diff --git a/aidge_core/__init__.py b/aidge_core/__init__.py
index c65dcc6cfc4be8825d1213854014718fb7170854..4b5c448355a17fd4274ba45f5cd98afa70b1ae53 100644
--- a/aidge_core/__init__.py
+++ b/aidge_core/__init__.py
@@ -8,4 +8,5 @@ http://www.eclipse.org/legal/epl-2.0.
 SPDX-License-Identifier: EPL-2.0
 """
 from aidge_core.aidge_core import * # import so generated by PyBind
-from aidge_core.export import ExportNode
+from aidge_core.export import ExportNode, generate_file, generate_str
+import aidge_core.utils
diff --git a/aidge_core/export/__init__.py b/aidge_core/export/__init__.py
index 00b44121d68af06171525fdf953bf50e53328421..6fc846d93301f45b0635cd9b2fabae65fa7be8ab 100644
--- a/aidge_core/export/__init__.py
+++ b/aidge_core/export/__init__.py
@@ -1 +1,2 @@
 from .node_export import *
+from .code_generation import *
diff --git a/aidge_core/export/code_generation.py b/aidge_core/export/code_generation.py
new file mode 100644
index 0000000000000000000000000000000000000000..b18b5476f8e083bcbe3d4f6c4a57132ebe7b780f
--- /dev/null
+++ b/aidge_core/export/code_generation.py
@@ -0,0 +1,47 @@
+import os
+from jinja2 import Environment, FileSystemLoader
+
+
+def generate_file(file_path: str, template_path: str, **kwargs) -> None:
+    """Generate a file at `file_path` using the jinja template located at `file_path`.
+
+    kwargs are used to fill the template.
+
+    :param file_path: path where to generate the file
+    :type file_path: str
+    :param template_path: Path to the template to use for code generation
+    :type template_path: str
+    """
+    # Get directory name of the file
+    dirname = os.path.dirname(file_path)
+
+    # If directory doesn't exist, create it
+    if not os.path.exists(dirname):
+        os.makedirs(dirname)
+
+    # Get directory name and name of the template
+    template_dir = os.path.dirname(template_path)
+    template_name = os.path.basename(template_path)
+
+    # Select template
+    template = Environment(loader=FileSystemLoader(
+        template_dir)).get_template(template_name)
+
+    # Generate file
+    content = template.render(kwargs)
+    with open(file_path, mode="w", encoding="utf-8") as message:
+        message.write(content)
+
+def generate_str(template_path:str, **kwargs) -> str:
+    """Generate a string using the jinja template located at `file_path`.
+    kwargs are used to fill the template.
+
+    :param template_path: Path to the template to use for code generation
+    :type template_path: str
+    :return: A string of the interpreted template
+    :rtype: str
+    """
+    dirname = os.path.dirname(template_path)
+    filename = os.path.basename(template_path)
+    template = Environment(loader=FileSystemLoader(dirname)).get_template(filename)
+    return template.render(kwargs)
diff --git a/aidge_core/utils.py b/aidge_core/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..d82d524b7e886ed396507376a5934a748a89e44c
--- /dev/null
+++ b/aidge_core/utils.py
@@ -0,0 +1,16 @@
+def template_docstring(template_keyword, text_to_replace):
+    """Method to template docstring
+
+    :param template: Template keyword to replace, in the documentation you template word must be between `{` `}`
+    :type template: str
+    :param text_to_replace: Text to replace your template with.
+    :type text_to_replace: str
+    """
+    def dec(func):
+        if "{"+template_keyword+"}" not in func.__doc__:
+            raise RuntimeError(
+                f"The function {function.__name__} docstring does not contain the template keyword: {template_keyword}.")
+        func.__doc__ = func.__doc__.replace(
+            "{"+template_keyword+"}", text_to_replace)
+        return func
+    return dec
diff --git a/include/aidge/graph/GraphView.hpp b/include/aidge/graph/GraphView.hpp
index 59c538ce640f9fb8a45c26a29b0c2599d883553e..c9a4c11d780a41a1620518047d66a7de2d7b55fa 100644
--- a/include/aidge/graph/GraphView.hpp
+++ b/include/aidge/graph/GraphView.hpp
@@ -160,7 +160,7 @@ public:
 
     /**
      * @brief List outside input connections of the GraphView. The vector
-     * size is garanteed to match the number of outside inputs of the GraphView. If there is
+     * size is guaranteed to match the number of outside inputs of the GraphView. If there is
      * no external connection to a given input, a pair of nullptr and gk_IODefaultIndex is returned.
      * @return std::vector<std::pair<NodePtr, IOIndex_t>>
      */
@@ -210,7 +210,7 @@ public:
      * @brief Compute dimensions of input/output Tensors for each Operator of the
      * GraphView object's Nodes.
      */
-    bool forwardDims(const std::vector<std::vector<DimSize_t>> dims = {}, bool allowDataDependency = false);
+    bool forwardDims(const std::vector<std::vector<DimSize_t>>& dims = {}, bool allowDataDependency = false);
 
     /** @brief Set the same backend for each Operator of the GraphView object's Nodes. */
     void setBackend(const std::string& backend, const DeviceIdx_t device = 0) const;
@@ -376,6 +376,12 @@ public:
         addChild(toOtherNode, mNodeRegistry.at(fromOutNodeName), fromTensor, toTensor);
     }
 
+    inline void updateNodeName(const std::string& oldName, const std::string& newName){
+        AIDGE_ASSERT(mNodeRegistry.find(oldName) != mNodeRegistry.end(), "No node named {} in graph {}, the graph may be corrupted !", oldName, name());
+        mNodeRegistry[newName] = mNodeRegistry[oldName];
+        mNodeRegistry.erase(oldName);
+    }
+
     /**
      * @brief Include a GraphView content in the current GraphView and link
      * the two sets by linking one Node from each GraphView.
@@ -480,6 +486,14 @@ public:
      */
     IOIndex_t getNbFreeDataInputs() const;
 
+    /**
+     * @brief Force update of GraphView inputs/outputs.
+     * It may be necessary to force the update of GraphView inputs/outputs when
+     * connections are added or removed inside the GraphView **after** the nodes
+     * were added.
+     */
+    void updateInputsOutputs();
+
 private:
 ///////////////////////////////////////////////////////
 //        TENSOR MANAGEMENT
diff --git a/include/aidge/graph/Node.hpp b/include/aidge/graph/Node.hpp
index 908f56295887bd2fbed3350a026045a4ab6b21d9..2a0a4a3b703670c8ace05e03fc5c797fe861a423 100644
--- a/include/aidge/graph/Node.hpp
+++ b/include/aidge/graph/Node.hpp
@@ -235,8 +235,8 @@ public:
   ///////////////////////////////////////////////////////
 
   /**
-   * @brief Vector of pointers to each GraphView containing the object
-   * @return std::vector<GraphView>
+   * @brief Set of pointers to each GraphView containing this Node
+   * @return std::set<GraphView>
    */
   inline std::set<std::shared_ptr<GraphView>> views() const noexcept {
     std::set<std::shared_ptr<GraphView>> res;
@@ -460,10 +460,10 @@ private:
   // OPERATOR FUNCTIONNAL but commented out to avoid iostream inclusion
   // /**
   //  * @brief operator<< overload to ease print & debug of nodes
-  //  * @param[inout] ostream to print to 
+  //  * @param[inout] ostream to print to
   //  * @param[in] n node to print
   //  */
-  // friend std::ostream& operator << (std::ostream& os, Node& n); 
+  // friend std::ostream& operator << (std::ostream& os, Node& n);
 };
 
 } // namespace Aidge
diff --git a/include/aidge/operator/MetaOperator.hpp b/include/aidge/operator/MetaOperator.hpp
index c677da0f2e34a299ddec6ee85f5a84616206193d..a411101618a5f4acaf070516d67691a6b55e3ff5 100644
--- a/include/aidge/operator/MetaOperator.hpp
+++ b/include/aidge/operator/MetaOperator.hpp
@@ -70,16 +70,9 @@ public:
         return mScheduler;
     }
 
-    void associateInput(const IOIndex_t inputIdx, const std::shared_ptr<Data>& data) override final {
-        AIDGE_ASSERT(data->type() == Tensor::Type, "input data must be of Tensor type");
-        AIDGE_ASSERT(inputIdx < mGraph->getOrderedInputs().size(), "associateInput(): inputIdx ({}) out of bound for MetaOperator", inputIdx);
-
-        const auto& inputOp = mGraph->getOrderedInputs()[inputIdx];
-        inputOp.first->getOperator()->associateInput(inputOp.second, data);
-
-        // Associate inputs for custom implementation
-        mInputs[inputIdx] = std::dynamic_pointer_cast<Tensor>(data);
-    }
+    void associateInput(const IOIndex_t inputIdx, const std::shared_ptr<Data>& data) override final;
+    void setInput(const IOIndex_t inputIdx, const std::shared_ptr<Data>& data) override final;
+    void setInput(const IOIndex_t inputIdx, std::shared_ptr<Data>&& data) override final;
 
     bool forwardDims(bool allowDataDependency = false) override final {
         // Check first that all required inputs are available, otherwise
diff --git a/include/aidge/operator/OperatorTensor.hpp b/include/aidge/operator/OperatorTensor.hpp
index 6086c5145eb39cee081468ba91473dc983cfa35f..a493793278d42904d8a62e31571720f94ff1655d 100644
--- a/include/aidge/operator/OperatorTensor.hpp
+++ b/include/aidge/operator/OperatorTensor.hpp
@@ -56,8 +56,8 @@ public:
     ///////////////////////////////////////////////////
     // Tensor access
     // input management
-    void setInput(const IOIndex_t inputIdx, const std::shared_ptr<Data>& data) override final;
-    void setInput(const IOIndex_t inputIdx, std::shared_ptr<Data>&& data) override final;
+    void setInput(const IOIndex_t inputIdx, const std::shared_ptr<Data>& data) override;
+    void setInput(const IOIndex_t inputIdx, std::shared_ptr<Data>&& data) override;
     const std::shared_ptr<Tensor>& getInput(const IOIndex_t inputIdx) const;
     std::shared_ptr<Data> getRawInput(const IOIndex_t inputIdx) const override final;
 
diff --git a/include/aidge/operator/Scaling.hpp b/include/aidge/operator/Scaling.hpp
index 8f54ab217631ac69a4e16555f8e58f550ab0156c..c864bd045d8a5a1fc5f4ee591d1d81fcaf241bac 100644
--- a/include/aidge/operator/Scaling.hpp
+++ b/include/aidge/operator/Scaling.hpp
@@ -27,9 +27,10 @@ enum class ScalingAttr {
     scalingFactor, quantizedNbBits, isOutputUnsigned
 };
 
-class Scaling_Op : public OperatorTensor,
-    public Registrable<Scaling_Op, std::string, std::unique_ptr<OperatorImpl>(const Scaling_Op&)>,
-    public StaticAttributes<ScalingAttr, float, size_t, bool> {
+class Scaling_Op 
+    : public OperatorTensor,
+      public Registrable<Scaling_Op, std::string, std::shared_ptr<OperatorImpl>(const Scaling_Op&)>,
+      public StaticAttributes<ScalingAttr, float, size_t, bool> {
 public:
     static const std::string Type;
 
