diff --git a/include/aidge/aidge.hpp b/include/aidge/aidge.hpp index 9e0e457b49fe40b2a6e9e3ce5c5e4b77bee1d93e..6c4ca93ce28c0a8c769606f07b1badee676423fd 100644 --- a/include/aidge/aidge.hpp +++ b/include/aidge/aidge.hpp @@ -70,6 +70,7 @@ #include "aidge/utils/Attributes.hpp" #include "aidge/utils/StaticAttributes.hpp" #include "aidge/utils/DynamicAttributes.hpp" +#include "aidge/utils/Random.hpp" #include "aidge/utils/Registrar.hpp" #include "aidge/utils/Types.h" diff --git a/include/aidge/backend/TensorImpl.hpp b/include/aidge/backend/TensorImpl.hpp index 545e6c672705fe16186d41f9c46cde94b3f3ab7e..509c11691047604fbce959cfb29649aac75b5a1e 100644 --- a/include/aidge/backend/TensorImpl.hpp +++ b/include/aidge/backend/TensorImpl.hpp @@ -12,8 +12,12 @@ #ifndef AIDGE_TENSORIMPL_H_ #define AIDGE_TENSORIMPL_H_ -#include <cstddef> -#include <cstdio> +#include <numeric> // std::accumulate +#include <cstddef> // std::size_t +#include <functional> // std::multiplies +#include <vector> +#include <utility> // std::pair, std::make_pair + #include "aidge/data/Data.hpp" #include "aidge/utils/Types.h" #include "aidge/utils/ErrorHandling.hpp" @@ -59,23 +63,42 @@ private: */ /** - * This class manages the raw data storage of a Tensor and provide generic copy + * @class TensorImpl + * @brief Class to manage the raw data storage of a Tensor and provide generic copy * primitives from other devices and from/to host. - * It can own the data or not (use setRawPtr() to set an external data owner). - * It only knows the data type and data capacity, but does not handle anything else. + * @note It can own the data or not (use ``setRawPtr()`` to set an external data owner). + * @note It only knows the data type and data capacity, but does not handle anything else. */ class TensorImpl { +protected: + + const char *mBackend; + /// @brief Device id. + const DeviceIdx_t mDevice; + /// Number of elements (to be) stored. + NbElts_t mNbElts; + public: TensorImpl() = delete; - TensorImpl(const char *backend, DeviceIdx_t device, std::vector<DimSize_t> dims) : mBackend(backend), mDevice(device) + + TensorImpl(const char *backend, DeviceIdx_t device, std::vector<DimSize_t> dims) + : mBackend(backend), + mDevice(device) { resize(dims); }; + virtual ~TensorImpl() = default; + + virtual bool operator==(const TensorImpl &othImpl) const = 0; + +public: /** * Return the (backend, device) pair for this implementation. */ - std::pair<std::string, DeviceIdx_t> device() const { return std::make_pair(mBackend, mDevice); } + std::pair<std::string, DeviceIdx_t> device() const noexcept { + return std::make_pair(std::string(mBackend), mDevice); + } /** * Copy data from the same device. @@ -151,11 +174,7 @@ public: * Set the size, in number of elements, that must be stored. */ virtual void resize(std::vector<DimSize_t> dims) { - size_t product = 1; - for (size_t num : dims) { - product *= num; - } - mNbElts = product; + mNbElts = std::accumulate(dims.cbegin(), dims.cend(), std::size_t(1), std::multiplies<std::size_t>()); } /** @@ -168,23 +187,15 @@ public: */ virtual std::size_t scalarSize() const noexcept = 0; constexpr const char *backend() const { return mBackend; } - virtual ~TensorImpl() = default; - virtual bool operator==(const TensorImpl &othImpl) const = 0; /** - * Copy from another backend. + * @brief Copy from another backend. * @param srcImpl Source TensorImpl to copy from. * @param length Number of elements of size scalarSize() to copy * @param srcOffset Source offset (in number of elements). * @param dstOffset Destination offset (in number of elements). */ void copyFrom(const TensorImpl& srcImpl, NbElts_t length, NbElts_t srcOffset = 0, NbElts_t dstOffset = 0); - -protected: - const char *mBackend; - const DeviceIdx_t mDevice; - /// Number of elements (to be) stored - NbElts_t mNbElts; }; } // namespace Aidge diff --git a/include/aidge/data/DataProvider.hpp b/include/aidge/data/DataProvider.hpp index 5c7a1c73ce4ad4eb512a446879cb1ad9b673eb2f..62d10a6983e8cf5fd8e2730d3203bed97284e336 100644 --- a/include/aidge/data/DataProvider.hpp +++ b/include/aidge/data/DataProvider.hpp @@ -20,8 +20,6 @@ #include "aidge/data/Database.hpp" #include "aidge/data/Data.hpp" - - namespace Aidge { /** @@ -33,14 +31,35 @@ class DataProvider { private: // Dataset providing the data to the dataProvider const Database& mDatabase; + + // Desired size of the produced batches + const std::size_t mBatchSize; + + // Enable random shuffling for learning + const bool mShuffle; + // Drops the last non-full batch + const bool mDropLast; + + // Number of modality in one item const std::size_t mNumberModality; - std::vector<std::vector<std::size_t>> mDataSizes; - std::vector<std::string> mDataBackends; - std::vector<DataType> mDataTypes; - // Desired size of the produced batches - const std::size_t mBatchSize; + // mNbItems contains the number of items in the database + std::size_t mNbItems; + // mBatches contains the call order of each database item + std::vector<unsigned int> mBatches; + // mIndex browsing the number of batch + std::size_t mIndexBatch; + + // mNbBatch contains the number of batch + std::size_t mNbBatch; + // Size of the Last batch + std::size_t mLastBatchSize; + + // Store each modality dimensions, backend and type + std::vector<std::vector<std::size_t>> mDataDims; + std::vector<std::string> mDataBackends; + std::vector<DataType> mDataTypes; public: /** @@ -48,15 +67,76 @@ public: * @param database database from which to load the data. * @param batchSize number of data samples per batch. */ - DataProvider(const Database& database, const std::size_t batchSize); + DataProvider(const Database& database, const std::size_t batchSize, const bool shuffle = false, const bool dropLast = false); public: /** - * @brief Create a batch for each data modality in the database. The returned batch contain the data as sorted in the database. - * @param startIndex the starting index in the database to start the batch from. + * @brief Create a batch for each data modality in the database. * @return