diff --git a/include/aidge/data/Tensor.hpp b/include/aidge/data/Tensor.hpp index 5f6be6045167f6ff523876aaa309a536683810de..fa8b5360dcb42b870bcce25351c416f95d7a2818 100644 --- a/include/aidge/data/Tensor.hpp +++ b/include/aidge/data/Tensor.hpp @@ -24,10 +24,7 @@ #include "aidge/backend/TensorImpl.hpp" #include "aidge/data/Data.hpp" -#include "aidge/operator/Add.hpp" -#include "aidge/operator/Div.hpp" -#include "aidge/operator/Mul.hpp" -#include "aidge/operator/Sub.hpp" + #include "aidge/utils/Registrar.hpp" #include "aidge/utils/Types.h" #include "aidge/utils/ArrayHelpers.hpp" @@ -242,6 +239,13 @@ class Tensor : public Data, return *mImpl == *(otherTensor.mImpl); } + /** + * @brief Transposition operation + * + * @return Tensor + */ + Tensor transpose(const std::vector<DimSize_t> &outputDimsOrder) const; + /** * @brief Element-wise addition operation for two ``Tensor``s. * @note ``Tensor``s should be stored on the same backend. @@ -251,21 +255,7 @@ class Tensor : public Data, * @param other * @return Tensor */ - Tensor operator+(const Tensor& other) const { - AIDGE_ASSERT(hasImpl() && other.hasImpl(), "At least one Tensor cannot perform any binary operation because it has no implementation."); - AIDGE_ASSERT(mImpl->backend() == other.mImpl->backend(), "Tensors must have the same backend"); - AIDGE_ASSERT(dataType() == other.dataType(), "Tensors must have the same data type"); - AIDGE_ASSERT(dataFormat() == other.dataFormat(), "Tensors must have the same data format"); - auto add_ = Add_Op(2); - add_.associateInput(0, std::make_shared<Tensor>(*this)); - add_.associateInput(1, std::make_shared<Tensor>(other)); - add_.setDataType(dataType()); - add_.setDataFormat(dataFormat()); - add_.setBackend(mImpl->backend()); - add_.forward(); - // using add_backend = std::remove_reference_t<decltype(*Registrar<Add_Op>::create("cpu")(std::declval<const Add_Op&>()))>; - return add_.getOutput(0)->clone(); - } + Tensor operator+(const Tensor& other) const; /** * @brief Element-wise substraction operation for two ``Tensor``s. @@ -276,21 +266,7 @@ class Tensor : public Data, * @param other * @return Tensor */ - Tensor operator-(const Tensor& other) const { - AIDGE_ASSERT(hasImpl() && other.hasImpl(), "At least one Tensor cannot perform any binary operation because it has no implementation."); - AIDGE_ASSERT(mImpl->backend() == other.mImpl->backend(), "Tensors must have the same backend"); - AIDGE_ASSERT(dataType() == other.dataType(), "Tensors must have the same data type"); - AIDGE_ASSERT(dataFormat() == other.dataFormat(), "Tensors must have the same data format"); - auto sub_ = Sub_Op(); - sub_.associateInput(0, std::make_shared<Tensor>(*this)); - sub_.associateInput(1, std::make_shared<Tensor>(other)); - sub_.setDataType(dataType()); - sub_.setDataFormat(dataFormat()); - sub_.setBackend(mImpl->backend()); - sub_.forward(); - // using add_backend = std::remove_reference_t<decltype(*Registrar<Add_Op>::create("cpu")(std::declval<const Add_Op&>()))>; - return sub_.getOutput(0)->clone(); - } + Tensor operator-(const Tensor& other) const; /** * @brief Element-wise multiplication operation for two ``Tensor``s. @@ -301,21 +277,7 @@ class Tensor : public Data, * @param other * @return Tensor */ - Tensor operator*(const Tensor& other) const { - AIDGE_ASSERT(hasImpl() && other.hasImpl(), "At least one Tensor cannot perform any binary operation because it has no implementation."); - AIDGE_ASSERT(mImpl->backend() == other.mImpl->backend(), "Tensors must have the same backend"); - AIDGE_ASSERT(dataType() == other.dataType(), "Tensors must have the same data type"); - AIDGE_ASSERT(dataFormat() == other.dataFormat(), "Tensors must have the same data format"); - auto mul_ = Mul_Op(); - mul_.associateInput(0, std::make_shared<Tensor>(*this)); - mul_.associateInput(1, std::make_shared<Tensor>(other)); - mul_.setDataType(dataType()); - mul_.setDataFormat(dataFormat()); - mul_.setBackend(mImpl->backend()); - mul_.forward(); - // using add_backend = std::remove_reference_t<decltype(*Registrar<Add_Op>::create("cpu")(std::declval<const Add_Op&>()))>; - return mul_.getOutput(0)->clone(); - } + Tensor