@@ -84,7 +85,11 @@ inline std::shared_ptr<Node> Scaling(float scalingFactor = 1.0f, const std::stri
     return std::make_shared<Node>(std::make_shared<Scaling_Op>(scalingFactor), name);
 }
 */
-inline std::shared_ptr<Node> Scaling(float scalingFactor = 1.0f, std::size_t quantizedNbBits=8, bool isOutputUnsigned=true, const std::string& name = "") {
+inline std::shared_ptr<Node> Scaling(float scalingFactor = 1.0f, 
+                                     std::size_t quantizedNbBits=8, 
+                                     bool isOutputUnsigned=true, 
+                                     const std::string& name = "") 
+{
     return std::make_shared<Node>(std::make_shared<Scaling_Op>(scalingFactor,quantizedNbBits, isOutputUnsigned), name);
 }
 } // namespace Aidge
diff --git a/include/aidge/scheduler/ParallelScheduler.hpp b/include/aidge/scheduler/ParallelScheduler.hpp
index 0b6f963d61bf0079a9a32bd335ba765788aba2a5..abacebf4e0c45130bb0e41872577052cfe0a176c 100644
--- a/include/aidge/scheduler/ParallelScheduler.hpp
+++ b/include/aidge/scheduler/ParallelScheduler.hpp
@@ -37,7 +37,7 @@ public:
     /**
      * @brief Run the provided Computational Graph with a batch of data
      */
-    virtual void forward(bool forwardDims = true, std::vector<std::shared_ptr<Aidge::Tensor>> data = {});
+    virtual void forward(bool forwardDims = true, const std::vector<std::shared_ptr<Aidge::Tensor>>& data = {});
 };
 } // namespace Aidge
 
diff --git a/include/aidge/scheduler/Scheduler.hpp b/include/aidge/scheduler/Scheduler.hpp
index 2f8fbb7aeb6562e0dd309f8f53def6d0fed5a08a..792d73693be0780f2e938d828b0f29889216631b 100644
--- a/include/aidge/scheduler/Scheduler.hpp
+++ b/include/aidge/scheduler/Scheduler.hpp
@@ -114,7 +114,7 @@ public:
      *
      * @param data data input tensors
      */
-    void connectInputs(std::vector<std::shared_ptr<Aidge::Tensor>> data);
+    void connectInputs(const std::vector<std::shared_ptr<Aidge::Tensor>>& data);
 
     /**
      * @brief Save in a Markdown file the static scheduling with early and late relative order for the nodes.
diff --git a/include/aidge/scheduler/SequentialScheduler.hpp b/include/aidge/scheduler/SequentialScheduler.hpp
index 9cf0c2c1877bbbe5930c6b1e39f2a46c33e21d93..7201601254b779d64f23e9c0d1d00f5c6c23532a 100644
--- a/include/aidge/scheduler/SequentialScheduler.hpp
+++ b/include/aidge/scheduler/SequentialScheduler.hpp
@@ -49,7 +49,7 @@ public:
     /**
      * @brief Run the provided Computational Graph with a batch of data
      */
-    virtual void forward(bool forwardDims = true, std::vector<std::shared_ptr<Aidge::Tensor>> data = {});
+    virtual void forward(bool forwardDims = true, const std::vector<std::shared_ptr<Aidge::Tensor>>& data = {});
 
     /**
      * @brief Run the provided Computational Graph with a batch of data
diff --git a/include/aidge/utils/DynamicAttributes.hpp b/include/aidge/utils/DynamicAttributes.hpp
index 44c3b1f5e8df833344fa9b7fe72bdb4ef1e0ec12..113377b33d9827c3428eeb0adc92111f75c22abb 100644
--- a/include/aidge/utils/DynamicAttributes.hpp
+++ b/include/aidge/utils/DynamicAttributes.hpp
@@ -21,6 +21,7 @@
 
 #include "aidge/utils/future_std/any.hpp"
 #include "aidge/utils/Attributes.hpp"
+#include "aidge/utils/ErrorHandling.hpp"
 
 #ifdef PYBIND
 #include <pybind11/pybind11.h>
@@ -86,7 +87,7 @@ public:
     template<class T> void addAttr(const std::string& name, const T& value)
     {
         const auto& res = mAttrs.emplace(std::make_pair(name, future_std::any(value)));
-        assert(res.second && "attribute already exists");
+        AIDGE_ASSERT(res.second, "attribute already exists");
 
 #ifdef PYBIND
         // We cannot handle Python object if the Python interpreter is not running
@@ -129,10 +130,10 @@ public:
     void addAttrPy(const std::string& name, py::object&& value)
     {
         auto it = mAttrs.find(name);
-        assert(it == mAttrs.end() && "attribute already exists");
+        AIDGE_ASSERT(it == mAttrs.end(), "attribute already exists");
 
         const auto& res = mAttrsPy.emplace(std::make_pair(name, value));
-        assert(res.second && "attribute already exists");
+        AIDGE_ASSERT(res.second, "attribute already exists");
     }
 
     void setAttrPy(const std::string& name, py::object&& value) override final
@@ -199,6 +200,8 @@ public:
     };
 #endif
 
+    virtual ~DynamicAttributes() {}
+
 private:
 #ifdef PYBIND
     // Stores C++ attributes (copy) and Python-only attributes
diff --git a/python_binding/data/pybind_Database.cpp b/python_binding/data/pybind_Database.cpp
index 903e692ca3d14d6ae25f0d6f151b1b08d557d924..4bc28a19d350236933c3b6c139e9e3a4d980fa3f 100644
--- a/python_binding/data/pybind_Database.cpp
+++ b/python_binding/data/pybind_Database.cpp
@@ -1,13 +1,40 @@
 #include <pybind11/pybind11.h>
+#include <pybind11/stl.h>
+
 #include "aidge/data/Database.hpp"
+#include "aidge/data/Tensor.hpp"
 
 namespace py = pybind11;
 namespace Aidge {
 
-void init_Database(py::module& m){
+/**
+ * @brief Trampoline class for binding
+ *
+ */
+class pyDatabase : public Database {
+   public:
+    using Database::Database;  // Inherit constructors
 
-    py::class_<Database, std::shared_ptr<Database>>(m,"Database");
+    std::vector<std::shared_ptr<Tensor>> getItem(
+        const std::size_t index) const override {
+        PYBIND11_OVERRIDE_PURE_NAME(std::vector<std::shared_ptr<Tensor>>, Database,
+                               "get_item", getItem, index);
+    }
+    std::size_t getLen() const noexcept override {
+        PYBIND11_OVERRIDE_PURE_NAME(std::size_t, Database, "len", getLen);
+    }
+    std::size_t getNbModalities() const noexcept override {
+        PYBIND11_OVERRIDE_PURE_NAME(std::size_t, Database, "get_nb_modalities",
+                               getNbModalities);
+    }
+};
 
-    
-}
+void init_Database(py::module& m) {
+    py::class_<Database, std::shared_ptr<Database>, pyDatabase>(
+        m, "Database", py::dynamic_attr())
+        .def(py::init<>())
+        .def("get_item", &Database::getItem)
+        .def("len", &Database::getLen)
+        .def("get_nb_modalities", &Database::getNbModalities);
 }
+}  // namespace Aidge
diff --git a/python_binding/operator/pybind_Scaling.cpp b/python_binding/operator/pybind_Scaling.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..f091ea70f9b5e9927e535bd527cd84cf081d9823
--- /dev/null
+++ b/python_binding/operator/pybind_Scaling.cpp
@@ -0,0 +1,32 @@
+/********************************************************************************
+ * Copyright (c) 2024 CEA-List
+ *
+ * This program and the accompanying materials are made available under the
+ * terms of the Eclipse Public License 2.0 which is available at
+ * http://www.eclipse.org/legal/epl-2.0.
+ *
+ * SPDX-License-Identifier: EPL-2.0
+ *
+ ********************************************************************************/
+
+#include <pybind11/pybind11.h>
+
+#include "aidge/data/Tensor.hpp"
+#include "aidge/operator/Scaling.hpp"
+#include "aidge/operator/OperatorTensor.hpp"
+
+namespace py = pybind11;
+
+namespace Aidge {
+
+void init_Scaling(py::module& m) 
+{
+    py::class_<Scaling_Op, std::shared_ptr<Scaling_Op>, Attributes, OperatorTensor>(m, "ScalingOp", py::multiple_inheritance())
+    .def("get_inputs_name", &Scaling_Op::getInputsName)
+    .def("get_outputs_name", &Scaling_Op::getOutputsName)
+    .def("attributes_name", &Scaling_Op::staticGetAttrsName);
+    declare_registrable<Scaling_Op>(m, "ScalingOp");
+    m.def("Scaling", &Scaling, py::arg("scaling_factor") = 1.0f, py::arg("nb_bits") = 8, py::arg("is_output_unsigned") = true, py::arg("name") = "");
+}
+
+}  // namespace Aidge
diff --git a/python_binding/pybind_core.cpp b/python_binding/pybind_core.cpp
index 63e5100ac65b5582c7236c2b3467a7d1debcaa36..7b38c2d72d5f4b2eed8d8bbf9f41f47144b51060 100644
--- a/python_binding/pybind_core.cpp
+++ b/python_binding/pybind_core.cpp
@@ -51,6 +51,7 @@ void init_Pow(py::module&);
 void init_ReduceMean(py::module&);
 void init_ReLU(py::module&);
 void init_Reshape(py::module&);
+void init_Scaling(py::module&);
 void init_Sigmoid(py::module&);
 void init_Slice(py::module&);
 void init_Softmax(py::module&);
@@ -72,6 +73,7 @@ void init_Recipes(py::module&);
 void init_GraphViewHelper(py::module&);
 
 void init_Scheduler(py::module&);
+void init_MemoryManager(py::module&);
 void init_TensorUtils(py::module&);
 void init_Filler(py::module&);
 
@@ -117,6 +119,7 @@ void init_Aidge(py::module& m) {
     init_ReduceMean(m);
     init_ReLU(m);
     init_Reshape(m);
+    init_Scaling(m);
     init_Sigmoid(m);
     init_Slice(m);
     init_Softmax(m);
@@ -134,6 +137,7 @@ void init_Aidge(py::module& m) {
     init_Recipes(m);
     init_GraphViewHelper(m);
     init_Scheduler(m);
+    init_MemoryManager(m);
     init_TensorUtils(m);
     init_Filler(m);
 }
diff --git a/python_binding/recipes/pybind_Recipes.cpp b/python_binding/recipes/pybind_Recipes.cpp
index f122c411618ce28a641fd46ee568f99cc48e9f58..b85d1c41ed90a5774a9b24062dfda4186c2294d5 100644
--- a/python_binding/recipes/pybind_Recipes.cpp
+++ b/python_binding/recipes/pybind_Recipes.cpp
@@ -21,66 +21,70 @@
 namespace py = pybind11;
 
 namespace Aidge {
-void init_Recipes(py::module &m) {
+void init_Recipes(py::module &m) 
+{
 
 
   m.def("fuse_mul_add", static_cast<void(*)(std::shared_ptr<GraphView>)>(fuseMulAdd), py::arg("graph_view"), R"mydelimiter(
-    Recipie to Fuse MatMul and Add operators into an :py:class:`aidge_core.FC` operator.
+    Recipe to Fuse MatMul and Add operators into an :py:class:`aidge_core.FC` operator.
 
-    :param graph_view: Graph view on which we want to apply the recipie
+    :param graph_view: Graph view on which we want to apply the recipe
     :type graph_view: :py:class:`aidge_core.GraphView`
     )mydelimiter");
 
   // m.def("fuse_mul_add", static_cast<void(*)(std::set<std::shared_ptr<Node>>)>(fuseMulAdd), py::arg("nodes"), R"mydelimiter(
-  //   Recipie to Fuse MatMul and Add operators into an :py:class:`aidge_core.FC` operator.
+  //   recipe to Fuse MatMul and Add operators into an :py:class:`aidge_core.FC` operator.
 