a vector of tensors. Each tensor is a batch corresponding to one modality. */ - std::vector<std::shared_ptr<Tensor>> readBatch(const std::size_t startIndex) const; + std::vector<std::shared_ptr<Tensor>> readBatch() const; + + /** + * @brief Get the Number of Batch. + * + * @return std::size_t + */ + inline std::size_t getNbBatch(){ + return mNbBatch; + }; + + /** + * @brief Get the current Index Batch. + * + * @return std::size_t + */ + inline std::size_t getIndexBatch(){ + return mIndexBatch; + }; + + /** + * @brief Reset the internal index batch that browses the data of the database to zero. + */ + inline void resetIndexBatch(){ + mIndexBatch = 0; + }; + + /** + * @brief Increment the internal index batch that browses the data of the database. + */ + inline void incrementIndexBatch(){ + ++mIndexBatch; + }; + + /** + * @brief Setup the batches for one pass on the database. + */ + void setBatches(); + + /** + * @brief End condition of dataProvider for one pass on the database. + * + * @return true when all batch were fetched, False otherwise + */ + inline bool done(){ + return (mIndexBatch == mNbBatch); + }; + + + // Functions for python iterator iter and next (definition in pybind.cpp) + /** + * @brief __iter__ method for iterator protocol + * + * @return DataProvider* + */ + DataProvider* iter(); + + /** + * @brief __next__ method for iterator protocol + * + * @return std::vector<std::shared_ptr<Aidge::Tensor>> + */ + std::vector<std::shared_ptr<Aidge::Tensor>> next(); }; } // namespace Aidge diff --git a/include/aidge/data/Tensor.hpp b/include/aidge/data/Tensor.hpp index 641c44c03b4e33f210e53f7822dd2d26c5a7d32f..3ccd55d3f19b3cff70c1a100d980ae63213261c5 100644 --- a/include/aidge/data/Tensor.hpp +++ b/include/aidge/data/Tensor.hpp @@ -17,6 +17,7 @@ #include <memory> #include <numeric> // std::accumulate #include <string> +#include <type_traits> // std::is_arithmetic #include <vector> #include "aidge/backend/TensorImpl.hpp" @@ -99,6 +100,17 @@ class Tensor : public Data, return newTensor; } + template<typename T, + typename VT = std::enable_if_t<std::is_arithmetic<T>::value, std::decay_t<T>>> + Tensor(T val) + : Data(Type), + mDataType(NativeType<VT>::type), + mDims({}), mStrides({1}), + mImpl(Registrar<Tensor>::create({"cpu", NativeType<VT>::type})(0, std::vector<std::size_t>())), + mSize(1) { + *static_cast<VT*>(mImpl->rawPtr()) = static_cast<VT>(val); + } + /** * @brief Construct a new Tensor object from the 1-dimension Array helper. * @tparam T datatype @@ -291,7 +303,7 @@ class Tensor : public Data, * @brief Get the data type enum. * @return constexpr DataType */ - constexpr DataType dataType() const { return mDataType; } + constexpr DataType dataType() const noexcept { return mDataType; } /** * @brief Set the DataType of the Tensor and converts data @@ -334,7 +346,7 @@ class Tensor : public Data, * @return true * @return false */ - bool hasImpl() const { return (mImpl) ? true : false; } + bool hasImpl() const noexcept { return mImpl ? true : false; } /** * @brief Get number of dimensions of the Tensor. @@ -369,13 +381,13 @@ class Tensor : public Data, * @brief Return true if Tensor is contiguous in memory. * @return bool */ - constexpr bool isContiguous() const { return mContiguous; } + constexpr bool isContiguous() const noexcept { return mContiguous; } /** * @brief Get the number of elements in the Tensor object. * @return constexpr std::size_t */ - constexpr std::size_t size() const { return mSize; } + constexpr std::size_t size() const noexcept { return mSize; } /** * @brief Change the dimensions of the Tensor object according to the given argument. diff --git a/include/aidge/operator/Add.hpp b/include/aidge/operator/Add.hpp index 9aed8299a67ab719141b6fe199ebf3f52fb7d387..97a4ef69bd371e80c4e63303feac5e64197670b3 100644 --- a/include/aidge/operator/Add.hpp +++ b/include/aidge/operator/Add.hpp @@ -68,13 +68,7 @@ public: // } - // void checkDims() const override final { - // assert(outputDimsForwarded()); - // for (const auto& in : mInputs) { - // assert(in->dims() == mOutputs[0]->dims()); - // } - // } - + void computeOutputDims() override final; void setBackend(const std::string& name, DeviceIdx_t device = 0) override { mImpl = Registrar<Add_Op>::create(name)(*this); diff --git a/include/aidge/operator/Div.hpp b/include/aidge/operator/Div.hpp index 94b755e0fdb0f76d54cd4f046fb8b08dda05b6b2..a033c6920a374003ad869bddbf5641c48fc5f6e2 100644 --- a/include/aidge/operator/Div.hpp +++ b/include/aidge/operator/Div.hpp @@ -60,7 +60,7 @@ public: } static const std::vector<std::string> getInputsName(){ - return {"data_input"}; + return {"data_input_1", "data_input_2"}; } static const std::vector<std::string> getOutputsName(){ return {"data_output"}; diff --git a/include/aidge/operator/Mul.hpp b/include/aidge/operator/Mul.hpp index 78b2fa5f98c9dae66ae291769f2de08d7805a738..8758021a9c3de1707a96bbfafc21686ded8b7e40 100644 --- a/include/aidge/operator/Mul.hpp +++ b/include/aidge/operator/Mul.hpp @@ -62,7 +62,7 @@ public: } static const std::vector<std::string> getInputsName(){ - return {"data_input"}; + return {"data_input_1", "data_input_2"}; } static const std::vector<std::string> getOutputsName(){ return {"data_output"}; diff --git a/include/aidge/operator/Pow.hpp b/include/aidge/operator/Pow.hpp index d498cacc7c5b2ddc3269f3ebc77707aead8eb52d..ba8d3d05877f9aa543518fff1d88f4e8a436b712 100644 --- a/include/aidge/operator/Pow.hpp +++ b/include/aidge/operator/Pow.hpp @@ -60,7 +60,7 @@ public: } static const std::vector<std::string> getInputsName(){ - return {"data_input"}; + return {"data_input_1", "data_input_2"}; } static const std::vector<std::string> getOutputsName(){ return {"data_output"}; diff --git a/include/aidge/operator/Sub.hpp b/include/aidge/operator/Sub.hpp index ee5efa24dc24ebcd5ad4c45491c968caf691eee9..7d346457ead71724ba05da70b5bdf7ad145cbe0c 100644 --- a/include/aidge/operator/Sub.hpp +++ b/include/aidge/operator/Sub.hpp @@ -65,7 +65,7 @@ public: } static const std::vector<std::string> getInputsName(){ - return {"data_input"}; + return {"data_input_1", "data_input_2"}; } static const std::vector<std::string> getOutputsName(){ return {"data_output"}; diff --git a/include/aidge/utils/Random.hpp b/include/aidge/utils/Random.hpp new file mode 100644 index 0000000000000000000000000000000000000000..704609c0c778c7065a580b86fc67aea7e9d3525d --- /dev/null +++ b/include/aidge/utils/Random.hpp @@ -0,0 +1,31 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + + +#ifndef AIDGE_RANDOM_H_ +#define AIDGE_RANDOM_H_ + + +#include <algorithm> +#include <vector> +#include <random> + +namespace Random { + + void randShuffle(std::vector<unsigned int>& vec) { + std::random_device rd; + std::mt19937 g(rd()); + std::shuffle(vec.begin(), vec.end(), g); + } + +} + +#endif //AIDGE_RANDOM_H_ \ No newline at end of file diff --git a/python_binding/data/pybind_DataProvider.cpp b/python_binding/data/pybind_DataProvider.cpp index dfdf188946673c4e2a7ea2dc0829312758d80f96..2f652aff5008f8008952ffb1bb6fb1738021b436 100644 --- a/python_binding/data/pybind_DataProvider.cpp +++ b/python_binding/data/pybind_DataProvider.cpp @@ -4,19 +4,33 @@ #include "aidge/data/Database.hpp" namespace py = pybind11; + namespace Aidge { +// __iter__ method for iterator protocol +DataProvider* DataProvider::iter(){ + resetIndexBatch(); + setBatches(); + return this; +} + +// __next__ method for iterator protocol +std::vector<std::shared_ptr<Aidge::Tensor>> DataProvider::next() { + if (!done()){ + incrementIndexBatch(); + return readBatch(); + } else { + throw py::stop_iteration(); + } +} + void init_DataProvider(py::module& m){ py::class_<DataProvider, std::shared_ptr<DataProvider>>(m, "DataProvider") - .def(py::init<Database&, std::size_t>(), py::arg("database"), py::arg("batchSize")) - .def("read_batch", &DataProvider::readBatch, py::arg("start_index"), - R"mydelimiter( - Return a batch of each data modality. - - :param start_index: Database starting index to read the batch from - :type start_index: int - )mydelimiter"); + .def(py::init<Database&, std::size_t, bool, bool>(), py::arg("database"), py::arg("batch_size"), py::arg("shuffle"), py::arg("drop_last")) + .def("__iter__", &DataProvider::iter) + .def("__next__", &DataProvider::next) + .def("__len__", &DataProvider::getNbBatch); } } diff --git a/python_binding/data/pybind_Tensor.cpp b/python_binding/data/pybind_Tensor.cpp index e4b8da920114f2fff799b6414a2f8ba3b0515f6f..85eda8f663146d106e11a21eb0751d456b06aef3 100644 --- a/python_binding/data/pybind_Tensor.cpp +++ b/python_binding/data/pybind_Tensor.cpp @@ -96,10 +96,18 @@ void init_Tensor(py::module& m){ return py::cast(b.get<double>(idx)); case DataType::Float32: return py::cast(b.get<float>(idx)); + case DataType::Int8: + return py::cast(b.get<std::int8_t>(idx)); + case DataType::Int16: + return py::cast(b.get<std::int16_t>(idx)); case DataType::Int32: return py::cast(b.get<std::int32_t>(idx)); case DataType::Int64: return py::cast(b.get<std::int64_t>(idx)); + case DataType::UInt8: + return py::cast(b.get<std::uint8_t>(idx)); + case DataType::UInt16: + return py::cast(b.get<std::uint16_t>(idx)); default: return py::none(); } @@ -111,10 +119,18 @@ void init_Tensor(py::module& m){ return py::cast(b.get<double>(coordIdx)); case DataType::Float32: return py::cast(b.get<float>(coordIdx)); + case DataType::Int8: + return py::cast(b.get<std::int8_t>(coordIdx)); + case DataType::Int16: + return py::cast(b.get<std::int16_t>(coordIdx)); case DataType::Int32: return py::cast(b.get<std::int32_t>(coordIdx)); case DataType::Int64: return py::cast(b.get<std::int64_t>(coordIdx)); + case DataType::UInt8: + return py::cast(b.get<std::uint8_t>(coordIdx)); + case DataType::UInt16: + return py::cast(b.get<std::uint16_t>(coordIdx)); default: return py::none(); } @@ -141,6 +157,12 @@ void init_Tensor(py::module& m){ break; case DataType::Float32: dataFormatDescriptor = py::format_descriptor<float>::format(); + break;; + case DataType::Int8: + dataFormatDescriptor = py::format_descriptor<std::int8_t>::format(); + break; + case DataType::Int16: + dataFormatDescriptor = py::format_descriptor<std::int16_t>::format(); break; case DataType::Int32: dataFormatDescriptor = py::format_descriptor<std::int32_t>::format(); @@ -148,6 +170,12 @@ void init_Tensor(py::module& m){ case DataType::Int64: dataFormatDescriptor = py::format_descriptor<std::int64_t>::format(); break; + case DataType::UInt8: + dataFormatDescriptor = py::format_descriptor<std::uint8_t>::format(); + break; + case DataType::UInt16: + dataFormatDescriptor = py::format_descriptor<std::uint16_t>::format(); + break; default: throw py::value_error("Unsupported data format"); } diff --git a/src/data/DataProvider.cpp b/src/data/DataProvider.cpp index dffb5745d9e324856548387069bcf1d5ff6a7b48..7783ed86cf4ae1d8672cc6a35a97ca9a996457b6 100644 --- a/src/data/DataProvider.cpp +++ b/src/data/DataProvider.cpp @@ -13,45 +13,56 @@ #include <cstddef> // std::size_t #include <memory> #include <vector> +#include <cmath> + #include "aidge/data/Database.hpp" #include "aidge/data/DataProvider.hpp" #include "aidge/data/Tensor.hpp" +#include "aidge/utils/Random.hpp" + -Aidge::DataProvider::DataProvider(const Aidge::Database& database, const std::size_t batchSize) +Aidge::DataProvider::DataProvider(const Aidge::Database& database, const std::size_t batchSize, const bool shuffle, const bool dropLast) : mDatabase(database), + mBatchSize(batchSize), + mShuffle(shuffle), + mDropLast(dropLast), mNumberModality(database.getItem(0).size()), - mBatchSize(batchSize) + mNbItems(mDatabase.getLen()), + mIndexBatch(0) { // Iterating on each data modality in the database // Get the tensor dimensions, datatype and backend of each modality to ensure each data have the same for (const auto& modality : mDatabase.getItem(0)) { - mDataSizes.push_back(modality->dims()); + mDataDims.push_back(modality->dims()); // assert(std::strcmp(item[i]->getImpl()->backend(), "cpu") == 0 && "DataProvider currently only supports cpu backend