operator*(const Tensor& other) const; /** * @brief Element-wise division operation for two ``Tensor``s. @@ -326,21 +288,8 @@ class Tensor : public Data, * @param other * @return Tensor */ - Tensor operator/(const Tensor& other) const { - AIDGE_ASSERT(hasImpl() && other.hasImpl(), "At least one Tensor cannot perform any binary operation because it has no implementation."); - AIDGE_ASSERT(mImpl->backend() == other.mImpl->backend(), "Tensors must have the same backend"); - AIDGE_ASSERT(dataType() == other.dataType(), "Tensors must have the same data type"); - AIDGE_ASSERT(dataFormat() == other.dataFormat(), "Tensors must have the same data format"); - auto div_ = Div_Op(); - div_.associateInput(0, std::make_shared<Tensor>(*this)); - div_.associateInput(1, std::make_shared<Tensor>(other)); - div_.setDataType(dataType()); - div_.setDataFormat(dataFormat()); - div_.setBackend(mImpl->backend()); - div_.forward(); - // using add_backend = std::remove_reference_t<decltype(*Registrar<Add_Op>::create("cpu")(std::declval<const Add_Op&>()))>; - return div_.getOutput(0)->clone(); - } + Tensor operator/(const Tensor& other) const; + ~Tensor() noexcept; @@ -432,7 +381,7 @@ public: /** * @brief Set the DataFormat of the Tensor and transpose data, only * if the Tensor has already been initialized and copyTrans is true. - * In this case, a transposition occurs only if both previous format and + * In this case, a transposition occurs only if both previous format and * new format are different from DataFormat::Default. * @param df New DataFormat * @param copyTrans If true (default), when both previous format and new @@ -512,6 +461,18 @@ public: */ constexpr std::size_t size() const noexcept { return mSize; } + /** + * @brief Return the current capacity of the tensor, i.e. the actual memory + * currently being allocated. It can be different from the size: + * - Capacity can be 0 if the tensor memory was not yet initialized (because + * of lazy initialization, memory is allocated only when it needs to be + * accessed the first time). + * - Capacity can be > size if the tensor was downsized but memory was not + * reallocated. + */ + inline std::size_t capacity() const noexcept { return mImpl->capacity(); } + + /** * @brief Change the dimensions of the Tensor object according to the given argument. * If the overall size is not changed (meaning we actually only performed a diff --git a/src/data/Tensor.cpp b/src/data/Tensor.cpp index fac7ff0f6cad4c80700bf40266b0457768e8511b..780258ea748edd25d228cfd9e212f318e59a492e 100644 --- a/src/data/Tensor.cpp +++ b/src/data/Tensor.cpp @@ -16,8 +16,119 @@ #include "aidge/utils/ErrorHandling.hpp" #include "aidge/utils/Registrar.hpp" +#include "aidge/operator/Add.hpp" +#include "aidge/operator/Div.hpp" +#include "aidge/operator/Mul.hpp" +#include "aidge/operator/Sub.hpp" +#include "aidge/operator/Transpose.hpp" #include "aidge/utils/Types.h" +/** + * @brief Transposition operation + * + * @return Tensor + */ +Aidge::Tensor Aidge::Tensor::transpose(const std::vector<Aidge::DimSize_t> &outputDimsOrder) const { + auto transpose_ = Aidge::Transpose_Op(outputDimsOrder); + transpose_.associateInput(0, std::make_shared<Tensor>(*this)); + transpose_.setDataType(dataType()); + transpose_.setBackend(mImpl->backend()); + transpose_.forward(); + // using add_backend = std::remove_reference_t<decltype(*Registrar<Add_Op>::create("cpu")(std::declval<const Add_Op&>()))>; + return transpose_.getOutput(0)->clone(); +} + +/** + * @brief Element-wise addition operation for two ``Tensor``s. + * @note ``Tensor``s should be stored on the same backend. + * @todo If input ``Tensor``s have a different dataType, the output should + * have the dataType of the ``Tensor`` with the highest precision. + * + * @param other + * @return Tensor + */ +Aidge::Tensor Aidge::Tensor::operator+(const Aidge::Tensor& other) const { + AIDGE_ASSERT(hasImpl() && other.hasImpl(), "At least one Tensor cannot perform any binary operation because it has no implementation."); + AIDGE_ASSERT(mImpl->backend() == other.mImpl->backend(), "Tensors must have the same