   //   :param nodes: The MatMul and Add nodes to fuse.
   //   :type nodes: list of :py:class:`aidge_core.Node`
   //   )mydelimiter");
 
   m.def("remove_dropout",static_cast<void(*)(std::shared_ptr<GraphView>)>(removeDropout), py::arg("graph_view"), R"mydelimiter(
-    Recipie to remove a dropout operator.
+    Recipe to remove a dropout operator.
 
-    :param graph_view: Graph view on which we want to apply the recipie
+    :param graph_view: Graph view on which we want to apply the recipe
     :type graph_view: :py:class:`aidge_core.GraphView`
     )mydelimiter");
 
   m.def("remove_flatten", static_cast<void(*)(std::shared_ptr<GraphView>)>(removeFlatten), py::arg("graph_view"), R"mydelimiter(
-    Recipie to remove a flatten operator.
+    Recipe to remove a flatten operator.
 
-    :param graph_view: Graph view on which we want to apply the recipie
+    :param graph_view: Graph view on which we want to apply the recipe
     :type graph_view: :py:class:`aidge_core.GraphView`
     )mydelimiter");
 
   // m.def("remove_flatten", static_cast<void(*)(std::set<std::shared_ptr<Node>>)>(removeFlatten), py::arg("nodes"), R"mydelimiter(
-  //   Recipie to remove a flatten operator.
+  //   Recipe to remove a flatten operator.
 
   //   :param nodes: The flatten operator to remove.
   //   :type nodes: list of :py:class:`aidge_core.Node`
   //   )mydelimiter");
 
   // m.def("fuse_mul_add", static_cast<void(*)(std::set<std::shared_ptr<Node>>)>(fuseMulAdd), py::arg("nodes"), R"mydelimiter(
-  //   Recipie to Fuse MatMul and Add operators into an :py:class:`aidge_core.FC` operator.
+  //   Recipe to Fuse MatMul and Add operators into an :py:class:`aidge_core.FC` operator.
 
   //   :param nodes: The MatMul and Add nodes to fuse.
   //   :type nodes: list of :py:class:`aidge_core.Node`
   //   )mydelimiter");
 
   m.def("fuse_batchnorm", static_cast<void(*)(std::shared_ptr<GraphView>)>(fuseBatchNorm), py::arg("graph_view"), R"mydelimiter(
-    Recipie to remove a flatten operator.
+    Recipe to remove a flatten operator.
 
-    :param graph_view: Graph view on which we want to apply the recipie
+    :param graph_view: Graph view on which we want to apply the recipe
     :type graph_view: :py:class:`aidge_core.GraphView`
     )mydelimiter");
 
- m.def("get_conv_horizontal_tiling", static_cast<std::set<std::shared_ptr<Node>>(*)(const std::shared_ptr<Node>&, const DimIdx_t, const std::size_t)>(getConvHorizontalTiling),
+  m.def("get_conv_horizontal_tiling", static_cast<std::set<std::shared_ptr<Node>>(*)(const std::shared_ptr<Node>&, const DimIdx_t, const std::size_t)>(getConvHorizontalTiling),
         py::arg("node"), py::arg("axis"), py::arg("nb_slices"));
 
   // m.def("fuse_batchnorm", static_cast<void(*)(std::set<std::shared_ptr<Node>>)>(fuseBatchNorm), py::arg("nodes"), R"mydelimiter(
-  //   Recipie to remove a flatten operator.
+  //   recipe to remove a flatten operator.
 
   //   :param nodes: The flatten operator to remove.
   //   :type nodes: list of :py:class:`aidge_core.Node`
   //   )mydelimiter");
+
+  m.def("expand_metaops", static_cast<void(*)(std::shared_ptr<GraphView>, bool)>(expandMetaOps), py::arg("graph_view"), py::arg("recursive") = false);
 }
+
 } // namespace Aidge
diff --git a/python_binding/scheduler/pybind_MemoryManager.cpp b/python_binding/scheduler/pybind_MemoryManager.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..0f18db405bec0aee9637f2e5f2ecc7b71e502cc5
--- /dev/null
+++ b/python_binding/scheduler/pybind_MemoryManager.cpp
@@ -0,0 +1,108 @@
+/********************************************************************************
+ * Copyright (c) 2024 CEA-List
+ *
+ * This program and the accompanying materials are made available under the
+ * terms of the Eclipse Public License 2.0 which is available at
+ * http://www.eclipse.org/legal/epl-2.0.
+ *
+ * SPDX-License-Identifier: EPL-2.0
+ *
+ ********************************************************************************/
+
+#include <pybind11/pybind11.h>
+#include <pybind11/stl.h>
+
+#include "aidge/scheduler/MemoryManager.hpp"
+
+namespace py = pybind11;
+
+namespace Aidge {
+
+void init_MemoryManager(py::module& m)
+{
+    py::enum_<MemoryManager::OptimizeStrategy>(m, "OptimizeStrategy")
+        .value("None", MemoryManager::OptimizeStrategy::None)
+        .value("OptimizeMaxLifetimeMinSizeFirst", MemoryManager::OptimizeStrategy::OptimizeMaxLifetimeMinSizeFirst)
+        .value("OptimizeMaxLifetimeMaxSizeFirst", MemoryManager::OptimizeStrategy::OptimizeMaxLifetimeMaxSizeFirst)
+        .value("OptimizeMaxHoleMaxLifetimeFirst", MemoryManager::OptimizeStrategy::OptimizeMaxHoleMaxLifetimeFirst)
+        .export_values();
+
+    py::class_<MemoryManager::MemorySpace, std::shared_ptr<MemoryManager::MemorySpace>>(m, "MemorySpace")
+        .def(py::init<MemoryManager::Clock_T, unsigned int, unsigned int, std::set<std::shared_ptr<Node>> >(), py::arg("clock"), py::arg("offset"), py::arg("size"), py::arg("dependencies") = std::set<std::shared_ptr<Node>>())
+        .def_readwrite("offset", &MemoryManager::MemorySpace::offset)
+        .def_readwrite("size", &MemoryManager::MemorySpace::size)
+        .def_readwrite("dependencies", &MemoryManager::MemorySpace::dependencies)
+        .def_readwrite("allocated", &MemoryManager::MemorySpace::allocated)
+        .def_readwrite("released", &MemoryManager::MemorySpace::released);
+
+    py::class_<MemoryManager::MemoryPlane, std::shared_ptr<MemoryManager::MemoryPlane>>(m, "MemoryPlane")
+        .def(py::init<std::shared_ptr<MemoryManager::MemorySpace>, 
+                      MemoryManager::Clock_T, unsigned int, unsigned int,
+                      unsigned int, unsigned int, unsigned int>(),
+                      py::arg("mem_space"), py::arg("clock"), py::arg("offset"), 
+                      py::arg("size"), py::arg("stride"), py::arg("length"), py::arg("count"))
+        .def_readwrite("mem_space", &MemoryManager::MemoryPlane::memSpace)
+        .def_readwrite("allocated", &MemoryManager::MemoryPlane::allocated)
+        .def_readwrite("offset", &MemoryManager::MemoryPlane::offset)
+        .def_readwrite("size", &MemoryManager::MemoryPlane::size)
+        .def_readwrite("stride", &MemoryManager::MemoryPlane::stride)
+        .def_readwrite("length", &MemoryManager::MemoryPlane::length)
+        .def_readwrite("count", &MemoryManager::MemoryPlane::count)
+        .def("get_size", &MemoryManager::MemoryPlane::getSize)
+        .def("get_useful_size", &MemoryManager::MemoryPlane::getUsefulSize)
+        .def("get_contiguous_offset", &MemoryManager::MemoryPlane::getContiguousOffset)
+        .def("get_contiguous_size", &MemoryManager::MemoryPlane::getContiguousSize)
+        .def("get_wrapped_offset", &MemoryManager::MemoryPlane::getWrappedOffset)
+        .def("get_wrapped_size", &MemoryManager::MemoryPlane::getWrappedSize)
+        .def("get_final_offset", &MemoryManager::MemoryPlane::getFinalOffset)
+        .def("get_upper_offset", &MemoryManager::MemoryPlane::getUpperOffset)
+        .def("get_limit", &MemoryManager::MemoryPlane::getLimit);
+
+    py::class_<MemoryManager::MaxLifetimeMinSizeFirst>(m, "MaxLifetimeMinSizeFirst")
+        .def(py::init<unsigned int>(), py::arg("max_lifetime"))
+        .def_readonly("max_lifetime", &MemoryManager::MaxLifetimeMinSizeFirst::maxLifetime)
+        .def("__call__", &MemoryManager::MaxLifetimeMinSizeFirst::operator(), py::arg("p0"), py::arg("p1"));
+
+    py::class_<MemoryManager::MaxLifetimeMaxSizeFirst>(m, "MaxLifetimeMaxSizeFirst")
+        .def(py::init<unsigned int>(), py::arg("max_lifetime"))
+        .def_readonly("max_lifetime", &MemoryManager::MaxLifetimeMaxSizeFirst::maxLifetime)
+        .def("__call__", &MemoryManager::MaxLifetimeMaxSizeFirst::operator(), py::arg("p0"), py::arg("p1"));
+
+    py::class_<MemoryManager::MaxHoleMaxLifetimeFirst>(m, "MaxHoleMaxLifetimeFirst")
+        .def(py::init<unsigned int, MemoryManager*>(), py::arg("max_lifetime"), py::arg("inst"))
+        .def_readonly("max_lifetime", &MemoryManager::MaxHoleMaxLifetimeFirst::maxLifetime)
+        .def_readwrite("inst", &MemoryManager::MaxHoleMaxLifetimeFirst::inst)
+        .def("__call__", &MemoryManager::MaxHoleMaxLifetimeFirst::operator(), py::arg("p0"), py::arg("p1"));
+
+    py::class_<MemoryManager, std::shared_ptr<MemoryManager>>(m, "MemoryManager")
+        .def(py::init<>())
+        .def("reserve", (std::shared_ptr<MemoryManager::MemorySpace> (MemoryManager::*)(unsigned int, const std::set<std::shared_ptr<Node>>&)) &MemoryManager::reserve, py::arg("size"), py::arg("dependencies") = std::set<std::shared_ptr<Node>>())
+        .def("expand", &MemoryManager::expand, py::arg("mem_space"), py::arg("required_size"))
+        .def("allocate", (MemoryManager::MemoryPlane (MemoryManager::*)(unsigned int, const std::set<std::shared_ptr<Node>>&, unsigned int, unsigned int, unsigned int)) &MemoryManager::allocate, py::arg("size"), py::arg("dependencies") = std::set<std::shared_ptr<Node>>(), py::arg("stride") = 0, py::arg("length") = 1, py::arg("count") = 1)
+        .def("allocate", (unsigned int (MemoryManager::*)(const std::shared_ptr<Node>&, unsigned int, const std::set<std::shared_ptr<Node>>&, unsigned int, unsigned int, unsigned int)) &MemoryManager::allocate, py::arg("node"), py::arg("size"), py::arg("dependencies") = std::set<std::shared_ptr<Node>>(), py::arg("stride") = 0, py::arg("length") = 1, py::arg("count") = 1)
+        .def("is_wrap_around", &MemoryManager::isWrapAround, py::arg("mem_space"), py::arg("offset"), py::arg("size"), py::arg("stride") = 0, py::arg("length") = 1, py::arg("count") = 1)
+        .def("reallocate", (MemoryManager::MemoryPlane (MemoryManager::*)(std::shared_ptr<MemoryManager::MemorySpace>, unsigned int, unsigned int, bool, unsigned int, const std::set<std::shared_ptr<Node>>&, unsigned int, unsigned int, unsigned int)) &MemoryManager::reallocate, py::arg("mem_space"), py::arg("offset"), py::arg("size"), py::arg("wrap_around"), py::arg("extra_size") = 0, py::arg("additional_dependencies") = std::set<std::shared_ptr<Node>>(), py::arg("stride") = 0, py::arg("length") = 1, py::arg("count") = 1)
+        .def("reallocate", (MemoryManager::MemoryPlane (MemoryManager::*)(const MemoryManager::MemoryPlane&, unsigned int, unsigned int, bool, unsigned int, const std::set<std::shared_ptr<Node>>&, unsigned int, unsigned int, unsigned int)) &MemoryManager::reallocate, py::arg("memPlane"), py::arg("extra_offset"), py::arg("size"), py::arg("wrap_around"), py::arg("extra_size") = 0, py::arg("additional_dependencies") = std::set<std::shared_ptr<Node>>(), py::arg("stride") = 0, py::arg("length") = 1, py::arg("count") = 1)
+        .def("reallocate", (unsigned int (MemoryManager::*)(std::shared_ptr<MemoryManager::MemorySpace>, const std::shared_ptr<Node>&, unsigned int, unsigned int, bool, unsigned int, const std::set<std::shared_ptr<Node>>&, unsigned int, unsigned int, unsigned int)) &MemoryManager::reallocate, py::arg("mem_space"), py::arg("node"), py::arg("offset"), py::arg("size"), py::arg("wrap_around"), py::arg("extra_size") = 0, py::arg("additional_dependencies") = std::set<std::shared_ptr<Node>>(), py::arg("stride") = 0, py::arg("length") = 1, py::arg("count") = 1)
+        .def("reallocate", (unsigned int (MemoryManager::*)(const MemoryManager::MemoryPlane&, const std::shared_ptr<Node>&, unsigned int, unsigned int, bool, unsigned int, const std::set<std::shared_ptr<Node>>&, unsigned int, unsigned int, unsigned int)) &MemoryManager::reallocate, py::arg("mem_plane"), py::arg("node"), py::arg("extra_offset"), py::arg("size"), py::arg("wrap_around"), py::arg("extra_size") = 0, py::arg("additional_dependencies") = std::set<std::shared_ptr<Node>>(), py::arg("stride") = 0, py::arg("length") = 1, py::arg("count") = 1)
+        .def("release", (unsigned int (MemoryManager::*)(std::shared_ptr<MemoryManager::MemorySpace>)) &MemoryManager::release, py::arg("mem_space"))
+        .def("release", (unsigned int (MemoryManager::*)(const std::shared_ptr<Node>&)) &MemoryManager::release, py::arg("node"))
+        .def("release_dependencies", &MemoryManager::releaseDependencies, py::arg("node"))
+        .def("optimize", &MemoryManager::optimize, py::arg("strategy"))
+        .def("get_offset", &MemoryManager::getOffset, py::arg("node"), py::arg("plane") = 0)
+        .def("get_size", (unsigned int (MemoryManager::*)(const std::shared_ptr<Node>&, unsigned int) const) &MemoryManager::getSize, py::arg("node"), py::arg("plane"))
+        .def("get_size", (unsigned int (MemoryManager::*)(const std::shared_ptr<Node>&) const) &MemoryManager::getSize, py::arg("node"))
+        .def("get_peak_usage", &MemoryManager::getPeakUsage)
+        .def("get_max_lifetime", &MemoryManager::getMaxLifetime)
+        .def("get_planes", (const std::vector<MemoryManager::MemoryPlane>& (MemoryManager::*)(const std::shared_ptr<Node>&) const) &MemoryManager::getPlanes, py::arg("node"))
+        .def("get_planes", (const MemoryManager::MemMap_T& (MemoryManager::*)() const) &MemoryManager::getPlanes)
+        .def("get_planes", (MemoryManager::MemMap_T (MemoryManager::*)(std::shared_ptr<MemoryManager::MemorySpace>) const) &MemoryManager::getPlanes, py::arg("mem_space"))
+        .def("get_nb_planes", (unsigned int (MemoryManager::*)(const std::shared_ptr<Node>&) const) &MemoryManager::getNbPlanes, py::arg("node"))
+        .def("get_nb_planes", (unsigned int (MemoryManager::*)(std::shared_ptr<MemoryManager::MemorySpace>) const) &MemoryManager::getNbPlanes, py::arg("mem_space"))
+        .def("get_current_tick", &MemoryManager::getCurrentTick)
+        .def("tick", &MemoryManager::tick)
+        .def("log", &MemoryManager::log, py::arg("file_name"))
+        ;
+}
+
+}   // Aidge
diff --git a/python_binding/scheduler/pybind_Scheduler.cpp b/python_binding/scheduler/pybind_Scheduler.cpp
index c0966e54d4f025a607aa9763a3657de5b39d2ff4..3f763c8ff0717fb07c1b6c1f85b6aba06c1dc8f1 100644
--- a/python_binding/scheduler/pybind_Scheduler.cpp
+++ b/python_binding/scheduler/pybind_Scheduler.cpp
@@ -11,6 +11,7 @@
 