tensors"); - // mDataBackends.push_back(item[i]->getImpl()->backend()); mDataTypes.push_back(modality->dataType()); } + + // Compute the number of bacthes depending on mDropLast boolean + mNbBatch = (mDropLast) ? + static_cast<std::size_t>(std::floor(mNbItems / mBatchSize)) : + static_cast<std::size_t>(std::ceil(mNbItems / mBatchSize)); } -std::vector<std::shared_ptr<Aidge::Tensor>> Aidge::DataProvider::readBatch(const std::size_t startIndex) const +std::vector<std::shared_ptr<Aidge::Tensor>> Aidge::DataProvider::readBatch() const { - assert((startIndex) <= mDatabase.getLen() && " DataProvider readBatch : database fetch out of bounds"); - - - // Determine the batch size (may differ for the last batch) - const std::size_t current_batch_size = ((startIndex + mBatchSize) > mDatabase.getLen()) ? - mDatabase.getLen()-startIndex : - mBatchSize; + AIDGE_ASSERT(mIndexBatch <= mNbBatch, "Cannot fetch more data than available in database"); + std::size_t current_batch_size; + if (mIndexBatch == mNbBatch) { + current_batch_size = mLastBatchSize; + } else { + current_batch_size = mBatchSize; + } // Create batch tensors (dimensions, backends, datatype) for each modality std::vector<std::shared_ptr<Tensor>> batchTensors; - auto dataBatchSize = mDataSizes; + auto dataBatchDims = mDataDims; for (std::size_t i = 0; i < mNumberModality; ++i) { - dataBatchSize[i].insert(dataBatchSize[i].begin(), current_batch_size); + dataBatchDims[i].insert(dataBatchDims[i].begin(), current_batch_size); auto batchData = std::make_shared<Tensor>(); - batchData->resize(dataBatchSize[i]); - // batchData->setBackend(mDataBackends[i]); + batchData->resize(dataBatchDims[i]); batchData->setBackend("cpu"); batchData->setDataType(mDataTypes[i]); batchTensors.push_back(batchData); @@ -60,7 +71,8 @@ std::vector<std::shared_ptr<Aidge::Tensor>> Aidge::DataProvider::readBatch(const // Call each database item and concatenate each data modularity in the batch tensors for (std::size_t i = 0; i < current_batch_size; ++i){ - auto dataItem = mDatabase.getItem(startIndex+i); + auto dataItem = mDatabase.getItem(mBatches[(mIndexBatch-1)*mBatchSize+i]); + // auto dataItem = mDatabase.getItem(startIndex+i); // assert same number of modalities assert(dataItem.size() == mNumberModality && "DataProvider readBatch : item from database have inconsistent number of modality."); @@ -69,7 +81,7 @@ std::vector<std::shared_ptr<Aidge::Tensor>> Aidge::DataProvider::readBatch(const auto dataSample = dataItem[j]; // Assert tensor sizes - assert(dataSample->dims() == mDataSizes[j] && "DataProvider readBatch : corrupted Data size"); + assert(dataSample->dims() == mDataDims[j] && "DataProvider readBatch : corrupted Data size"); // Assert implementation backend // assert(dataSample->getImpl()->backend() == mDataBackends[j] && "DataProvider readBatch : corrupted data backend"); @@ -82,4 +94,31 @@ std::vector<std::shared_ptr<Aidge::Tensor>> Aidge::DataProvider::readBatch(const } } return batchTensors; -} \ No newline at end of file +} + + +void Aidge::DataProvider::setBatches(){ + + mBatches.clear(); + mBatches.resize(mNbItems); + std::iota(mBatches.begin(), + mBatches.end(), + 0U); + + if (mShuffle){ + Random::randShuffle(mBatches); + } + + if (mNbItems % mBatchSize !=0){ // The last batch is not full + std::size_t lastBatchSize = static_cast<std::size_t>(mNbItems % mBatchSize); + if (mDropLast){ // Remove the last non-full batch + AIDGE_ASSERT(lastBatchSize <= mBatches.size(), "Last batch bigger than the size of database"); + mBatches.erase(mBatches.end() - lastBatchSize, mBatches.end()); + mLastBatchSize = mBatchSize; + } else { // Keep the last non-full batch + mLastBatchSize = lastBatchSize; + } + } else { // The last batch is full + mLastBatchSize = mBatchSize; + } +} diff --git a/src/operator/Add.cpp b/src/operator/Add.cpp index 4e638fd86da487565a89760925e45339213fa8f9..a54302d06059d43336800d81e4d18744b6243785 100644 --- a/src/operator/Add.cpp +++ b/src/operator/Add.cpp @@ -9,8 +9,53 @@ * ********************************************************************************/ +#include <cstddef> // std::size_t +#include <stdexcept> // std::runtime_error #include <string> +#include <vector> #include "aidge/operator/Add.hpp" +#include "aidge/utils/Types.h" +#include "aidge/utils/ErrorHandling.hpp" -const std::string Aidge::Add_Op::Type = "Add"; \ No newline at end of file +const std::string Aidge::Add_Op::Type = "Add"; + +void Aidge::Add_Op::computeOutputDims() { + // check inputs have been associated + bool associated = (nbInputs() > 0); // do not compute anything if no input + for (IOIndex_t i = 0; i < nbInputs(); ++i) { + if (!getInput(i)) { + AIDGE_THROW_OR_ABORT(std::runtime_error, "Every input should be associated with a Tensor"); + } + associated &= !(getInput(i)->empty()); + } + if (associated) { + std::vector<std::vector<std::size_t>> inputsDims(nbInputs()); + for (std::size_t i = 0; i < nbInputs(); i++) { + inputsDims[i] = getInput(i)->dims(); + } + + std::size_t outNbDims = 1; + for(std::size_t i = 0; i < nbInputs(); ++i) { + outNbDims = (inputsDims[i].size() > outNbDims) ? inputsDims[i].size() : outNbDims; + } + + std::vector<std::size_t> outDims(outNbDims, 1); + + for (auto it = outDims.rbegin(); it != outDims.rend(); ++it) { + for (std::size_t i = 0; i < nbInputs(); ++i) { + if(!inputsDims[i].empty()) { + const std::size_t dim = inputsDims[i].back(); + inputsDims[i].pop_back(); + if (*it == 1) { + *it = dim; + } + else if ((dim != *it) && (dim != 1)) { + AIDGE_THROW_OR_ABORT(std::runtime_error, "Unsopported Tensor shape for Add operation"); + } + } + } + } + mOutputs[0]->resize(outDims); + } +} diff --git a/src/operator/Div.cpp b/src/operator/Div.cpp index 85db3ac6ef66c837c86dbece288185deaca88ba6..6b55338f4ab7ac9131231fcced21869274c1bd47 100644 --- a/src/operator/Div.cpp +++ b/src/operator/Div.cpp @@ -9,11 +9,10 @@ * ********************************************************************************/ -#include <cassert> -#include <cstddef> +#include <cstddef> // std::size_t +#include <stdexcept> // std::runtime_error #include <string> #include <vector> -#include <utility> #include "aidge/backend/OperatorImpl.hpp" #include "aidge/operator/Div.hpp" @@ -28,11 +27,27 @@ void Aidge::Div_Op::computeOutputDims() { AIDGE_THROW_OR_ABORT(std::runtime_error, "At least one input was not connected"); } - if ((!getInput(0)->empty()) && - ((getInput(1)->size() == 1) || // div by a single value - (getInput(1)->size() == getInput(0)->size()) || // div elem-wise - (getInput(1)->nbDims() == 1 && getInput(1)->size() == getInput(0)->dims()[getInput(0)->nbDims()-1]))) // div by a Tensor with one dimension of output size - { - mOutputs[0]->resize(getInput(0)->dims()); + if (!getInput(0)->empty() && !getInput(1)->empty()) { + + const std::vector<std::size_t>& inputsDims0 = getInput(0)->dims(); + const std::vector<std::size_t>& inputsDims1 = getInput(1)->dims(); + + std::vector<std::size_t> outDims = (inputsDims0.size() >= inputsDims1.size()) ? inputsDims0 : inputsDims1; + const std::vector<std::size_t>& lowDims = (inputsDims0.size() < inputsDims1.size()) ? inputsDims0 : inputsDims1; + + std::size_t out_id = outDims.size() - 1; + std::size_t low_id = lowDims.size() - 1; + std::size_t i = 0; + while (i++ < lowDims.size()) { + if (outDims[out_id] == 1) { + outDims[out_id] = lowDims[low_id]; + } + else if ((lowDims[low_id] != 1) && (lowDims[low_id] != outDims[out_id])) { + AIDGE_THROW_OR_ABORT(std::runtime_error, "Unsopported Tensor shape for Div Operation"); + } + --out_id; + --low_id; + } + mOutputs[0]->resize(outDims); } } \ No newline at end of file diff --git a/src/operator/Mul.cpp b/src/operator/Mul.cpp index 54cda11625bac4f8f69e0423daba6a500024491d..d4a594e95b2695b496fc28b8e8a7fcf3442e9253 100644 --- a/src/operator/Mul.cpp +++ b/src/operator/Mul.cpp @@ -9,10 +9,10 @@ * ********************************************************************************/ -#include <cassert> -#include <cstddef> +#include <cstddef> // std::size_t +#include <stdexcept> // std::runtime_error +#include <string> #include <vector> -#include <utility> #include "aidge/backend/OperatorImpl.hpp" #include "aidge/operator/Mul.hpp" @@ -27,12 +27,28 @@ void Aidge::Mul_Op::computeOutputDims() { AIDGE_THROW_OR_ABORT(std::runtime_error, "At least one input was not connected"); } - if ((!getInput(0)->empty()) && - ((getInput(1)->size() == 1) || // mul by a single value - (getInput(1)->size() == getInput(0)->size()) || // mul elem-wise - (getInput(1)->nbDims() == 1 && getInput(1)->size() == getInput(0)->dims()[getInput(0)->nbDims()-1]))) // mul by a Tensor with one dimension of output size - { - mOutputs[0]->resize(getInput(0)->dims()); + if (!getInput(0)->empty() && !getInput(1)->empty()) { + + const std::vector<std::size_t>& inputsDims0 = getInput(0)->dims(); + const std::vector<std::size_t>& inputsDims1 = getInput(1)->dims(); + + std::vector<std::size_t> outDims = (inputsDims0.size() >= inputsDims1.size()) ? inputsDims0 : inputsDims1; + const std::vector<std::size_t>& lowDims = (inputsDims0.size() < inputsDims1.size()) ? inputsDims0 : inputsDims1; + + std::size_t out_id = outDims.size() - 1; + std::size_t low_id = lowDims.size() - 1; + std::size_t i = 0; + while (i++ < lowDims.size()) { + if (outDims[out_id] == 1) { + outDims[out_id] = lowDims[low_id]; + } + else if ((lowDims[low_id] != 1) && (lowDims[low_id] != outDims[out_id])) { + AIDGE_THROW_OR_ABORT(std::runtime_error, "Unsopported Tensor shape for Div Operation"); + } + --out_id; + --low_id; + } + mOutputs[0]->resize(outDims); } else if (!getInput(0)->empty() && !getInput(1)->empty()) { AIDGE_THROW_OR_ABORT(std::runtime_error, "Incompatible input dimensions for Operator Mul: {} and {}", getInput(0)->dims(), getInput(1)->dims()); diff --git a/src/operator/Pow.cpp b/src/operator/Pow.cpp index de1f0c3694f51fbd5b365573f61d3e3e2b9109ff..5e29eae0c0f42e7d566a933e9409766026369dad 100644 --- a/src/operator/Pow.cpp +++ b/src/operator/Pow.cpp @@ -9,10 +9,10 @@ * ********************************************************************************/ -#include <cassert> -#include <cstddef> +#include <cstddef> // std::size_t +#include <stdexcept> // std::runtime_error +#include <string> #include <vector> -#include <utility> #include "aidge/backend/OperatorImpl.hpp" #include "aidge/operator/Pow.hpp" @@ -27,11 +27,27 @@ void Aidge::Pow_Op::computeOutputDims() { AIDGE_THROW_OR_ABORT(std::runtime_error, "At least one input was not connected"); } - if ((!getInput(0)->empty()) && - ((getInput(1)->size() == 1) || // pow by a single value - (getInput(1)->size() == getInput(0)->size()) || // pow elem-wise - (getInput(1)->nbDims() == 1 && getInput(1)->size() == getInput(0)->dims()[getInput(0)->nbDims()-1]))) // pow by a Tensor with one dimension of output size - { - mOutputs[0]->resize(getInput(0)->dims()); + if (!getInput(0)->empty() && !getInput(1)->empty()) { + + const std::vector<std::size_t>& inputsDims0 = getInput(0)->dims(); + const std::vector<std::size_t>& inputsDims1 = getInput(1)->dims(); + + std::vector<std::size_t> outDims = (inputsDims0.size() >= inputsDims1.size()) ? inputsDims0 : inputsDims1; + const std::vector<std::size_t>& lowDims = (inputsDims0.size() < inputsDims1.size()) ? inputsDims0 : inputsDims1; + + std::size_t out_id = outDims.size() - 1; + std::size_t low_id = lowDims.size() - 1; + std::size_t i = 0; + while (i++ < lowDims.size()) { + if (outDims[out_id] == 1) { + outDims[out_id] = lowDims[low_id]; + } + else if ((lowDims[low_id] != 1) && (lowDims[low_id] != outDims[out_id])) { + AIDGE_THROW_OR_ABORT(std::runtime_error, "Unsopported Tensor shape for Div Operation"); + } + --out_id; + --low_id; + } + mOutputs[0]->resize(outDims); } } \ No newline at end of file diff --git a/src/operator/Sub.cpp b/src/operator/Sub.cpp index 639eaf798c1c2a9a6685e8b8d2c4a2cb00a4b57a..9d933bf6c97348842fae8f405d3e709e68d56916 100644 --- a/src/operator/Sub.cpp +++ b/src/operator/Sub.cpp @@ -9,10 +9,10 @@ * ********************************************************************************/ -#include <cassert> -#include <cstddef> +#include <cstddef> // std::size_t +#include <stdexcept> // std::runtime_error +#include <string> #include <vector> -#include <utility> #include "aidge/backend/OperatorImpl.hpp" #include "aidge/operator/Sub.hpp" @@ -27,11 +27,27 @@ void Aidge::Sub_Op::computeOutputDims() { AIDGE_THROW_OR_ABORT(std::runtime_error, "At least one input was not connected"); } - if ((!getInput(0)->empty()) && - ((getInput(1)->size() == 1) || // sub by a single value - (getInput(1)->size() == getInput(0)->size()) || // sub elem-wise - (getInput(1)->nbDims() == 1 && getInput(1)->size() == getInput(0)->dims()[getInput(0)->nbDims()-1]))) // sub by a Tensor with one dimension of output size - { - mOutputs[0]->resize(getInput(0)->dims()); + if (!getInput(0)->empty() && !getInput(1)->empty()) { + + const std::vector<std::size_t>& inputsDims0 = getInput(0)->dims(); + const std::vector<std::size_t>& inputsDims1 = getInput(1)->dims(); + + std::vector<std::size_t> outDims = (inputsDims0.size() >= inputsDims1.size()) ? inputsDims0 : inputsDims1; + const std::vector<std::size_t>& lowDims = (inputsDims0.size() < inputsDims1.size()) ? inputsDims0 : inputsDims1; + + std::size_t out_id = outDims.size() - 1; + std::size_t low_id = lowDims.size() - 1; + std::size_t i = 0; + while (i++ < lowDims.size()) { + if (outDims[out_id] == 1) { + outDims[out_id] = lowDims[low_id]; + } + else if ((lowDims[low_id] != 1) && (lowDims[low_id] != outDims[out_id])) { + AIDGE_THROW_OR_ABORT(std::runtime_error, "Unsopported Tensor shape for Div Operation"); + } + --out_id; + --low_id; + } + mOutputs[0]->resize(outDims); } } \ No newline at end of file diff --git a/unit_tests/operator/Test_Div_Op.cpp b/unit_tests/operator/Test_Div_Op.cpp new file mode 100644 index 0000000000000000000000000000000000000000..e659742c0bd200fa33b598f581cfef7b2f1e432e --- /dev/null +++ b/unit_tests/operator/Test_Div_Op.cpp @@ -0,0 +1,144 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <catch2/catch_test_macros.hpp> +#include <cstddef> // std::size_t +#include <memory> +#include <random> // std::random_device, std::mt19937, std::uniform_int_distribution +#include <vector> + +#include "aidge/data/Tensor.hpp" +#include "aidge/operator/Div.hpp" +#include "aidge/operator/OperatorTensor.hpp" + +namespace Aidge { +TEST_CASE("[core/operator] Div_Op(computeOutputDims)", "[Div][computeOutputDims]") { + constexpr std::uint16_t NBTRIALS = 10; + + // Create a random number generator + std::random_device rd; + std::mt19937 gen(rd()); + std::uniform_int_distribution<std::size_t> dimsDist(1, 10); + std::uniform_int_distribution<std::size_t> nbDimsDist(1, 5); + + // Create Div Operator + std::shared_ptr<Node> myDiv = Div(); + auto op = std::static_pointer_cast<OperatorTensor>(myDiv -> getOperator()); + + // input_0 + std::shared_ptr<Tensor> T0 = std::make_shared<Tensor>(); + op -> associateInput(0,T0); + // input_1 + std::shared_ptr<Tensor> T1 = std::make_shared<Tensor>(); + op -> associateInput(1,T1); + + /** + * @todo Special case: scalar not handled yet by + * ``OperatorTensor::computeOutputDims()`` + */ + // SECTION("Scalar / Scalar") { + // // input_0 + // T0->resize({}); + + // // input_1 + // T1->resize({}); + + // REQUIRE_NOTHROW(op->computeOutputDims()); + // REQUIRE((op->getOutput(0)->dims() == std::vector<std::size_t>())); + // } + // SECTION("Scalar / +1-D") { + // // a scalar is compatible with any other Tensor + // // input_0 + // T0->resize({}); + + // for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { + + // // input_1 + // const std::size_t nb_dims = nbDimsDist(gen); + // std::vector<std::size_t> dims(nb_dims); + // for (std::size_t i = 0; i < nb_dims; ++i) { + // dims[i] = dimsDist(gen); + // } + // T1->resize(dims); + + // REQUIRE_NOTHROW(op->computeOutputDims()); + // REQUIRE((op->getOutput(0)->dims()) == dims); + // } + // } + // SECTION("+1-D / Scalar") { + // // a scalar is compatible with any other Tensor + // // input_1 + // T1->resize({}); + + // for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { + + // // input_0 + // const std::size_t nb_dims = nbDimsDist(gen); + // std::vector<std::size_t> dims(nb_dims); + // for (std::size_t i = 0; i < nb_dims; ++i) { + // dims[i] = dimsDist(gen); + // } + // T0->resize(dims); + + // REQUIRE_NOTHROW(op->computeOutputDims()); + // REQUIRE((op->getOutput(0)->dims()) == dims); + // } + // } + SECTION("+1-D / +1-D") { + // same size + for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { + const std::size_t nb_dims = nbDimsDist(gen) + 1; + std::vector<std::size_t> dims0(nb_dims); + for (std::size_t i = 0; i < nb_dims; ++i) { + dims0[i] = dimsDist(gen) + 1; + } + + T0->resize(dims0); + T1->resize(dims0); + REQUIRE_NOTHROW(op->computeOutputDims()); + REQUIRE((op->getOutput(0)->dims()) == dims0); + } + + // broadcast + for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { + const std::size_t nb_dims = nbDimsDist(gen) + 1; + std::vector<std::size_t> dims0(nb_dims); + for (std::size_t i = 0; i < nb_dims; ++i) { + dims0[i] = dimsDist(gen) + 2; + } + std::vector<std::size_t> dimsOut = dims0; + std::vector<std::size_t> dims1 = dims0; + for (std::size_t i = 0; i < nb_dims; ++i) { + if (dimsDist(gen) <= 5) { + dims1[i] = 1; + } + } + dims1.erase(dims1.cbegin(), dims1.cbegin() + std::min(nbDimsDist(gen), nb_dims-1)); + + T0->resize(dims0); + T1->resize(dims1); + + REQUIRE_NOTHROW(op->computeOutputDims()); + REQUIRE((op->getOutput(0)->dims()) == dimsOut); + + // input_0 - wrong + // T1->resize({dims[0] + 1}); + std::vector<std::size_t> dims1_wrong = dims1; + for (std::size_t i = 0; i < dims1.size(); ++i) { + ++dims1_wrong[i]; + } + T1->resize(dims1_wrong); + REQUIRE(dims0 != dims1_wrong); + REQUIRE_THROWS(op->computeOutputDims()); + } + } +} +} // namespace Aidge diff --git a/unit_tests/operator/Test_Mul_Op.cpp b/unit_tests/operator/Test_Mul_Op.cpp new file mode 100644 index 0000000000000000000000000000000000000000..d3e0c5e086fac9d31db817d628214e95d4e41a32 --- /dev/null +++ b/unit_tests/operator/Test_Mul_Op.cpp @@ -0,0 +1,144 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <catch2/catch_test_macros.hpp> +#include <cstddef> // std::size_t +#include <memory> +#include <random> // std::random_device, std::mt19937, std::uniform_int_distribution +#include <vector> + +#include "aidge/data/Tensor.hpp" +#include "aidge/operator/Mul.hpp" +#include "aidge/operator/OperatorTensor.hpp" + +namespace Aidge { +TEST_CASE("[core/operator] Mul_Op(computeOutputDims)", "[Mul][computeOutputDims]") { + constexpr std::uint16_t NBTRIALS = 10; + + // Create a random number generator + std::random_device rd; + std::mt19937 gen(rd()); + std::uniform_int_distribution<std::size_t> dimsDist(1, 10); + std::uniform_int_distribution<std::size_t> nbDimsDist(1, 5); + + // Create Mul Operator + std::shared_ptr<Node> myMul = Mul(); + auto op = std::static_pointer_cast<OperatorTensor>(myMul -> getOperator()); + + // input_0 + std::shared_ptr<Tensor> T0 = std::make_shared<Tensor>(); + op -> associateInput(0,T0); + // input_1 + std::shared_ptr<Tensor> T1 = std::make_shared<Tensor>(); + op -> associateInput(1,T1); + + /** + * @todo Special case: scalar not handled yet by + * ``OperatorTensor::computeOutputDims()`` + */ + // SECTION("Scalar / Scalar") { + // // input_0 + // T0->resize({}); + + // // input_1 + // T1->resize({}); + + // REQUIRE_NOTHROW(op->computeOutputDims()); + // REQUIRE((op->getOutput(0)->dims() == std::vector<std::size_t>())); + // } + // SECTION("Scalar / +1-D") { + // // a scalar is compatible with any other Tensor + // // input_0 + // T0->resize({}); + + // for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { + + // // input_1 + // const std::size_t nb_dims = nbDimsDist(gen); + // std::vector<std::size_t> dims(nb_dims); + // for (std::size_t i = 0; i < nb_dims; ++i) { + // dims[i] = dimsDist(gen); + // } + // T1->resize(dims); + + // REQUIRE_NOTHROW(op->computeOutputDims()); + // REQUIRE((op->getOutput(0)->dims()) == dims); + // } + // } + // SECTION("+1-D / Scalar") { + // // a scalar is compatible with any other Tensor + // // input_1 + // T1->resize({}); + + // for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { + + // // input_0 + // const std::size_t nb_dims = nbDimsDist(gen); + // std::vector<std::size_t> dims(nb_dims); + // for (std::size_t i = 0; i < nb_dims; ++i) { + // dims[i] = dimsDist(gen); + // } + // T0->resize(dims); + + // REQUIRE_NOTHROW(op->computeOutputDims()); + // REQUIRE((op->getOutput(0)->dims()) == dims); + // } + // } + SECTION("+1-D / +1-D") { + // same size + for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { + const std::size_t nb_dims = nbDimsDist(gen) + 1; + std::vector<std::size_t> dims0(nb_dims); + for (std::size_t i = 0; i < nb_dims; ++i) { + dims0[i] = dimsDist(gen) + 1; + } + + T0->resize(dims0); + T1->resize(dims0); + REQUIRE_NOTHROW(op->computeOutputDims()); + REQUIRE((op->getOutput(0)->dims()) == dims0); + } + + // broadcast + for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { + const std::size_t nb_dims = nbDimsDist(gen) + 1; + std::vector<std::size_t> dims0(nb_dims); + for (std::size_t i = 0; i < nb_dims; ++i) { + dims0[i] = dimsDist(gen) + 2; + } + std::vector<std::size_t> dimsOut = dims0; + std::vector<std::size_t> dims1 = dims0; + for (std::size_t i = 0; i < nb_dims; ++i) { + if (dimsDist(gen) <= 5) { + dims1[i] = 1; + } + } + dims1.erase(dims1.cbegin(), dims1.cbegin() + std::min(nbDimsDist(gen), nb_dims-1)); + + T0->resize(dims0); + T1->resize(dims1); + + REQUIRE_NOTHROW(op->computeOutputDims()); + REQUIRE((op->getOutput(0)->dims()) == dimsOut); + + // input_0 - wrong + // T1->resize({dims[0] + 1}); + std::vector<std::size_t> dims1_wrong = dims1; + for (std::size_t i = 0; i < dims1.size(); ++i) { + ++dims1_wrong[i]; + } + T1->resize(dims1_wrong); + REQUIRE(dims0 != dims1_wrong); + REQUIRE_THROWS(op->computeOutputDims()); + } + } +} +} // namespace Aidge diff --git a/unit_tests/operator/Test_Pow_Op.cpp b/unit_tests/operator/Test_Pow_Op.cpp new file mode 100644 index 0000000000000000000000000000000000000000..c77615c11e99c174707df21560044fdd3b6a3c42 --- /dev/null +++ b/unit_tests/operator/Test_Pow_Op.cpp @@ -0,0 +1,144 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <catch2/catch_test_macros.hpp> +#include <cstddef> // std::size_t +#include <memory> +#include <random> // std::random_device, std::mt19937, std::uniform_int_distribution +#include <vector> + +#include "aidge/data/Tensor.hpp" +#include "aidge/operator/Pow.hpp" +#include "aidge/operator/OperatorTensor.hpp" + +namespace Aidge { +TEST_CASE("[core/operator] Pow_Op(computeOutputDims)", "[Pow][computeOutputDims]") { + constexpr std::uint16_t NBTRIALS = 10; + + // Create a random number generator + std::random_device rd; + std::mt19937 gen(rd()); + std::uniform_int_distribution<std::size_t> dimsDist(1, 10); + std::uniform_int_distribution<std::size_t> nbDimsDist(1, 5); + + // Create Pow Operator + std::shared_ptr<Node> myPow = Pow(); + auto op = std::static_pointer_cast<OperatorTensor>(myPow -> getOperator()); + + // input_0 + std::shared_ptr<Tensor> T0 = std::make_shared<Tensor>(); + op -> associateInput(0,T0); + // input_1 + std::shared_ptr<Tensor> T1 = std::make_shared<Tensor>(); + op -> associateInput(1,T1); + + /** + * @todo Special case: scalar not handled yet by + * ``OperatorTensor::computeOutputDims()`` + */ + // SECTION("Scalar / Scalar") { + // // input_0 + // T0->resize({}); + + // // input_1 + // T1->resize({}); + + // REQUIRE_NOTHROW(op->computeOutputDims()); + // REQUIRE((op->getOutput(0)->dims() == std::vector<std::size_t>())); + // } + // SECTION("Scalar / +1-D") { + // // a scalar is compatible with any other Tensor + // // input_0 + // T0->resize({}); + + // for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { + + // // input_1 + // const std::size_t nb_dims = nbDimsDist(gen); + // std::vector<std::size_t> dims(nb_dims); + // for (std::size_t i = 0; i < nb_dims; ++i) { + // dims[i] = dimsDist(gen); + // } + // T1->resize(dims); + + // REQUIRE_NOTHROW(op->computeOutputDims()); + // REQUIRE((op->getOutput(0)->dims()) == dims); + // } + // } + // SECTION("+1-D / Scalar") { + // // a scalar is compatible with any other Tensor + // // input_1 + // T1->resize({}); + + // for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { + + // // input_0 + // const std::size_t nb_dims = nbDimsDist(gen); + // std::vector<std::size_t> dims(nb_dims); + // for (std::size_t i = 0; i < nb_dims; ++i) { + // dims[i] = dimsDist(gen); + // } + // T0->resize(dims); + + // REQUIRE_NOTHROW(op->computeOutputDims()); + // REQUIRE((op->getOutput(0)->dims()) == dims); + // } + // } + SECTION("+1-D / +1-D") { + // same size + for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { + const std::size_t nb_dims = nbDimsDist(gen) + 1; + std::vector<std::size_t> dims0(nb_dims); + for (std::size_t i = 0; i < nb_dims; ++i) { + dims0[i] = dimsDist(gen) + 1; + } + + T0->resize(dims0); + T1->resize(dims0); + REQUIRE_NOTHROW(op->computeOutputDims()); + REQUIRE((op->getOutput(0)->dims()) == dims0); + } + + // broadcast + for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { + const std::size_t nb_dims = nbDimsDist(gen) + 1; + std::vector<std::size_t> dims0(nb_dims); + for (std::size_t i = 0; i < nb_dims; ++i) { + dims0[i] = dimsDist(gen) + 2; + } + std::vector<std::size_t> dimsOut = dims0; + std::vector<std::size_t> dims1 = dims0; + for (std::size_t i = 0; i < nb_dims; ++i) { + if (dimsDist(gen) <= 5) { + dims1[i] = 1; + } + } + dims1.erase(dims1.cbegin(), dims1.cbegin() + std::min(nbDimsDist(gen), nb_dims-1)); + + T0->resize(dims0); + T1->resize(dims1); + + REQUIRE_NOTHROW(op->computeOutputDims()); + REQUIRE((op->getOutput(0)->dims()) == dimsOut); + + // input_0 - wrong + // T1->resize({dims[0] + 1}); + std::vector<std::size_t> dims1_wrong = dims1; + for (std::size_t i = 0; i < dims1.size(); ++i) { + ++dims1_wrong[i]; + } + T1->resize(dims1_wrong); + REQUIRE(dims0 != dims1_wrong); + REQUIRE_THROWS(op->computeOutputDims()); + } + } +} +} // namespace Aidge diff --git a/unit_tests/operator/Test_Sub_Op.cpp b/unit_tests/operator/Test_Sub_Op.cpp new file mode 100644 index 0000000000000000000000000000000000000000..b7b744410d31ea32dea5a15cc7a29da093488d14 --- /dev/null +++ b/unit_tests/operator/Test_Sub_Op.cpp @@ -0,0 +1,144 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <catch2/catch_test_macros.hpp> +#include <cstddef> // std::size_t +#include <memory> +#include <random> // std::random_device, std::mt19937, std::uniform_int_distribution +#include <vector> + +#include "aidge/data/Tensor.hpp" +#include "aidge/operator/Sub.hpp" +#include "aidge/operator/OperatorTensor.hpp" + +namespace Aidge { +TEST_CASE("[core/operator] Sub_Op(computeOutputDims)", "[Sub][computeOutputDims]") { + constexpr std::uint16_t NBTRIALS = 10; + + // Create a random number generator + std::random_device rd; + std::mt19937 gen(rd()); + std::uniform_int_distribution<std::size_t> dimsDist(1, 10); + std::uniform_int_distribution<std::size_t> nbDimsDist(1, 5); + + // Create Sub Operator + std::shared_ptr<Node> mySub = Sub(); + auto op = std::static_pointer_cast<OperatorTensor>(mySub -> getOperator()); + + // input_0 + std::shared_ptr<Tensor> T0 = std::make_shared<Tensor>(); + op -> associateInput(0,T0); + // input_1 + std::shared_ptr<Tensor> T1 = std::make_shared<Tensor>(); + op -> associateInput(1,T1); + + /** + * @todo Special case: scalar not handled yet by + * ``OperatorTensor::computeOutputDims()`` + */ + // SECTION("Scalar / Scalar") { + // // input_0 + // T0->resize({}); + + // // input_1 + // T1->resize({}); + + // REQUIRE_NOTHROW(op->computeOutputDims()); + // REQUIRE((op->getOutput(0)->dims() == std::vector<std::size_t>())); + // } + // SECTION("Scalar / +1-D") { + // // a scalar is compatible with any other Tensor + // // input_0 + // T0->resize({}); + + // for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { + + // // input_1 + // const std::size_t nb_dims = nbDimsDist(gen); + // std::vector<std::size_t> dims(nb_dims); + // for (std::size_t i = 0; i < nb_dims; ++i) { + // dims[i] = dimsDist(gen); + // } + // T1->resize(dims); + + // REQUIRE_NOTHROW(op->computeOutputDims()); + // REQUIRE((op->getOutput(0)->dims()) == dims); + // } + // } + // SECTION("+1-D / Scalar") { + // // a scalar is compatible with any other Tensor + // // input_1 + // T1->resize({}); + + // for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { + + // // input_0 + // const std::size_t nb_dims = nbDimsDist(gen); + // std::vector<std::size_t> dims(nb_dims); + // for (std::size_t i = 0; i < nb_dims; ++i) { + // dims[i] = dimsDist(gen); + // } + // T0->resize(dims); + + // REQUIRE_NOTHROW(op->computeOutputDims()); + // REQUIRE((op->getOutput(0)->dims()) == dims); + // } + // } + SECTION("+1-D / +1-D") { + // same size + for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { + const std::size_t nb_dims = nbDimsDist(gen) + 1; + std::vector<std::size_t> dims0(nb_dims); + for (std::size_t i = 0; i < nb_dims; ++i) { + dims0[i] = dimsDist(gen) + 1; + } + + T0->resize(dims0); + T1->resize(dims0); + REQUIRE_NOTHROW(op->computeOutputDims()); + REQUIRE((op->getOutput(0)->dims()) == dims0); + } + + // broadcast + for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { + const std::size_t nb_dims = nbDimsDist(gen) + 1; + std::vector<std::size_t> dims0(nb_dims); + for (std::size_t i = 0; i < nb_dims; ++i) { + dims0[i] = dimsDist(gen) + 2; + } + std::vector<std::size_t> dimsOut = dims0; + std::vector<std::size_t> dims1 = dims0; + for (std::size_t i = 0; i < nb_dims; ++i) { + if (dimsDist(gen) <= 5) { + dims1[i] = 1; + } + } + dims1.erase(dims1.cbegin(), dims1.cbegin() + std::min(nbDimsDist(gen), nb_dims-1)); + + T0->resize(dims0); + T1->resize(dims1); + + REQUIRE_NOTHROW(op->computeOutputDims()); + REQUIRE((op->getOutput(0)->dims()) == dimsOut); + + // input_0 - wrong + // T1->resize({dims[0] + 1}); + std::vector<std::size_t> dims1_wrong = dims1; + for (std::size_t i = 0; i < dims1.size(); ++i) { + ++dims1_wrong[i]; + } + T1->resize(dims1_wrong); + REQUIRE(dims0 != dims1_wrong); + REQUIRE_THROWS(op->computeOutputDims()); + } + } +} +} // namespace Aidge