backend"); + AIDGE_ASSERT(dataType() == other.dataType(), "Tensors must have the same data type"); + AIDGE_ASSERT(dataFormat() == other.dataFormat(), "Tensors must have the same data format"); + auto add_ = Add_Op(2); + add_.associateInput(0, std::make_shared<Tensor>(*this)); + add_.associateInput(1, std::make_shared<Tensor>(other)); + add_.setDataType(dataType()); + add_.setDataFormat(dataFormat()); + add_.setBackend(mImpl->backend()); + add_.forward(); + // using add_backend = std::remove_reference_t<decltype(*Registrar<Add_Op>::create("cpu")(std::declval<const Add_Op&>()))>; + return add_.getOutput(0)->clone(); +} + +/** + * @brief Element-wise substraction operation for two ``Tensor``s. + * @note ``Tensor``s should be stored on the same backend. + * @todo If input ``Tensor``s have a different dataType, the output should + * have the dataType of the ``Tensor`` with the highest precision. + * + * @param other + * @return Tensor + */ +Aidge::Tensor Aidge::Tensor::operator-(const Aidge::Tensor& other) const { + AIDGE_ASSERT(hasImpl() && other.hasImpl(), "At least one Tensor cannot perform any binary operation because it has no implementation."); + AIDGE_ASSERT(mImpl->backend() == other.mImpl->backend(), "Tensors must have the same backend"); + AIDGE_ASSERT(dataType() == other.dataType(), "Tensors must have the same data type"); + AIDGE_ASSERT(dataFormat() == other.dataFormat(), "Tensors must have the same data format"); + auto sub_ = Sub_Op(); + sub_.associateInput(0, std::make_shared<Tensor>(*this)); + sub_.associateInput(1, std::make_shared<Tensor>(other)); + sub_.setDataType(dataType()); + sub_.setDataFormat(dataFormat()); + sub_.setBackend(mImpl->backend()); + sub_.forward(); + // using add_backend = std::remove_reference_t<decltype(*Registrar<Add_Op>::create("cpu")(std::declval<const Add_Op&>()))>; + return sub_.getOutput(0)->clone(); +} + +/** + * @brief Element-wise multiplication operation for two ``Tensor``s. + * @note ``Tensor``s should be stored on the same backend. + * @todo If input ``Tensor``s have a different dataType, the output should + * have the dataType of the ``Tensor`` with the highest precision. + * + * @param other + * @return Tensor + */ +Aidge::Tensor Aidge::Tensor::operator*(const Aidge::Tensor& other) const { + AIDGE_ASSERT(hasImpl() && other.hasImpl(), "At least one Tensor cannot perform any binary operation because it has no implementation."); + AIDGE_ASSERT(mImpl->backend() == other.mImpl->backend(), "Tensors must have the same backend"); + AIDGE_ASSERT(dataType() == other.dataType(), "Tensors must have the same data type"); + AIDGE_ASSERT(dataFormat() == other.dataFormat(), "Tensors must have the same data format"); + auto mul_ = Mul_Op(); + mul_.associateInput(0, std::make_shared<Tensor>(*this)); + mul_.associateInput(1, std::make_shared<Tensor>(other)); + mul_.setDataType(dataType()); + mul_.setDataFormat(dataFormat()); + mul_.setBackend(mImpl->backend()); + mul_.forward(); + // using add_backend = std::remove_reference_t<decltype(*Registrar<Add_Op>::create("cpu")(std::declval<const Add_Op&>()))>; + return mul_.getOutput(0)->clone(); +} + +Aidge::Tensor Aidge::Tensor::operator/(const Aidge::Tensor& other) const { + AIDGE_ASSERT(hasImpl() && other.hasImpl(), "At least one Tensor cannot perform any binary operation because it has no implementation."); + AIDGE_ASSERT(mImpl->backend() == other.mImpl->backend(), "Tensors must have the same backend"); + AIDGE_ASSERT(dataType() == other.dataType(), "Tensors must have the same data type"); + AIDGE_ASSERT(dataFormat() == other.dataFormat(), "Tensors must have the same data format"); + auto div_ = Div_Op(); + div_.associateInput(0, std::make_shared<Tensor>(*this)); + div_.associateInput(1, std::make_shared<Tensor>(other)); + div_.setDataType(dataType()); + div_.setDataFormat(dataFormat()); + div_.setBackend(mImpl->backend()); + div_.forward(); + // using add_backend = std::remove_reference_t<decltype(*Registrar<Add_Op>::create("cpu")(std::declval<const Add_Op&>()))>; + return div_.getOutput(0)->clone(); +} + Aidge::Tensor& Aidge::Tensor::operator=(const Aidge::Tensor& other) { if (this == &other) { return *this;