 #include <pybind11/pybind11.h>
 #include <pybind11/stl.h>
+#include "aidge/scheduler/MemoryManager.hpp"
 #include "aidge/scheduler/Scheduler.hpp"
 #include "aidge/scheduler/SequentialScheduler.hpp"
 #include "aidge/scheduler/ParallelScheduler.hpp"
@@ -22,10 +23,12 @@ namespace Aidge {
 void init_Scheduler(py::module& m){
     py::class_<Scheduler, std::shared_ptr<Scheduler>>(m, "Scheduler")
     .def(py::init<std::shared_ptr<GraphView>&>(), py::arg("graph_view"))
+    .def("graph_view", &Scheduler::graphView)
     .def("save_scheduling_diagram", &Scheduler::saveSchedulingDiagram, py::arg("file_name"))
     .def("resetScheduling", &Scheduler::resetScheduling)
     .def("generate_scheduling", &Scheduler::generateScheduling)
     .def("get_static_scheduling", &Scheduler::getStaticScheduling, py::arg("step") = 0)
+    .def("generate_memory", &Scheduler::generateMemory, py::arg("inc_producers") = false, py::arg("wrap_around_buffer") = false)
     ;
 
     py::class_<SequentialScheduler, std::shared_ptr<SequentialScheduler>, Scheduler>(m, "SequentialScheduler")
diff --git a/requirements.txt b/requirements.txt
index 24ce15ab7ead32f98c7ac3edcd34bb2010ff4326..32ec29bb9b826038eb21ce2927f2fef08973b2b8 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -1 +1,2 @@
 numpy
+Jinja2
diff --git a/src/data/Tensor.cpp b/src/data/Tensor.cpp
index b6aa4f2e50a5a3db8c3965a8e618fcf4f0299fe8..677bd0246e145ebf760f210000728bd2d99a3807 100644
--- a/src/data/Tensor.cpp
+++ b/src/data/Tensor.cpp
@@ -23,29 +23,26 @@ Aidge::Tensor& Aidge::Tensor::operator=(const Aidge::Tensor& other) {
         return *this;
     }
     resize(other.dims(), other.strides());
-    setDataType(other.dataType(), false); // do not convert existing data
+    setDataType(other.dataType(), false);  // do not convert existing data
     if (other.hasImpl()) {
         if (hasImpl()) {
             copyFrom(other);
-        }
-        else {
+        } else {
             // Perform a shallow copy only
             setImpl(other.mImpl, other.mImplOffset);
         }
-    }
-    else {
+    } else {
         setImpl(nullptr);
     }
     return *this;
 }
 
-
 Aidge::Tensor::~Tensor() noexcept = default;
 
-
-void Aidge::Tensor::resize(const std::vector<Aidge::DimSize_t> &dims, std::vector<Aidge::DimSize_t> strides) {
+void Aidge::Tensor::resize(const std::vector<Aidge::DimSize_t>& dims,
+                           std::vector<Aidge::DimSize_t> strides) {
     // TODO: scalar Tensor not handled
-    if (dims.empty()) { // scalar
+    if (dims.empty()) {  // scalar
         mDims = std::vector<DimSize_t>(0);
         mStrides = std::vector<DimSize_t>({1});
         mContiguous = true;
@@ -63,20 +60,21 @@ void Aidge::Tensor::resize(const std::vector<Aidge::DimSize_t> &dims, std::vecto
         size_t expectedStride = 1;
         for (int dim = dims.size() - 1; dim >= 0; --dim) {
             strides[dim] = expectedStride;
-            expectedStride*= dims[dim];
+            expectedStride *= dims[dim];
         }
         checkContiguous = false;
-    }
-    else {
-        AIDGE_ASSERT(strides.size() == dims.size(), "Number of strides must match number of dims");
+    } else {
+        AIDGE_ASSERT(strides.size() == dims.size(),
+                     "Number of strides must match number of dims");
     }
 
     if (mImpl && mImpl.use_count() > 1) {
         // Here we could also create a new storage for this tensor in this case
-        // But, is it more likely that the user really wants this, or that he did a mistake?
-        AIDGE_ASSERT(dims == mDims && strides == mStrides, "Cannot resize Tensor with shared storage");
-    }
-    else {
+        // But, is it more likely that the user really wants this, or that he
+        // did a mistake?
+        AIDGE_ASSERT(dims == mDims && strides == mStrides,
+                     "Cannot resize Tensor with shared storage");
+    } else {
         mDims = dims;
         mStrides = strides;
 
@@ -88,12 +86,12 @@ void Aidge::Tensor::resize(const std::vector<Aidge::DimSize_t> &dims, std::vecto
             //     mContiguous&= (strides[i] == expectedStride);
             //     expectedStride*= dims[i];
             // }
-            for (std::size_t i = dims.size()-1; i > 0; --i) {
+            for (std::size_t i = dims.size() - 1; i > 0; --i) {
                 if (strides[i] != expectedStride) {
                     mContiguous = false;
                     break;
                 }
-                expectedStride*= dims[i];
+                expectedStride *= dims[i];
             }
             mContiguous &= (strides[0] == expectedStride);
         }
@@ -106,53 +104,59 @@ void Aidge::Tensor::resize(const std::vector<Aidge::DimSize_t> &dims, std::vecto
 }
 
 std::string Aidge::Tensor::toString() const {
-    AIDGE_ASSERT(mImpl && (dims().empty() || (dims() == std::vector<DimSize_t>({0})) || (mImpl->hostPtr() != nullptr)), "tensor should have a valid host pointer");
+    AIDGE_ASSERT(
+        mImpl && (dims().empty() || (dims() == std::vector<DimSize_t>({0})) ||
+                  (mImpl->hostPtr() != nullptr)),
+        "tensor should have a valid host pointer");
 
