::vector<std::string> getInputsName(){
+        return {"data_input"};
+    }
+    static const std::vector<std::string> getOutputsName(){
+        return {"data_output"};
+    }
+};
+
+inline std::shared_ptr<Node> Sqrt(const std::string& name = "") {
+    return std::make_shared<Node>(std::make_shared<Sqrt_Op>(), name);
+}
+}
+
+#endif /* AIDGE_CORE_OPERATOR_SQRT_H_ */
diff --git a/python_binding/operator/pybind_Sqrt.cpp b/python_binding/operator/pybind_Sqrt.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..b70171814662c861f19b3048b018260170d37491
--- /dev/null
+++ b/python_binding/operator/pybind_Sqrt.cpp
@@ -0,0 +1,27 @@
+/********************************************************************************
+ * Copyright (c) 2023 CEA-List
+ *
+ * This program and the accompanying materials are made available under the
+ * terms of the Eclipse Public License 2.0 which is available at
+ * http://www.eclipse.org/legal/epl-2.0.
+ *
+ * SPDX-License-Identifier: EPL-2.0
+ *
+ ********************************************************************************/
+
+#include <pybind11/pybind11.h>
+
+#include "aidge/operator/Sqrt.hpp"
+#include "aidge/operator/Operator.hpp"
+
+namespace py = pybind11;
+namespace Aidge {
+
+void init_Sqrt(py::module& m) {
+    py::class_<Sqrt_Op, std::shared_ptr<Sqrt_Op>, Operator>(m, "SqrtOp", py::multiple_inheritance())
+    .def("get_inputs_name", &Sqrt_Op::getInputsName)
+    .def("get_outputs_name", &Sqrt_Op::getOutputsName);
+
+    m.def("Sqrt", &Sqrt, py::arg("name") = "");
+}
+}  // namespace Aidge
diff --git a/python_binding/pybind_core.cpp b/python_binding/pybind_core.cpp
index 0d9bc3eb2df1ebbc7fb31be5adaeab84f78637d5..a482191c78ff56b000e043cd7350ca1c150d1d6e 100644
--- a/python_binding/pybind_core.cpp
+++ b/python_binding/pybind_core.cpp
@@ -37,6 +37,7 @@ void init_Producer(py::module&);
 void init_Pow(py::module&);
 void init_ReLU(py::module&);
 void init_Softmax(py::module&);
+void init_Sqrt(py::module&);
 void init_Sub(py::module&);
 
 void init_Node(py::module&);
@@ -82,6 +83,7 @@ void init_Aidge(py::module& m){
     init_Pow(m);
     init_ReLU(m);
     init_Softmax(m);
+    init_Sqrt(m);
     init_Sub(m);
 
     init_Producer(m);