     // TODO: move lambda elsewhere?
     auto ptrToString = [](DataType dt, void* ptr, std::size_t idx) {
         switch (dt) {
-        case DataType::Float64:
-            return std::to_string(static_cast<double*>(ptr)[idx]);
-        case DataType::Float32:
-            return std::to_string(static_cast<float*>(ptr)[idx]);
-        case DataType::Float16:
-            return std::to_string(static_cast<half_float::half*>(ptr)[idx]);
-        case DataType::Int8:
-            return std::to_string(static_cast<int8_t*>(ptr)[idx]);
-        case DataType::Int16:
-            return std::to_string(static_cast<int16_t*>(ptr)[idx]);
-        case DataType::Int32:
-            return std::to_string(static_cast<int32_t*>(ptr)[idx]);
-        case DataType::Int64:
-            return std::to_string(static_cast<int64_t*>(ptr)[idx]);
-        case DataType::UInt8:
-            return std::to_string(static_cast<uint8_t*>(ptr)[idx]);
-        case DataType::UInt16:
-            return std::to_string(static_cast<uint16_t*>(ptr)[idx]);
-        case DataType::UInt32:
-            return std::to_string(static_cast<uint32_t*>(ptr)[idx]);
-        case DataType::UInt64:
-            return std::to_string(static_cast<uint64_t*>(ptr)[idx]);
-        default:
-            AIDGE_ASSERT(true, "unsupported type to convert to string");
+            case DataType::Float64:
+                return std::to_string(static_cast<double*>(ptr)[idx]);
+            case DataType::Float32:
+                return std::to_string(static_cast<float*>(ptr)[idx]);
+            case DataType::Float16:
+                return std::to_string(static_cast<half_float::half*>(ptr)[idx]);
+            case DataType::Int8:
+                return std::to_string(static_cast<int8_t*>(ptr)[idx]);
+            case DataType::Int16:
+                return std::to_string(static_cast<int16_t*>(ptr)[idx]);
+            case DataType::Int32:
+                return std::to_string(static_cast<int32_t*>(ptr)[idx]);
+            case DataType::Int64:
+                return std::to_string(static_cast<int64_t*>(ptr)[idx]);
+            case DataType::UInt8:
+                return std::to_string(static_cast<uint8_t*>(ptr)[idx]);
+            case DataType::UInt16:
+                return std::to_string(static_cast<uint16_t*>(ptr)[idx]);
+            case DataType::UInt32:
+                return std::to_string(static_cast<uint32_t*>(ptr)[idx]);
+            case DataType::UInt64:
+                return std::to_string(static_cast<uint64_t*>(ptr)[idx]);
+            default:
+                AIDGE_ASSERT(true, "unsupported type to convert to string");
         }
         return std::string("?");  // To make Clang happy
     };
 
-    if (dims().empty()) { return ptrToString(mDataType, mImpl->hostPtr(), 0); }
+    if (dims().empty()) {
+        return ptrToString(mDataType, mImpl->hostPtr(), 0);
+    }
     std::string res;
     std::size_t dim = 0;
     std::size_t counter = 0;
-    if (nbDims()>=2) {
+    if (nbDims() >= 2) {
         std::vector<std::size_t> dimVals(nbDims(), 0);
         res += "{\n";
         while (counter < mSize) {
-            std::string spaceString = std::string((dim+1)<<1,' ');
-            if (dim < nbDims()-2) {
+            std::string spaceString = std::string((dim + 1) << 1, ' ');
+            if (dim < nbDims() - 2) {
                 if (dimVals[dim] == 0) {
                     res += spaceString + "{\n";
                     ++dim;
-                } else if (dimVals[dim] < static_cast<std::size_t>(dims()[dim])) {
+                } else if (dimVals[dim] <
+                           static_cast<std::size_t>(dims()[dim])) {
                     res += spaceString + "},\n" + spaceString + "{\n";
                     ++dim;
                 } else {
@@ -161,13 +165,22 @@ std::string Aidge::Tensor::toString() const {
                     dimVals[dim]++;
                 }
             } else {
-                for (; dimVals[dim] < static_cast<std::size_t>(dims()[dim]); ++dimVals[dim]) {
+                for (; dimVals[dim] < static_cast<std::size_t>(dims()[dim]);
+                     ++dimVals[dim]) {
                     res += spaceString + "{";
                     for (DimSize_t j = 0; j < dims()[dim + 1] - 1; ++j) {
-                        res += " " + ptrToString(mDataType, mImpl->hostPtr(mImplOffset), counter++) + ",";
+                        res +=
+                            " " +
+                            ptrToString(mDataType, mImpl->hostPtr(mImplOffset),
+                                        counter++) +
+                            ",";
                     }
-                    res += " " + ptrToString(mDataType, mImpl->hostPtr(mImplOffset), counter++) + "}";
-                    if (dimVals[dim] < static_cast<std::size_t>(dims()[dim] - 1)) {
+                    res += " " +
+                           ptrToString(mDataType, mImpl->hostPtr(mImplOffset),
+                                       counter++) +
+                           "}";
+                    if (dimVals[dim] <
+                        static_cast<std::size_t>(dims()[dim] - 1)) {
                         res += ",";
                     }
                     res += "\n";
@@ -179,35 +192,45 @@ std::string Aidge::Tensor::toString() const {
                 dimVals[dim]++;
             }
         }
-
-        for(int i = static_cast<int>(dim); i > 0; --i) {
-            res += std::string((dim+1)<<1,' ') + "}\n";
+        if (nbDims() != 2) {  // If nbDims == 2, parenthesis is already closed
+            for (int i = static_cast<int>(dim); i >= 0; --i) {
+                res += std::string((i + 1) << 1, ' ') + "}\n";
+            }
         }
     } else {
         res += "{";
         for (DimSize_t j = 0; j < dims()[0]; ++j) {
-            res += " " + ptrToString(mDataType, mImpl->hostPtr(mImplOffset), j) + ((j < dims()[0]-1) ? "," : " ");
+            res += " " +
+                   ptrToString(mDataType, mImpl->hostPtr(mImplOffset), j) +
+                   ((j < dims()[0] - 1) ? "," : " ");
         }
     }
     res += "}";
     return res;
 }
 
-Aidge::Tensor Aidge::Tensor::extract(const std::vector<std::size_t>& fixedCoord) const {
+Aidge::Tensor Aidge::Tensor::extract(
+    const std::vector<std::size_t>& fixedCoord) const {
     AIDGE_ASSERT(isContiguous(), "Tensor must be contiguous");
-    AIDGE_ASSERT(fixedCoord.size() <= mDims.size(), "Number of coordinates is higher than number of dimensions");
+    AIDGE_ASSERT(fixedCoord.size() <= mDims.size(),
+                 "Number of coordinates is higher than number of dimensions");
 
     Tensor subTensor(mDataType);
-    subTensor.resize(std::vector<size_t>(mDims.cbegin() + fixedCoord.size(), mDims.cend()),
-        std::vector<size_t>(mStrides.cbegin() + fixedCoord.size(), mStrides.cend()));
+    subTensor.resize(
+        std::vector<size_t>(mDims.cbegin() + fixedCoord.size(), mDims.cend()),
+        std::vector<size_t>(mStrides.cbegin() + fixedCoord.size(),
+                            mStrides.cend()));
     subTensor.setBackend(mImpl->backend(), mImpl->device().second);
     subTensor.setImpl(mImpl, mImplOffset + getStorageIdx(fixedCoord));
     return subTensor;
 }
 
-Aidge::Tensor Aidge::Tensor::extract(const std::vector<std::size_t>& startCoord, const std::vector<std::size_t>& dims) const {
+Aidge::Tensor Aidge::Tensor::extract(
+    const std::vector<std::size_t>& startCoord,
+    const std::vector<std::size_t>& dims) const {
     AIDGE_ASSERT(isContiguous(), "Tensor must be contiguous");
-    AIDGE_ASSERT(startCoord.size() == mDims.size(), "Coordinates does not match number of dimensions");
+    AIDGE_ASSERT(startCoord.size() == mDims.size(),
+                 "Coordinates does not match number of dimensions");
 
     Tensor subTensor(mDataType);
     subTensor.resize(dims, mStrides);
@@ -224,7 +247,8 @@ void Aidge::Tensor::makeContiguous() {
     // Block so that mImpl ref count is 1 for resize()
     {
         // Create a new storage that will be contiguous
-        std::shared_ptr<TensorImpl> newImpl = Registrar<Tensor>::create({mImpl->backend(), mDataType})(mImpl->device().second, mDims);
+        std::shared_ptr<TensorImpl> newImpl = Registrar<Tensor>::create(
+            {mImpl->backend(), mDataType})(mImpl->device().second, mDims);
         // Copy elements from old to new storage
         std::size_t idx = 0;
         while (idx < mSize) {
@@ -233,13 +257,14 @@ void Aidge::Tensor::makeContiguous() {
             // Determine the size of the contiguous chunk
             std::size_t copySize = 1;
             while (idx + copySize < mSize &&
-                getStorageIdx(getCoord(idx + copySize)) == storageIdx + copySize)
-            {
+                   getStorageIdx(getCoord(idx + copySize)) ==
+                       storageIdx + copySize) {
                 ++copySize;
             }
 
             // Perform a single copy for the contiguous chunk
-            newImpl->copy(mImpl->rawPtr(mImplOffset + storageIdx), copySize, idx);
+            newImpl->copy(mImpl->rawPtr(mImplOffset + storageIdx), copySize,
+                          idx);
 
             // Move to the next index after the contiguous chunk
             idx += copySize;
@@ -267,8 +292,10 @@ void Aidge::Tensor::copyCast(const Tensor& src) {
     }
     resize(src.dims());
 
-    AIDGE_ASSERT(src.getImpl()->device() == getImpl()->device(), "cannot copy-cast from a different backend/device");
-    getImpl()->copyCast(src.getImpl()->rawPtr(src.mImplOffset), src.dataType(), src.size(), mImplOffset);
+    AIDGE_ASSERT(src.getImpl()->device() == getImpl()->device(),
+                 "cannot copy-cast from a different backend/device");
+    getImpl()->copyCast(src.getImpl()->rawPtr(src.mImplOffset), src.dataType(),
+                        src.size(), mImplOffset);
 }
 
 void Aidge::Tensor::copyFrom(const Tensor& src) {
@@ -286,16 +313,20 @@ void Aidge::Tensor::copyFrom(const Tensor& src) {
     }
     resize(src.dims());
 
-    AIDGE_ASSERT(src.dataType() == dataType(), "cannot copy from a different data type");
-    getImpl()->copyFrom(*(src.getImpl()), src.size(), src.mImplOffset, mImplOffset);
+    AIDGE_ASSERT(src.dataType() == dataType(),
+                 "cannot copy from a different data type");
+    getImpl()->copyFrom(*(src.getImpl()), src.size(), src.mImplOffset,
+                        mImplOffset);
 }
 
-void Aidge::Tensor::copyCastFrom(const Tensor& src, std::shared_ptr<Tensor>& movedSrcPtr) {
+void Aidge::Tensor::copyCastFrom(const Tensor& src,
+                                 std::shared_ptr<Tensor>& movedSrcPtr) {
     if (&src == this) {
         return;
     }
 
-    AIDGE_ASSERT(src.isContiguous(), "cannot copy-cast from non-contiguous tensor");
+    AIDGE_ASSERT(src.isContiguous(),
+                 "cannot copy-cast from non-contiguous tensor");
 
     // Current Tensor has necessarily a data type, but may not have backend
     if (!getImpl()) {
@@ -308,29 +339,33 @@ void Aidge::Tensor::copyCastFrom(const Tensor& src, std::shared_ptr<Tensor>& mov
     if (dataType() != src.dataType()) {
         // First move data to the target device (only if needed)
         const auto device = getImpl()->device();
-        const Tensor& movedSrc = src.refFrom(movedSrcPtr, device.first, device.second);
+        const Tensor& movedSrc =
+            src.refFrom(movedSrcPtr, device.first, device.second);
         // Second, copy-cast data (necessary)
-        getImpl()->copyCast(movedSrc.getImpl()->rawPtr(movedSrc.mImplOffset), movedSrc.dataType(), movedSrc.size(), mImplOffset);
-    }
-    else {
+        getImpl()->copyCast(movedSrc.getImpl()->rawPtr(movedSrc.mImplOffset),
+                            movedSrc.dataType(), movedSrc.size(), mImplOffset);
+    } else {
         // Directly copy, no conversion necessary
         // Avoid making a double copy if both data type and device are the same
-        getImpl()->copyFrom(*(src.getImpl()), src.size(), src.mImplOffset, mImplOffset);
+        getImpl()->copyFrom(*(src.getImpl()), src.size(), src.mImplOffset,
+                            mImplOffset);
     }
 }
 
 Aidge::Tensor& Aidge::Tensor::refContiguous(std::shared_ptr<Tensor>& fallback) {
     // Scott Meyers' solution to avoid code duplication
-    return const_cast<Tensor&>(static_cast<const Tensor&>(*this).refContiguous(fallback));
+    return const_cast<Tensor&>(
+        static_cast<const Tensor&>(*this).refContiguous(fallback));
 }
 
-const Aidge::Tensor& Aidge::Tensor::refContiguous(std::shared_ptr<Tensor>& fallback) const {
-    AIDGE_ASSERT(getImpl(), "no backend was set for tensor, cannot refCast() it");
+const Aidge::Tensor& Aidge::Tensor::refContiguous(
+    std::shared_ptr<Tensor>& fallback) const {
+    AIDGE_ASSERT(getImpl(),
+                 "no backend was set for tensor, cannot refCast() it");
 
     if (isContiguous()) {
         return *this;
-    }
-    else {
+    } else {
         if (this != fallback.get()) {
             // Shallow copy to fallback
             *fallback = *this;
@@ -342,96 +377,117 @@ const Aidge::Tensor& Aidge::Tensor::refContiguous(std::shared_ptr<Tensor>& fallb
     }
 }
 
-Aidge::Tensor& Aidge::Tensor::refCast(std::shared_ptr<Tensor>& fallback, const Aidge::DataType& dt) {
+Aidge::Tensor& Aidge::Tensor::refCast(std::shared_ptr<Tensor>& fallback,
+                                      const Aidge::DataType& dt) {
     // Scott Meyers' solution to avoid code duplication
-    return const_cast<Tensor&>(static_cast<const Tensor&>(*this).refCast(fallback, dt));
+    return const_cast<Tensor&>(
+        static_cast<const Tensor&>(*this).refCast(fallback, dt));
 }
 
-const Aidge::Tensor& Aidge::Tensor::refCast(std::shared_ptr<Tensor>& fallback, const Aidge::DataType& dt) const {
-    AIDGE_ASSERT(getImpl(), "no backend was set for tensor, cannot refCast() it");
+const Aidge::Tensor& Aidge::Tensor::refCast(std::shared_ptr<Tensor>& fallback,
+                                            const Aidge::DataType& dt) const {
+    AIDGE_ASSERT(getImpl(),
+                 "no backend was set for tensor, cannot refCast() it");
 
     if (dt == dataType()) {
         return *this;
-    }
-    else {
+    } else {
         if (this == fallback.get()) {
             // if refFrom() was called before, just change the type
             fallback->setDataType(dt);
-        }
-        else {
-            AIDGE_ASSERT(isContiguous(), "cannot refCast non-contiguous tensor");
+        } else {
+            AIDGE_ASSERT(isContiguous(),
+                         "cannot refCast non-contiguous tensor");
 
             if (!fallback) {
                 fallback = std::make_shared<Tensor>(dt);
-            }
-            else {
-                fallback->setDataType(dt, false); // don't keep previous data (no copy)
+            } else {
+                fallback->setDataType(
+                    dt, false);  // don't keep previous data (no copy)
             }
 
             const auto device = getImpl()->device();
-            fallback->setBackend(device.first, device.second, false); // don't keep previous data (no copy)
+            fallback->setBackend(device.first, device.second,
+                                 false);  // don't keep previous data (no copy)
             fallback->resize(dims());
-            fallback->getImpl()->copyCast(getImpl()->rawPtr(mImplOffset), dataType(), size(), fallback->mImplOffset);
+            fallback->getImpl()->copyCast(getImpl()->rawPtr(mImplOffset),
+                                          dataType(), size(),
+                                          fallback->mImplOffset);
         }
         return *fallback;
     }
 }
 
-Aidge::Tensor& Aidge::Tensor::refFrom(std::shared_ptr<Tensor>& fallback, const std::string &backend, DeviceIdx_t device) {
+Aidge::Tensor& Aidge::Tensor::refFrom(std::shared_ptr<Tensor>& fallback,
+                                      const std::string& backend,
+                                      DeviceIdx_t device) {
     // Scott Meyers' solution to avoid code duplication
-    return const_cast<Tensor&>(static_cast<const Tensor&>(*this).refFrom(fallback, backend, device));
+    return const_cast<Tensor&>(
+        static_cast<const Tensor&>(*this).refFrom(fallback, backend, device));
 }
 
-const Aidge::Tensor& Aidge::Tensor::refFrom(std::shared_ptr<Tensor>& fallback, const std::string &backend, DeviceIdx_t device) const {
-    AIDGE_ASSERT(getImpl(), "no backend was set for tensor, cannot refFrom() it");
+const Aidge::Tensor& Aidge::Tensor::refFrom(std::shared_ptr<Tensor>& fallback,
+                                            const std::string& backend,
+                                            DeviceIdx_t device) const {
+    AIDGE_ASSERT(getImpl(),
+                 "no backend was set for tensor, cannot refFrom() it");
 
     if (std::make_pair(backend, device) == getImpl()->device()) {
         return *this;
-    }
-    else {
+    } else {
         if (this == fallback.get()) {
             // if refCast() was called before, just change the backend
             fallback->setBackend(backend, device);
-        }
-        else {
-            AIDGE_ASSERT(isContiguous(), "cannot refFrom non-contiguous tensor");
+        } else {
+            AIDGE_ASSERT(isContiguous(),
+                         "cannot refFrom non-contiguous tensor");
 
             if (!fallback) {
                 fallback = std::make_shared<Tensor>(dataType());
-            }
-            else {
-                fallback->setDataType(dataType(), false); // don't keep previous data (no copy)
+            } else {
+                fallback->setDataType(
+                    dataType(), false);  // don't keep previous data (no copy)
             }
 
-            fallback->setBackend(backend, device, false); // don't keep previous data (no copy)
+            fallback->setBackend(backend, device,
+                                 false);  // don't keep previous data (no copy)
             fallback->resize(dims());
-            fallback->getImpl()->copyFrom(*getImpl(), size(), mImplOffset, fallback->mImplOffset);
+            fallback->getImpl()->copyFrom(*getImpl(), size(), mImplOffset,
+                                          fallback->mImplOffset);
         }
         return *fallback;
     }
 }
 
-Aidge::Tensor& Aidge::Tensor::ref(std::shared_ptr<Tensor>& fallback, const Aidge::DataType& dt, const std::string &backend, DeviceIdx_t device) {
+Aidge::Tensor& Aidge::Tensor::ref(std::shared_ptr<Tensor>& fallback,
+                                  const Aidge::DataType& dt,
+                                  const std::string& backend,
+                                  DeviceIdx_t device) {
     // Scott Meyers' solution to avoid code duplication
-    return const_cast<Tensor&>(static_cast<const Tensor&>(*this).ref(fallback, dt, backend, device));
+    return const_cast<Tensor&>(
+        static_cast<const Tensor&>(*this).ref(fallback, dt, backend, device));
 }
 
-const Aidge::Tensor& Aidge::Tensor::ref(std::shared_ptr<Tensor>& fallback, const Aidge::DataType& dt, const std::string &backend, DeviceIdx_t device) const {
+const Aidge::Tensor& Aidge::Tensor::ref(std::shared_ptr<Tensor>& fallback,
+                                        const Aidge::DataType& dt,
+                                        const std::string& backend,
+                                        DeviceIdx_t device) const {
     AIDGE_ASSERT(getImpl(), "no backend was set for tensor, cannot ref() it");
 
-    if (dt == dataType() && std::make_pair(backend, device) == getImpl()->device()) {
+    if (dt == dataType() &&
+        std::make_pair(backend, device) == getImpl()->device()) {
         return *this;
-    }
-    else {
+    } else {
         // Change fallback type, backend & device, without any data copy
         if (!fallback) {
             fallback = std::make_shared<Tensor>(dt);
-        }
-        else {
-            fallback->setDataType(dt, false); // don't keep previous data (no copy)
+        } else {
+            fallback->setDataType(dt,
+                                  false);  // don't keep previous data (no copy)
         }
 
-        fallback->setBackend(backend, device, false); // don't keep previous data (no copy)
+        fallback->setBackend(backend, device,
+                             false);  // don't keep previous data (no copy)
         fallback->resize(dims());
         return *fallback;
     }
@@ -439,7 +495,7 @@ const Aidge::Tensor& Aidge::Tensor::ref(std::shared_ptr<Tensor>& fallback, const
 
 std::set<std::string> Aidge::Tensor::getAvailableBackends() {
     std::set<std::string> backendsList;
-    for(const auto& tupleKey : Registrar<Tensor>::getKeys())
+    for (const auto& tupleKey : Registrar<Tensor>::getKeys())
         backendsList.insert(std::get<0>(tupleKey));
     return backendsList;
 }
diff --git a/src/filler/Filler.cpp b/src/filler/Filler.cpp
index 34e04c2ba84ad493429bceadd54f4fa27df69bcd..f5839087c2e37c5e0288f08716595a0ed66e869e 100644
--- a/src/filler/Filler.cpp
+++ b/src/filler/Filler.cpp
@@ -20,12 +20,12 @@
 #include "aidge/utils/ErrorHandling.hpp"
 #include "aidge/utils/Types.h"
 
-
 void Aidge::calculateFanInFanOut(std::shared_ptr<Aidge::Tensor> tensor,
                                  std::uint32_t& fanIn, std::uint32_t& fanOut) {
-    AIDGE_ASSERT(
-        tensor->nbDims() == 4,
-        "Tensor need to have 4 dimensions to compute FanIn and FanOut.");
+    AIDGE_ASSERT(tensor->nbDims() == 4 || tensor->nbDims() == 2,
+                 "Tensor need to have 4 or 2 dimensions to compute FanIn and "
+                 "FanOut, but found a tensor with {} dims.",
+                 tensor->nbDims());
     // Warning: This function suppose NCXX data layout.
     // Aidge currently only support NCHW but this maybe not be true in the
     // future.
@@ -35,6 +35,6 @@ void Aidge::calculateFanInFanOut(std::shared_ptr<Aidge::Tensor> tensor,
                  "Cannot calculate FanIn if tensor batch size is 0.");
     AIDGE_ASSERT(channelSize != 0,
                  "Cannot calculate FanOut if tensor channel size is 0.");
-    fanIn =  static_cast<std::uint32_t>(tensor->size() / batchSize);
+    fanIn = static_cast<std::uint32_t>(tensor->size() / batchSize);
     fanOut = static_cast<std::uint32_t>(tensor->size() / channelSize);
 }
diff --git a/src/graph/GraphView.cpp b/src/graph/GraphView.cpp
index df2177cf6910a3c40ef269d18bf148d60b5faa66..55fe69678d7d6582f13c48a285fb4f7bfa2a1419 100644
--- a/src/graph/GraphView.cpp
+++ b/src/graph/GraphView.cpp
@@ -83,6 +83,7 @@ void Aidge::GraphView::save(const std::string& path, bool verbose, bool showProd
     }
 
     fmt::print(fp.get(),
+                "```mermaid\n"
                 "%%{{init: {{'flowchart': {{ 'curve': 'monotoneY'}}, "
                 "'fontFamily': 'Verdana' }} }}%%\nflowchart TB\n\n");
 
@@ -204,6 +205,7 @@ void Aidge::GraphView::save(const std::string& path, bool verbose, bool showProd
     fmt::print(fp.get(), "classDef producerCls_rootCls stroke:#f00,fill:#ccf\n");
     fmt::print(fp.get(), "classDef genericCls_rootCls stroke:#f00,fill:#f9f9ff,stroke-width:1px,stroke-dasharray: 5 5\n");
     fmt::print(fp.get(), "classDef metaCls_rootCls stroke:#f00,stroke-width:5px\n");
+    fmt::print(fp.get(), "```\n");
     fmt::print(fp.get(), "\n");
 }
 
@@ -391,7 +393,7 @@ void Aidge::GraphView::compile(const std::string& backend, const Aidge::DataType
     forwardDims(dims);
 }
 
-bool Aidge::GraphView::forwardDims(const std::vector<std::vector<Aidge::DimSize_t>> dims, bool allowDataDependency) {
+bool Aidge::GraphView::forwardDims(const std::vector<std::vector<Aidge::DimSize_t>>& dims, bool allowDataDependency) {
     // setInputs
     // Link every tensor to the right pointer
     // following parent - children informations
@@ -414,9 +416,10 @@ bool Aidge::GraphView::forwardDims(const std::vector<std::vector<Aidge::DimSize_
                     i, nodePtr->name(), nodePtr->type(), inputI.second, inputI.first->name(), inputI.first->type());
             } else {
                 // Input is missing
-                AIDGE_ASSERT(nodePtr->getOperator()->getRawInput(i)
-                    && !std::static_pointer_cast<Tensor>(nodePtr->getOperator()->getRawInput(i))->empty(),
+                AIDGE_ASSERT(nodePtr->getOperator()->getRawInput(i),
                   "Missing input#{} for node {} ({})", i, nodePtr->name(), nodePtr->type());
+                AIDGE_ASSERT(!std::static_pointer_cast<Tensor>(nodePtr->getOperator()->getRawInput(i))->empty(),
+                  "Empty input#{} for node {} ({})", i, nodePtr->name(), nodePtr->type());
             }
 
         }
@@ -907,7 +910,7 @@ bool Aidge::GraphView::replace(const std::shared_ptr<GraphView>& oldGraph, const
                                                      newGraph->getOrderedOutputs();
 
     auto inputParents = std::vector<std::pair<std::shared_ptr<Node>, IOIndex_t>>(oldOIn.size());
-    auto outputChildren = std::vector<std::pair<std::shared_ptr<Node>, IOIndex_t>>(oldOOut.size());
+    auto outputChildren = std::vector<std::vector<std::pair<std::shared_ptr<Node>, IOIndex_t>>>(oldOOut.size());
 
     // keep in memory every node related to the node to replace :
     // Parent
@@ -918,19 +921,12 @@ bool Aidge::GraphView::replace(const std::shared_ptr<GraphView>& oldGraph, const
         // inputParent.first -> addChild(newOI[i].first, inputParent.second, newOI[i].second);
     }
     // Children
-    for (std::size_t i = 0; i < oldOOut.size();) {
+    for (std::size_t i = 0; i < oldOOut.size(); ++i) {
         std::vector<std::pair<std::shared_ptr<Aidge::Node>, Aidge::IOIndex_t>> outputChild =
               oldOOut[i].first -> output(oldOOut[i].second);
-        if (outputChild.empty()) {
-            outputChildren[i] = std::pair<std::shared_ptr<Node>, IOIndex_t>({nullptr, gk_IODefaultIndex});
-            ++i;
-        }
-        else {
-            for (const auto& child : outputChild) {
-                if (oldNodes.find(child.first) == oldNodes.cend()) {
-                    outputChildren[i] = child;
-                    ++i;
-                }
+        for (const auto& child : outputChild) {
+            if (oldNodes.find(child.first) == oldNodes.cend()) {
+                outputChildren[i].push_back(child);
             }
         }
     }
@@ -968,8 +964,8 @@ bool Aidge::GraphView::replace(const std::shared_ptr<GraphView>& oldGraph, const
             }
         }
         for (std::size_t o = 0; o < oldOOut.size(); ++o) {
-            if (outputChildren[o].first) {
-                newOOut[o].first -> addChild(outputChildren[o].first, newOOut[o].second, outputChildren[o].second);
+            for (const auto& child : outputChildren[o]) {
+                newOOut[o].first -> addChild(child.first, newOOut[o].second, child.second);
             }
         }
     }
@@ -979,15 +975,21 @@ bool Aidge::GraphView::replace(const std::shared_ptr<GraphView>& oldGraph, const
         if (newNodes.size() == 0) {
             // Case 3
             if (oldOIn.size() == oldOOut.size()) {
+                // Same number of inputs and outputs: connect each input to the corresponding output
                 for (std::size_t i = 0; i < oldOIn.size(); ++i) {
                     if (inputParents[i].first) {
-                      inputParents[i].first -> addChild(outputChildren[i].first, inputParents[i].second, outputChildren[i].second);
+                      for (const auto& child : outputChildren[i]) {
+                        inputParents[i].first -> addChild(child.first, inputParents[i].second, child.second);
+                      }
                     }
                 }
             }
             else if ((oldOIn.size() == 1) && (inputParents[0].first)) {
-                for (std::size_t i = 0; i < oldOIn.size(); ++i) {
-                    inputParents[0].first -> addChild(outputChildren[i].first, inputParents[0].second, outputChildren[i].second);
+                // Single input: connect the only input to all the outputs
+                for (std::size_t i = 0; i < oldOOut.size(); ++i) {
+                    for (const auto& child : outputChildren[i]) {
+                        inputParents[0].first -> addChild(child.first, inputParents[0].second, child.second);
+                    }
                 }
             }
         }
@@ -1008,8 +1010,8 @@ bool Aidge::GraphView::replace(const std::shared_ptr<GraphView>& oldGraph, const
                 }
             }
             for (std::size_t o = 0; o < oldOOut.size(); ++o) {
-                if (outputChildren[o].first) {
-                    newOOut[o].first -> addChild(outputChildren[o].first, newOOut[o].second, outputChildren[o].second);
+                for (const auto& child : outputChildren[o]) {
+                    newOOut[o].first -> addChild(child.first, newOOut[o].second, child.second);
                 }
             }
         }
@@ -1058,6 +1060,12 @@ bool Aidge::GraphView::replace(const std::shared_ptr<GraphView>& oldGraph, const
     return true;
 }
 
+void Aidge::GraphView::updateInputsOutputs() {
+  for (auto node : mNodes) {
+    updateInputsOutputsNew(node);
+  }
+}
+
 void Aidge::GraphView::updateInputsOutputsNew(std::shared_ptr<Node> newNode) {
   // Can be called several times with the same node, e.g. when addChild() is
   // called on a node already part of the GraphView. In this case, inputs/outputs
diff --git a/src/graph/Node.cpp b/src/graph/Node.cpp
index 149691f796d1d84212e9d7842a28e4cb79469e6a..b08bb4c2056e8c14f5b1dd3aae62fbacf8d8c14e 100644
--- a/src/graph/Node.cpp
+++ b/src/graph/Node.cpp
@@ -57,7 +57,10 @@ Aidge::Connector Aidge::Node::operator()(const std::vector<Connector>& ctors) {
 //        INNER
 ///////////////////////////////////////////////////////
 
-void Aidge::Node::setName(const std::string& name) { mName = name; }
+void Aidge::Node::setName(const std::string& name) {
+    for (auto graphView : views()) graphView->updateNodeName(mName, name);
+    mName = name;
+}
 
 ///////////////////////////////////////////////////////
 //        OPERATORS
diff --git a/src/operator/Add.cpp b/src/operator/Add.cpp
index 6bafb3b7905ae36e23af32f8d60be33a4ba178bf..9b77ffcbe0117292ed0aa520309febf709e8dd68 100644
--- a/src/operator/Add.cpp
+++ b/src/operator/Add.cpp
@@ -63,7 +63,8 @@ bool Aidge::Add_Op::forwardDims(bool /*allowDataDependency*/) {
                         *it = dim;
                     }
                     else if ((dim != *it) && (dim != 1)) {
-                        AIDGE_THROW_OR_ABORT(std::runtime_error, "Unsupported Tensor shape for Add operation: {}", outDims);
+                        AIDGE_THROW_OR_ABORT(std::runtime_error, "Incompatible Tensor shape for Add Operation: {} for previous inputs vs {} for input#{}",
+                            outDims, getInput(i)->dims(), i);
                     }
                 }
             }
diff --git a/src/operator/Div.cpp b/src/operator/Div.cpp
index 813ab774b11cd72f440d28f61843500686d7df2d..e6300d08c2c792c8a3eb66b307aca53f9d2acc73 100644
--- a/src/operator/Div.cpp
+++ b/src/operator/Div.cpp
@@ -44,7 +44,8 @@ bool Aidge::Div_Op::forwardDims(bool /*allowDataDependency*/) {
                 outDims[out_id] = lowDims[low_id];
             }
             else if ((lowDims[low_id] != 1) && (lowDims[low_id] != outDims[out_id])) {
-                AIDGE_THROW_OR_ABORT(std::runtime_error, "Unsupported Tensor shape for Div Operation: {}", outDims);
+                AIDGE_THROW_OR_ABORT(std::runtime_error, "Incompatible Tensor shape for Div Operation: {} for input#0 vs {} for input#1",
+                    inputsDims0, inputsDims1);
             }
             --out_id;
             --low_id;
diff --git a/src/operator/MetaOperator.cpp b/src/operator/MetaOperator.cpp
index 46e9e1173af98ed5711aa0bbce54705fb61dc03c..36ff1854703d015980a1943390eb87d0863d877f 100644
--- a/src/operator/MetaOperator.cpp
+++ b/src/operator/MetaOperator.cpp
@@ -37,6 +37,37 @@ Aidge::MetaOperator_Op::MetaOperator_Op(const std::string& type, const std::shar
     }
 }
 
+void Aidge::MetaOperator_Op::associateInput(const IOIndex_t inputIdx, const std::shared_ptr<Data>& data) {
+    AIDGE_ASSERT(data->type() == Tensor::Type, "input data must be of Tensor type");
+    AIDGE_ASSERT(inputIdx < mGraph->getOrderedInputs().size(), "associateInput(): inputIdx ({}) out of bound for MetaOperator", inputIdx);
+
+    const auto& inputOp = mGraph->getOrderedInputs()[inputIdx];
+    inputOp.first->getOperator()->associateInput(inputOp.second, data);
+
+    // Associate inputs for custom implementation
+    mInputs[inputIdx] = std::dynamic_pointer_cast<Tensor>(inputOp.first->getOperator()->getRawInput(inputOp.second));
+}
+
+void Aidge::MetaOperator_Op::setInput(const Aidge::IOIndex_t inputIdx, const std::shared_ptr<Data>& data) {
+    AIDGE_ASSERT(data->type() == Tensor::Type, "{} Operator only accepts Tensors as inputs", type());
+
+    const auto& inputOp = mGraph->getOrderedInputs()[inputIdx];
+    inputOp.first->getOperator()->setInput(inputOp.second, data);
+
+    // Associate inputs for custom implementation
+    mInputs[inputIdx] = std::dynamic_pointer_cast<Tensor>(inputOp.first->getOperator()->getRawInput(inputOp.second));
+}
+
+void Aidge::MetaOperator_Op::setInput(const Aidge::IOIndex_t inputIdx, std::shared_ptr<Data>&& data) {
+    AIDGE_ASSERT(data->type() == Tensor::Type, "{} Operator only accepts Tensors as inputs", type());
+
+    const auto& inputOp = mGraph->getOrderedInputs()[inputIdx];
+    inputOp.first->getOperator()->setInput(inputOp.second, std::forward<std::shared_ptr<Data>>(data));
+
+    // Associate inputs for custom implementation
+    mInputs[inputIdx] = std::dynamic_pointer_cast<Tensor>(inputOp.first->getOperator()->getRawInput(inputOp.second));
+}
+
 Aidge::Elts_t Aidge::MetaOperator_Op::getNbRequiredData(const IOIndex_t inputIdx) const {
     if (mImpl) {
         return mImpl->getNbRequiredData(inputIdx);
diff --git a/src/operator/Mul.cpp b/src/operator/Mul.cpp
index 5a25e4dd447f44220dbe4124e63f567520ad8d1e..426de388f31391fb5e59446d50e50de94ca5f8a1 100644
--- a/src/operator/Mul.cpp
+++ b/src/operator/Mul.cpp
@@ -45,7 +45,8 @@ bool Aidge::Mul_Op::forwardDims(bool /*allowDataDependency*/) {
                 outDims[out_id] = lowDims[low_id];
             }
             else if ((lowDims[low_id] != 1) && (lowDims[low_id] != outDims[out_id])) {
-                AIDGE_THROW_OR_ABORT(std::runtime_error, "Unsupported Tensor shape for Mul Operation: {}", outDims);
+                AIDGE_THROW_OR_ABORT(std::runtime_error, "Incompatible Tensor shape for Mul Operation: {} for input#0 vs {} for input#1",
+                    inputsDims0, inputsDims1);
             }
             --out_id;
             --low_id;
@@ -53,9 +54,6 @@ bool Aidge::Mul_Op::forwardDims(bool /*allowDataDependency*/) {
         mOutputs[0]->resize(outDims);
         return true;
     }
-    else if (!getInput(0)->empty() && !getInput(1)->empty()) {
-        AIDGE_THROW_OR_ABORT(std::runtime_error, "Incompatible input dimensions for Operator Mul: {} and {}", getInput(0)->dims(), getInput(1)->dims());
-    }
 
     return false;
 }
diff --git a/src/operator/Pow.cpp b/src/operator/Pow.cpp
index 42715516e6804c1a48ef848fbda8f9d596f0e69e..135c792345b0caf1166e671a8dad7d5b49b42ee7 100644
--- a/src/operator/Pow.cpp
+++ b/src/operator/Pow.cpp
@@ -44,7 +44,8 @@ bool Aidge::Pow_Op::forwardDims(bool /*allowDataDependency*/) {
                 outDims[out_id] = lowDims[low_id];
             }
             else if ((lowDims[low_id] != 1) && (lowDims[low_id] != outDims[out_id])) {
-                AIDGE_THROW_OR_ABORT(std::runtime_error, "Unsupported Tensor shape for Pow Operation: {}", outDims);
+                AIDGE_THROW_OR_ABORT(std::runtime_error, "Incompatible Tensor shape for Pow Operation: {} for input#0 vs {} for input#1",
+                    inputsDims0, inputsDims1);
             }
             --out_id;
             --low_id;
diff --git a/src/operator/Scaling.cpp b/src/operator/Scaling.cpp
index 8b0d6f9db698e36d232dec38fd8cdd0fad5f8c59..dc5e272210feb09fd5dac6ba4b16f9ba8dc93bf0 100644
--- a/src/operator/Scaling.cpp
+++ b/src/operator/Scaling.cpp
@@ -21,6 +21,6 @@
 const std::string Aidge::Scaling_Op::Type = "Scaling";
 
 void Aidge::Scaling_Op::setBackend(const std::string& name, Aidge::DeviceIdx_t device) {
-    mImpl = Registrar<Scaling_Op>::create(name)(*this);
+    SET_IMPL_MACRO(Scaling_Op, *this, name);
     mOutputs[0]->setBackend(name, device);
 }
\ No newline at end of file
diff --git a/src/operator/Sub.cpp b/src/operator/Sub.cpp
index 50e556ad97a90b7a9868594cebe350d955983fd7..b977f4ee7ccce32d7f7929cbee99140aea36cd2f 100644
--- a/src/operator/Sub.cpp
+++ b/src/operator/Sub.cpp
@@ -46,7 +46,8 @@ bool Aidge::Sub_Op::forwardDims(bool /*allowDataDependency*/) {
                 outDims[out_id] = lowDims[low_id];
             }
             else if ((lowDims[low_id] != 1) && (lowDims[low_id] != outDims[out_id])) {
-                AIDGE_THROW_OR_ABORT(std::runtime_error, "Unsupported Tensor shape for Sub Operation: {}", outDims);
+                AIDGE_THROW_OR_ABORT(std::runtime_error, "Incompatible Tensor shape for Sub Operation: {} for input#0 vs {} for input#1",
+                    inputsDims0, inputsDims1);
             }
             --out_id;
             --low_id;
diff --git a/src/scheduler/ParallelScheduler.cpp b/src/scheduler/ParallelScheduler.cpp
index 1dd13fe2100122002d4ed068ada4851b1bfba463..4e515099006b9e0588eafc7e981c5f5e80bbe97d 100644
--- a/src/scheduler/ParallelScheduler.cpp
+++ b/src/scheduler/ParallelScheduler.cpp
@@ -28,7 +28,7 @@
 #include "aidge/operator/Memorize.hpp"
 #include "aidge/operator/MetaOperator.hpp"
 
-void Aidge::ParallelScheduler::forward(bool forwardDims, std::vector<std::shared_ptr<Aidge::Tensor>> data) {
+void Aidge::ParallelScheduler::forward(bool forwardDims, const std::vector<std::shared_ptr<Aidge::Tensor>>& data) {
     // Collect all data input of the graph (that are producers)
     if (!data.empty()){
         connectInputs(data);
diff --git a/src/scheduler/Scheduler.cpp b/src/scheduler/Scheduler.cpp
index 4e3f9978837120bd01a3de2cfe2d22e33f9d7828..af10e3dcd3ead044f8619c40570936f53039d9a2 100644
--- a/src/scheduler/Scheduler.cpp
+++ b/src/scheduler/Scheduler.cpp
@@ -195,7 +195,9 @@ std::vector<std::shared_ptr<Aidge::Scheduler::StaticSchedulingElement>> Aidge::S
             // be put back in the consumers list once the remaining consumers
             // have been exhausted.
             bool isStillConsumer = false;
-            for (IOIndex_t inputIdx = 0; inputIdx < consumer->nbInputs(); ++inputIdx) {
+            // Only look for data inputs. If no data is available on data input,
+            // by definition, no parameter can be consumed on parameter inputs.
+            for (IOIndex_t inputIdx = 0; inputIdx < consumer->nbData(); ++inputIdx) {
                 AIDGE_LOG_CONTEXT("Consumer node {} input #{}", namePtrTable.at(consumer), inputIdx);
 
                 if (consumer->getOperator()->getNbConsumedData(inputIdx) <
@@ -280,7 +282,12 @@ std::vector<std::shared_ptr<Aidge::Scheduler::StaticSchedulingElement>> Aidge::S
     mPriorCache.clear();
 
     if (!consumers.empty()) {
-        Log::warn("Remaining consumers: possible dead-lock");
+        std::vector<std::string> consumersName;
+        std::transform(consumers.begin(), consumers.end(),
+            std::back_inserter(consumersName),
+            [&namePtrTable](auto val){ return namePtrTable.at(val); });
+
+        Log::warn("Remaining consumers: {}. Possible dead-lock.", consumersName);
     }
 
     return schedule;
@@ -491,17 +498,17 @@ Aidge::MemoryManager Aidge::Scheduler::generateMemory(bool incProducers, bool wr
                 const MemoryManager::MemoryPlane& memPlane
                     = (wrapAroundBuffer && wrapAroundSize > 0)
                         ? (*wrapAroundMemPlane[outputIdx]) :
-                            memManager.allocate(requiredSize.data, childs, stride, length, count);
+                            memManager.allocate(size, childs, stride, length, count);
 
                 if (wrapAroundBuffer && wrapAroundSize > 0) {
                     memManager.reallocate(memPlane,
                         node, 0,
-                        requiredSize.data, true, wrapAroundExtra, childs, stride, length, count);
+                        size, true, wrapAroundExtra, childs, stride, length, count);
                 }
                 else {
                     memManager.reallocate(memPlane.memSpace,
                         node, memPlane.offset,
-                        requiredSize.data, false, 0, childs, stride, length, count);
+                        size, false, 0, childs, stride, length, count);
                 }
             }
 
@@ -513,12 +520,23 @@ Aidge::MemoryManager Aidge::Scheduler::generateMemory(bool incProducers, bool wr
     return memManager;
 }
 
-void Aidge::Scheduler::connectInputs(std::vector<std::shared_ptr<Aidge::Tensor>> data){
+void Aidge::Scheduler::connectInputs(const std::vector<std::shared_ptr<Aidge::Tensor>>& data){
     // This version of connect inputs only connects tensor inputs in input data producers.
     auto inputNodes = mGraphView->getOrderedInputs();
 
     // Assert that the number of input data producers corresponds to the number of data input
-    assert(data.size() == inputNodes.size()  && "Scheduler connectInput error - Inconsistent number of graph inputs and inputs passed to the graph");
+    if (data.size() != inputNodes.size()) {
+        const std::map<std::shared_ptr<Node>, std::string> namePtrTable
+            = mGraphView->getRankedNodesName("{0} ({1}#{3})");
+
+        std::vector<std::pair<std::string, IOIndex_t>> inputNodesName;
+        std::transform(inputNodes.begin(), inputNodes.end(),
+            std::back_inserter(inputNodesName),
+            [&namePtrTable](auto val){ return std::make_pair(namePtrTable.at(val.first), val.second); });
+
+        AIDGE_THROW_OR_ABORT(std::runtime_error, "Provided {} inputs to the scheduler, but graph has {} inputs (required inputs in order: )",
+            data.size(), inputNodes.size(), inputNodesName);
+    }
 
     for (std::size_t i = 0; i < data.size(); ++i){
         // TODO : maybe shallow copy instead of deepcopy
diff --git a/src/scheduler/SequentialScheduler.cpp b/src/scheduler/SequentialScheduler.cpp
index 801f46ffb0293696dad8a84908bdda2bbd789bfc..f044603fb8b1316ec71728acec520204bb5361b8 100644
--- a/src/scheduler/SequentialScheduler.cpp
+++ b/src/scheduler/SequentialScheduler.cpp
@@ -28,7 +28,7 @@
 #include "aidge/operator/MetaOperator.hpp"
 #include "aidge/recipes/GraphViewHelper.hpp"
 
-void Aidge::SequentialScheduler::forward(bool forwardDims, std::vector<std::shared_ptr<Aidge::Tensor>> data) {
+void Aidge::SequentialScheduler::forward(bool forwardDims, const std::vector<std::shared_ptr<Aidge::Tensor>>& data) {
     // Collect all data input of the graph (that are producers)
     if (!data.empty()){
         connectInputs(data);